岩石学报  2018, Vol. 34 Issue (4): 1191-1203   PDF    
8.1亿年千里山基性岩墙群的厘定及其对华北克拉通西部地质演化的启示
彭澎1,2 , 王欣平3 , 周小童1,2 , 王冲1,2 , 孙风波1,2 , 苏向东1,2 , 陈亮4 , 郭敬辉1,2 , 翟明国1,2,4     
1. 中国科学院大学地球与行星科学学院, 北京 100049;
2. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029;
3. 山西师范大学地理科学学院, 临汾 041004;
4. 西北大学地质学系, 西安 710069
摘要:千里山-贺兰山地区分布着两组岩墙:一组北东走向,侵入古元古代变质基底岩系,见被晚前寒武系黄旗口组不整合截切,称为千里山岩墙群;一组北西走向,侵入基底岩系,见侵入黄旗口组,被石炭系不整合截切,称为贺兰山岩墙群。一条千里山岩墙分选出斜锆石,二次离子探针Pb-Pb定年获得813±7Ma的年龄(207Pb/206Pb平均年龄;MSWD=0.63,n=6),代表岩墙侵位时代。一条贺兰山岩墙分选出锆石,二次离子探针U-Pb定年获得最小一组年龄~370Ma(206Pb/238U年龄),近似代表岩墙侵位时代或者略大于侵位时代。千里山岩墙为拉斑玄武岩系列,以高TiO2(2.7%~3.7%)和Fe2O3T(13.4%~17.0%)为特征;贺兰山岩墙为(弱)碱性系列,低TiO2(1.0%~1.5%)和Fe2O3T(5.5%~12.4%)为特征。两者均显示轻稀土和大离子亲石元素富集,高场强元素相对亏损的特征;贺兰山岩墙群的富集和亏损特征均更为明显((La/Yb)N:贺兰山岩墙群2.0~5.5;千里山岩墙群1.9~2.4)。这些特征说明岩浆可能起源于交代的岩石圈地幔或者岩浆受到过地壳物质的混染。黄旗口组-王全口组-正目关组与上覆寒武系地层以及下伏千里山岩墙群的地质关系说明这些地层应该形成于新元古代晚期(810~541Ma)。千里山-贺兰山地区基底属于西华北克拉通的一部分,其以西是阿拉善地块;后者的构造归属长期存在争议。鉴于阿拉善地块发育同时期、岩浆性质基本相似的岩浆岩(狼山地区双峰式火山岩系;龙首山地区镁铁-超镁铁岩),考虑到两地的晚太古代-古元古代基底特征的相似性,我们认为阿拉善地块和千里山-贺兰山地块可能属于同一克拉通,同时经历新元古代中期伸展-裂谷事件。
关键词: 华北克拉通     新元古代     千里山基性岩墙群     贺兰山基性岩墙群     阿拉善地块     裂谷    
Identification of the~810Ma Qianlishan mafic dyke swarm and its implication for geological evolution of the western North China Craton
PENG Peng1,2, WANG XinPing3, ZHOU XiaoTong1,2, WANG Chong1,2, SUN FengBo1,2, SU XiangDong1,2, CHEN Liang4, GUO JingHui1,2, ZHAI MingGuo1,2,4     
1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. School of Geographic Sciences, Shanxi Normal University, Linfen 041004, China;
4. Department of Geology, Northwest University, Xi'an 710069, China
Abstract: Two mafic dyke swarms are identified from the Qianli-Helan Mts, one dominated with N-E-trending dykes, namely the Qianlishan swarm, intruded the Paleoproterozoic basement but was unconformably covered by the Precambrian Huangqikou Fm., while another with mostly N-W-trending ones, namely the Helanshan swarm, intruded both the basement and the Huangqikou-Wangquankou Fms. but was covered by the Carboniferous strata. Baddeleyites liberated from one Qianlishan dyke give a SIMS 207Pb/206Pb age of 813±7Ma (MSWD=0.63, n=6), representing the timing of emplacement. Zircons from one Helanshan dyke, however, give the youngest 206Pb/238U ages of~370Ma, representing an age of or slightly older than its intrusion. The Qianlishan dykes are tholeiitic, with high TiO2 (2.7%~3.7%) and Fe2O3T (13.4%~17.0%) contents; whereas the Helanshan dykes are (weak) alkaline basalt with low TiO2 (1.0%~1.5%) and Fe2O3T (5.5%~12.4%) contents. Both swarms show enriched light rare earth elements and large ion lithophile elements but depleted high field strength elements, which are more prominent for the Helanshan swarm than the Qianlishan (e.g., (La/Yb)N are 2.0~5.5 for the Helanshan but 1.9~2.4 for the Qianlishan dykes). These features indicate that the parental magmas were probably both from a metasomatized lithospheric mantle or/and they were contaminated by the crust. The unconformable relationship of the Huangqikou, Wangquankou and Zhengmuguan Fms. related to the Qianlishan dykes and their relationship with the Cambrian strata indicate that these strata deposited during 810~541Ma. The basement of the Qianli-Helan Mts region belongs to the western North China Craton. It borders the Alxa block to the west, whose relationship with the craton is in debating. Based on the similarity of basement and the coeval and chemically similar igneous associations in the two regions (e.g., the 830~810Ma Langshan Group bimodal volcanics and Jinchuan mafic-ultramafic intrusions in the Alxa block), it is preferred here that the Alxa block was also a part of the craton as the basement of the Qianli-Helan Mts region, and both regions experienced extension-rifting event during the Middle Neoproterozoic.
Key words: North China Craton     Neoproterozoic     Qianlishan mafic dyke swarm     Helanshan mafic dyke swarm     Alxa block     Rift    

岩墙群由一定数量具有相同或相似产状、基本同时形成的同源岩墙组成,成分多为基性/镁铁质,称为基性/镁铁质岩墙群;它们展布纵深大,易保留,常伴有火山岩系,是研究岩石成因和壳幔相互作用的理想对象;它们活动时限短,构造含义明确,起着时间标尺和构造标志的作用;大型岩墙群具有特定的几何学分布,代表大陆裂谷或者裂解过程,被视为超大陆重建的关键指标(Halls and Palmer, 1990; Ernst et al., 2001, 2013a, b; Bleeker and Ernst, 2006; Hanski et al., 2006; Srivastava, 2011; Pisarevsky et al., 2014; 彭澎, 2016)。华北克拉通18亿年以来,一直到寒武纪早期,为持续裂谷沉积阶段,或称地球中年期(Zhai et al., 2015),分布着三期重要的岩墙群事件,分别发生于古元古代晚期(1800~1600Ma)、中元古代中期(1350~1200Ma)和新元古代早期(~900Ma),分别伴随熊耳裂谷系、燕辽裂谷系和徐淮裂谷系的演化(见彭澎,2016综述)。另外,华北西部狼山地区(彭润民等, 2010; Hu et al., 2014)狼山群中的双峰式火山岩,以及龙首山地区的金川铜镍矿围岩镁铁-超镁铁岩(Li et al., 2004)的时代为ca. 830~810Ma,说明阿拉善地块在新元古代末期存在岩浆活动,并发育同时期裂谷;这与华北其他地区发育ca. 920~890Ma岩墙群/岩床杂岩(Peng et al., 2011a, b; Wang et al., 2012)有所区别。最近,Wang et al. (2016)在冀东地区报道了~775Ma的岩墙群,不过年龄还需进一步确认。

阿拉善地块位于华北克拉通西部,基底由新太古代-古元古代变质岩系组成(沈其韩等, 2004; 耿元生等, 2006; 张进等, 2012; Zhang et al., 2013b; Wu et al., 2014);该地块是否属于华北克拉通的一部分,长期存在争议:部分学者认为阿拉善地块属于华北克拉通的一部分(Hu et al., 2014; Tang et al., 2014; Gong et al., 2016; Liu et al., 2018);部分研究者认为其与华北经历完全不同的演化历史(Dan et al., 2012a, 2014a, b, 2016; Feng et al., 2016; Song et al., 2017, 2018; Wang et al., 2016; Wu et al., 2014; Tang et al., 2014; Zhang et al., 2013a, 2015, 2016a, b),在古元古代晚期(Wu et al., 2014)、新元古代之前(Tang et al., 2014)、早古生代(Wang et al., 2016; Zhang et al., 2016a)或者泥盆纪晚期(Zhang et al., 2013a, 2015, 2016b)才与华北克拉通主体基底拼贴到一起。千里山-贺兰山地区紧邻阿拉善,属于阴山-大青山孔兹岩系西延的一部分(图 1a; Zhao et al., 2005; Yin et al., 2009, 2011; Dan et al., 2012b),其内岩墙群特征及其与阿拉善地块的对比研究,将为探讨这一问题提供证据。

图 1 华北克拉通地质简图(a)、千里山-贺兰山地区及邻区阿拉善地块地质简图(b)和千里山-贺兰山地区地质简图(c) Fig. 1 Simplified geological maps of the North China craton (a), the Qianli-Helan Mts and the Alxa regions (b) and the Qianli-Helan Mts region (c)
1 地质背景

千里山-贺兰山地区位于华北克拉通北缘西段,属于阴山-大青山孔兹岩系(孔兹岩带)西延的一部分(图 1a, b; Zhao et al., 2005; Yin et al., 2009, 2011, 2014; Dan et al., 2012b; 沈其韩等, 2016; Qiao et al., 2016);其西以断层与阿拉善地块相邻(图 1b)。千里山地区的基底为千里山杂岩,主要由高级变质表壳岩系和少量S型花岗岩组成,其中,表壳岩系主要包括含石墨夕线石榴片麻岩、石榴石石英岩、斜长黑云母片麻岩、钙硅质岩石和大理岩,称为千里山(岩)群(阎月华, 1983; Yin et al., 2009, 2014)。S型花岗岩形成于18.8亿年;孔兹岩系原岩沉积时代可能稍晚于20亿年,变质时代为19.5~19.2亿年(Yin et al., 2009)。贺兰山地区基底为贺兰山杂岩,传统上称为贺兰山群;贺兰山杂岩与千里山杂岩相似,同样由大量高级变质的富Al片麻岩、石英岩和少量大理岩及钙硅酸盐岩组成,并含有一定量的S型花岗岩(杨家喜等, 1992; 李伍平, 1994; Yin et al., 2011; Dan et al., 2012b)。贺兰山杂岩原岩沉积晚于20亿年,记录了两组变质年龄,分别为~19.5亿年和18.7亿年,后者与本区S型花岗岩侵位时代一致(周喜文和耿元生, 2009; Yin et al., 2011; Dan et al., 2012b)。变质作用研究表明,千里山-贺兰山地区岩石记录了峰期7.5~8.0kbar和750~800℃的变质作用,变质P-T轨迹具有顺时针特点(杨家喜等, 1992; Zhao et al., 1999),变质峰期或可达到高压麻粒岩相(10~12kbar、800~850℃;如, Yin et al., 2014; Qiao et al., 2016)。该区以NW-SE向的构造面理为特征,经历三期主要变形,主期变形以紧闭同斜褶皱为特征(卢良兆等, 1996)。最新的研究认为,千里山-贺兰山地区古元古代中期处于活动大陆边缘弧背景(Yin et al., 2011, 2014; Dan et al., 2012b; Qiao et al., 2016)。

千里山-贺兰山地区的盖层包括黄旗口组(群)、王全口组(群)和正目关/正目观/镇木关组(宁夏回族自治区地质矿产局, 1990; 内蒙古自治区地质矿产局, 1991)。黄旗口组为一套由灰紫、紫红、灰白色石英岩、石英岩状砂岩、杂色泥质岩及白云岩组成的滨浅海相沉积,不整合于变质基底之上,厚约552m;自下而上可分为上、下两个岩性段:下段以滨浅海相石英岩状砂岩、石英砂岩为主,夹灰绿色、紫红色板岩;上段为灰白色、灰色石英岩状砂岩、石英砂岩、白云岩、白云质灰岩互层,夹少量板岩(宁夏回族自治区地质矿产局, 1990; 史晓颖等, 2008; 李明涛等, 2014; 宋立军等, 2016a)。王全口组为一套硅质条带灰质白云岩,底部有少量石英岩、粉砂岩和钙质板岩,厚度上千米到不足百米;与黄旗口组之间为假整合关系(宁夏回族自治区地质矿产局, 1990; 宋立军等, 2016a)。年代归属上,史晓颖等(2008)根据微生物席和李明涛等(2014)根据岩相综合分析均认为黄旗口组大致对应长城系大红峪组;苏文博(2016)从岩石地层对比的角度认为黄旗口组-王全口组沉积时代应与蓟县系高于庄组相当;宋立军等(2016a, b)则综合年代学数据提出二者均属于中元古界待建系。黄旗口组-王全口组沉积期构造背景存在三叉裂谷(林畅松等, 1995)、裂谷(小洋盆)(张福礼等, 1994)、稳定被动大陆边缘陆架或坳陷环境(邸领军和谢广成, 2008; 公王斌, 2014)和陆内裂谷-坳陷环境(宋立军等, 2016a, b)等认识。正目关组主要由板岩、砂岩、砾岩组成,厚度约210m;下部层位疑似冰碛岩;与上覆寒武系假整合,时代应属震旦纪(宁夏回族自治区地质矿产局, 1990; Yang et al., 2013; Dong et al., 2017)。

2 产状与岩相学

千里山-贺兰山地区的基性岩墙大致可以分成两组,一组为北东走向,N40°E到N80°E,称为千里山岩墙群(图 2a-c);一组为北西向,300°~340°NW,称为贺兰山岩墙群(图 2g-j)。另外,还有少数近南北向岩墙,归属待定(图 1c)。千里山岩墙被黄旗口组不整合覆盖(图 2b);贺兰山岩墙见侵入于黄旗口组砂岩中,也见被石炭系不整合覆盖(图 2h-j)。从地质关系可以推断,千里山岩墙群应属中或新元古代;而贺兰山岩墙群时代限定在新元古代-早石炭世。

图 2 千里山和贺兰山岩墙群野外产状及岩相学特征 (a-c)千里山岩墙群:(a)两条近平行岩墙;(b)一条宽数米的岩墙被黄旗口组不整合覆盖;(c)三条近平行分布的岩墙,宽度变化较大;(d)黄旗口组与基底孔兹岩系不整合;(e)千里山岩墙岩相学特征(样品05QLS22,单偏光);(f)图e视域范围的正交偏光照片. (g-l)贺兰山岩墙群:(g)侵入基底的岩墙;(h)侵入黄旗口组砂岩的岩墙;(i)侵入基底,为石炭系不整合截切的岩墙;(j)侵入砂岩,在砂岩中留下烘烤边的岩墙;(k)贺兰山岩墙岩相学特征(样品05HLS15,单偏光);(l)图k视域范围的正交偏光照片. Cpx-单斜辉石;Pl-斜长石;Kfs-碱性长石 Fig. 2 Occurrences and petrographic features of the Qianlishan and Helanshan dyke swarms

两个岩墙群的规模变化都比较大,千里山岩墙群个体宽度数米到30米不等,其中,产出于千里山钢厂和生盖马格附近的岩墙(图 1c;样品05QLS22),宽度29m(走向45°),出露长度~8km。贺兰山岩墙群个体宽度变化也很大,从~1m到~15m不等,其中产出于宗别立驴路沟附近的一条岩墙(图 1c;样品05HLS15),宽度8m,出露长度超过3km。

从岩相学特征来看,千里山岩墙群显示典型的辉绿结构,部分晚期结晶的单斜辉石形成粒径较大的矿物,包含早期结晶的斜长石;斜长石含量约50%~60%,单斜辉石含量略低,40%~50%;副矿物包括Ti-Fe氧化物、磷灰石等;见部分辉石退变为角闪石(图 2e, f)。贺兰山岩墙群显示似斑状结构,单斜辉石斑晶颗粒粗大,达数毫米(图 2k, l);基质斜长石板条状,单斜辉石多呈粒状;斜长石含量约50%,单斜辉石含量略低于50%,钾长石约5%;副矿物为Ti-Fe氧化物、磷灰石等;辉石和斜长石蚀变较强(图 2k, l)。

3 分析方法

锆石的U-Pb定年完成于北京离子探针中心,其他分析完成于岩石圈演化国家重点实验室。

斜锆石分选流程为:先将岩石破碎,磨至80目粉末,然后在Wilfley 800型摇床中进行浮选,最后在双目镜下观察并转移斜锆石。斜锆石分选详细流程参考Söderlund and Johansson (2002)。锆石分选采用常规重力分选。将分选出的斜锆石/锆石固定到环氧树脂靶上,用显微镜拍摄透反射照片,用电子探针拍摄阴极发光照片(图 3a, b)。样品05QLS22斜锆石阴极发光照片不能显示内部结构,本文展示透射光照片(图 3a)。

图 3 千里山岩墙斜锆石Pb-Pb平均年龄图(a)和贺兰山岩墙锆石U-Pb谐和图(b) Fig. 3 Baddeleyite Pb-Pb average age plot of one Qianlishan dyke (a) and zircon U-Pb concordia diagram of one Helanshan dyke (b)

斜锆石U-Pb测年使用Cameca IMS-1280二次离子质谱仪。使用常规束斑(20μm×30μm)轰击样品表面。采用吹氧技术使斜锆石二次离子Pb+的灵敏度增加七倍以上,质量分辨率采用7000(50%峰高)(Li et al., 2010)。因斜锆石离子探针U-Pb定年中可能出现晶体光轴效应,而Pb-Pb年龄不受影响(Wingate and Compston, 2000),本次分析选择Pb同位素测试,以Phalaborwa斜锆石标准监测Pb同位素分馏(Li et al., 2010; Heaman, 2009)。用测量的204Pb进行校正,普通Pb同位素组成采用地球平均Pb演化模型计算(Stacey and Kramers, 1975)。分析结果见表 1。锆石U-Pb测年使用SHRIMP二次离子探针质谱仪,分析流程与Williams (1998)描述类似。分析束斑25~30μm,采用澳大利亚国立大学提供的TEM(417Ma)作为标准。计算中有关参数据Steiger and Jäger (1977),普通Pb校正通过Squid和Isoplot程序(Ludwig, 2001)。数据见表 2(1σ误差)。

表 1 千里山岩墙(样品05QLS22)斜锆石Pb-Pb数据表 Table 1 Pb-Pb data of baddeleyite from one Qianlishan dyke (Sample 05QLS22)

表 2 贺兰山岩墙(样品05HLS15)锆石U-Pb数据表 Table 2 U-Pb data of zircon from one Helanshan dyke (Sample 05HLS15)

全岩主量元素分析中采用湿化学滴定法测定FeO含量。称取0.5g样品放入陶瓷坩埚中高温1000℃灼烧至恒重,测定烧失量;然后将样品制成玻璃片。使用X-射线荧光光谱仪(XRF-1500)分析,分析方法采用标准曲线法(经验系数法),基体效应采用数学模型校正。采用中国国家标准参考物质标样GSR1和GSR3,含量>10%,分析精度优于1%;含量 < 10%则精度好于5%。对于全岩微量元素分析,首先称取40mg岩石粉末进行前期熔样处理,之后将定容的样品溶液在ICP-MS(Element I)上分析。使用标样GSR1和GSR3,微量元素含量>10×10-6的精度优于5%,< 10×10-6的元素精度优于10%。全岩主量和微量元素分析结果见表 3

表 3 岩墙全岩主量(wt%)和微量(×10-6)元素含量数据表 Table 3 Whole-rock major (wt%) and trace (×10-6) element data of the dykes
4 主要结果 4.1 年龄结果

样品05QLS22采自千里山钢厂附近(GPS:39°54′51″N、106°55′55″E),属于千里山岩墙群。从样品中分选出斜锆石10多颗,粘靶抛光后只剩下6颗,离子探针测试获得了6个点的有效数据。这些点的204Pb低于4cps.,206Pb/204Pb大多大于9000(仅一个点~1700),其中,7号斜锆石大于260000,说明普通铅的影响比较小。6个点的207Pb/206Pb加权平均年龄为813±7Ma(MSWD=0.63,n=6;图 3a)。

样品05HLS15采自贺兰山地区宗别立(驴路沟)附近(GPS:39°08′23.6″N、106°03′13.2″E),属于千里山岩墙群。从样品中分选了100多颗锆石,大部分直径大于100μm,短柱状或者浑圆状,发育清晰的韵律环带,锆石U、Th和206Pb*(放射性成因206Pb)含量分别为210×10-6~586×10-6、46×10-6~315×10-6和24×10-6~123×10-6,Th/U比为0.17~0.79(表 2);207Pb/206Pb年龄变化范围较大,为2005~428Ma(图 3b),代表继承年龄。两颗锆石为长柱状,弱环带,锆石U、Th和206Pb*(放射性成因206Pb)含量均较高,分别为6876×10-6和1359×10-6、2546×10-6和1052×10-6,以及349×10-6和69.7×10-6,Th/U比为0.38和0.80;普通Pb含量低,数据点谐和(表 2);数据可信。206Pb/238U年龄分别为370±6Ma和371±7Ma(图 3b)。

4.2 全岩地球化学结果

全岩数据烧失量比较大,2.0%~7.75%,说明岩石蚀变较重,本文采用活动性较弱的元素进行地球化学判别。在SiO2-Zr/TiO2×0.0001图解中,千里山岩墙落入亚碱性区域,贺兰山岩墙落入碱性区域(图 4a);在AFM图解上,千里山岩墙落入拉斑系列区域(图 4b)。综合岩相学特征,判断千里山岩墙群岩浆属于拉斑玄武岩系列;而贺兰山岩墙群岩浆属于弱碱性系列。千里山岩墙群SiO2(44.2%~47.7%)、Al2O3(12.9%~14.3%)、Na2O(1.4%~2.4%)和K2O(0.3%~1.5%)含量较低,TiO2(2.7%~3.7%)和Fe2O3T(13.4%~17.0%)含量较高;相比而言,贺兰山岩墙群SiO2(49.3%~51.7%)、Al2O3(14.2%~18.4%)、Na2O(1.7%~3.0%)和K2O(1.6%~4.4%)含量较高,TiO2(1.1%~1.5%)和Fe2O3T(5.5%~12.4%)较低(表 3)。千里山岩墙群的MgO含量4.0%~6.5%,镁指数(Mg#=100×Mg/(Mg+Fe2+)原子数比值)40~46;贺兰山岩墙群的MgO为5.0%~5.8%,镁指数51~71。

图 4 SiO2-Zr/TiO2×0.0001 (a)和AFM (b)岩石类型判别图解 Fig. 4 SiO2 vs. Zr/TiO2×0.0001 (a) and AFM (b) discriminant diagrams

千里山和贺兰山岩墙群的总稀土含量均较高(124×10-6~378×10-6),均显示轻稀土富集的特征,Eu异常(Eu*=0.7~1.1;Eu*=(EuN)/(SmN×GdN)1/2)从弱负到基本无异常(表 3)。贺兰山岩墙群轻稀土富集更明显((La/Yb)N=2.0~5.5,千里山岩墙群为1.9~2.4)(图 5a)。在微量元素原始地幔标准化图解上,两者均显示大离子亲石元素富集,高场强元素亏损的特点(图 5b);不过,千里山岩墙群高场强元素亏损相对较弱(图 5b)。同时,两者均显示Sr的负异常(图 5b)。千里山岩墙显示Ti的正异常,而贺兰山岩墙群则显示Ti负异常(图 5b)。

图 5 千里山和贺兰山岩墙球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)狼山火山岩据彭润民和翟裕生(1997);金川镁铁质-超镁铁质岩据李文渊等(2004) Fig. 5 Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element patterns (b) of Qianlishan and Helanshan dykes (normalization values after Sun and McDonough, 1989)
5 讨论 5.1 岩墙群的时代

千里山岩墙群侵位于古元古代基底变质岩系之中,被黄旗口组不整合覆盖(图 2b)。黄旗口组属前寒武纪无争议(内蒙古自治区地质矿产局, 1991; 宁夏回族自治区地质矿产局, 1990)。本次从一条岩墙中分选斜锆石,获得了~814Ma的年龄。该年龄与地质关系一致,说明岩墙应该属于新元古代中期;同时,黄旗口组-王全口组-正目关组应小于~810Ma。贺兰山岩墙群侵位于黄旗口组,被石炭系不整合截切(图 2i),时代早于石炭纪,晚于黄旗口组沉积时代。从一条岩墙中分选出锆石,这些锆石大部分显示继承锆石特点,~19亿年的年龄也与围岩年龄信息一致。然而,给出~370Ma最小年龄的锆石是否代表岩墙的岩浆锆石呢?从锆石特征来看,不排除这种可能。从地质关系看,这条岩墙应该早于石炭纪(~300Ma)。结合这些特点,我们推测~370Ma的年龄可能代表或者近似代表(略大于)这期岩墙的时代。该年龄有待进一步验证。

5.2 岩墙群的成因

千里山岩墙的Mg值较低(Mg#=40~46),说明经历明显的结晶分异或者同时经历同化混染与结晶分异。岩墙显示轻稀土和大离子亲石元素富集,高场强元素弱亏损的特征(图 5a, b)。基于现有数据,难以估计地壳混染量,也难以确定这些地球化学特征是否继承自源区。岩墙为拉斑玄武岩系列,以高TiO2(2.7%~3.7%)和Fe2O3T(13.4%~17.0%)特征,这些特征可以通过岩浆的结晶分异实现;不过,其镁值最高(Mg#=46),MgO含量最高的样品(MgO=6.45%),TiO2和Fe2O3T的含量也最高(TiO2=3.7%;Fe2O3T=17.0%),明显高于成分更为演化的岩浆(表 3);我们推测,母岩浆同样具有高Ti、Fe的特征。

岩墙群的出现,一般代表伸展背景(Halls and Palmer, 1990; Ernst et al., 2001, 2013a, b; Bleeker and Ernst, 2006; Hanski et al., 2006; Srivastava, 2011)。该区稍晚的新元古代沉积岩系被认为形成于三叉裂谷(林畅松等, 1995)、裂谷(小洋盆)(张福礼等, 1994)、稳定被动大陆边缘陆架或坳陷环境(邸领军和谢广成, 2008; 公王斌, 2014)或者陆内裂谷(宋立军等, 2016a, b);同时期本区及邻区阿拉善地块(该区与阿拉善地块关系见下文)未见花岗质岩浆活动,但见双峰式火山岩(狼山, 彭润民等, 2010; Hu et al., 2014)和镁铁、超镁铁岩及镍矿(金川/龙首山, Li et al., 2004; Porter, 2016)。我们推测,千里山岩墙群代表了陆内裂谷岩浆活动。

贺兰山岩墙的Mg值相对较高(Mg#=51~71),说明经历结晶分异及地壳混染程度均较弱,其母岩浆来自地幔源区。该期岩墙显示轻稀土和大离子亲石元素富集,高场强元素亏损的特征(图 5a, b),且这些特征比千里山岩墙群更显著((La/Yb)N=2.0~5.5)。岩墙为碱性系列,以低TiO2(1.1%~1.5%)和Fe2O3T(5.5%~12.4%)为特征;我们推测,母岩浆来自岩石圈地幔低程度部分熔融。贺兰山岩墙群时代为晚泥盆纪-早石炭纪,但该区不发育泥盆系,仅发育石炭系(内蒙古自治区地质矿产局, 1991)。目前,千里山-贺兰山地区暂未有其他相近年代岩浆岩体的报道;邻区阿拉善地区则长期受到中亚造山域地质过程的影响,形成大量同时期岩浆岩(如:Zhou et al., 2016及文献)。由于该岩墙群时代尚不明确,本文暂不能明确其构造背景。

5.3 区域对比及含义

千里山-贺兰山地区位于华北克拉通北缘西段,属于阴山-大青山孔兹岩系西延的一部分(图 1a; Zhao et al., 2005; Yin et al., 2009, 2011; Dan et al., 2012b; 沈其韩等, 2016),其西以断层与阿拉善地块相邻(图 1b)。阿拉善地块是否属于华北克拉通的一部分,长期存在争议:部分学者认为其属于华北克拉通的一部分(如:Hu et al., 2014; Tang et al., 2014; Gong et al., 2016; Liu et al., 2018);部分认为其不属于华北克拉通,而是在古元古代或者更晚期拼贴到华北克拉通(如:Dan et al., 2012a, 2014a, b, 2016; Zhang et al., 2013a, 2015, 2016a, b; Wu et al., 2014; Feng et al., 2013; Wang et al., 2016; Song et al., 2017, 2018)。然而,阿拉善地区边缘也见这一时期岩浆活动,如狼山群双峰式火山岩(狼山, 彭润民等, 2010; Hu et al., 2014)和金川镁铁超镁铁岩及镍矿(金川/龙首山, 王来生和李金铭, 1990Zhang et al., 2013c; Li et al., 2004; Porter, 2016)。从图 5a来看,这些岩体的基性岩单元表现了与千里山岩墙群明显一致的稀土元素配分型式。同时,两地都发育变质和岩浆年龄相近的古元古代表壳岩系(沈其韩等, 2004; Zhao et al., 2005; 耿元生等, 2006; Zhang et al., 2012, 2013a, 2015, 2016a, b; Wu et al., 2014; Yin et al., 2009, 2011; Dan et al., 2012a, 2014a, b, 2016; Feng et al., 2013; Wang et al., 2016; Tang et al., 2014)。这些地质观察说明阿拉善地块可能经历了与千里山-贺兰山地区相似的演化,二者可能属于同一个构造带。8.1亿年的岩浆活动可能代表华北克拉通西部同时发生于同一裂谷系(千里山-狼山-金川)的岩浆活动。

6 结论

千里山-贺兰山地区分布着两组岩墙:一组北东走向,称为千里山岩墙群;一组北西走向,称为贺兰山岩墙群。

(1) 一条千里山岩墙斜锆石给出的离子探针207Pb/206Pb平均年龄约8.1亿年,代表岩墙侵位时代;一条贺兰山岩墙锆石给出的最小一组离子探针206Pb/238U年龄约3.7亿年,近似代表岩墙侵位时代。

(2) 千里山岩墙群为拉斑玄武岩系列,以高Ti-Fe为特征;贺兰山岩墙为(弱)碱性系列,以低Ti-Fe为特征。两者均显示轻稀土和大离子亲石元素富集,高场强元素相对亏损的特征;贺兰山岩墙群的富集和亏损特征均更为明显。

(3) 鉴于阿拉善地块发育同时期、岩浆性质基本相似的岩浆岩,考虑到两地基底特征的相似性,我们认为阿拉善地块和千里山-贺兰山地块可能都属于华北克拉通,共同经历新元古代中期(~8亿年)伸展-裂谷活动。

致谢 刘富博士参加了部分野外工作;岩石圈演化国家重点实验室离子探针实验室、岩矿分析实验室和成矿年代学实验室完成部分测试。感谢万渝生研究员、刘福来研究员、杨崇辉研究员组织专辑。感谢审稿专家提出的建设性意见和建议。
参考文献
Bleeker W and Ernst R. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2. 6Ga. In: Hanski E, Mertanen S, Rämö T and Vuollo AA (eds. ). Dyke Swarms-Time Markers of Crustal Evolution, London: Taylor and Francis Publisher, 3-26
Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Geology of Nei Mongol Autonomous Region. Beijing: Geological Publishing House, 1-725 (in Chinese)
Bureau of Geology and Mineral Resources of Ningxia Hui Autonomous Region. 1990. Regional Geology of Ningxia Hui Autonomous Region. Beijing: Geological Publishing House, 1-522 (in Chinese)
Dan W, Li XH, Guo JH, Liu Y and Wang XC. 2012a. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China:Evidence from in situ zircon U-Pb dating and Hf-O isotopes. Gondwana Research, 21(4): 838-864. DOI:10.1016/j.gr.2011.09.004
Dan W, Li XH, Guo JH, Liu Y and Wang XC. 2012b. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton:Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 222-223: 143-158. DOI:10.1016/j.precamres.2011.07.016
Dan W, Li XH, Wang Q, Wang XC and Liu Y. 2014a. Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications:In situ zircon U-Pb-Hf-O isotopic and geochemical constraints. American Journal of Science, 314(1): 110-153. DOI:10.2475/01.2014.04
Dan W, Li XH, Wang Q, Tang GJ and Liu Y. 2014b. An Early Permian (ca. 280Ma) silicic igneous province in the Alxa Block, NW China:A magmatic flare-up triggered by a mantle-plume?. Lithos, 204: 144-158. DOI:10.1016/j.lithos.2014.01.018
Dan W, Li XH, Wang Q, Wang XC, Wyman DA and Liu Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry. Gondwana Research, 32: 105-121. DOI:10.1016/j.gr.2015.02.011
Di LJ and Xie GC. 2008. Queries about Helan aulacogen. Lithologic Reservoirs, 20(2): 16-21, 36.
Dong XP, Hu JM, Li ZH, Zhao Y, Gong WB and Yang Y. 2017. Provenance of Ediacaran (Sinian) sediments in the Helanshan area, North China Craton:Constraints from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 298: 490-511. DOI:10.1016/j.precamres.2017.06.022
Ernst RE, Grosfils EB and Mège D. 2001. Giant dike swarms:Earth, Venus, and Mars. Annual Review of Earth and Planetary Sciences, 29: 489-534. DOI:10.1146/annurev.earth.29.1.489
Ernst RE, Bleeker W, Söderlund U and Kerr AC. 2013a. Large Igneous Provinces and supercontinents:Toward completing the plate tectonic revolution. Lithos, 174: 1-14. DOI:10.1016/j.lithos.2013.02.017
Ernst RE, Pereira E, Hamilton MA, Pisarevsky SA, Rodriques J, Tassinari CCG and Teixeira W and Van-Dunem V. 2013b. Mesoproterozoic intraplate magmatic 'barcode' record of the Angola portion of the Congo Craton:Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 230: 103-118. DOI:10.1016/j.precamres.2013.01.010
Feng JY, Xiao WJ, Windley B, Han CM, Wan B, Zhang JE, Ao SJ, Zhang ZY and Lin L. 2013. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:Implications for Late Permian accretionary tectonics in the southern Altaids. Journal of Asian Earth Sciences, 78: 114-142. DOI:10.1016/j.jseaes.2013.01.020
Geng YS, Wang XS, Shen QH and Wu CM. 2006. Redefinition of the Alxa group-complex (Precambrian metamorphic basement) in the Alxa area, Inner Mongolia. Geology in China, 33(1): 138-145.
Gong JH, Zhang JX, Wang ZQ, Yu SY, Li HK and Li YS. 2016. Origin of the Alxa Block, western China:New evidence from zircon U-Pb geochronology and Hf isotopes of the Longshoushan Complex. Gondwana Research, 36: 359-375. DOI:10.1016/j.gr.2015.06.014
Gong WB. 2014. Characteristics and significances of structural deformation of western part of the North China Craton in the Late Paleoproterozoic.Ph. D. Dissertation.. Beijing: Chinese Academy of Geological Sciences: 1-174.
Halls HC and Palmer HC. 1990. The tectonic relationship of two Early Proterozoic dyke swarms to the Kapuskasing Structural Zone:A paleomagnetic and petrographic study. Canadian Journal of Earth Sciences, 27(1): 87-103. DOI:10.1139/e90-007
Hanski E, Mertanen S, Rämö T and Vuollo J. 2006. Dyke Swarms-Time Markers of Crustal Evolution. London: Taylor & Francis: 1-273.
Heaman LM. 2009. The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks:An evaluation of three mineral standards. Chemical Geology, 261(1-2): 43-52. DOI:10.1016/j.chemgeo.2008.10.021
Hu JM, Gong WB, Wu SJ, Liu Y and Liu SC. 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications. Precambrian Research, 255: 756-770. DOI:10.1016/j.precamres.2014.08.013
Li MT, Wang C, Ma XD, He QZ, Tian JX, Liang ZR, Huang SJ and Xia HP. 2014. Characteristics of the Huangqikou Formation in the middle segment of Helan Mountain and stratigraphic correlation with North China. Ningxia Engineering Technology, 13(3): 201-203, 211.
Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107-1113. DOI:10.1039/b923444f
Li WP. 1994. Geologic features and lithodimic unit system for granites in the Helanshan Group Early Proterozoic. Journal of Xi'an College of Geology, 16(3): 46-53.
Li WY, Tang ZL, Guo ZP and Wang W. 2004. Petrogenetic epoch and geochemical characteristics of mafic-ultramafic rocks on the southern margin of Alxa massif in northern China. Acta Petrologica et Mineralogica, 23(2): 117-126.
Li XH, Su L, Song B and Liu DY. 2004. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chinese Science Bulletin, 49(4): 420-422. DOI:10.1007/BF02900329
Lin CS, Yang Q and Li ST. 1995. Basin Filling and Evoiution Analysis of Helan Aulacogen, Northwest China. Beijing: Geological Publishing House: 33-43.
Liu CH, Zhao GC, Liu FL and Shi JR. 2018. Late Precambrian tectonic affinity of the Alxa block and the North China Craton:Evidence from zircon U-Pb dating and Lu-Hf isotopes of the Langshan Group. Precambrian Research. DOI:10.1016/j.precamres.2017.10.019
Lu LZ, Xu XC and Liu FL. 1996. Early Precambrian Khondalite Series in North China. Changchun: Changchun Publishing House.
Ludwig KR. 2001. Squid 1.02:A User's Manual. California: Berkeley Geochronology Centre.
Peng P, Bleeker W, Ernst RE, Söderlund U and McNicoll V. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton:Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221. DOI:10.1016/j.lithos.2011.08.018
Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS and Zhang YB. 2011b. Neoproterozoic (~900Ma) Sariwon sills in North Korea:Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20(1): 243-254. DOI:10.1016/j.gr.2010.12.011
Peng P. 2016. Map of Precambrian Dyke Swarms and Related Plutonic/Volcanic Units in the North China Block. Beijing: Science Press: 1-90.
Peng RM and Zhai YS. 1997. The confirmation of the metamorphic double peaking volcanic rocks in Langshan Group of the Dongshengmiao ore district, Inner Mongolia and its significance. Earth Science, 22(6): 587-594.
Peng RM, Zhai YS, Wang JP, Chen XF, Liu Q, Lü JY, Shi YX, Wang G, Li SB, Wang LG, Ma YT and Zhang P. 2010. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611-2620. DOI:10.1360/972010-266
Pisarevsky SA, Elming SÅ, Pesonen LJ and Li ZX. 2014. Mesoproterozoic paleogeography:Supercontinent and beyond. Precambrian Research, 244: 207-225. DOI:10.1016/j.precamres.2013.05.014
Porter TM. 2016. Regional tectonics, geology, magma chamber processes and mineralisation of the Jinchuan nickel-copper-PGE deposit, Gansu Province, China:A review. Geoscience Frontiers, 7(3): 431-451. DOI:10.1016/j.gsf.2015.10.005
Qiao HZ, Yin CQ, Li QL, He XL, Qian JH and Li WJ. 2016. Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 276: 1-13. DOI:10.1016/j.precamres.2016.01.020
Shen QH, Geng YS, Wang XS and Wu CM. 2004. Mineral characteristics and metamorphic P-T condition of precambrian amphibolites in Alxa region. Geological Survey and Research, 27(4): 209-216.
Shen QH, Geng YS and Song HX. 2016. Constituents and evolution of the metamorphic basement of the North China craton. Acta Geoscientia Sinica, 37(4): 387-406.
Shi XY, Wang XQ, Jiang GQ, Liu DB and Gao LZ. 2008. Pervassive microbial mat colonization on Mesoproterozoic peritidal siliciclastic substrates:An example from the Huangqikou Formation (ca 1.6Ga) in Helan Mountains, NW China. Geological Review, 54(5): 577-586.
Söderlund U and Johansson L. 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry, Geophysics, Geosystems, 3(2): 1014. DOI:10.1029/2001GC000212
Song DF, Xiao WJ, Collins AS, Glorie S, Han CM and Li YC. 2017. New chronological constrains on the tectonic affinity of the Alxa Block, NW China. Precambrian Research, 299: 230-243. DOI:10.1016/j.precamres.2017.07.015
Song DF, Glorie S, Xiao WJ, Collins AS, Gillespie J, Jepson G and Li YC. 2018. Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China:Constrained by apatite U-Pb and fission track thermochronology. Tectonophysics, 722: 577-594. DOI:10.1016/j.tecto.2017.11.029
Song LJ, Liu CY, Zhao HG, Wang JQ and Zhang XL. 2016a. Analysis of prototype basin period and its genetic mechanism of Huangqikou Period and Wangquankou Period, Southwest Ordos Basin. Earth Science Frontiers, 23(5): 221-234.
Song LJ, Liu CY, Zhao HG, Wang JQ and Zhang XL. 2016b. Geochemical characteristics, sedimentary environment and tectonic setting of Huangqikou Formation, Ordos Basin. Earth Science, 41(8): 1295-1308, 1321.
Srivastava RK. 2011. Dyke Swarms:Keys for Geodynamic Interpretation. Heidelberg: Springer: 1-605.
Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207-221. DOI:10.1016/0012-821X(75)90088-6
Steiger RH and Jäger E. 1977. Subcommission on geochronology:Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. DOI:10.1016/0012-821X(77)90060-7
Su WB. 2016. Revision of the Mesoproterozoic chronostratigraphic subdivision both of North China and Yangtze Cratons and the relevant issues. Earth Science Frontiers, 23(6): 156-185.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tang QY, Li CS, Zhang MJ, Ripley EM and Wang QL. 2014. Detrital zircon constraint on the timing of amalgamation between Alxa and Ordos, with exploration implications for Jinchuan-type Ni-Cu ore deposit in China. Precambrian Research, 255: 748-755. DOI:10.1016/j.precamres.2014.08.015
Wang C, Peng P, Wang XP, Li QL, Xu XY and Yang SY. 2016. The generations and U-Pb dating of baddeleyites from the Taihang dyke swarm in North China and their implications for magmatic evolution. Acta Petrologica Sinica, 32(3): 646-658.
Wang LS and Li JM. 1990. The characters of Chemical composition and REE geochemistry of ultramafic belts in Longshoushan and estimation of mantle composition in its source region. Bulletin Xi'an Geology Mining Research, Chinese Academy of Geological Sciences, (30): 101-113.
Wang QH, Yang DB and Xu WL. 2012. Neoproterozoic basic magmatism in the southeast margin of North China Craton:Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China (Earth Sciences), 55(9): 1416-1479.
Wang ZZ, Han BF, Feng LX, Liu B, Zheng B and Kong LJ. 2016. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the western North China Craton:Evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement. Lithos, 261: 278-295. DOI:10.1016/j.lithos.2016.03.005
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC and Ridley WI (eds. ). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Review of Economic Geology, 7: 1-35
Wingate MTD and Compston W. 2000. Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite. Chemical Geology, 168(1-2): 75-97. DOI:10.1016/S0009-2541(00)00184-4
Wu SJ, Hu JM, Ren MH, Gong WB, Liu Y and Yan JY. 2014. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex:Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton. Journal of Asian Earth Sciences, 94: 226-239. DOI:10.1016/j.jseaes.2014.05.011
Yan YH. 1983. A study on P-T condition and mineralogy of the metamorphic complex of the Qianlishan Group, Nei Mongol. In: Institute of Geology, Chinese Academy of Sciences (ed. ). Petrology Research (Second Collection). Beijing: Geological Publishing House (in Chinese)
Yang J, Zeng ZX, Cai XF, Li ZY, Li TB, Meng F and He WJ. 2013. Carbon and oxygen isotopes analyses for the Sinian carbonates in the Helan Mountain, North China. Chinese Science Bulletin, 58(32): 3943-3955. DOI:10.1007/s11434-013-5857-4
Yang JX, Hu NG, Dai SE and Li RX. 1992. A study on P-T condition of main metamorphism of the metamorphic complex of Helanshan Group. Mineralogy and Petrology, 12(4): 12-20.
Yin CQ, Zhao GC, Sun M, Xia XP, Wei CJ, Zhou XW and Leung WH. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78-94. DOI:10.1016/j.precamres.2009.06.008
Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38. DOI:10.1016/j.lithos.2010.11.010
Yin CQ, Zhao GC, Wei CJ, Sun M, Guo JH and Zhou XW. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex:Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172-186. DOI:10.1016/j.precamres.2013.12.025
Zhai MG, Hu B, Zhao TP, Peng P and Meng QR. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance:A study advance and review. Tectonophysics, 662: 153-166. DOI:10.1016/j.tecto.2015.01.019
Zhang BH, Zhang J, Zhang YP, Zhao H, Wang YN and Nie FJ. 2016a. Tectonic affinity of the Alxa Block, Northwest China:Constrained by detrital zircon U-Pb ages from the Early Paleozoic strata on its southern and eastern margins. Sedimentary Geology, 339: 289-303. DOI:10.1016/j.sedgeo.2016.02.017
Zhang FL, Huang SX, Yang CG and Zhang ZC. 1994. Gas Geology of the Ordos Basin. Beijing: Geological Publishing House: 33-39.
Zhang J, Li JY, Liu JF, Li YF, Qu JF and Feng QW. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic:New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912-2934.
Zhang J, Li JY, Xiao WX, Wang YN and Qi WH. 2013a. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China:New constraints on the relationship between the North China Plate and the Alxa block. Journal of Structural Geology, 57: 38-57. DOI:10.1016/j.jsg.2013.10.002
Zhang J, Zhang YP, Xiao WX, Wang YN and Zhang BH. 2015. Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic:Constraints from detrital zircon U-Pb ages and Cambrian sedimentary records. Gondwana Research, 28(3): 1168-1182. DOI:10.1016/j.gr.2014.09.012
Zhang J, Zhang BH and Zhao H. 2016b. Timing of amalgamation of the Alxa Block and the North China Block:Constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence. Tectonophysics, 668-669: 65-81. DOI:10.1016/j.tecto.2015.12.006
Zhang JX, Gong JH, Yu SY, Li HK and Hou KJ. 2013b. Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication:Evidence from zircon U-Pb ages and Hf isotopic composition. Precambrian Research, 235: 36-57. DOI:10.1016/j.precamres.2013.05.002
Zhang MJ, Tang QY, Hu PQ, Ye XR and Cong YN. 2013c. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China. Chemical Geology, 339: 301-312. DOI:10.1016/j.chemgeo.2012.07.023
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Thermal evolution of two textural types of mafic granulites in the North China craton:Evidence for both mantle plume and collisional tectonics. Geological Magazine, 136(3): 223-240. DOI:10.1017/S001675689900254X
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhou XC, Zhang HF, Luo BJ, Pan FB, Zhang SS and Guo L. 2016. Origin of high Sr/Y-type granitic magmatism in the southwestern of the Alxa Block, Northwest China. Lithos, 256-257: 211-227. DOI:10.1016/j.lithos.2016.04.021
Zhou XW and Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region:Constraints on the evolution of the western block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843-1852.
邸领军, 谢广成. 2008. 对贺兰拗拉槽的质疑. 岩性油气藏, 20(2): 16-21, 36.
耿元生, 王新社, 沈其韩, 吴春明. 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定. 中国地质, 33(1): 138-145.
公王斌. 2014. 华北克拉通西部古元古代末构造变形特征及意义. 博士学位论文. 北京: 中国地质科学院, 1-174
李明涛, 王成, 马学东, 何庆志, 田景雄, 梁志荣, 黄生金, 夏红萍. 2014. 贺兰山中段黄旗口组特征及与华北地区地层对比. 宁夏工程技术, 13(3): 201-203, 211.
李伍平. 1994. 贺兰山群早元古代花岗岩的地质特征和岩石谱系单位划分. 西安地质学院报, 16(3): 46-53.
李文渊, 汤中立, 郭周平, 王伟. 2004. 阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征. 岩石矿物学杂志, 23(2): 117-126.
林畅松, 杨起, 李思田. 1995. 贺兰拗拉槽盆地充填演化分析. 北京:地质出版社: 33-43.
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社.
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社, 1-725
宁夏回族自治区地质矿产局. 1990. 宁夏回族自治区区域地质志. 北京:地质出版社, 1.
彭澎. 2016. 华北陆块前寒武纪岩墙群及相关岩浆岩地质图. 北京: 科学出版社: 1-90.
彭润民, 翟裕生. 1997. 内蒙古东升庙矿区狼山群中变质"双峰式"火山岩夹层的确认及其意义. 地球科学, 22(6): 587-594.
彭润民, 翟裕生, 王建平, 陈喜峰, 刘强, 吕军阳, 石永兴, 王刚, 李慎斌, 王立功, 马玉涛, 张鹏. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义. 科学通报, 55(26): 2611-2620.
沈其韩, 耿元生, 王新社, 吴春明. 2004. 阿拉善地区前寒武纪斜长角闪岩组成矿物特征及变质温压条件. 地质调查与研究, 27(4): 209-216.
沈其韩, 耿元生, 宋会侠. 2016. 华北克拉通的组成及其变质演化. 地球学报, 37(4): 387-406.
史晓颖, 王新强, 蒋干清, 刘典波, 高林志. 2008. 贺兰山地区中元古代微生物席成因构造—远古时期微生物群活动的沉积标识. 地质论评, 54(5): 577-586.
宋立军, 刘池阳, 赵红格, 王建强, 张小龙. 2016a. 鄂尔多斯西南部待建纪黄旗口期和王全口期原盆面貌及其成因机制分析. 地学前缘, 23(5): 221-234.
宋立军, 刘池阳, 赵红格, 王建强, 张小龙. 2016b. 鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景. 地球科学, 41(8): 1295-1308, 1321.
苏文博. 2016. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题探讨. 地学前缘, 23(6): 156-185.
王冲, 彭澎, 王欣平, 李秋立, 徐希阳, 杨书艳. 2016. 华北太行岩墙群斜锆石生长世代和U-Pb年龄及其对岩浆演化的启示. 岩石学报, 32(3): 646-658.
王来生, 李金铭. 1990. 龙首山超基性岩带岩石化学、稀土元素地球化学特征及源区地幔成分的估算. 中国地质科学院西安地质矿产研究所所刊, (30): 101-113.
阎月华. 1983. 内蒙古千里山群变质矿物及变质作用P-T条件的研究. 见: 中国科学院地质研究所编. 岩石学研究·第二辑. 北京: 地质出版社
杨家喜, 胡能高, 戴双儿, 李荣西. 1992. 贺兰山群变质杂岩主期变质作用的温压环境研究. 矿物岩石, 12(4): 12-20.
张福礼, 黄舜兴, 杨昌贵, 张志才. 1994. 鄂尔多斯盆地天然气地质. 北京: 地址出版社.
张进, 李锦轶, 刘建峰, 李岩峰, 曲军峰, 冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28(9): 2912-2934.
周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843-1852.