岩石学报  2018, Vol. 34 Issue (4): 1154-1174   PDF    
华北克拉通五台地区2.2~2.1Ga花岗岩的成因与构造背景
杜利林1 , 杨崇辉1 , 宋会侠1 , 赵磊2 , 路增龙1 , 李伦1,3 , 王涛1 , 任留东1     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国科学院地质与地球物理研究所, 北京 100029;
3. 中国地质大学地球科学与资源学院, 北京 100083
摘要:华北克拉通中部造山带内古元古代中期(2.2~2.0Ga)岩浆活动较为广泛,对探讨华北古元古代地质演化过程具有十分重要的意义。本文选择了五台地区古元古代大洼梁、王家会和莲花山花岗岩进行了地球化学、锆石U-Pb年代学和Hf同位素研究。大洼梁似斑状花岗岩SHRIMP锆石U-Pb年龄为2170±17Ma,王家会二长花岗质片麻岩LA-ICPMS锆石U-Pb年龄结果为2101±6Ma,3个莲花山花岗岩的LA-ICPMS锆石U-Pb年龄结果分别为2117±6Ma、2110±4Ma和2143±15Ma。大洼梁花岗岩高SiO2、富K2O+Na2O,低CaO,稀土元素含量较高(Eu除外),Zr、Nb、Ga和Y等高场强元素含量也较高,而Sr含量极低;同时Ga/Al比值和Zr+Nb+Y+Ce总量高,全岩Zr饱和温度高达876~968℃。该花岗岩体具有A型花岗岩的特征。王家会花岗岩和莲花山花岗岩样品也具有高硅、富碱和低镁钙特征,稀土元素具有弱到较强烈的分异,Eu负异常明显。3个花岗岩岩体微量元素都具有较高的Nb和Y值,因此具有后碰撞到板内花岗岩特征。所有花岗岩样品中锆石的εHft)值均远低于同期亏损地幔值,同时单阶段和两阶段模式年龄为2.4~2.6Ga和2.45~2.75Ga,明显大于花岗岩的成岩时代。这些花岗岩与五台地区新太古代晚期TTG质片麻岩具有相似的锆石Hf模式年龄。因此,结合岩石学、地球化学和同位素特征,本文倾向于认为古元古代花岗岩为新太古代TTG质片麻岩在伸展条件下部分熔融形成的。综合资料发现,华北克拉通中部带内2.2~2.0Ga岩浆事件不同地区表现有分带性。2.2~2.1Ga岩浆活动代表较早的阶段,其中部分花岗质岩石具有A型花岗岩特征,与同期的基性岩形成双峰式组合,推断其与华北克拉通古元古代中期陆内裂谷有关。
关键词: 2.2~2.1Ga花岗岩     锆石U-Pb年龄     地球化学     锆石Hf同位素     陆内裂谷     五台地区    
Petrogenesis and tectonic setting of 2.2~2.1Ga granites in Wutai area, North China Craton
DU LiLin1, YANG ChongHui1, SONG HuiXia1, ZHAO Lei2, LU ZengLong1, LI Lun1,3, WANG Tao1, REN LiuDong1     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Abstract: 2.2~2.0Ga magmatism widely occurs in the Trans-North China Orogen (TNCO), which is vital for unveiling the Paleoproterozoic tectonic evolution on the North China Craton (NCC). This paper presents the whole rock geochemical data, zircon U-Pb ages and Hf isotopes of Paleoproterozoic Dawaliang, Wangjiahui and Lianhuashan granitoids in Wutai area. SHRIMP U-Pb zircon dating of Dawaliang porphyritic granite sample yields an age of 2170±17Ma. One sample from Wangjiahui monzonitic granitic gneiss obtains a LA-ICPMS zircon U-Pb age of 2101±6Ma, and 3 samples from Lianhuashan granite gets zircon U-Pb ages of 2117±6Ma, 2110±4Ma and 2143±15Ma, respectively. Dawaliang granite is high in SiO2 and K2O+Na2O, low in CaO, and enriched in REEs (except Eu), Zr, Nb, Ga and Y, and depleted in Sr. Meanwhile, all samples of Dawaliang granite have high Ga/Al values and Zr+Nb+Y+Ce contents with whole rock zircon saturation temperature as high as 876~986℃, which is identical with the features of the A-type granite. Wangjiahui and Lianhuashan granites enrich in SiO2, K2O and Na2O, and deplete in MgO and CaO, on the other hand, the granites show minor to intensive differentiation on REEs with obviously negative Eu abnormity. Three plutons (Dawaliang, Wangjiahui and Lianhuashan granites) have high Nb and Y concentrations, so they show the features of post-collision and within plate granite. Zircon εHf(t) values in all samples are lower than that in depleted mantle, and meanwhile, one and two stage Hf model ages are 2.4~2.6Ga and 2.45~2.75Ga, respectively, which are much older than the zircon U-Pb ages of the granites. Combining petrology, geochemistry and isotope in the samples, we propose that the Paleoproterozoic granites are derived from the partial melting by the Late Archean TTG gneisses under the extensional environment. Considering the 2.2~2.0Ga magmatism along the TNCO exhibits two stages of 2.2~2.1Ga and 2.1~2.0Ga in different regions, in which 2.2~2.1Ga magma represent the early stage and some granites at this stage show the features of A-type granite and form the bimodal magmatic assemblages with the coeval mafic rocks. Therefore, we deduce that the middle of Paleoproterozoic magmatism is related with the intracontinental rift in the NCC.
Key words: 2.2Ga to 2.1Ga granites     Zircon U-Pb age     Geochemistry     Zircon Hf isotope     Intracontinental rift     Wutai area    

华北克拉通是中国三大克拉通之一,也是世界最古老的一个克拉通(图 1)。克拉通内部广泛出露太古宙—古元古代基底岩系,其中最老的岩石记录可以追溯到鞍山地区3.8Ga的片麻岩(Liu et al., 1992; Song et al., 1996; Wan et al., 2013a),并经历了长期而复杂的演化历史。已有的研究认为,华北克拉通在古太古代已开始形成陆核,而后经历不同时期、不同规模的拼合形成规模较大的陆块(沈其韩和钱祥麟,1995陆松年等,1996耿元生等,1997李江海等,1997;伍家善等,1998;Zhai and Liu, 2003),这些陆块通过古元古代晚期吕梁运动拼合在一起,形成了最终的华北克拉通(伍家善等,1998;Zhai and Santosh, 2011, 2013; Zhao et al., 2005, 2012; Zhao and Zhai, 2013)。然而,对于华北克拉通新太古代-古元古代基底构造划分和演化过程还存在着不同的认识(Kusky and Li, 2003; Li and Kusky, 2007; Zhai and Santosh, 2011; Zhao et al., 2005, 2012)。一些学者认为,华北克拉通由几个微陆块在太古宙拼合而成,之后在2.35~1.97Ga沿着克拉通内部的丰镇、辽-吉和晋豫活动带先后经历了裂谷、增生及碰撞过程,并在1.95~1.82Ga完成华北最终的克拉通化并进入伸展阶段(Zhai and Santosh, 2011)。部分研究者将华北克拉通划分为东部陆块、西部陆块和中部造山带(Central Orogenic Belt),并认为东部陆块向西部陆块俯冲,两者在2.5Ga发生碰撞拼合,之后古元古代早期(2.5~2.4Ga)伸展形成一系列陆内裂谷(Kusky and Li, 2003; Li and Kusky, 2007)。目前,以Zhao et al.(1999a, b, 2005, 2012)提出的华北克拉通陆块划分方案及构造演化模式影响最为广泛。Zhao et al.(1999a, b)将华北克拉通划分为东部陆块、西部陆块和连接两者的中部造山带(Trans-North China Orogen),之后进一步将西部陆块划分为鄂尔多斯地块、阴山地块和古元古代孔兹岩带,同时在东部陆块划分出胶-辽-吉带(Zhao et al., 2005)。西部陆块由鄂尔多斯地块和阴山地块在2.0~1.9Ga沿孔兹岩带拼合而成,而东部陆块在2.2~1.9Ga沿胶-辽-吉带经历了裂谷及其闭合过程,最终东、西陆块沿中部造山带在古元古代晚期(1.85~1.8Ga)形成稳定的克拉通(Zhao et al., 2005, 2010, 2012)。在这三种演化模式中,华北克拉通中部造山带(晋豫活动带)古元古代演化过程是争议的焦点之一。因此,研究中部造山带中古元古代地质事件的性质,对探究华北克拉通地质演化过程具有非常重要的意义。

图 1 华北克拉通基底分布及陆块划分图(据Zhao et al., 2005) TH-太华;DF-登封;ZT-中条;ZH-赞皇;LL-吕梁;FP-阜平;WT-五台;HS-恒山;HA-怀安;XH-宣化;NH-冀北;WH-五河;WS-鲁西;ES-胶东;SL-辽南;NL-辽北;SJ-吉南;JN-集宁;WD-乌拉山-大青山;GY-固阳;QL-千里山;HL-贺兰山;AL-阿拉善 Fig. 1 Basement distribution and tectonic subdivision of the North China Craton (after Zhao et al., 2005) The abbreviation of the metamorphic complexes: TH-Taihua; DF-Dengfeng; ZT-Zhongtiao; ZH-Zanhuang; LL-Lvliang; FP-Fuping; WT-Wutai; HS-Hengshan; HA-Huai'an; XH-Xuanhua; NH-Northern Hebei; WH-Wuhe; WS-Western Shandong; ES-Eastern Shandong; SL-Southern Liaoning; NL-Northern Liaoning; SJ-Southern Jilin; JN-Jining; WD-Wulashan-Daqingshan; GY-Guyang; QL-Qianlishan; HL-Helanshan; AL-Alxa

中部造山带是一条长1200km、宽约300km的近南北向的构造带(图 1),可能经历了2.5~1.85Ga长达700Myr的俯冲-汇聚过程(Zhao et al., 1999a, b, 2005, 2008, 2010, 2012)。近年来,虽然一些研究者通过五台、阜平和赞皇杂岩构造变形特征及五台、阜平杂岩中古元古代侵入体的地球化学特征,提出中部造山带中可能存在2.1Ga碰撞造山过程(Liu et al., 2005; Faure et al., 2007; Trap et al., 2009, 2012; Wang et al., 2010, 2013)。然而,一些学者通过中部造山带古元古代沉积岩和岩浆岩的岩石组合、年代学与地球化学研究认为,2.2~2.0Ga的岩浆事件形成于裂谷环境(杜利林等, 2009, 2011, 2012;杨崇辉等,2011a;赵瑞幅等,2011;Du et al., 2010, 2013, 2015, 2016a, b, 2017; Peng et al., 2012, 2017a; Zhang et al., 2011; Xie et al., 2012; Wang et al., 2014; Zhou et al., 2014, 2015)。中部造山带内古元古代2.45~1.9Ga岩浆活动在不同地区陆续被发现,其中较早期2.4~2.3Ga的岩浆记录仅在登封、太华、中条、吕梁和恒山地区有少量分布(Kröner et al., 2005; Zhao et al., 2008; Diwu et al., 2014; Huang et al., 2012; 孙大中等,1991;耿元生等,2006第五春荣等,2007黄道袤等,2012;杨崇辉等,2015)。大量的年代学资料表明,2.2~2.0Ga的岩浆事件在中部造山带内广泛分布(Du et al., 2016a及其中文献; Peng et al., 2017a)。在五台地区,前人仅对王家会花岗岩和黄金山花岗斑岩进行过较详细的地球化学和年代学研究(Wilde et al., 2004a; 王月然等,2005;Du et al., 2013),其他2.2~2.1Ga的侵入体并未开展较系统的工作。鉴于此,本文拟选取五台地区大洼梁花岗岩、王家会花岗岩和莲花山花岗岩进行岩石学、地球化学、锆石U-Pb年代学和Lu-Hf同位素研究,结合同期火山岩和沉积记录,以期对五台地区乃至华北克拉通中部造山带古元古代中期构造环境做进一步限定。

1 地质背景

五台地区位于华北克拉通中部、“中部造山带”中段(Zhao et al., 2012)。区内出露的早前寒武纪岩石单元主要为新太古代五台群、新太古代花岗岩类、古元古代滹沱群及零星分布的古元古代花岗岩。区域东部出露的阜平杂岩以龙泉关剪切带与五台杂岩呈构造接触,北边出露的恒山杂岩与五台杂岩之间被第四系沉积盖层分隔(图 2)。其中新太古代五台群和同时代花岗质片麻岩组成华北克拉通新太古代晚期典型的花岗绿岩带之一(伍家善等,1998;Zhai and Santosh, 2011)。

图 2 五台杂岩地质简图(据Wilde et al., 2004a) LHS-莲花山花岗岩;WJH-王家会二长花岗片麻岩;DWL-大洼梁花岗岩;DY-独峪花岗岩;PXG-平型关花岗岩 Fig. 2 Geological sketch map of the Wutai Complex (after Wilde et al., 2004a) LHS-Lianhuashan granite; WJH-Wangjiahui monzonitic granitic gneiss; DWL-Dawaliang granite; DY-Duyu granite; PXG-Pingxingguan granite

根据五台群内部的两个不整合面(甘泉不整合和探马石不整合),不整合面上、下地层岩石组合及变质程度不同,白瑾(1986)将五台群地层自下而上划分为石咀、台怀和高凡亚群。石咀亚群包括板峪口组、金刚库组、庄旺组和文溪组,主要岩性为斜长角闪岩、角闪变粒岩和黑云变粒岩,底部为长石石英岩、黑云变粒岩和透闪石大理岩,在金刚库组和文溪组中夹有磁铁石英岩层,总体是一套角闪岩相变质的火山-沉积岩系(白瑾,1986)。台怀亚群由柏枝岩组和鸿门岩组组成,主要岩石组合为绢云石英片岩、绿泥石英片岩、磁铁石英岩及变质砂砾岩,偶见大理岩和石英岩夹层,主体为一套绿片岩相的变质火山岩组合,其中柏枝岩组中磁铁石英岩是五台地区重要的含矿层位(白瑾,1986)。较新的地层方案将高凡亚群划分为张仙堡、磨河和鹞口前组,中、下部的岩石组合为石英岩、变质粉砂岩和千枚岩,顶部为变质基性火山岩,火山岩相顶部气孔和杏仁构造十分发育,该套地层是经历了低绿片岩相变质的碎屑沉积-火山岩组合(田永清,1991)。田永清(1991)根据五台地区1:5万填图资料,认为原划为石咀和台怀亚群之间的甘泉不整合面实际代表滹沱群和五台群之间界面,据此将石咀和台怀亚群合并成为五台群下亚群,并命名为石咀亚群,而保留的高凡亚群为上亚群。Liu et al.(1985)根据五台群不整合于兰芝山花岗岩(2560Ma±9Ma)和五台群上部石英角斑岩的时代(2522±17Ma),限定五台群的时代为2560~2520Ma。Wilde et al.(2004a)进一步从五台群三个不同亚群中获得中-酸性火山岩的SHRIMP锆石U-Pb年龄为2533~2513Ma。据此提出五台群所属三个亚群尽管变质程度不同,但之间并不存在上下层序关系,而是后期构造变形叠置在一起的(Wilde et al., 2004a)。最近几年,五台群高凡亚群的研究取得了许多重要进展。Wan et al.(2010)在高凡亚群石英岩中获得最年轻碎屑锆石年龄为2.47±0.03Ga,认为这套地层代表了华北古元古界最老地层之一。Liu et al.(2016)根据高凡亚群中最年轻碎屑锆石(2348Ma)和2176~2161Ma花岗质侵入体时代,进一步限定高凡亚群的时代为2.35~2.18Ga。Peng et al.(2017b)从高凡亚群磨河组变质火山凝灰岩中获得锆石207Pb/206Pb年龄为2186±6Ma,同时结合碎屑锆石年龄结果和滹沱群(2140±14Ma;Du et al., 2010)的时代,认为高凡亚群的时限为2350~2150Ma。

除兰芝山花岗岩和部分峨口花岗岩为钾质-二长花岗岩外,五台地区新太古代花岗岩主体为TTG质片麻岩,形成时代为2560~2513Ma(Liu et al., 1985, 2004; Wilde et al., 2005)。根据花岗岩的侵位时代,五台地区TTG片麻岩可以分为两个阶段:早期阶段包括峨口和部分车厂-北台花岗岩,侵位时代为2560~2540Ma;晚期阶段有石佛、光明寺和王家会灰色相花岗岩(1:25万忻州幅改称为义兴寨片麻岩),形成时代为2540~2513Ma。地球化学和Nd同位素指示这些片麻岩是俯冲板片或交代的地幔楔部分熔融形成的(Liu et al., 2004; Wang et al., 2004)。该期花岗岩与五台群地层多呈构造接触关系(田永清,1991)。

滹沱群主要分布于山西五台山台怀-士集(四集庄)一线以南,石咀-定襄一线以北,东起台山河上游,西至原平奇村一带,总面积约1500km2。在五台山北坡代县滩上到原平白石一带出露约200km2,繁峙县中台等地也有零星分布(图 2; 白瑾,1986)。滹沱群与下伏五台群和新太古代片麻岩为不整合接触关系。地层内部保留有波痕、斜层理和交错层理等原始沉积构造,上下层序关系清楚。滹沱群自下而上被划分为豆村亚群、东冶亚群和郭家寨亚群(白瑾,1986)。下部的豆村亚群以陆源碎屑沉积岩为主,底部为厚层-巨厚层的四集庄组砾岩,顶部出现玄武岩(刘定寺变火山岩)。东冶亚群底部以紫红色砂岩/板岩为主夹少量石英砂岩,之后以砂岩与碳酸盐岩交互沉积为特征,碳酸盐岩中叠层石普遍发育。东冶亚群中下部的河边村组顶部发育有标志性的玄武岩层(马头口变火山岩)。该亚群中上部以厚层的碳酸盐岩沉积为主,顶部出现少量的变泥质岩。郭家寨亚群明显地不整合于东冶亚群之上,沉积序列自下而上为粉砂岩→砂岩→砾岩,其中砾岩中砾石主要为白云岩和砂岩,白云岩砾石中可见叠层石,因而郭家寨亚群顶部砾岩应来自于下伏滹沱群地层(Du et al., 2017)。伍家善等(1986)从豆村亚群青石村组变质玄武岩中获得TIMS单颗粒锆石U-Pb为2366+103/-94Ma,限定滹沱群初始沉积时代为2.4~2.3Ga。大量火山岩和碎屑沉积岩锆石U-Pb年龄结果共同限定滹沱群的底界时代约为2.2Ga(Wilde et al., 2004b; Du et al., 2010, 2017; Liu et al., 2011; 杜利林等, 2011, 2015)。根据郭家寨亚群与豆村、东冶亚群的不整合关系及上、下地层明显不同的沉积组合和序列,伍家善等(2008)和杜利林等(2011)认为郭家寨亚群应从滹沱群中独立出来,单独命名为郭家寨群;并进一步限定其时代为1.9~1.8Ga(Du et al., 2017)。

2 2.2~2.1Ga花岗岩

早期研究认为五台地区花岗质岩石主体为新太古代TTG片麻岩和少量二长花岗质片麻岩(白瑾,1986Liu et al., 2004; Wilde et al., 2005)。但近年来的资料表明,五台地区广泛分布2.2~2.1Ga的花岗岩,从西到东出露的岩体有莲花山花岗岩、凤凰山花岗岩、王家会花岗岩、黄金山花岗斑岩、大洼梁花岗岩、蒋村石英斑岩和独峪花岗岩(白瑾,1986;王凯怡和Wilde, 2002; Wilde et al., 2005; Du et al., 2013; 杜利林等,2015)。该期花岗质岩浆活动主要以小岩株状侵位于五台群和/或新太古代片麻岩中,单个岩体规模不大,但岩体分布范围较广(图 2白瑾,1986);与滹沱群的关系多呈构造接触关系,局部作为滹沱群底部砾岩的物质源区之一(杜利林等,2015Du et al., 2017)。岩性以二长花岗岩为主,部分为碱性花岗岩,并表现为A型花岗岩的地球化学特征(白瑾,1986Du et al., 2013)。除此之外,区域内滹沱群中出露有同期的基性火山岩和辉绿岩岩席(Peng et al., 2005; Du et al., 2010, 2015)。

3 野外地质与岩石学特征

大洼梁花岗岩出露于代县滩上镇掌寺村西大洼梁。岩体平面上近似心形,出露面积约3km2。围岩为高凡亚群变质粉砂岩、千枚岩和长石石英岩。岩体侵位于围岩地层中,但在岩体与围岩接触带附近,两者皆表现为强烈的变形而呈构造接触特征(图 3a)。花岗岩岩体露头上呈灰白色,块状构造,边缘相具片麻状构造,似斑状-斑状结构,斑晶主要为钾长石(10%~15%)、钠长石(5%~10%),斑晶粒度1~2cm,另外可见少量石英斑晶(图 3b)。基质为细粒结构,主要组成为他形斜长石、条纹长石和石英,同时可见细小鳞片状黑云母充填在长英质矿物颗粒间,还有少量细鳞片状白云母出现,部分由斜长石蚀变而来;副矿物主要为磁铁矿(图 3c)。

图 3 五台地区古元古代花岗岩野外与显微照片(矿物缩写据沈其韩,2009) Fig. 3 Field and micro photographs of Paleoproterozoic granitoids in Wutai area (abbreviation of minerals after Shen, 2009)

王家会花岗岩位于五台山北坡王家会一带,平面上呈北东-南西向展布的花岗岩体,出露面积约55km2(白瑾,1986)。岩体侵入五台群石咀亚群金刚库组和新太古代晚期义兴寨灰色片麻岩(曾称为王家会灰色相花岗岩)(图 3d),同时可见其被后期的辉绿岩墙切割(图 3e)。王家会花岗岩岩性为黑云母二长花岗质片麻岩,野外露头呈浅粉红色,片麻状构造,中粗粒结构,局部可见变余似斑状结构。主要矿物组合为微斜条纹长石、斜长石、石英和黑云母,白云母少量,副矿物为绿帘石、榍石、锆石和磁铁矿(图 3f)。

莲花山花岗岩出露于原平市东滹沱河东岸莲花山一带,岩体北东长5km,北西宽2.5km,露头面积约8km2。岩体东侧侵入于五台群台怀亚群绿泥石英片岩中,其他三面为第四系覆盖(白瑾,1986)。莲花山花岗岩在露头上可以观察到三种岩相:第一种为斑状结构的花岗岩,露头上呈灰白色,斑晶主要为斜长石,粒度0.5~1cm,含量5%~10%,基质为细粒-隐晶质结构,主要组成矿物为微斜条纹长石、斜长石和石英,含少量的黑云母和白云母,副矿物主要为磁铁矿。第二种为似斑状结构的花岗岩,露头上也呈灰白色,斑晶主体为微斜条纹长石,含少量斜长石,粒度1~1.5cm,含量25%~35%,基质为中-细粒结构,主要组成矿物为微斜条纹长石、斜长石和石英,含少量黑云母,黑云母绿泥石化较强烈,副矿物为磁铁矿、锆石和褐帘石(图 3g)。斑状结构的花岗岩斑晶含量较少,基质粒度更细,但与似斑状结构花岗岩之间无明显的界限,两者间呈过渡出现。第三种为较均匀的中-细粒花岗岩,露头上呈灰白色-浅粉红色,块状构造,中-细粒结构,主要组成矿物为微斜条纹长石、斜长石、石英和黑云母,白云母少量,部分是由斜长石蚀变而成,副矿物主要为磁铁矿(图 3h)。局部可见中细粒花岗岩呈包体赋存于似斑状花岗岩中(图 3i),而在似斑状花岗岩中后期钾质伟晶岩脉较为常见。

4 分析方法

全岩粉末样品的制备由河北省区域地质矿产调查研究所完成。选取300~500g新鲜的岩石样品利用颚式破碎机破碎后,用粉碎机将样品碎块粉碎研磨至200目以下,取其中30~50g以备全岩化学分析。全岩主、微量元素分析在中国地质科学院国家地质实验测试中心完成。先将粉末样品熔制成玻璃饼后,利用X荧光光谱仪(XRF,Rigaku-2100)测定主量元素,分析误差<0.5%。微量元素测试时,先用Teflon罐称取粉末样品后,加入高纯度HNO3和HF充分溶解后蒸干,然后加入1%的高纯度HNO3后,在电感耦合等离子体质谱(ICP-MS,Thermo X-series)上测定稀土与微量元素,分析误差<5%。

锆石单矿物分选在河北省区域地质矿产调查研究所完成。部分样品(HT49-3)的锆石U-Pb年龄测定在北京离子探针中心的SHRIMPⅡ上完成,分析原理与详细流程见Williams(1998)宋彪等(2002)。应用锆石标样M257(Nasdala et al., 2008)标定锆石的U、Th、Pb含量,利用锆石标样TEMORA1(年龄417Ma)(Black et al., 2003)进行待测样品年龄校正。测试过程中仪器质量分辨率大于5000(1%峰高),一次离子流O2-的强度为3~4 nA,一次离子流束斑大小约为25~30μm。每分析4个待测样品点进行一次TEMORA1标样测定,每个测点记录采用5组扫描。数据处理采用SQUID1.02(Ludwig,2001)及ISOPLOT(Ludwig,2000)程序。普通铅用实测的204Pb校正。单个分析数据的误差为1σ。年龄结果采用207Pb/206Pb加权平均值,内部误差为2σ(95%的置信度)。

部分样品(HT55-1、HT47-1和HT47-3)的LA-MC-ICP-MS锆石U-Pb年龄测定在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,详细实验分析流程见文献(侯可军等,2009)。锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP213激光剥蚀系统。激光剥蚀所用束斑直径为25μm,频率为10Hz,能量密度约为2.5J·cm-2,以He为载气。信号较小的207Pb,206Pb,207Pb(+204Hg),202Hg用离子计数器(multi-ion-counters)接收,208Pb,232Th,238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb,206Pb/238U,207Pb/235U的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行仪器调试,使之达到最优状态,锆石U-Pb定年以标准锆石GJ-1(年龄:600Ma,Jackson et al., 2004)为外标(年龄校正),U,Th含量以锆石M127(U:923×10-6;Th:439×10-6;Th/U:0.48,Nasdala et al., 2008)为外标进行校正。测试过程中在每测定10个样品后重复测定两个锆石GJ-1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序(Liu et al., 2010),测试结果显示绝大多数分析点206Pb/204Pb>1000,故未进行普通铅校正;204Pb由离子计数器检测,考虑到204Pb含量异常高的分析点可能受包体或裂隙中普通Pb的影响,所以剔除204Pb含量异常高的分析点,锆石年龄用Isoplot程序(Ludwig, 2000)计算。

另有1件样品(HT82-1)的锆石U-Pb年龄测定在西北大学大陆动力学国家重点实验室完成,具体测试方法和流程见文献(Diwu et al., 2011)。将德国MicroLas公司生产的GeoLas 200型193nmArF准分子激光器与ICP-MS仪器链接。ICP-MS为美国Agilent公司生产的Agilent7500a。采用He作为剥蚀物质的载气。激光束斑直径为32μm,频率为6Hz时,用美国国家标准技术研究院的人工合成硅酸盐玻璃NISTSRM610进行仪器最佳化,使仪器达到最大的灵敏度(238U灵敏度>460 cps/×10-6)、最小的氧化物产率(ThO/Th<1%)。激光采样方式为单点剥蚀。ICP-MS数据采集模式为Time-resolved Analysis,采用每个质量峰采集一点的跳峰方式,单点滞留时间分别设定为6ms(Si、Ti、Nb、Ta及REE)、20ms(204Pb、206Pb、207Pb及208Pb)和10ms(232Th、238U)。每个分析点的气体背景采集时间为20s,信号采集时间为40s。数据处理采用GLITTER(ver 4.0)程序,207Pb/206Pb、206Pb/238U、207Pb/235U(235U=238U/137.88)208Pb/232Th的比值采用标准锆石91500为外部标准进行校正。元素浓度计算以Si为内标,采用NIST610为外标。锆石谐和图采用Isoplot程序(Ludwig, 2000)。

锆石Lu-Hf同位素分析在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成。分析仪器为德国Geolas200M型193nmArF准分子激光剥蚀系统和美国Bruker公司生产的Bruker aurora M90 ICP-MS,分析方法和流程参见侯可军等(2007)。分析过程中,激光束斑直径为44μm,信号采集时间为26.2s。为消除176Lu和176Yb对176Hf的质量干扰,利用176Lu/175Lu=0.02658和176Yb/172Yb=0.5887(Chu et al., 2002)进行质量干扰校正。利用179Hf/177Hf=0.7325对Lu同位素比值基性指数归一化质量歧视校正,采用173Yb/172Yb=1.35274对Yb同位素比值进行指数归一化质量歧视校正(Wu et al., 2006侯可军等,2007)。实验过程中,GJ-1锆石作为参考标准锆石,23个GJ-1标准锆石的176Hf/177Hf平均值为0.282006±8(MSWD=1.3),与Elhlou et al.(2006)分析结果(0.282013±19)在误差范围内一致。

5 分析结果 5.1 地球化学 5.1.1 大洼梁花岗岩

从大洼梁花岗岩的不同部位采集了5件样品完成主微量元素分析,其中3件位于岩体东部近边缘相(HT49-1~3)、2件样品采自岩体中部(HT50-1、2)。花岗岩SiO2含量70.12%~75.38%、Al2O3含量13.4%~14.59%、MgO含量0.4%~1.43%、Fe2O3含量0.15%~2.73%、FeO含量1.2%~2.64%、CaO含量0.2%~0.64%、Na2O含量0.02%~7.23%、K2O含量0.27%~4.86%(表 1)。大洼梁花岗岩总体具有高硅、铁,低钙、镁特征,可能由于后期的蚀变或变质作用影响,个别样品的钾、钠变化范围较大。在Q-A-P图中,大洼梁花岗岩主体属于正长花岗岩-二长花岗岩,而非常低钠和低钾的样品分别位于碱长花岗岩区域和花岗闪长岩与二长花岗岩的界限附近(图 4)。所有样品主体属于高钾-中钾钙碱性系列,并具有过铝质花岗岩特征(图 5)。

表 1 五台地区古元古代花岗岩主量(wt%)、微量(×10-6)元素分析 Table 1 Major (wt%) and trace (×10-6) elements analyses on Paleoproterozoic granites in Wutai area

图 4 五台地区古元古代花岗岩分类图 Fig. 4 Q-A-P classification of Paleoproterozoic granitoids in Wutai area

图 5 五台地区古元古代花岗岩SiO2-K2O图(据Peccerillo and Taylor, 1976)与A/CNK-A/NK图 Fig. 5 Plots of K2O vs. SiO2 (after Peccerillo and Taylor, 1976) and A/NK vs. A/CNK

大洼梁花岗岩稀土元素总量变化较大(∑REE=147×10-6~381×10-6),轻重稀土元素具有弱-中等程度分异((La/Lu)CN=2.2~6.4),Eu负异常明显(Eu/Eu*=0.39~0.52);其中轻稀土元素分异较明显((La/Sm)CN=1.6~3.5),而重稀土元素无明显分异((Gd/Lu)CN=0.7~1.2)(表 1图 6)。所分析的花岗岩样品Nb、Ta、Zr、Hf、Y和Ga含量较高,相容性元素Cr、Ni、Sc、V和部分大离子亲石元素Rb、Cs和Sr含量较低。在原始地幔标准的微量元素配分图解中,大洼梁花岗岩具有强烈的Sr、P、Ti和弱Nb、Ta、Ba负异常(表 1图 6)。

图 6 五台地区古元古代花岗岩球粒陨石标准化稀土元素配分图(标准化值据Henderson, 1984)与原始地幔标准化微量元素蛛网图解(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REEs (normalization values after Henderson, 1984) and PM-normalized trace elements patterns (normalization values after Sun and McDonough, 1989) for Paleoproterozoic granitoids in Wutai area
5.1.2 王家会花岗岩

本次工作沿代县-滩上公路横穿了王家会岩体,在新鲜露头连续采集了8件样品。其主微量元素分析结果见表 1。王家会花岗岩的SiO2含量72.9%~76.62%、Al2O3含量13.01%~13.63%、Fe2O3含量0.39%~1.59%、FeO含量0.27%~1.1%、CaO含量0.92%~1.28%、MgO含量0.1%~0.57%、Na2O含量3.34%~3.69%、K2O含量4.39%~5.3%(表 1)。该岩体具有高硅、高钾钠,而低镁钙特征,属于二长花岗岩(图 4),并具有高钾钙碱性和偏铝质-弱过铝质花岗岩特征(图 5)。

王家会花岗岩稀土元素含量范围很大(∑REE=107×10-6~430×10-6),稀土元素中等程度-强烈分异((La/Lu)CN=5.7~18.9),轻稀土元素分异较强烈((La/Sm)CN =4.8~8.2),重稀土元素分异较弱((Gd/Lu)CN =0.7~1.4),Eu负异常明显(Eu/Eu*=0.30~0.56)(表 1图 6)。王家会花岗岩相对高Rb、Ba和Pb,其他微量元素含量相对较低(表 1)。在原始地幔标准化的微量元素配分图解中,所有的样品具有较强烈的Sr、P、Ti、Nb、Ta和Ba负异常(图 6)。

5.1.3 莲花山花岗岩

本次在莲花山岩体不同相选取了5件样品进行主微量元素分析,其中1件斑状花岗岩(HT47-1)、2件似斑状花岗岩(HT47-2、3)和2件中细粒花岗岩(HT82-1, -1b)。样品的SiO2含量73.87%~77.78%、Al2O3含量11.43%~12.83%、Fe2O3含量0.53%~1.25%、FeO含量0.23%~1.49%、CaO含量0.27%~1.18%、MgO含量0.15%~0.34%、Na2O含量2.98%~3.54%、K2O含量4.75%~5.37%(表 1)。莲花山花岗岩也具有高硅、高钾和钠特征,低钙、镁、铁,同时相对富钾(表 1)。莲花山花岗岩为二长花岗岩(图 4),为高钾钙碱性系列,并具有偏铝质-弱过铝质花岗岩特征(图 5)。

莲花山花岗岩稀土元素含量相对较高(∑REE=206×10-6~807×10-6),稀土元素微弱-较强烈分异((La/Lu)CN =3.7~14.4),轻稀土元素分异较强烈((La/Sm)CN =3.3~3.9),重稀土元素无明显分异((Gd/Lu)CN =0.7~1.9),同时具有强烈的Eu负异常(Eu/Eu*=0.23~0.59)(图 6)。莲花山花岗岩除Rb含量较高、变化范围较小外,其他微量元素含量变化范围较大(表 1)。在原始地幔标准化的微量元素配分图解中,所有的样品具有较强烈的Sr、P、Ti负异常,部分样品Nb、Ta和Ba负异常明显(图 6)。

5.2 锆石U-Pb年龄 5.2.1 大洼梁花岗岩

大洼梁似斑状花岗岩样品(HT49-3)采自于代县掌寺村西1km山沟内(GPS坐标:38°56.341′N、113°04.969′E)。其中锆石主要为自形短柱-长柱状。透射光下,大多数锆石呈无色透明,少量锆石颗粒具有不均匀的浅黄褐色,粒度大小多为100~300μm,延长系数为1:1.2~1:3,多数柱面和锥面都很发育。阴极发光图像中,多数锆石具有较明显的韵律环带,部分环带较宽缓(图 7),个别颗粒可见板状环带特征。

图 7 五台地区古元古代花岗岩锆石CL图像 图中黄色椭圆和圆圈分别代表SHRIMP和LA-ICPMS锆石U-Pb分析;红色圆圈代表Hf同位素分析 Fig. 7 CL images of zircons from Paleoproterozoic granitoids in Wutai area In the images, yellow ovals and circles represent the zircon SHRIMP U-Pb and LA-ICPMS U-Pb analyses; red circles represent the Hf isotope analyses

从似斑状花岗岩锆石中选择了17个颗粒完成了17个测点分析(见电子版附表 1)。U、Th含量分别为40×10-6~379×10-6和37×10-6~391×10-6,Th/U比值为0.55~1.18(附表 1)。在锆石U-Pb年龄谐和图中,除5个分析结果位于谐和线上或附近外,其他12个点具有不同程度的Pb丢失,所有分析结果形成的不一致线与谐和线的上交点207Pb/206Pb年龄为2164±30Ma(图 8)。利用位于谐和线上5个分析点获得的207Pb/206Pb加权平均年龄为2170±17Ma(MSWD=0.75),与上交点年龄在误差范围内相近,同时也与前人获得大洼梁花岗岩的年龄结果一致(2176±12Ma;王凯怡和Wilde,2002)(图 8)。

附表 1 大洼梁花岗岩(样品HT49-3)SHRIMP锆石U-Pb年龄分析 Appendix1 Zircon SHRIMP U-Pb analyses on Dawaliang granite (Sample HT49-3)

图 8 五台地区古元古代花岗岩锆石U-Pb谐和图 Fig. 8 207Pb/235U-206Pb/238U concordia diagrams of zircon U-Pb ages from Paleoproterozoic granitoids in Wutai area
5.2.2 王家会花岗岩

用于锆石U-Pb年龄测定的王家会片麻状花岗岩(HT55-1)采自代县王家会村北公路边(GPS坐标:39°02.194′N、113°04.721′E)。该样品中锆石主要呈粒状、柱状。透射光下,多数锆石呈无色透明、少数颗粒透光性较差,粒度大小多为150~400μm,延长系数为1:1.2~1:4,表面溶蚀特征非常明显。在阴极发光图像中,多数锆石隐约可见岩浆振荡环带,少量锆石内部具有熔蚀特征表现出不规则的结构(图 7)。

选择了片麻状花岗岩中26粒锆石进行了28个测点分析(电子版附表 2)。U、Th含量分别为10×10-6~183×10-6和13×10-6~166×10-6,Th/U比值为0.28~2.43(附表 2)。在锆石U-Pb年龄谐和图中,除5,14,15,20和22号点具有较明显的Pb丢失外,其他分析点都位于谐和线上或附近。除了5号分析点获得207Pb/206Pb年龄为2481±17Ma外,其他的207Pb/206Pb年龄结果范围为2078~2239Ma。去除发生强烈Pb丢失的14、15、20和22点及年龄偏大的2号分析点外,其余22个分析结果获得207Pb/206Pb年龄加权平均值为2101±6Ma(图 8),与前人所报道的2084~2129Ma花岗岩成岩时代在误差范围内完全一致(Wilde et al., 2005;张许平和耿威,2016)。

附表 2 王家会和莲花山花岗岩LA-ICPMS锆石U-Pb分析 Appendix2 Zircon LA-ICPMS U-Pb analyses on Wangjiahui and Dawaliang granites
5.2.3 莲花山花岗岩

本次工作从莲花山花岗岩中采集了3件样品进行锆石U-Pb定年。斑状花岗岩(HT47-1)和似斑状花岗岩(HT47-3)采自原平市峙峪东南山梁上(GPS坐标分别为:38°44.753′N、112°48.306′E和38°44.647′N、112°48.100′E),另一个中-细花岗岩样品(HT82-1)采自原平市东石鼓寺东山坡(GPS坐标:38°43′05.00″N、112°48′14.05″E)。莲花山花岗岩(HT47-1、HT47-3和HT82-1)锆石主要呈短柱-长柱状,少量锆石呈粒状。透射光下,锆石呈无色透明,粒度大小多为200~500μm,延长系数为1:1.5~1:4,多数锆石柱面非常发育,而锥面不发育。在阴极发光图像中,部分锆石发育宽缓的环带,而部分锆石内部结构较为均匀,无明显环带,而靠近边部发育环带特征(图 7)。

从斑状花岗岩(HT47-1)样品的锆石中选择了29粒锆石完成了29个测点分析。锆石U、Th含量分别为11×10-6~71×10-6和8×10-6~52×10-6,Th/U比值为0.64~1.15,29个分析结果的207Pb/206Pb表面年龄集中于2114~2243Ma(附表 2)。在锆石U-Pb年龄谐和图中,3、12和16号分析点年龄偏大,同时3和12号点具有较强烈的Pb丢失。去除上述3个分析点外,其余26个位于谐和线上或附近分析结果所获得207Pb/206Pb年龄加权平均值为2117±6Ma(图 8)。

从似斑状花岗岩(HT47-3)样品的锆石中选择了28粒锆石进行了28个测点分析。锆石U、Th含量分别为11×10-6~38×10-6和7×10-6~29×10-6,Th/U比值为0.53~1.12,所有分析点获得207Pb/206Pb表面年龄为2091~2118Ma(附表 2)。在锆石U-Pb年龄谐和图中,除分析点1和24具有一定的Pb丢失外,其他的分析结果基本位于谐和线上或附近,26个分析点获得207Pb/206Pb加权平均年龄为2110±4Ma(图 8)。

在中-细粒花岗岩样品(HT82-1)的锆石中选择了30粒完成了30个测点分析。锆石U、Th含量分别为25×10-6~124×10-6和15×10-6~155×10-6,Th/U比值为0.44~1.70(电子版附表 3),所有分析点的207Pb/206Pb年龄范围为2103~2231Ma。在锆石U-Pb年龄谐和图中,除去Pb丢失较为强烈的5、9、15、18、24点和年龄偏大的8号分析点外,其余24个分析结果获得207Pb/206Pb加权平均年龄为2143±15Ma(图 8)。

附表 3 莲花山花岗岩(样品HT82-1)LA-ICPMS锆石U-Pb年龄分析 Appendix3 Zircon LA-ICPMS U-Pb analyses on Lianhuashan granite (Sample HT82-1)

从上述3个年龄结果,我们认为莲花山花岗岩的时代为2110~2143Ma,而非前人报道的中元古代花岗岩(白瑾,1986)。

5.3 锆石Lu-Hf同位素 5.3.1 大洼梁花岗岩

在大洼梁似斑状花岗岩样品(HT49-3)锆石U-Pb分析的原位进行Lu-Hf同位素分析,分析结果见电子版附表 4。对于强烈Pb丢失而207Pb/206Pb年龄偏低的3、7、11和12号分析点的Lu-Hf同位素时采用最终的加权平均年龄2171Ma进行计算。17个点的176Lu/176Hf和177Hf/176Hf比值分别为0.000617~0.002952和0.281456~0.281574(附表 4)。利用锆石U-Pb年龄结果计算获得εHf(t)为-0.08~3.31,单阶段(tDM1)和两阶段(tDMC)模式年龄分别为2395~2539Ma和2462~2638Ma(附表 4)。

附表 4 五台地区古元古代花岗岩锆石Lu-Hf同位素分析 Appendix4 Zircon Lu-Hf isotopic analyses on Paleoproterozoic granitoids in Wutai area
5.3.2 王家会花岗岩

对王家会片麻状花岗岩样品(HT55-1)锆石28个U-Pb年龄分析点完成了Lu-Hf同位素分析。28个点的176Lu/176Hf和177Hf/176Hf比值分别为0.000432~0.002940和0.281423~0.281574(附表 4)。除5号分析点εHf(t)为高的正值(7.29),其余27个点的εHf(t)为-3.51~1.98;单阶段(tDM1)和两阶段(tDMC)模式年龄分别为2424~2611Ma和2498~2740Ma(附表 4)。

5.3.3 莲花山花岗岩

对斑状花岗岩(HT47-1)样品29个原位U-Pb分析点进行Lu-Hf同位素分析。176Lu/176Hf和177Hf/176Hf比值分别为0.000516~0.000990和0.281394~0.281507,εHf(t)、单阶段(tDM1)和两阶段(tDMC)模式年龄分别为-2.47~1.62、2422~2572Ma和2512~2708Ma(附表 4)。

在似斑状花岗岩(HT47-3)样品28个年龄分析点上进行了Lu-Hf同位素分析。176Lu/176Hf和177Hf/176Hf比值分别为0.000520~0.001153和0.281380~0.281500,εHf(t)、单阶段(tDM1)和两阶段(tDMC)模式年龄分别为-3.13~2.09、2394~2592Ma和2480~2735Ma(附表 4)。

6 讨论 6.1 五台地区2.2~2.1Ga的岩浆作用

王凯怡和Wilde(2002)从大洼梁花岗岩内部及边缘相采集了2件样品,并分别获得SHRIMP锆石207Pb/206Pb加权平均年龄2176±12Ma和2107±16Ma,认为2176Ma代表岩体的侵位时代,而后者代表热事件影响。本次工作从大洼梁花岗岩近边缘相获得锆石U-Pb年龄为2170±17Ma,与2176±12Ma年龄结果完全一致,应代表了大洼梁花岗岩的形成时代。

已有不同的学者对王家会花岗岩进行过年代学研究。Wilde et al.(2005)从王家会粉色相花岗岩中获得3个SHRIMP锆石U-Pb年龄分别为2084±20Ma、2117±17Ma和2116±16Ma。张许平和耿威(2016)利用LA-ICPMS测定花岗岩的207Pb/206Pb年龄为2129±11Ma。本次工作获得王家会花岗岩的207Pb/206Pb年龄结果为2101±6Ma,表明该花岗岩的时代为~2.1Ga。而莲花山花岗岩研究程度相对较低,仅有的全岩K-Ar年龄结果为1503~1507Ma(白瑾,1986)。本文从该花岗岩不同相中获得锆石年龄结果为2110~2143Ma,表明莲花山岩体为古元古代中期花岗岩。

在五台地区除本文研究的大洼梁、王家会和莲花山花岗岩外,已获得较精确年龄结果的花岗质岩体包括黄金山花岗斑岩(2137±9Ma;Du et al., 2013)和蒋村石英斑岩(2166±17Ma和2138±17Ma;杜利林等,2015)。除此之外,在滹沱群中出现的变质基性火山岩(2140±14Ma;Du et al., 2010)、横岭基性岩席(2147±5Ma;Peng et al., 2005)和2.2~2.1Ga的碎屑锆石(Wilde et al., 2004b; 杜利林等,2011Liu et al., 2011; Du et al., 2017)。从分布特征看,与相邻吕梁地区同期大规模分布的花岗质岩体比较(耿元生等, 2000, 2006杜利林等,2012Zhao et al., 2008),虽然五台地区的2.2~2.1Ga花岗质侵入体单个岩体规模较小,但分布区域较广泛,表明五台地区该期岩浆活动也非常强烈。

6.2 五台地区2.2~2.1Ga花岗岩的成因 6.2.1 大洼梁花岗岩的成因

大洼梁花岗岩高SiO2、富K2O+Na2O(部分可能由于后期钾化或钠化影响出现异常高钾或富钠),低CaO,稀土元素(Eu除外)与高场强元素Zr、Nb、Ga和Y等含量高,而Sr含量极低,显示出A型花岗岩的特征。所有的花岗岩样品具有高的Ga/Al比值(2.67~3.32),Zr+Nb+Y+Ce总量高(568×10-6~688×10-6),与典型的A型花岗岩相同,而非高分异的I型或S型花岗岩(Whalen et al., 1987; Jiang et al., 2009)。另外,利用全岩成分计算的花岗岩Zr饱和温度可达876~968℃(Watson and Harrison, 1983; Miller et al., 2003),平均温度为900℃(表 1),指示岩浆形成温度很高,与典型A型花岗岩的高温特征相似。综合上述证据表明,大洼梁花岗岩为A型花岗岩。

已有多种不同的成因模式来解释A型花岗岩的源区:(1)幔源玄武质岩浆分离结晶形成富碱的熔体(Auwera et al., 2003; Frost and Frost, 1997; Litvinovsky et al., 2002; Loiselle and Wones, 1979; Mushkin et al., 2003; Namur et al., 2011; Turner et al., 1992);(2)花岗质熔体抽取的富F-和Cl-的麻粒岩下地壳低程度部分熔融(Clemens et al., 1986; Collins et al., 1982; Whalen et al., 1987);(3)浅部地壳中钙碱性花岗岩脱水熔融(Anderson, 1983; Creaser et al., 1991; Skjerlie and Johnson, 1992; Patiño Dounce, 1997; Dall’agnol et al., 1999; King et al., 1997, 2001);(4)花岗质岩浆和幔源镁铁质岩浆混合(BéDard, 1990; Kerr and Fryer, 1993; Yang et al., 2006);(5)紫苏花岗岩下地壳高温部分熔融(Landenberger and Collins, 1996);(6)脱水和/或熔体亏损的麻粒岩相变质沉积岩高温部分熔融(Huang et al., 2011)。

大洼梁花岗岩εHf(t)为-0.08~3.31,远低于同期亏损地幔值(附表 4图 9);同时,花岗岩的单阶段Hf模式年龄为2395~2539Ma,也明显大于岩体形成年龄。岩体中也未发现同源暗色包体。所以,可以排除该花岗岩由玄武岩分离结晶形成。岩浆混合成因的A型花岗岩中常出现大量的镁铁质包体,同时岩石同位素成分变化很大(Yang et al., 2006),但大洼梁花岗岩却明显不同。因此,大洼梁花岗岩不可能是壳幔混合成因。变质沉积岩熔融形成的长英质熔体通常表现为强过铝质特征(Clemens and Finger, 2012; Frost and Frost, 1997),但大洼梁花岗岩并不是所有的样品都表现为强过铝质特征。因此,该花岗岩也可以排除沉积岩的部分熔融。虽然,Landenberger and Collins(1996)首次报道下地壳紫苏花岗岩部分熔融可以生成A型花岗岩。但通过详细的分析其文章中数据结果发现,他们所指的A型花岗岩实际上为I型花岗岩,仅高分异部分表现出A型花岗岩的地球化学特征。此外,下地壳通常低Ba、Rb和Sc,因此并非A型花岗岩合适的源区(Sylvester, 1989)。

图 9 五台地区古元古代花岗岩锆石207Pb/206Pb年龄与εHf(t)关系图(2.5Ga TTG片麻岩数据杜利林等,2013) Fig. 9 Zircon 207Pb/206Pb ages vs. εHf(t) of Paleoproterozoic granitoids in Wutai area (2.5Ga TTG gneisses from Du et al., 2013)

已有实验资料证明,A型花岗岩可以由TTG(英云闪长岩-奥长花岗岩-花岗闪长岩)和石英闪长岩高温条件下在地壳浅部发生部分熔融形成的(Anderson, 1983; Creaser et al., 1991; Dall’agnol et al., 1999; King et al., 1997, 2001; Patiño Dounce, 1997; Skjerlie和Jonhston, 1992)。大洼梁花岗岩似斑状结构发育,指示浅成侵入体特征;在Qz-Ab-Or图中,花岗岩也显示浅成特征(图 10)。此外,大洼梁花岗岩稀土元素具有较明显的负Eu异常,很低的Sr和高的Yb含量,也指示岩浆形成深度很浅(张旗等,2006)。五台地区新太古代TTG质片麻岩分布较为广泛,同时大洼梁花岗岩Hf同位素位于2.5~2.7Ga地壳演化线上,与五台地区2.5Ga的TTG片麻岩相似(图 9)。因此,我们倾向于认为,大洼梁花岗岩为五台地区新太古代TTG片麻岩在浅部地壳部分熔融形成的。

图 10 五台地区古元古代花岗岩Qz-Ab-Or共结压力图(据Huang and Wyllie, 1975; Anderson and Cullers, 1978) Fig. 10 Qz-Ab-Or diagram for Paleoproterozoic granitoids in Wutai area (after Huang and Wyllie, 1975; Anderson and Cullers, 1978)
6.2.2 王家会和莲花山花岗岩的成因

王家会花岗岩和莲花山花岗岩都具有高硅、高钾钠,而相对富钾特征,同时低镁、钙(表 1)。花岗岩稀土元素具有弱-较强烈的分异,都具有明显的Eu负异常(图 6)。一种原因为源区存在长石的大量残留;另一种可能是在岩浆侵位过程中发生了长石的分离结晶。从稀土元素含量与Eu负异常的变化特征看,随着稀土元素含量降低,Eu负异常更为强烈(图略),表明长石的分离结晶在岩浆演化中起重要作用。这也与两个花岗岩体中普遍出现长石斑晶的特征相符合。然而,稀土元素含量较高的样品也普遍具有较明显的Eu负异常,表明原始岩浆部分熔融于长石的不稳定区域。在Qz-Ab-Or图中,王家会和莲花山花岗岩都显示浅成岩浆特征(图 10)。王家会和莲花山花岗岩中,相容性元素Cr、Ni含量非常低,同时锆石εHf(t)值远离亏损地幔演化线,而位于球粒陨石值附近(图 9)。因此,可以推断两个花岗岩体不可能来自亏损地幔部分熔融。在锆石207Pb/206Pb年龄-εHf(t)关系图中(图 9),所有的花岗岩样品基本位于2.5~2.7Ga的地壳演化线上,也与五台地区2.5Ga的TTG片麻岩类似。据此,我们进一步推断王家会和莲花山花岗岩是新太古代TTG质片麻岩在中上地壳深度发生部分熔融形成的。

6.3 2.2~2.1Ga岩浆作用的构造背景

前人对五台地区王家会花岗岩和黄金山花岗斑岩进行了较详细的研究工作。王家会古元古代二长花岗岩具有后碰撞花岗岩的特征,形成于伸展到挤压转换的构造环境(王月然等,2005)或后造山环境中(张许平和耿威,2016);而黄金山花岗斑岩明显具有高温A型花岗岩特征,可能形成于板内构造环境中(Du et al., 2013)。王凯怡等(2000)根据大洼梁花岗岩的全岩成分特征和岩石中类似环斑结构长石斑晶特征,认为其为非造山型花岗岩,形成于五台造山事件后的拉张环境中。

本次工作中,3个花岗岩岩体的微量元素具有较高的Nb、Y和Nb+Y值,因而多位于后碰撞和板内花岗岩的区域(图 11Pearce et al., 1984)。后碰撞花岗岩多出现在主碰撞期之后25~75Ma,空间上与碰撞缝合带的位置紧密相关,同时在时间上碰撞后花岗岩紧随碰撞和后碰撞的钙碱性、强过铝质花岗岩出现(Sylvester, 1989)。虽然,有些学者提出中部带可能存在~2.1Ga的碰撞记录(Liu et al., 2005; Faure et al., 2007; Trap et al., 2009, 2012; Wang et al., 2013),但从目前的资料分析,中部带缺乏~2.1Ga与碰撞造山有关的变质和岩浆活动的记录,而主要的变质作用记录为1.95~1.8Ga(Guo et al., 2002, 2005; Liu et al., 2006; Zhao et al., 2010; Peng et al., 2014及其中文献; Qian et al., 2013; Qian and Wei, 2016; Zhang et al., 2016)。一些研究者认为,五台地区2.2~2.1Ga具有后碰撞性质的花岗岩可能与新太古代末的五台造山事件有关(王月然等,2005;张许平和耿威,2016)。但根据现有的年代学资料,五台地区的花岗岩与传统意义的五台运动时代相差400~300Ma,不可能是同一构造运动的产物。因此,我们认为五台地区的这些花岗岩应形成于板内构造环境。研究区域内同期A型花岗岩和富铁玄武岩的出现也支持五台地区2.2~2.1Ga的岩浆事件形成于板内构造环境(Du et al., 2013, 2015)。此外,古元古代滹沱群的沉积组合为砾岩、砂岩、页岩和碳酸盐岩,碳酸盐岩中叠层石发育,反映其沉积于浅水盆地环境(Wilde et al., 2004b; 杜利林等,2011; Liu et al., 2011; Du et al., 2017);其中砂岩碎屑颗粒组成和碎屑锆石指示其物源区主要来自于稳定的克拉通和循环的造山带,而非火山弧,指示滹沱群形成于裂谷环境(杜利林等,2011Du et al., 2017)。

图 11 五台地区古元古代花岗岩构造环境判别图(据Pearce et al., 1984) Fig. 11 Tectonic discrimination of Nb vs. Y and Rb vs. Y+Nb for granitoids in the Xuting pluton (after Pearce et al., 1984)

华北克拉通中部带内古元古代中期(2.2~2.0Ga)岩浆活动较为广泛(Du et al., 2016a及其中文献)。根据岩性特征分析,该期岩浆活动具有明显的双峰式特征(Du et al., 2016a及其中文献);同时,结合不同区域该期岩浆活动精确的锆石U-Pb年龄资料(SIMS和LA-ICPMS)可以发现,五台、吕梁、中条和太华地区该期岩浆活动主要集中于2.2~2.1Ga,而赞皇、阜平、恒山和怀安地区主要集中于2.1~2.0Ga(Du et al., 2016 a附表 1)。按照Zhao等(1999a, b, 2005, 2008, 2010, 2012)的中部造山带演化模式,2.2~2.0Ga的岩浆活动与俯冲有关。在古元古代西部陆块向东部陆块的俯冲过程中,岩浆作用应该从东至西逐渐变年轻。但从现有的资料分析,中部造山带中岩浆作用的年龄变化显示西老东新的特征。因此,我们认为该期岩浆活动并非东西陆块俯冲作用的结果(Du et al., 2016a)。中部带内大量出现的2.2~2.1Ga的岩浆岩是古元古代中期(2.2~2.0Ga)岩浆活动的一个阶段。该阶段岩浆活动总体具有高钾钠特征,部分花岗岩为A型花岗岩,并与区域内同期基性岩浆活动组成典型的双峰式岩石组合。更为重要的是,在东部陆块内部的冀东地区新发现有~2.1Ga的变质基性岩墙群,与华北古元古代陆内裂谷活动有关(Duan et al., 2015; 杨崇辉等,2017);同时,在鄂尔多斯盆地基底中也发现2.2~2.0Ga的花岗质岩石和碎屑锆石(Wan et al., 2013b; Zhang et al., 2015),也进一步反映古元古代中期岩浆作用呈面状分布特征(Du et al., 2016a)。因此,我们倾向认为2.2~2.1Ga岩浆作用与华北克拉通古元古代中期陆内裂谷有关,也表明华北在新太古代末已初步完成了拼合(Zhai and Santosh, 2011),古元古代中期转入陆内裂谷阶段。

7 结论

大洼梁似斑状花岗岩SHRIMP锆石U-Pb年龄为2170±17Ma,王家会黑云母二长花岗质片麻岩LA-ICPMS锆石U-Pb年龄结果为2101±6Ma,3个莲花山花岗岩样品的锆石U-Pb年龄分别为2117±6Ma、2110±4Ma和2143±15Ma。结合同期的黄金山花岗斑岩、蒋村石英斑岩、变质基性火山岩和辉绿岩席,五台地区2.2~2.1Ga的岩浆活动也较为广泛。

大洼梁、王家会和莲花山花岗岩都具有高硅、高钾钠,而相对低钙特征,稀土元素表现为强烈的Eu负异常。大洼梁花岗岩高Ga/Al比值、Zr+Ce+Y+Nb值含量较高,同时全岩锆饱和温度非常高,具有A型花岗岩特征。3个花岗岩岩体皆表现为碰撞后至板内花岗岩特征。结合岩石学、地球化学和锆石Hf同位素特征,这些富碱的古元古代花岗质岩石是在伸展条件下,新太古代晚期TTG质片麻岩部分熔融形成的。根据华北克拉通中部带2.2~2.0Ga岩浆活动不同地区具有一定的分带性,而五台地区岩浆岩时代集中于2.2~2.1Ga,代表较早的阶段;同时区域内该期岩浆事件表现为双峰式组合特征,部分花岗质岩石具有板内A型花岗岩特征,表明古元古代中期华北克拉通处于陆内裂谷阶段。

致谢 在全岩主微量元素分析、SHRIMP和LA-ICPMS锆石U-Pb年龄测试和Hf同位素分析中,得到中国地质科学院国家地质实验测试中心韩慧明老师、马天芳老师、郭晓辰老师、北京离子探针中心刘敦一研究员、张玉海高级工程师、杨之青高级工程师、杨淳研究员、范润龙副研究员、刘建辉工程师、中国地质科学院矿产资源研究所MC-ICPMS实验室侯可军副研究员、西北大学大陆动力学国家重点实验室柳小明教授和第五春荣副教授的热情帮助和支持;成文过程中,与薛怀民研究员和童英研究员进行过交流和讨论;耿元生研究员、万渝生研究员和第五春荣副教授对文章初稿提出许多宝贵的修改意见,使文章质量得以提高;同时俞良军老师对文稿进行了认真的审阅。在此一并致以衷心感谢!
参考文献
Anderson JL and Cullers RL. 1978. Geochemistry and evolution of the Wolf River batholith, a Late Precambrian rapakivi massif in North Wisconsin, U. S.A. Precambrian Research, 7(4): 287-324. DOI:10.1016/0301-9268(78)90045-1
Anderson JL. 1983. Proterozoic anorogenic granite plutonism of North America. In:Medaris Jr LG, Byers CW, Mickelson DM and Shanks WC (eds.). Proterozoic Geology:Selected Papers from an International Proterozoic Symposium. New York:Geological Society of America Memoirs, 161: 133-154. DOI:10.1130/MEM161
Auwera JV, Bogaerts M, Liégeois JP, Demaiffe D, Wilmart E, Bolle O and Duchesne JC. 2003. Derivation of the 1.0~0.9Ga ferro-potassic A-type granitoids of southern Norway by extreme differentiation from basic magmas. Precambrian Research, 124(2-4): 107-148.
Bai J. 1986. The Early Precambrian Geology of Wutaishan. Tianjin: Tianjin Science and Technology Press: 1-475.
BéDard J. 1990. Enclaves from the A-type granite of the Mégantic Complex, White Mountain magma series:Clues to granite magmagenesis. Journal of Geophysical Research:Solid Earth, 95(B11): 17797-17819. DOI:10.1029/JB095iB11p17797
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170. DOI:10.1016/S0009-2541(03)00165-7
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258. DOI:10.1016/S0012-821X(97)00040-X
Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G and Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. DOI:10.1039/b206707b
Clemens JD, Holloway JR and White AJR. 1986. Origin of an A-type granite:Experimental constraints. American Mineralogist, 71(3-4): 317-324.
Clemens JD and Finger F. 2012. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China:Comment. Geology, 40(10): e277. DOI:10.1130/G33175C.1
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. DOI:10.1007/BF00374895
Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology, 19(2): 163-166. DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Dall'agnol R, Scaillet B and Pichavant M. 1999. An experimental study of a lower Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. Journal of Petrology, 40(11): 1673-1698. DOI:10.1093/petroj/40.11.1673
Diwu CR, Sun Y, Lin CL, Liu XM and Wang HL. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province, China. Acta Geologica Sinica, 23(2): 253-262.
Diwu CR, Sun Y, Guo AL, Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at~2.5Ga:Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research, 20(1): 149-1702.
Diwu CR, Sun Y, Zhao Y and Lai SC. 2014. Early Paleoproterozoic (2.45~2.20Ga) magmatic activity during the period of global magmatic shutdown:Implications for the crustal evolution of the southern North China Craton. Precambrian Research, 255: 627-640. DOI:10.1016/j.precamres.2014.08.001
Du LL, Yang CH, Ren LD, Wan YS and Wu JS. 2009. Petrology, geochemistry and petrogenesis of the metabasalts of the Hutuo Group, Wutai Mountain, Shanxi, China. Geological Bulletin of China, 28(7): 867-876.
Du LL, Yang CH, Guo JH, Wang W, Ren LD, Wan YS and Geng YS. 2010. The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton:SHRIMP zircon U-Pb dating of basaltic andesite. Chinese Science Bulletin, 55(17): 1782-1789. DOI:10.1007/s11434-009-3611-8
Du LL, Yang CH, Wang W, Ren LD, Wan YS, Song HX, Geng YS and Hou KJ. 2011. The re-examination of the age and stratigraphic subdivision of the Hutuo Group in the Wutai Mountains area, North China Craton:Evidences from geology and zircon U-Pb geochronology. Acta Petrologica Sinica, 27(4): 1037-1055.
Du LL, Yang CH, Wang W, Ren LD, Wan YS, Song HX, Gao LZ, Geng YS and Hou KJ. 2012. Provenance of the Paleoproterozoic Hutuo Group basal conglomerates and Neoarchean crustal growth in the Wutai Mountains, North China Craton:Evidence from granite and quartzite pebble zircon U-Pb ages and Hf isotopes. Science China (Earth Sciences), 55(11): 1796-1814. DOI:10.1007/s11430-012-4407-2
Du LL, Yang CH, Ren LD, Song HX, Geng YS and Wan YS. 2012. The 2.2~2.1Ga magmatic event and its tectonic implication in the Lüliang Mountains, North China Craton. Acta Petrologica Sinica, 28(9): 2751-2769.
Du LL, Yang CH, Wang W, Ren LD, Wan YS, Wu JS, Zhao L, Song HX, Geng YS and Hou KJ. 2013. Paleoproterozoic rifting of the North China Craton:Geochemical and zircon Hf isotopic evidence from the 2137Ma Huangjinshan A-type granite porphyry in the Wutai area. Journal of Asian Earth Sciences, 72: 190-202. DOI:10.1016/j.jseaes.2012.11.040
Du LL, Yang CH, Wyman DA, Nutman AP, Lu ZL, Zhao L, Wang W, Song HX, Wan YS, Ren LD and Geng YS. 2015. Petrogenesis and tectonic implications of the iron-rich tholeiitic basalts in the Hutuo Group of the Wutai Mountains, Central Trans-North China Orogen. Precambrian Research, 271: 225-242. DOI:10.1016/j.precamres.2015.10.008
Du LL, Yang CH, Lu ZL, Zhao L, Geng YS, Cao GY, Diwu CR, Guo CL and Hou KJ. 2015. The Sijizhuang Formation at Jiangcun area of Wutai Mountains:Further constraints on the age of the Hutuo Group. Acta Geoscientica Sinica, 36(5): 599-612.
Du LL, Yang CH, Wyman DA, Nutman AP, Lu ZL, Song HX, Xie HQ, Wan YS, Zhao L, Geng YS and Ren LD. 2016a. 2090~2070Ma A-type granitoids in Zanhuang Complex:Further evidence on a Paleoproterozoic rift-related tectonic regime in the Trans-North China Orogen. Lithos, 254-255: 18-35. DOI:10.1016/j.lithos.2016.03.007
Du LL, Yang CH, Wyman DA, Nutman AP, Lu ZL, Song HX, Zhao L, Geng YS and Ren LD. 2016b. Age and depositional setting of the Paleoproterozoic Gantaohe Group in Zanhuang Complex:Constraints from zircon U-Pb ages and Hf isotopes of sandstones and dacite. Precambrian Research, 286: 59-100. DOI:10.1016/j.precamres.2016.09.027
Du LL, Yang CH, Wyman DA, Nutman AP, Zhao L, Lu ZL, Song HX, Geng YS and Ren LD. 2017. Zircon U-Pb ages and Lu-Hf isotope compositions from clastic rocks in the Hutuo Group:Further constraints on Paleoproterozoic tectonic evolution of the Trans-North China Orogen. Precambrian Research, 303: 291-314. DOI:10.1016/j.precamres.2017.04.007
Duan ZZ, Wei CJ and Qian JH. 2015. Metamorphic P-T paths and zircon U-Pb age data for the Paleoproterozoic metabasic dykes of high-pressure granulite facies from Eastern Hebei, North China Craton. Precambrian Research, 271: 295-310. DOI:10.1016/j.precamres.2015.10.015
Elhlou S, Belousova E, Griffin WL, Pearson NJ and O'Reilly SY. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18): A158.
Faure M, Trap P, Lin W, Monié P and Bruguier O. 2007. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt:New insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 30(2): 95-106.
Frost CD and Frost BR. 1997. Reduced rapakivi-type granites:The tholeiite connection. Geology, 25(7): 647-650. DOI:10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
Geng YS, Liu DY and Song B. 1997. Chronological framework of the Early Precambrian important events of the northwestern Hebei granulite terrain. Acta Geologica Sinica, 71(4): 316-327.
Geng YS, Wan YS, Shen QH, Li HM and Zhang RX. 2000. Chronological framework of the Early Precambrian important events in the Lüliang area, Shanxi Province. Acta Geologica Sinica, 74(3): 216-223.
Geng YS, Yang CH and Wan YS. 2006. Paleoproterozoic granitic magmatism in the Lüliang area, North China Craton:Constraint from isotopic geochronology. Acta Petrologica Sinica, 22(2): 305-314.
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. DOI:10.1016/S0016-7037(99)00343-9
Guo JH, O'Brien PJ and Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China Craton:Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741-756. DOI:10.1046/j.1525-1314.2002.00401.x
Guo JH, Sun M, Chen FK and Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton:Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629-642. DOI:10.1016/j.jseaes.2004.01.017
Henderson P. 1984. General geochemical properties and abundances of the rare earth elements. In:Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier: 1-510.
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604.
Hou KJ, Li YH and Tian YY. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492.
Huang DM, Zhang DH, Wang SY, Zhang YX, Dong CY, Liu DY and Wan YS. 2012. 2.3Ga magmatism and 1.94Ga metamorphism in the Xiatang area, southern margin of the North China Craton:Evidence from whole-rock geochemistry and zircon geochronology and Hf isotope. Geological Review, 58(3): 565-576.
Huang HQ, Li XH, Li WX and Li ZX. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 39(10): 903-906. DOI:10.1130/G32080.1
Huang WL and Wyllie PJ. 1975. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kilobars, dry and with excess water. The Journal of Geology, 83(6): 737-748. DOI:10.1086/628165
Huang XL, Wilde SA, Yang QJ and Zhong JW. 2012. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong'er in the southern segment of the Trans-North China Orogen:Implications for tectonic transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252. DOI:10.1016/j.lithos.2012.01.004
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69. DOI:10.1016/j.chemgeo.2004.06.017
Jiang N, Zhang SQ, Zhou WG and Liu YS. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton:Highly fractionated from I-type magmas?. Contributions to Mineralogy and Petrology, 158(1): 113-130. DOI:10.1007/s00410-008-0373-2
Kerr A and Fryer BJ. 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. DOI:10.1016/0009-2541(93)90141-5
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
King PL, Chappell BW, Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. DOI:10.1046/j.1440-0952.2001.00881.x
Kröner A, Wilde SA, Li JH and Wang KY. 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595. DOI:10.1016/j.jseaes.2004.01.001
Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. DOI:10.1016/S1367-9120(03)00071-3
Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi Complex, eastern Australia. Journal of Petrology, 37(1): 145-170. DOI:10.1093/petrology/37.1.145
Li JH, Qian XL and Zhai MG. 1997. The tectonic division of North China granulite facies belt and its Early Precambrian tectonic evolution. Scientia Geologica Sinica, 32(3): 254-266.
Li JH and Kusky T. 2007. A Late Archean foreland fold and thrust belt in the North China Craton:Implications for early collisional tectonics. Gondwana Research, 12(1-2): 47-66. DOI:10.1016/j.gr.2006.10.020
Litvinovsky BA, Jahn BM, Zanvilevich AN, Saunders A, Poulain S, Kuzmin DV, Reichow MK and Titov AV. 2002. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia):Implications for the origin of A-type granitoid magmas. Chemical Geology, 189(1-2): 105-133. DOI:10.1016/S0009-2541(02)00142-0
Liu CH, Zhao GC, Sun M, Zhang J, He YH, Yin CQ, Wu FY and Yang JH. 2011. U-Pb and Hf isotopic study of detrital zircons from the Hutuo Group in the Trans-North China Orogen and tectonic implications. Gondwana Research, 20(1): 106-121. DOI:10.1016/j.gr.2010.11.016
Liu CH, Liu FL, Shi JR, Liu PH, Yang H, Liu LS, Wang W and Tian ZH. 2016. Depositional age and provenance of the Wutai Group:Evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry. Precambrian Research, 281: 269-290. DOI:10.1016/j.precamres.2016.06.002
Liu DY, Page RW, Compston W and Wu JS. 1985. U-Pb zircon geochronology of Late Archaean metamorphic rocks in the Taihangshan-Wutaishan area, North China. Precambrian Research, 27(1-3): 85-109. DOI:10.1016/0301-9268(85)90007-5
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu SW, Pan YM, Xie QL, Zhang J and Li QG. 2004. Archean geodynamics in the Central Zone, North China Craton:Constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes. Precambrian Research, 130(1-4): 229-249. DOI:10.1016/j.precamres.2003.12.001
Liu SW, Pan YM, Xie QL, Zhang J, Li QG and Yang B. 2005. Geochemistry of the Paleoproterozoic Nanying granitic gneisses in the Fuping Complex:Implications for the tectonic evolution of the Central Zone, North China Craton. Journal of Asian Earth Sciences, 24(5): 643-658. DOI:10.1016/j.jseaes.2003.10.010
Liu SW, Zhao GC, Wilde SA, Shu GM, Sun M, Li QG, Tian W and Zhang J. 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai complexes:Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research, 148(3-4): 205-224. DOI:10.1016/j.precamres.2006.04.003
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Bulletin (Abstracts with Programs), 11(7): 468.
Lu SN, Yang CL, Jiang MM, Li HK and Li HM. 1996. Tracing of Precambrian Continental Crust Evolution. Beijing: Geological Publishing House.
Ludwig KR. 2000. User's manual for Isoplot/Ex version 2.2:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 1a. Berkeley:Berkeley Geochronology Center: 1-50.
Ludwig KR. 2001. Squid 1.02:A User's Manual. Berkeley Geochronology Center Special Publication No. 2. Berkeley: Berkeley Geochronology Center: 1-19.
Miller CF, Meschter McDowell S and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology, 44(5): 815-832. DOI:10.1093/petrology/44.5.815
Namur O, Charlier B, Toplis MJ, Higgins MD, Hounsell V, Liégeois JP and Vander Auwera J. 2011. Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. Journal of Petrology, 52(3): 487-539. DOI:10.1093/petrology/egq088
Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. DOI:10.1111/ggr.2008.32.issue-3
Patiño Dounce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746. DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Peng P, Zhai MG, Zhang HF and Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton:SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492-508. DOI:10.2747/0020-6814.47.5.492
Peng P, Guo JH, Zhai MG, Windley BF, Li TS and Liu F. 2012. Genesis of the Hengling magmatic belt in the North China Craton:Implications for Paleoproterozoic tectonics. Lithos, 148: 27-44. DOI:10.1016/j.lithos.2012.05.021
Peng P, Wang XP, Windley BF, Guo JH, Zhai MG and Li Y. 2014. Spatial distribution of ca.1950~1800Ma metamorphic events in the North China Craton:Implications for tectonic subdivision of the craton. Lithos, 202-203: 250-266. DOI:10.1016/j.lithos.2014.05.033
Peng P, Yang SY, Su XD, Wang XP, Zhang J and Wang C. 2017a. Petrogenesis of the 2090Ma Zanhuang ring and sill complexes in North China:A bimodal magmatism related to intra-continental process. Precambrian Research, 303: 153-170. DOI:10.1016/j.precamres.2017.03.015
Peng P, Feng LJ, Sun FB, Yang SY, Su XD, Zhang ZY and Wang C. 2017b. Dating the Gaofan and Hutuo Groups:Targets to investigate the Paleoproterozoic great oxidation event in North China. Journal of Asian Earth Sciences, 138: 535-547. DOI:10.1016/j.jseaes.2017.03.001
Qian JH, Wei CJ, Zhou XW and Zhang YH. 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296. DOI:10.1016/j.precamres.2013.05.012
Qian JH and Wei CJ. 2016. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton:Insights from phase equilibria and geochronology. Journal of Metamorphic Geology, 34(5): 423-446. DOI:10.1111/jmg.2016.34.issue-5
Shen QH and Qian XL. 1995. Archean rock assemblages, episodes and tectonic evolution of China. Acta Geoscientica Sinica, 16(2): 113-120.
Shen QH. 2009. The recommendation of a systematic list of mineral abbreviations. Acta Petrologica et Mineralogica, 28(5): 495-500.
Skjerlie KP and Johnston AD. 1992. Vapor-absent melting at 10kbar of a biotite-and amphibole-bearing tonalitic gneiss:Implications for the generation of A-type granites. Geology, 20(3): 263-266. DOI:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
Song B, Nutman AP, Liu DY and Wu JS. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79-94. DOI:10.1016/0301-9268(95)00070-4
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.1): 26-30.
Sun DZ, Li HM, Lin YX, Zhou HF, Zhao FQ and Tang M. 1991. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta Geologica Sinica, 65(3): 216-231.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sylvester PJ. 1989. Post-collisional alkaline granites. The Journal of Geology, 97(3): 261-280. DOI:10.1086/629302
Tian YQ. 1991. Geological, Gold Mineralization of Wutaishan-Hengshan Greenstone Belt. Taiyuan: Shanxi Science and Technology Press: 1-244.
Trap P, Faure M, Lin W, Monié P, Meffre S and Melleton J. 2009. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1-2): 80-98. DOI:10.1016/j.precamres.2009.03.011
Trap P, Faure M, Lin W, Le Breton N and Monié P. 2012. Paleoproterozoic tectonic evolution of the Trans-North China Orogen:Toward a comprehensive model. Precambrian Research, 222-223: 191-211. DOI:10.1016/j.precamres.2011.09.008
Turner SP, Foden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. DOI:10.1016/0024-4937(92)90029-X
Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R and Downes H. 2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 181(1-2): 115-129. DOI:10.1016/S0012-821X(00)00170-9
Wan YS, Miao PS, Liu DY, Yang CH, Wang W, Wang HC, Wang ZJ, Dong CY, Du LL and Zhou HY. 2010. Formation ages and source regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons:Resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(13): 1278-1284. DOI:10.1007/s11434-009-0615-3
Wan YS, Zhang YH, Williams IS, Liu DY, Dong CY, Fan RL, Shi YR and Ma MZ. 2013a. Extreme zircon O isotopic compositions from 3.8 to 2.5 Ga magmatic rocks from the Anshan area, North China Craton. Chemical Geology, 352: 108-124. DOI:10.1016/j.chemgeo.2013.06.009
Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY and Du LL. 2013b. Is the Ordos block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313(7): 683-711. DOI:10.2475/07.2013.03
Wang JP, Kusky T, Polat A, Wang L, Deng H and Wang SJ. 2013. A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929-946. DOI:10.1016/j.tecto.2013.07.025
Wang KY, Hao J, Wilde S and Cawood P. 2000. Reconsideration of some key geological problems of Late Archaean-Early Proterozoic in the Wutaishan-Hengshan area:Constraints from SHRIMP U-Pb zircon data. Scientia Geologica Sinica, 35(2): 175-184.
Wang KY and Wilde S. 2002. Precise SHRIMP U-Pb ages of Dawaliang granite in Wutaishan area, Shanxi Province. Acta Petrologica et Mineralogica, 21(4): 407-411, 420.
Wang X, Zhu WB, Ge RF, Luo M, Zhu XQ, Zhang QL, Wang LS and Ren XM. 2014. Two episodes of Paleoproterozoic metamorphosed mafic dykes in the Lvliang Complex:Implications for the evolution of the Trans-North China Orogen. Precambrian Research, 243: 133-148. DOI:10.1016/j.precamres.2013.12.014
Wang YR, Liu SW, Li QG, Dang QN, Liu CH, Yang B, Gu LB and Zhao FS. 2005. Late Paleoproterozoic geodynamic setting in Wutai Mountains:Constraints from geochemistry of Wangjiahui granitoids. Acta Scientiarum Naturalium Universitatis Pekinensis, 41(6): 840-850.
Wang ZH, Wilde SA, Wang KY and Yu LJ. 2004. A MORB-arc basalt-adakite association in the 2.5Ga Wutai greenstone belt:Late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 131(3-4): 323-343. DOI:10.1016/j.precamres.2003.12.014
Wang ZH, Wilde SA and Wan JL. 2010. Tectonic setting and significance of 2.3~2.1Ga magmatic events in the Trans-North China Orogen:New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Precambrian Research, 178(1-4): 27-42. DOI:10.1016/j.precamres.2010.01.005
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Wilde SA, Cawood PA, Wang KY, Nemchin A and Zhao GC. 2004a. Determining Precambrian crustal evolution in China: A case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds. ). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publication, 226(1): 5-25
Wilde SA, Zhao GC, Wang KY and Sun M. 2004b. First SHRIMP zircon U-Pb ages for Hutuo Group in Wutaishan:Further evidence for Palaeoproterozoic amalgamation of North China Craton. Chinese Science Bulletin, 49(1): 83-90. DOI:10.1007/BF02901747
Wilde SA, Cawood PA, Wang KY and Nemchin AA. 2005. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613. DOI:10.1016/j.jseaes.2003.11.006
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: Mickibben MA, Shanks Ⅲ WC and Ridley WI (eds. ). Applications of Micro Analytical Techniques to Understanding Mineralizing Processes. Review of Economic Geology, 7: 1-35
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126. DOI:10.1016/j.chemgeo.2006.05.003
Wu JS, Liu DY and Jin LG. 1986. The zircon U-Pb age of metamorphosed basic volcanic lavas from the Hutuo Group in the Wutai Mountain area, Shanxi Province. Geological Review, 32(2): 178-184.
Wu JS, Geng YS, Shen QH, Wan YS, Liu DY and Song B. 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-continent. Beijing: Geological Publishing House.
Wu JS, Liu DY and Geng YS. 2008. Integrated Research Report on the Establishment Paleoproterozoic Hutuo Group of China:Geochronological Framework of Hutuo Group and Sequences of Major Geological Events. Research Report on the Establishment of Major Stratigraphical Stages in China (2001-2005).. Beijing: Geological Publishing House: 534-544.
Xie HQ, Liu DY, Yin XY, Zhou HY, Yang CH, Du LL and Wan YS. 2012. Formation age and tectonic environment of the Gantaohe Group, North China Craton:Geology, geochemistry, SHRIMP zircon geochronology, Hf-Nd isotopic systematics. Chinese Science Bulletin, 57(36): 4735-4745. DOI:10.1007/s11434-012-5482-7
Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Liu ZX. 2011. The age and petrogenesis of the Xuting granite in the Zanhuang Complex, Hebei Province:Constraints on the structural evolution of the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 27(4): 1003-1016.
Yang CH, Du LL, Ren LD, Song HX and Wan YS. 2015. Early Precambrian Strata Subdivision and Magmatic Evolution of the North China Craton. Beijing: Science Press: 1-277.
Yang CH, Du LL, Geng YS, Ren LD, Lu ZL and Song HX. 2017. Paleoproterozoic metamafic dyke swarms in the eastern Hebei massif, the eastern North China Craton:~2.1Ga extension and~1.8Ga metamorphism. Acta Petrologica Sinica, 33(9): 2827-2849.
Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106. DOI:10.1016/j.lithos.2005.10.002
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China Craton:A review. Precambrian Research, 122(1-4): 183-199. DOI:10.1016/S0301-9268(02)00211-5
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20(1): 6-25. DOI:10.1016/j.gr.2011.02.005
Zhai MG and Santosh M. 2013. Metallogeny of the North China Craton:Link with secular changes in the evolving Earth. Gondwana Research, 24(1): 275-297. DOI:10.1016/j.gr.2013.02.007
Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Gou LL, Lin HB, Wei XS and Zhao J. 2015. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton:Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267: 121-136. DOI:10.1016/j.precamres.2015.06.001
Zhang HF, Zhai MG, Santosh M, Diwu CR and Li SR. 2011. Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai'an Complex:Implications for the evolution of the North China Craton. Gondwana Research, 20(1): 82-105. DOI:10.1016/j.gr.2011.01.009
Zhang HF, Wang HZ, Santosh M and Zhai MG. 2016. Zircon U-Pb ages of Paleoproterozoic mafic granulites from the Huai'an terrane, North China Craton (NCC):Implications for timing of cratonization and crustal evolution history. Precambrian Research, 272: 244-263. DOI:10.1016/j.precamres.2015.11.004
Zhang Q, Wang Y, Li CD, Wang YL, Jin WJ and Jia XQ. 2006. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica, 22(9): 2249-2269.
Zhang XP and Geng W. 2016. The geological features and tectonic significances of the Wangjiahui rock in Wutai Mountains, Shanxi. Journal of Taiyuan University of Technology, 47(6): 779-785.
Zhao GC, Cawood P and Lu LZ. 1999a. Petrology and P-T history of the Wutai amphibolites:Implications for tectonic evolution of the Wutai Complex, China. Precambrian Research, 93(2-3): 181-199. DOI:10.1016/S0301-9268(98)00090-4
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999b. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53. DOI:10.1016/S0040-1951(99)00152-3
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao GC, Wilde SA, Sun M, Li SZ, Li XP and Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex:Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4): 213-226. DOI:10.1016/j.precamres.2007.07.004
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276. DOI:10.1016/j.precamres.2009.12.007
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55-76. DOI:10.1016/j.precamres.2012.09.016
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research, 23(4): 1207-1240. DOI:10.1016/j.gr.2012.08.016
Zhao RF, Guo JH, Peng P and Liu F. 2011. 2.1Ga crustal remelting event in Hengshan Complex:Evidence from zircon U-Pb dating and Hf-Nd isotopic study on potassic granites. Acta Petrologica Sinica, 27(6): 1607-1623.
Zhou YY, Zhai MG, Zhao TP, Lan ZW and Sun QY. 2014. Geochronological and geochemical constraints on the petrogenesis of the Early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. Journal of Asian Earth Sciences, 94: 190-204. DOI:10.1016/j.jseaes.2014.03.003
Zhou YY, Zhao TP, Zhai MG, Gao JF, Lan ZW and Sun QY. 2015. Petrogenesis of the 2.1Ga Lushan garnet-bearing quartz monzonite on the southern margin of the North China Craton and its tectonic implications. Precambrian Research, 256: 241-255. DOI:10.1016/j.precamres.2014.11.015
白瑾. 1986. 五台山早前寒武纪地质. 天津: 天津科学技术出版社: 1-475.
第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253-262.
杜利林, 杨崇辉, 任留东, 万渝生, 伍家善. 2009. 山西五台山区滹沱群变质玄武岩岩石学、地球化学特征及其成因意义. 地质通报, 28(7): 867-876.
杜利林, 杨崇辉, 王伟, 任留东, 万渝生, 宋会侠, 耿元生, 侯可军. 2011. 五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据. 岩石学报, 27(4): 1037-1055.
杜利林, 杨崇辉, 任留东, 宋会侠, 耿元生, 万渝生. 2012. 吕梁地区2.2~2.1Ga岩浆事件及其构造意义. 岩石学报, 28(9): 2751-2769.
杜利林, 杨崇辉, 王伟, 任留东, 万渝生, 宋会侠, 高林志, 耿元生, 侯可军. 2013. 五台地区滹沱群砾岩物质源区及新太古代地壳生长:花岗岩和石英岩砾石锆石U-Pb年龄与Hf同位素制约. 中国科学(地球科学), 43(1): 81-96.
杜利林, 杨崇辉, 路增龙, 赵磊, 耿元生, 曹光跃, 第五春荣, 郭春丽, 侯可军. 2015. 五台山蒋村地区四集庄组—对滹沱群时代的再限定. 地球学报, 36(5): 599-612. DOI:10.3975/cagsb.2015.05.09
耿元生, 刘敦一, 宋彪. 1997. 冀西北麻粒岩区早前寒武纪主要地质事件的年代格架. 地质学报, 71(4): 316-327.
耿元生, 万渝生, 沈其韩, 李惠民, 张如心. 2000. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 74(3): 216-223.
耿元生, 杨崇辉, 万渝生. 2006. 吕梁地区古元古代花岗岩浆作用—来自同位素年代学的证据. 岩石学报, 22(2): 305-314.
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492.
黄道袤, 张德会, 王世炎, 张毅星, 董春艳, 刘敦一, 万渝生. 2012. 华北克拉通南缘豫西下汤地区2.3Ga岩浆作用和1.94Ga变质作用—锆石U-Pb定年和Hf同位素组成及全岩地球化学研究. 地质论评, 58(3): 565-576.
李江海, 钱祥麟, 翟明国. 1997. 华北北部麻粒岩相带的构造区划及其早前寒武纪构造演化. 地质科学, 32(3): 254-266.
陆松年, 杨春亮, 蒋明媚, 李怀坤, 李惠民. 1996. 前寒武纪大陆地壳演化示踪. 北京: 地质出版社.
沈其韩, 钱祥麟. 1995. 中国太古宙地质体组成、阶段划分和演化. 地球学报, 16(2): 113-120.
沈其韩. 2009. 推荐一个系统的矿物缩写表. 岩石矿物学杂志, 28(5): 495-500.
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增1): 26-30.