岩石学报  2018, Vol. 34 Issue (4): 981-998   PDF    
华北克拉通西部基底早前寒武纪地质事件、性质及其地质意义
张成立 , 苟龙龙 , 第五春荣 , 刘欣雨 , 赵娇 , 胡育华     
大陆动力学国家重点实验室, 西北大学地质系, 西安 710069
摘要:综合华北克拉通西部陆块阴山地块、孔兹岩带和鄂尔多斯地块基底正、副片麻岩以及鄂尔多斯地块现代河流沙锆石U-Pb和Hf同位素资料,并根据最新获得的鄂尔多斯基底及盖层继承碎屑锆石U-Pb年龄及Hf同位素统计分析揭示,该陆块存在古、中太古代陆壳物质,自新太古代以来先后发生了新太古代~2.7Ga、2.55~2.45Ga以及古元古代2.2~2.0Ga和1.95~1.85Ga等多期构造热事件。由基底和盖层中各类岩石中获得的~2.5Ga锆石的εHft)多为正值,Hf陆壳模式年龄(tDMC)介于2.9~2.6Ga之间(峰值~2.75Ga),阴山地块存在~2.7Ga的岩石,鄂尔多斯地块基底有~2.7Ga继承锆石记录,证明新太古代存在一期重要的陆壳生长。2.55~2.45Ga的岩浆活动在西部陆块不同地质单元基底岩石中均有记录,出现大量壳源花岗岩和幔源岩浆侵入及麻粒岩相变质作用,它们的锆石εHft)值由负到正变化大,Hf陆壳模式年龄(tDMC)除少数接近岩浆活动年龄外,多数明显高于它们的形成年龄,指示了强烈的陆壳再造和一定陆壳生长,岩石组合及地球化学特征反映了汇聚挤压转为伸展环境,类似于华北陆块~2.5Ga广泛的岩浆变质事件及构造背景,揭示了不同陆块碰撞拼合而后转为伸展的构造演化过程。古元古代2.2~2.0Ga期间,沿鄂尔多斯地块北部及东部边缘出现大洋俯冲消减有关的陆缘弧花岗岩类,它们的锆石εHft)和tDMC值变化范围很大,表明在古元古代中晚期鄂尔多斯地块基底仍发生有陆壳增生和再造。此后在1.95~1.85Ga期间,沿鄂尔多斯地块北部的孔兹岩带和东部的中部构造带均发生顺时针P-T演化轨迹的变质作用,证明~1.95Ga鄂尔多斯地块相继与北部阴山地块和东部陆块碰撞拼合为一体,至~1.85Ga发生陆壳抬升与伸展、发生陆壳物质减压熔融的强烈混合岩化和大量S型花岗岩形成,其后发生镁铁质岩墙侵入,标志着华北陆块最终克拉通化完成。
关键词: 锆石U-Pb年龄     地质事件     早前寒武纪     西部地块     华北克拉通    
Early Precambrian geological events of the basement in Western Block of North China Craton and their properties and geological significance
ZHANG ChengLi, GOU LongLong, DIWU ChunRong, LIU XinYu, ZHAO Jiao, HU YuHua     
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Abstract: The new zircon U-Pb geochronological and in-situ Hf isotopic data from the detrital zircons of the Ordos basement paragneisses and cover sandstones, combined with previous zircon U-Pb geochronology and Hf isotopic data from the Yinshan Block, Khondalite Belt and Ordos Block in the Western Block of the North China Craton (NCC), reveal that there were Paleo-mid Archean crustal materials in West Block, which underwent several tectonic-thermal events of~2.7Ga, 2.55~2.45Ga, 2.2~2.0Ga and 1.95~1.85Ga from Neoarchean to Paleoproterozoic, respectivly. Of Which, most of~2.5Ga zircons from the various rocks in the basement and covers have positive εHf(t) values and wide range of Hf crust model ages (tDMC) from 2.6Ga to 2.9Ga with a peaking at 2.75Ga. In addition, the~2.7Ga gneisse have been found in Yinshan Block and~2.7Ga crustal materials have been also recognized in Ordos basement. All indicate an important juvenile crustal growth at 2.8~2.7Ga. Aboundent crust-and mantle-derived magmatism widely occurred in the basement of West Block during 2.55~2.45Ga, and they recorded a nearly coeval granulite facies metamorphism. Their εHf(t) values varies from negative to positive, and most tDMC are evidently older than their forming ages and minor have the same, suggesting an extensive reworking associated with some juvenile crustal growth at~2.5Ga. Their rock assemblages and geochemical fetures indicate a transition of tectonic setting from compression to extention during later Neoarckean-early Paleopreterozoic, much similar to those occurred widely within eastern North China Craton, implying an evolution processes from convergence to extention followed by the collision-amalgamation of the serveral micro-continental blocks. An oceanic plate subduction occurred along both of the northern and eastern margins to the Ordos Block in the 2.2~2.0Ga, and numerous arc-related granitoids had been formed. Their zircons have various εHf(t) from negative to positive values and wide range of tDMC, indicating continuous juvenile crustal growth and reworking of Ordos basement during midle-later Paleoperoterozoic. After that, the metamorphism with a clockwise P-T path occurred during 1.95~1.85Ga along the Khondalite Belt and Trans-North China Orogen, representive of the continent-continent collisional belts along which Ordos and Yinshan Block as well as Eastern Block amalgamated to form an uniform basement of North China Craton at~1.95Ga, and then continental crust uplifted and extend at~1.85Ga, resulting in magamatization and S-type granitic formation due to the decompression partial melting of crustal materails, which followed aboundent mafic dyke intrusion within all North China Craton, indicating completely final cratonilazition.
Key words: Zicorn U-Pb ages     Geological event     Precambrian     the Western Block     North China Craton    

华北克拉通是我国面积最大、唯一保存有始太古代3.8Ga岩石的陆块,初始陆核至少在3.8Ga已形成(Liu et al., 1992John et al., 2008Wan et al., 2015)。此后,不断有小规模陆壳增长,形成多个小陆块,在新太古代2.7Ga左右出现一次大规模陆壳生长,于~2.5Ga这些太古代微陆块拼合焊接、发生强烈的陆壳改造和增生(Diwu et al., 2011; Zhai and Santosh, 2011; 翟明国, 2011; Zhai, 2014),形成大量TTG和壳源花岗岩(沈其韩等,2005耿元生等,2010),代表一次重要的克拉通化(翟明国, 2011)。然而,华北克拉通并未像世界其它克拉通一样完全稳定,并在古元古代仍有小规模陆壳生长和进一步的陆壳分异(翟明国和彭澎,2007),于1.85Ga最终形成统一稳定的基底(翟明国, 2010, 2011; Zhai and Santosh, 2011; Zhai, 2014)。显然,无论是早期微陆块的形成与生长,还是新太古代末的微陆块拼合,乃至古元古代末东、西两大陆块最终碰撞拼合,均以华北克拉通西部为一古老太古代陆块为前提条件。然而,华北克拉通基底微陆块的划分的证据主要来自中东部地区出露的各类基底岩石的综合研究,现今大同-离石断裂以西的西部陆块,除北部阴山地块和孔兹岩带出露的基底结晶岩有较多研究和证据外,南部占华北克拉通面积近1/5的鄂尔多斯地块基底由于被巨厚的中元古代以来盖层覆盖,其基底岩石的岩石学和同位素年代学研究一直是一个薄弱环节,缺乏直接的地质证据。尽管近年来在鄂尔多斯盆地部分地区少数钻孔岩芯基底片麻岩中进行了一些年代学和变质作用研究,但其成果和认识还不足以全面反映和代表该地块基底整体特征,因而也难以有效约束整个西部陆块基底性质及其形成演化。本文在前人已有研究资料和成果基础上,通过鄂尔多斯地块基底副片麻岩、花岗质片麻岩以及覆盖于其上的长城系碎屑锆石U-Pb年代学和Hf同位素示踪研究,并结合北部阴山及孔兹岩带研究成果,厘定西部陆块基底岩系的主要地质事件,讨论和约束该陆块基底的形成时代以及经历的重要地质事件及其性质。

1 地质概况

Zhao et al.(2001, 2005)、Zhao and Zhai (2013)综合华北克拉通基底构造、岩石组合、岩浆及变质作用和同位素年代学研究成果,识别出一条纵贯该克拉通南北的古元古代末期形成的中部碰撞构造带,并以此将华北克拉通基底划分为东、西两大陆块(图 1)。其中,西部陆块位于中部带西缘大同-离石断裂以西,由北部阴山和南部鄂尔多斯两个地块构成,二者于~1.95Ga沿近东西向延伸的孔兹岩带碰撞拼合形成统一西部陆块。北部的阴山地块由太古代基底和中元古代盖层构成(赵国春,2009),在固阳-武川、四子王旗和白云鄂博几个隆起区出露,主要由新太古代花岗-绿岩地体和高级变质杂岩地体组成(陈亮,2007马旭东等,2013)。绿岩地体包括了玄武质枕状熔岩、超基性岩、燧石岩、条带状铁石英岩以及少量碎屑沉积岩,普遍经历了绿片岩相-低角闪岩相变质作用(陈亮,2007)。高级变质杂岩由TTG质片麻岩、闪长质片麻岩以及麻粒岩-紫苏花岗岩、二长花岗岩和角闪花岗岩等构成(简平等,2005Jian et al., 2012Chen et al., 2017a),同时还发育与赞岐岩类似的高MgO、Cr和Ni的闪长岩-石英闪长岩类(简平等, 2005Ma et al., 2014b)。这些不同成分的正片麻岩原岩时代在2.60~2.55Ga之间,它们经历了高角闪岩相麻粒岩相变质与变形改造,峰期变质为2.50~2.45Ga,主要显示逆时针P-T演化轨迹(金巍等,1991金巍和李树勋,1996Zhao et al., 1999)。阴山地块以南为一由孔兹岩系岩石构成的近东西展布的线性构造带,沿集宁-大青山-乌拉山-千里山-贺兰山一线长达近千千米(图 1)(Zhao et al., 2005; Guo et al., 2012; Zhao and Zhai, 2013),其东部集宁地区出露集宁杂岩,中部乌拉山-大青山地区为乌拉山杂岩,西部的贺兰山和千里山为贺兰杂岩,主要由石墨石榴夕线钾长片麻岩、长英质副片麻岩、石榴石英岩及大理岩和少量斜长角闪岩组成(沈其韩等, 1992; 卢良兆等, 1996)。此外,该带还发育了TTG片麻岩、基性麻粒岩及紫苏花岗岩和晚期侵入的S型花岗岩(赵国春等,2002Yin et al., 2009, 2011; 翟明国,2009Peng et al., 2010, 2012; Guo et al., 2012; Wan et al., 2013b; 刘平华等,2013Liu et al., 2014),这些岩石普遍经历了1.96~1.85Ga麻粒岩相变质作用(Wan et al., 2006; Santosh et al., 2007a, 2009a, 2013; Yin et al., 2009, 2011; Zhao et al., 2010; Dan et al., 2012; Dong et al., 2013; Jiao et al., 2013a),形成大量中压泥质麻粒岩,同时还存在高压和超高温麻粒岩(翟明国, 2009; Zhao and Zhai, 2013; Cai et al., 2014Yin et al., 2014)。高压麻粒岩发现于西部贺兰山-千里山以及东部集宁地区(翟明国, 2009Yin et al., 2011, 2014; Wu et al., 2016),超高温麻粒岩多见于中东部大青山及集宁地区(翟明国, 2009Santosh et al., 2009a, b; Guo et al., 2012; Jiao et al., 2015),同时存在与变质作用基本同期的S型花岗岩(Peng et al., 2012; Jiao et al., 2013b; Yin et al., 2009, 2011; Wang et al., 2017)。孔兹岩带副变质岩碎屑锆石U-Pb年龄和Hf-O同位素研究,将这套岩石的沉积时代限定在2.0Ga之后,并认为是活动大陆边缘或弧后盆地沉积环境的产物(Wan et al., 2009; Dan et al., 2012),于1.96~1.83Ga经历麻粒岩相变质作用改造(Wan et al., 2006; Santosh et al., 2007a, 2009a, 2013; Yin et al., 2009, 2011, 2014; Zhao et al., 2010; Dong et al., 2013; Jiao et al., 2013a)。

图 1 华北克拉通基底构造单元划分图(据Zhao et al., 2012修改) Fig. 1 Tectonic subdivision for the basement in North China Craton (modified after Zhao et al., 2012)

孔兹岩带以南为鄂尔多斯地块,其东为大同-离石断裂、西为贺兰-六盘山断裂带,南由秦岭造山带所围限(图 1),内部被巨厚的中新元古代碎屑沉积岩、早古生代浅海碎屑岩和碳酸盐沉积以及晚古生代-新生代陆相碎屑岩覆盖,厚度达6000m。重、磁研究揭示,该地块北部为东西向正磁异常区,指示了强磁性麻粒岩相变质岩分布区,可与北部孔兹岩以及集宁和乌拉山杂岩麻粒岩对比;中南部为北东向正、负相间的磁异常区,正磁异带对应于古老基底变质岩展布带,可与其东部出露的吕梁、五台基底变质岩区相连;负磁异常带向东延伸可与吕梁地区出露的界河口群、野鸡山群、岚河群及黑茶山群以及五台地区的滹沱群等表壳岩分布区相对应(贾进斗等,1997王涛等,2007李明等,2012Gao et al., 2015)。盆内不多的钻遇基底岩芯研究揭示,地块北部基底主要为古元古代晚期麻粒岩相变质的泥质变质岩,与北部孔兹岩带泥质麻粒岩相变质作用基本一致(Wang et al., 2014Gou et al., 2016),并存在一些新太古代末-古元古代初和古元古代中晚期花岗片麻岩(Zhang et al., 2015),东部和中南部基底多为副片麻岩和一些片麻状花岗岩类,锆石同位素年代主要记录了古元古代构造热事件(Hu et al., 2013; Wan et al., 2013a; Wang et al., 2014),并存在少量新太古代末期岩浆活动的记录(Wan et al., 2013a; Zhang et al., 2015)。

2 西部地块早前寒武纪主要地质事件 2.1 阴山地块地质事件

阴山地块不同地区不同程度出露太古宙基底岩石,尤以固阳、武川等地区出露最为完整和具代表性,主要出露了新太古代花岗-绿岩带以及TTG质高级片麻岩和麻粒岩-紫苏花岗岩类,并发育了具特殊构造意义的科马提质玄武岩、高镁安山岩、富Nb火山岩和高镁闪长岩/或赞岐岩(简平等,2005陈亮,2007Jian et al., 2012Ma et al., 2013b, 2014),它们经历了绿片岩相到麻粒岩相不同变质作用的改造。武川西乌兰不浪地区出露高角闪岩相-麻粒岩变质的超镁铁质岩(角闪石岩)、变质基性火山岩(斜长角闪岩)和变质英安岩(中酸性片麻岩)以及蓝晶石榴二长片麻岩和石榴石英岩及大理岩等(马铭株等,2013Wang et al., 2015a)。对这些地区的岩石成因、变质作用以及同位素年代学大量研究揭示,在武川西乌兰不浪地区存在阴山地块2.7Ga的最古老花岗质片麻岩,并经历了~2.5Ga构造-热事件的改造(董晓杰等,2012马铭株等,2013)。该区片麻状花岗岩和蓝晶石榴二长片麻岩获得2.58Ga的原岩结晶年龄,蓝晶石榴二长片麻岩和角闪岩的变质年龄为2.50~2.48Ga;一些2.71~2.58Ga碎屑岩浆锆石也经历了~2.5Ga的变质改造(Wang et al., 2015a),也指示形成于2.7~2.58Ga的岩体多已经历了~2.5Ga变质作用改造。此外,在武川东北部小南沟-明星沟地区和固阳地区发育2.58~2.54Ga的TTG(张永清等,2006),固阳地区存在2.53~2.51Ga的高镁安山岩和安山岩、2.52Ga的玄武岩-英安岩和2.52Ga的花岗岩及2.52~2.47Ga的高镁闪长岩等岩浆活动(Jian et al., 2012)。该区基性麻粒岩、石榴片麻岩、紫苏花岗岩及角闪片麻岩、角闪岩以及变质辉长岩的原岩年龄变化于2.54~2.51Ga之间(Ma et al., 2013a, 2014a; Zhang et al., 2014),表明2.54~2.51Ga期间出现了多种类型的岩浆活动。另外,在一些花岗岩中发现2.6Ga的残余陆壳及2.6~3.9Ga的锆石捕掳晶(Ma et al., 2013b),高镁闪长岩中也发现2.6Ga的继承锆石(Jian et al., 2012),反映存在更为古老的陆壳物质。此外,基性麻粒岩、石榴片麻岩和角闪岩获得了2.52~2.45Ga的变质年龄(简平等,2005Jian et al., 2012; Ma et al., 2013a, 2014a),说明岩体形成之后很快发生了变质作用的改造。综合固阳-武川地区各类岩石年代学研究,阴山地块太古宙基底最早的岩浆活动(TTG)在~2.7Ga已出现,无论是绿岩带,花岗岩类侵入体,还是高级别变质杂岩的原岩形成年龄均集中在新太古代末的2.56~2.51Ga期间,岩浆活动包括辉长岩、TTG、闪长岩、赞岐岩和钾长花岗岩等岩浆侵入以及玄武岩、安山岩和高镁安山岩等火山喷发。对目前已获得的岩浆及变质年龄统计可以看出,该区各类岩浆活动主要发生在2.7~2.45Ga之间,在2.54Ga和~2.45Ga期间又经历了变质作用的改造,大致表现了2.53~2.51Ga和2.50~2.47Ga两个阶段(图 2)。马旭东等(2013)总结了该区变质作用,认为早期(~2.5Ga)的变质作用具逆时针的P-T演化轨迹,与大洋中脊俯冲消减有关;晚期(2.48Ga)变质作用呈现了顺时针P-T演化轨迹,反映了碰撞造山演化过程。最近,在内蒙四子王旗地区发现的2.52~2.49Ga的TTG与大洋俯冲岛弧环境相关,晚期2.47~2.44Ga钾长花岗岩为与碰撞后伸展环境的产物(Chen et al., 2017a, b),也揭示阴山地块在~2.5Ga发生大洋俯冲碰撞造山,之后发生碰撞造山并于2.47~2.44Ga转为伸展构造环境。

2.2 孔兹岩带地质事件

孔兹岩带岩石以副变质中压泥质麻粒岩为主(翟明国, 2009; Zhao and Zhai, 2013; Cai et al., 2014),同时还发育高压与超高温变质麻粒岩(Santosh et al., 2007b; 翟明国, 2009; Liu et al., 2012a; Guo et al., 2012; Jiao et al., 2013a, b, 2015; Gou et al., 2014; Yin et al., 2014)。由副变质岩类获得的碎屑锆石U-Pb年龄主要集中于2.2~2.0Ga之间,还有一些2.5~2.25Ga的锆石以及少量新太古代(2.9~2.5Ga)年龄的锆石(图 3a),同时存在~1.95Ga和~1.86Ga两变质峰期年龄(Zhao et al., 2005; Wan et al., 2006, 2009; Yin et al., 2011; Dan et al., 2012蔡佳等,2015),限定它们的沉积时代为2.0~1.95Ga。1.95~1.85Ga的变质事件在孔兹岩带泥质和基性变质岩中均有很好记录,东部集宁、怀安地区的中、高压泥质变质岩获得1.95~1.92Ga和1.90~1.84Ga的变质年龄(Wan et al., 2006; Zhao et al., 2010; Jiao et al., 2013a),变质辉长苏长岩和变质辉长岩也获得1.91Ga (Peng et al., 2014)和1.86Ga (Peng et al., 2010)的变质年龄,紫苏花岗岩存在~1.96Ga和1.86~1.81Ga的变质年龄(Santosh et al., 2013),集宁土贵乌拉超高温泥质麻粒岩的变质年龄为1.93~1.91Ga (Santosh et al., 2007a, 2009a, 2013)。中部大青山地区的古元古代表壳岩中也记录了~1.96Ga和1.88~1.83Ga变质事件(Dong et al., 2013)。伴随这两期变质事件,在东部集宁地区出现1.95Ga淡色花岗岩(Wang et al., 2017)和1.92~1.89Ga的S型花岗岩浆侵入(Jiao et al., 2013b);在中部大青山地区也存在1.95Ga的正长花岗岩和紫苏闪长岩的岩浆活动(Ma et al., 2012)。与中东部地区相同,西部的贺兰山和千里山地区的泥质麻粒岩中也存在1.96~1.92和1.87Ga两组变质和1.90Ga和1.88~1.86Ga的S型花岗岩侵入事件(Yin et al., 2009, 2011Zhang et al., 2017)。此外,在大青山地区一些古元古代(下乌拉山群和桑干群等)花岗质片麻岩及基性麻粒岩包体中发现了2.5~2.45Ga的花岗岩和2.46~2.44Ga辉长岩及1.97~1.92Ga闪长岩浆活动,它们均经历了2.5Ga、2.45Ga和1.95~1.90Ga及1.85Ga多期变质作用的改造(图 3b)(Wan et al., 2009, 2013b; 刘平华等,2013; Liu et al., 2014, 2017)。因此,孔兹岩带各类岩石的锆石U-Pb年代学研究证明,该带的孔兹岩系岩石是2.0Ga后沉积的产物,之后经历了1.95~1.92Ga和1.89~1.85Ga麻粒岩相改造,同时伴随有1.95~1.85Ga的S型花岗岩浆活动(Yin et al., 2009, 2011; Peng et al., 2012; Jiao et al., 2013b; Wang et al., 2017)。此外,该带还存在记录有2.5~2.4Ga岩浆活动的古元古代早期片麻岩,它们又被1.97~1.92Ga岩浆侵入,并经历了~2.5Ga、2.45Ga以及1.97~1.94Ga和1.87~1.82Ga多期变质作用的改造(图 3),指示孔兹岩带很可能是一个卷入了不同岩块、并经历了多期构造-岩浆事件改造的复杂构造带。

图 3 孔兹岩带碎屑(a)及岩浆和变质锆石(b)年龄直方图 数据引自Wan et al., 2006, 2009, 2013b, 2016;Xia et al., 2006a, bDong et al., 2007, 2013, 2014Santosh et al., 2009a, 2013Yin et al., 2009, 2011周喜文和耿元生,2009Peng et al., 2010, 2014Zhao et al., 2010Dan et al., 2012Ma et al., 2012Jiao et al., 2013bLiu et al., 2013, 2014, 2017Gong et al., 2014钟长汀等,2014Yang et al., 2015蔡佳等,2015徐仲元等,2015Huang et al., 2016Wang et al., 2017Zhang et al., 2017 Fig. 3 U-Pb age histogram of the detrital zircons (a) and magmatic, metamorphic zircons (b) from the Khondalite Belt
2.3 鄂尔多斯地块基底主要地质事件

孔兹岩带以南的鄂尔多斯盆地被巨厚的中、新元古代及古生代-中新生代沉积盖层覆盖,盆内无任何基底岩石出露,航磁异常以强宽缓磁异常明显不同于周缘弱磁异常区(Gao et al., 2015),显示了整体刚性块体特征,被认为是一个具统一基底的太古代稳定陆块(张抗,1989;贾进斗等,1997邓军等,2005),并与华北其它地区几个小地块共同构成了华北克拉通七个太古宙小陆块(Zhai and Santosh, 2011; 翟明国, 2012, 2011; Zhai, 2014),也成为西部陆块重要组成部分(Zhao and Zhai, 2013及其引用文献)。新的航磁异常研究揭示,鄂尔多斯地块并非一具有完整古老基底的地块,可能存在北部伊盟和中部延安-佳县-临县两个古陆核(Wang et al., 2015b)。尽管如此,由于该地块长期缺乏来自基底岩石的直接地质研究,其基底组成、结构和形成时代以及是否具有完整的基底一直缺乏确凿的地质证据予以证明。近年来,在该盆地中不多的钻孔中获得了一些基底岩芯,初步揭示其基底主要由富铝副片麻岩、变粒岩、片岩和大理岩及花岗片麻岩等组成(Hu et al., 2013; Wan et al., 2013; Zhang et al., 2015),经历了角闪岩到麻粒岩相变质作用(Wang et al., 2014; Gou et al., 2016; He et al., 2016)。其中,地块西北部基底变质岩主要为含堇青石石榴夕线黑云二长片麻岩、石榴夕线堇青石黑云二长片麻岩(Wang et al., 2014; Gou et al., 2016),东北部以发育黑云钾长片麻岩、条带状二云母钾长花岗岩和混合片麻岩及片麻状花岗岩为主(Hu et al., 2013; Wan et al., 2013; Zhang et al., 2015),中东部主要由夕线斜长片麻岩、含石墨二云母二长片麻岩、二云母斜长片麻岩以及片麻状黑云母花岗岩构成(Hu et al., 2013; Wan et al., 2013aZhang et al., 2015吴素娟等,2015),中部地区则主要出现云母石英长石片麻岩和花岗片麻岩类(Wan et al., 2013a; Zhang et al., 2015)。显然,目前的研究表明,这些基底岩芯主要以副片麻岩类为主,Wan et al.(2013a)Hu et al.(2013)由这些副片麻岩获得古元古代早期2.5~2.2Ga和古元古代晚期2.1~1.85Ga两组锆石U-Pb年龄和少量新太古代岩浆锆石年龄,一些核边结构的锆石具有2.08Ga的核和~1.9Ga变质增生边。此外,不多的片麻状花岗岩获得2.04Ga的形成年龄,在夕线石榴片麻岩中也发现了2.03Ga的岩浆锆石年龄,并存在1.85~1.63Ga变质年龄的锆石增生边(Hu et al., 2013)。Zhang et al.(2015)在北部、中东部和中部几口井的基底岩芯中也发现了2.2~2.0Ga的岩浆活动,并记录了1.85Ga的变质改造年龄,同时还识别出~2.5Ga的岩浆活动。吴素娟等(2015)将中东部龙探1井(图 1)二云母斜长片麻岩碎屑锆石以及前人在棋探1井中得到的碎屑锆石统计后,获得2.05~1.90Ga的继承岩浆锆石年龄以及1.83Ga和1.78Ga两组变质年龄。我们对棋探1井基底岩芯夕线石榴黑云片麻岩的碎屑锆石U-Pb定年分析,同样获得2.17 ~1.90Ga(峰值为~2.0Ga)岩浆锆石年龄,少量Th/U<0.1的锆石出现<1.90Ga的变质年龄,是后期变质作用改造的结果。由于变质锆石一般具有低的Th和U含量以及很低的Th/U比值(<0.1)(Wu and Zheng, 2004),基于此将钻孔基底岩芯已获得所有副片麻岩锆石中那些低Th和U含量和Th/U<0.1的锆石剔除,供获得339个继承岩浆锆石,得到的年龄频率直方图同样显示了2.2~2.0Ga的主要年龄组(峰期为2.03Ga),并存在~2.5Ga的锆石年龄(图 4a),揭示了鄂尔多斯盆地块基底曾在新太古代末的~2.5Ga和古元古代晚期~2.1Ga发生了两期重要的构造-岩浆活动。此外,对盆地中北部和南部上覆于基底之上的首套盖层长城系3件砂岩碎屑锆石U-Pb定年分析,同样存在~2.5Ga和2.2Ga两个主峰年龄和1.96Ga和1.85Ga的峰期年龄(图 4b),类似的峰值在中生代盖层砂岩和现代河流沙碎屑锆石U-Pb年龄中也十分明显(图 4c, d)。此外,这些盖层沉积碎屑岩中还有新元古代2.9~2.6Ga(峰值2.7Ga)的锆石以及少量中太古代的锆石,揭示该地块基底存在新太古代岩浆事件。因此,它们与基底各类变质岩获得的年龄结果一致,充分证明鄂尔多斯地块基底在~2.7Ga曾发生了一次构造-岩浆活动,此后分别于~2.5Ga和2.2~2.0Ga又发生了的两期重要的构造-岩浆活动。那些~1.9Ga和~1.85Ga峰期的锆石均显示了低的Th/U比值和变质锆石的结构特征,代表了经历古元古代晚期变质作用改造的结果。一些钻井岩芯的泥质变质岩变质作用研究表明,这些基底副片麻岩均经历了中压麻粒岩相变质作用(Wang et al., 2014; Gou et al., 2016; He et al., 2016),在泥质麻粒岩中很多锆石出现了变质年龄为1.96Ga左右的增生边(Wan et al., 2013a; Wang et al., 2014),在该泥质麻粒岩中独居石也获得1.94~1.93Ga的变质年龄(He et al., 2016),并在独居石的核部和边部分别获得1.96~1.94Ga和1.90~1.88Ga两期变质年龄(Gou et al., 2016),揭示了两期变质作用改造的结果。综合鄂尔多斯地块基底及盖层和现代河流沙碎屑锆石年龄统计结果,呈现了与西部陆块十分一致的年龄谱(Wan et al., 2011a),明显出现~2.5Ga及~1.85Ga两个峰值和2.2~2.0Ga的次级峰值,同时出现少量太古代锆石年龄(图 4),暗示它们很可能来自于西部陆块基底岩石或临近的相关地块。结合该地块基底片麻岩以及花岗质片麻岩存在~2.5Ga和2.2~2.0Ga的岩浆活动,它们的锆石Hf同位素陆壳模式年龄出现~2.7Ga的峰值,且εHf(2.7Ga)均为正值(Zhang et al., 2015),还出现一些太古代捕获或继承锆石(Wan et al., 2013a; Zhang et al., 2015)。因此推断,该地块很可能在新太古代前已有一定陆壳物质形成,此后在~2.7Ga、~2.5Ga和2.2~2.0Ga出现了三期构造-岩浆活动,并在古元古代末期经历了~1.95Ga和~1.85Ga两期变质作用的改造(图 4)。

图 4 鄂尔多斯地块基底、盖层及现代河流沙碎屑锆石年龄直方图 数据引自Diwu et al., 2012Hu et al., 2013Wan et al., 2013aXie and Heller, 2013Bao et al., 2014吴素娟等,2015;作者未刊资料 Fig. 4 Age histogram of the detrital zircons from the basement, cover sandstons and moden river sands in the Ordos Block
3 西部陆块早前寒武纪地质事件性质及意义讨论

综合阴山和鄂尔多斯地块及其二者之间的孔兹岩带早前寒武纪各类岩石中获得的岩浆和变质年龄分析,不难看出,它们共同揭示西部陆块经历了新太古代-古元古代早期和古元古代中晚期岩浆以及变质事件(图 5)。其中,北部阴山地块的岩浆活动明显早于南部的孔兹岩带和鄂尔多斯地块,该地块自~2.7Ga就已有岩浆活动的发生,并在2.58~2.53Ga出现大量各类岩浆活动,且一直持续到2.45Ga,在2.5~2.45Ga期间还受到变质作用的改造。然而,该地块与南部孔兹岩带和鄂尔多斯地块基底明显不同的是缺失古元古代晚期岩浆和变质作用活动的记录(图 5a)。与北部阴山地块不同,其南部的孔兹岩带存在古元古代初期以及古元古代晚期岩浆活动的记录,同时与两期岩浆活动相伴还有基本同期变质作用的出现(图 5b)。但明显不同的是,南部鄂尔多斯地块基底目前虽已确定存在少量~2.5Ga的岩浆活动,至今还未发现同期变质作用,但该地块中2.2~2.0Ga的岩浆活动十分强烈(图 5c),而北部阴山地块和孔兹岩带均缺失该期岩浆活动(图 5a, b)。然而,古元古代晚期1.95~1.85Ga的变质作用在孔兹岩带和鄂尔多斯地块基底北部及东部均有记录(图 5bc)。总体上,作为华北克拉通西部陆块三个重要组成部分,它们一同揭示西部陆块曾在新元古代中期(~2.7Ga)、新太古代末-早古元古代早期(2.58~2.45Ga)以及古元古代中晚期(~2.04Ga)和末期(1.95~1.85Ga)发生了多期岩浆活动,同时于新太古代末-古元古代初期(2.6~2.45Ga)以及古元古代晚期~1.95Ga和~1.85Ga发生多期变质作用。另一方面,无论是阴山地块还是鄂尔多斯地块基底岩石、甚至是鄂尔多斯地块盖层及河流沙,它们的锆石εHf(2.7Ga)均为正值,锆石Hf陆壳模式年龄(tDMC)主要介于2.9~2.6Ga(峰期~2.75Ga)(图 6a, b, e-h),表明在~2.75Ga发生了一次重要的陆壳生长。由此推断,构成西部陆块的北部阴山和南部鄂尔多斯地块可能至少在~2.7Ga的新太古代已有部分陆壳形成,并在~2.75Ga出现一次重要的陆壳生长,此后分别于2.6~2.45Ga和~2.2Ga发生了重要的构造岩浆活动,并在古元古代晚期经历了~1.95Ga和~1.85Ga两期变质作用的改造和伴有同期花岗岩浆的侵入。


图 6 阴山、鄂尔多斯地块和孔兹岩带及鄂尔多斯地块盖层和现代河流沙岩浆锆石Hf同位素组成 数据引自Xia et al., 2006a, b, 2008; Yin et al., 2011; Dan et al., 2012; Diwu et al., 2012; Wan et al., 2013a; 马铭株等,2013; Bao et al., 2014; Zhang et al., 2014 2015, 2017; Yang et al., 2015; Chen et al., 2017a; He et al., 2017; Liu et al., 2017作者未刊数据 Fig. 6 Hf isotopic composition of the magmatic zircon from the Yinsh Block, Khondalite Belt and the basement, cover sandstones and modern river sands in the Ordos Block
3.1 太古代(>2.5Ga)地质事件

华北克拉通西部陆块中目前发现的最古老岩石为阴山地块武川西乌兰不浪地区2.7Ga奥长花岗岩(董晓杰等,2012马铭株等,2013),该岩体的锆石εHf(t)=1.52~6.59,tDM=2.43~2.77Ga,tDMC=2.50~2.93Ga,指示该区新太古代2.7Ga一次新生地壳生长。此外,在阴山地块一些花岗岩及高镁闪长岩中还发现2.6~3.9Ga的锆石捕掳晶(Jian et al., 2012; Ma et al., 2013b),暗示这期新生地壳生长可能在相当范围都有发生,这也从阴山地块2.58~2.45Ga的TTG、花岗质片麻岩及变基性火山岩的锆石εHf(t)>0,模式年龄变化于2.9~2.8Ga(图 6a, b),指示来自该新生陆壳再造得到证明。与阴山地块相比,尽管南部鄂尔多斯地块基底未发现2.7Ga的岩石,但在钻孔岩芯~2.1Ga花岗岩中发现了2.67Ga的继承岩浆锆石(Zhang et al., 2015),同时在其基底上覆盖层长城系及中生界砂岩和现代河流砂中也存在2.95~2.6Ga的碎屑岩浆锆石(图 6e-h),揭示了鄂尔多斯地块基底曾存在~2.7Ga的岩浆事件。特别是,在鄂尔多斯地块南部钻井长城系碎屑岩中还发现了3.7~3.3Ga的岩浆锆石(图 6c),其tDM=3.98Ga,tDMC=4.01Ga,与地块南缘古生代火山岩中4.1Ga的捕获锆石年龄基本一致(王洪亮等,2007第五春荣等,2010),暗示鄂尔多斯地块很可能存在冥古宙陆壳物质,并成为周缘地区冥古代锆石的源区。这些锆石Hf-O同位素特征反映了4.0Ga就已开始了壳幔分异岩浆活动,此后3.7~3.8Ga的岩浆锆石则是陆壳再造的记录,进一步证明始太古代陆壳物质存在的可能(Diwu et al., 2013)。事实上,华北克拉通3.8Ga的岩石在东部鞍山地区保留的十分有限,此后在新太古代之前也仅有少量新生陆壳生长,大量的新生陆壳生长主要发生在2.9~2.65Ga期间(峰期~2.7Ga)(Wan et al., 2015),在山东的东、西部(Jahn et al., 1988, 2008Wan et al., 2011b),在河南鲁山(Kröner et al., 1988; Sun et al., 1994; Liu et al., 2008Zhou et al., 2014)以及中部阜平、恒山、中条和赞皇以及陕西华阴等广大地区都存在2.9~2.7Ga的TTG和花岗质片麻岩(Guan et al., 2002Kröner et al., 2005a, bHuang et al., 2010Yang et al., 2013Zhu et al., 2013路增龙等,2014Jia et al., 2016),代表了华北克拉通一期重要的新生陆壳生长。与东部陆块相比,尽管西部陆块目前仅在阴山地块确定存在2.7Ga的岩石,但在鄂尔多斯地块基底花岗岩类和盖层沉积岩及现代河流砂碎屑锆石中不但存在新太古代、甚至中太古代古老岩浆锆石,同时它们的锆石εHf(t)为正值,Hf陆壳模式年龄(tDMC)集中于2.9~2.65Ga之间(峰值~2.75Ga)(图 6e-h)。此外,阴山地块、孔兹岩带以及鄂尔多斯地块中基底~2.5Ga的各类岩石的锆石εHf(t)>0,tDMC=2.9~2.7Ga(峰期为~2.7Ga)(图 6a-d),均证明在2.9~2.7Ga期间可能在更大范围发生有幔源岩浆活动引起的新生地壳形成,同时还包含少量古老地壳物质再造。西部陆块2.8~2.7Ga岩石分布面积较少很可能是由于后期2.5Ga的强烈构造-热事件改造和破坏的结果,当然也不能排除因工作程度不够,在钻遇基底的有限岩芯样品中未能获得这些古老岩石的可能。

3.2 新太古代末-古元古代初(2.58~2.45Ga)地质事件

相比于2.7 Ga的岩浆活动,西部陆块在新太古代末-古元古代初期的2.58~2.45Ga期间发生了更为广泛而强烈的岩浆活动,并在北部阴山地块、南部鄂尔多斯地块及二者之间的孔兹岩带古元古代基底各类正片麻岩中均有记录(图 5)。北部阴山地块在2.56~2.45Ga期间出现了多种岩浆活动,其中TTG片麻岩形成于2.53~2.50Ga,这些岩石的锆石εHf(t)=+0.3~+5.5,tDMC=3.18~2.75Ga,少量锆石的εHf(t)=-7.8~-2.1,tDMC=3.89~3.40Ga,表明主要源自新太古代新生陆壳物质和少量古老陆壳物质的源区,它们为陆缘消减板块回撤引起新生陆壳熔融(Chen et al., 2017a, b)或地幔减压熔融岩浆与新生下地壳熔体混合的产物(Jian et al., 2012; 马旭东等,2013)。与此同时,在2.56~2.51Ga期间出现大量与大洋俯冲消减环境有关的玄武岩、安山岩、高镁安山岩及英安岩类(陈亮,2007; Jian et al., 2012; 刘利等,2012马旭东等,2013),同期的橄榄石-斜方辉石角闪石岩、斜长角闪岩及基性麻粒岩的钕同位素模式年龄tDM=2.88~2.61Ga,锆石εHf(t)=+1.8~+3.0,tDM1=2.81~2.68Ga,形成于~2.58Ga的变辉长岩、角闪石岩亏损Nb、Zr和Ti,辉长岩εNd(t)=+1.77~+2.23,角闪石岩εNd(t)=+1.48~+3.53,锆石εHf(t)=+7.3,均指示与大洋消减俯冲带岩浆活动密切相关(Ma et al., 2014a, 2016; Wang et al., 2015a)。此外,还出现与大洋俯冲消减板块熔体与上覆地幔楔相互作用形成的赞岐岩(Jian et al., 2012),它们的εNd(t)和εHf(t)均为正值,全岩钕模式年龄tDM=2.65~2.48,锆石Hf模式年龄tDM=2.8~2.6Ga(峰期为~2.7Ga),指示是新生陆壳熔体与地幔相互作用的产物(Ma et al., 2013a),这类岩石大多是汇聚板缘消减大洋板片及沉积物部分熔融的熔体与地幔橄榄岩混合作用的结果(Shimoda et al., 1998; Kamei et al., 2004)。此外,在2.54~2.52Ga期间还有紫苏花岗岩形成,并经历近同期(2.52~2.50Ga)变质作用改造,它们以准铝-过铝质,高MgO、Ni、Cr和Mg#,高Sr和Ba、低K2O/Na2O为特征,也指示是地幔镁铁质岩浆与下地壳部分熔融长英质岩浆混合的结果,近同时麻粒岩相变质与大洋中脊俯冲消减岩浆活动密切相关(Ma et al., 2013b)。因此,阴山地块新太古代晚期2.56~2.50Ga期间发生的各类岩浆作用(Jian et al., 2012),包括2.53~2.50Ga的TTG、2.53~2.51Ga的各类火山岩和赞岐岩以及2.54~2.52Ga期间形成的高级变质杂岩和紫苏花岗岩类,均是汇聚板缘与大洋俯冲消减相关环境的产物。这些岩浆岩的锆石εHf(t)以正值为主,tDMC=2.9~2.6Ga(峰期为~2.75Ga),部分锆石的εHf(t)接近同期亏损地幔值,证明阴山地块在新太古代末主要发生了与陆缘板块消减有关的陆壳再造,同时还伴有幔源岩浆新生陆壳的形成,少数岩浆锆石的εHf(t)明显偏负,tDMC>2.9Ga(图 6a),暗示也有少量古老陆壳物质的参与。~2.5Ga以来阴山地块仍持续有岩浆活动发生,在2.51~2.47Ga发生地壳深熔(张玉清等,2003董晓杰等,2012),并在2.47~2.44Ga期间形成了不同于早期岩浆产物的亚碱性-碱性钾长花岗岩类(Chen et al., 2017a),它们由软流圈地幔上涌导致早期TTG熔融所形成,代表了陆壳伸展,指示~2.4Ga以来构造体制开始由挤压向伸展转换(Chen et al., 2017b)。

与北部阴山地区相比,孔兹岩带中一些古老正片麻岩中记录的岩浆活动主要发生于古元古代早期的2.50~2.37Ga期间(Wan et al., 2009, 2013b; 刘平华等,2013; Liu et al., 2014, 2017),并在2.50~2.45Ga期间形成大量花岗质片麻岩及紫苏花岗岩(刘建辉等,2013张琳等,2016Liu et al., 2017),它们以准铝质至弱过铝镁质高钾钙-碱性系列,具轻重稀土中到高度分馏、弱或无铕异常的稀土模式,微量元素富集大离子亲石元素,亏损Nb,Ta及Ti等元素为特征,与由大陆地壳物质部分熔融岩浆产物地球化学特征一致。这些岩石的锆石εHf(t)多为正值,对应的二阶段Hf模式年龄介于2.9~2.55Ga之间(峰值为~2.67Ga)(图 6c, d),其中花岗岩类锆石εHf(t)=-0.7~+9.75(平均+4.81),tDMC=2.9~2.4Ga(平均2.64Ga),紫苏花岗岩锆石εHf(t)=-1.27~+6.85(平均+3.83),tDMC=2.9~2.6Ga(平均2.7Ga)(Liu et al., 2017);同期的石榴黑云片麻岩的εHf(2.51Ga)=+0.55~+5.83,tDM=2.80~2.60Ga,石榴黑云花岗岩的εHf(2.50Ga)=+0.27~+5.73,tDM=2.83~2.60Ga (Wan et al., 2009),~2.5Ga变火山岩锆石εHf(t)=+1.2~+7.0,tDMC=2.84~2.56Ga(Ma et al., 2012),一致证明它们主要为新生陆壳再造的岩浆产物。此外,在2.44~2.42Ga期间形成了埃达克质石英闪长岩、高镁闪长岩(赞岐岩)以及具Closepet花岗岩特征的角闪二长花岗岩,它们高MgO和Cr、Ni(钟长汀等,2014),与由壳、幔岩浆混合形成的富MgO、高Cr、Ni的花岗岩类类似(Kamei et al., 2004Shimoda et al., 1998),代表了新生陆壳的形成(Moyen et al., 2001)。在2.55~2.5Ga和2.45~2.37Ga还伴有基性岩浆活动的发生(Wan et al., 2009),这不仅证明了新生地壳形成,同时也标志着构造体制转为伸展环境(Wan et al., 2013b)。另一方面,这些岩石还不同程度经历了近同期(2.50~2.45Ga)变质作用的改造(Wan et al., 2009, 2013b; 刘建辉等,2013Liu et al., 2017),这种壳幔岩浆活动与麻粒岩相变质同时出现被认为是地幔柱岩浆活动的结果(Jayananda et al., 1995)。因此,孔兹岩带中古老花岗质片麻岩记录的2.5Ga以来发生的各类岩浆活动,代表了~2.5Ga以来,构造体质由汇聚碰撞转为陆壳伸展,同时出现大量陆壳再造和壳幔岩浆混合作用形成的各类岩浆岩类,并伴有同期变质作用的改造,可能与地幔柱相关的岩浆活动密切相关。

与北部阴山地块和孔兹岩带新太古代末和古元古代初出现大量岩浆活动不同,在鄂尔多斯地块基底中,目前仅在有限的钻井岩芯中发现了少量~2.5Ga的花岗质片麻岩(Zhang et al., 2015),它们高硅(SiO2=69.09%~73.55%)、富钾(K2O/Na2O=2.04~4.56),A/CNK=1.10~1.18,属过铝质钾玄岩系列,具轻重稀土较强分馏的中等Eu负异常的右倾稀土模式,微量元素富集Rb,Ba,Th,K等大离子亲石元素、亏损Nb,Ta,P及Ti等,与陆壳物质部分熔融形成的花岗岩类地球化学特征十分一致。这些岩石的锆石εHf(t)=-3.32~+5.02,tDMC=3.06~2.79Ga(图 6ef),指示岩浆主要源自新太古代的新生陆壳,同时有部分中太古代陆壳物质的参与,与北部阴山地块和孔兹岩带~2.5Ga的花岗岩类一样,证明鄂尔多斯地块在新太古代末~2.5Ga也发生了以新生陆壳再造为主的构造岩浆事件。综合西部阴山陆块、孔兹岩带以及鄂尔多斯地块新太古代末期-古元古代早期的各类岩浆作用,西部陆块在~2.5Ga之前的岩浆作用主要形成与汇聚有关的大洋俯冲消减环境,形成了陆缘弧岩浆活动的TTG、基性及中酸性火山岩和高镁安山岩及赞岐岩类以及其它类型的侵入岩类,它们均经历了2.52~2.50Ga变质作用改造,代表一次区域汇聚拼合过程。此后,于古元古代初2.5~2.37Ga期间出现高钾的钾长花岗岩类和壳幔混合作用形成的高Mg、Cr和Ni花岗岩类以及同期基性岩浆活动和变质作用,指示自2.5Ga以来构造体制开始了由挤压向伸展转化,可能代表了地幔柱岩浆活动的结果。事实上,新太古代末2.55~2.45Ga期间发生在西部陆块的的岩浆活动,在华北克拉通东部的广大地区也广为出现(Zhai, 2010, 2014耿元生等,2010翟明国, 2011; Wan et al., 2015),形成TTG和二长花岗岩、花岗闪长岩及钾长花岗岩等壳源花岗岩类,并表现为2.55~2.53Ga、2.51~2.50Ga和2.50~2.45Ga三个期次(翟明国, 2011; Wan et al., 2012)。这些花岗岩锆石有变化较大的εHf(t)负和正值,锆石的tDMC多高于或近于其形成年龄,为陆壳物质再造岩浆活动的产物(Geng et al., 2012; Wan et al., 2015)。然而,一些TTG片麻岩和闪长岩锆石有高和正的εHf(t)值,Hf模式年龄与岩体形成年龄相近(刘富等,2009Diwu et al., 2011),说明还有新生地壳形成,这也得到同期基性岩浆活动的证明(Li et al., 2011; 彭澎,2016)。此外,与2.52~2.50Ga超镁铁质岩墙-碱性正长岩脉侵入活动基本同时(Li et al., 2011),华北克拉通基底相当范围发生了逆时针P-T演化轨迹的中压麻粒岩相变质作用(耿元生等,2016),表明该变质作用很可能是来自地幔的基性岩浆底侵于下地壳底部,带来大量的热导致了中、下地壳物质部分熔融形成花岗质岩浆作用的同时,还引起中、下地壳岩石的变质改造,其机制与地幔柱底侵的构造热体制密切相关(耿元生等,2010)。另一方面,超镁铁质-碱性岩脉的出现,指示太古宙末期华北克拉通岩石圈已有较大的厚度和较高的稳定性(翟明国, 2011),此后出现陆内裂谷火山-沉积盖层(翟明国,2010),代表华北克拉通克拉通化的第一套盖层沉积,标志着华北首次克拉通化的结束。

3.3 古元古代中晚期(2.2~1.85 Ga)地质事件

世界上许多克拉通在2.45~2.2Ga期间约200~250Myr的时间内出现了岩浆活动停顿的静寂期(Condie and Kröner, 2008; Condie et al., 2009),西部陆块无论是北部阴山地块,还是南部的鄂尔多斯地块抑或是二者间的孔兹岩带自2.45Ga以来也基本无岩浆活动的发生(图 5),直到~2.35Ga仅在南部的鄂尔多斯地块基底开始有壳源花岗岩浆活动的出现,并集中发生在2.2~2.0Ga期间(峰期~2.03Ga)(图 5c)。这些花岗岩高硅(SiO2=70.51%~78.39%)和钾(K2O/Na2O=0.68~49.80),贫钙(CaO=0.12%~1.41%)、低铁(FeOT=1.96%~4.86%)和(MgO=0.43%~1.73%),A/CNK=1.32~2.64,具有轻重稀土强烈分馏,呈现了中等负Eu异常的右倾稀土模式,微量元素富集Rb、Ba、Th和K等大离子亲石元素,贫高场强元素,Pb明显富集、亏损Nb、Ta、P和Ti等元素,呈现了壳源过铝质钾玄系列岛弧区花岗岩类地球化学特征。它们的锆石Hf同位素组成变化大,呈现了明显偏负到正的εHf(t)(-12.2~+5.5)和范围较大的tDMC(3.12~2.25Ga)(图 7a, b),并可分为εHf(t)=+0.04~+5.50, tDMC=2.25~2.52Ga以及εHf(t)=-12.2~+1.6,tDMC=2.44~3.12Ga两组,表明它们是既有幔源或新生陆壳源区也有太古代古老陆壳物质源区的岩浆产物。这种同时代、同位素组成变化很大、有幔源或新生陆壳及古老陆壳物质源区花岗岩类的同时出现,多为岛弧环境岩浆作用的结果(Kröner et al., 2014),结合它们具岛弧花岗岩类地球化学特征,这些花岗岩类代表了鄂尔多斯地块古元古代晚期重要的弧岩浆活动。此类Hf同位素变化较大的2.2~2.0Ga弧岩浆锆石,在鄂尔多斯地块西北部基底(棋探1井,图 1)及北部孔兹岩带副变质片麻岩的继承碎屑锆石中都广泛出现(图 7a, b),揭示它们成为这些副变质岩的主要物源提供者,同时也表明北部孔兹岩带的南界至少可延伸至现今鄂尔多斯盆地北缘的棋探1井一带。由此,根据北部孔兹岩带和阴山地块无该期岩浆活动推断,鄂尔多斯地块北缘的大洋俯冲很可能是由北向南俯冲于其下,其北缘成为活动大陆边缘,并沉积了孔兹岩带碎屑岩类。与其类似的岩浆活动在2.2~2.0Ga期间也广泛出现于华北克拉通中部带,所产生的岩浆锆石同样出现了变化范围很大的εHf(t)和tDMC(Geng et al., 2012; Santosh et al., 2015)(图 7c, d),它们的岩石组合及地球化学特征也反映形成于活动陆缘岛弧环境(耿元生等,2006Liu et al., 2012b; 杜利林等,2012; Santosh et al., 2015),证明在鄂尔多斯地块东缘也存在同期大洋俯冲消减有关的岩浆活动。此外,鄂尔多斯地块基底变质碎屑岩和部分花岗岩类以及孔兹岩带各类变质岩均经历了1.95~1.85Ga的麻粒岩相变质作用改造(Wan et al., 2006, 2013a; Santosh et al., 2007a, b, 2009a, b; Yin et al., 2009, 2011, 2014; Hu et al., 2013; Jiao et al., 2013a, b; Cai et al., 2014; Wang et al., 2014; Zhang et al., 2015; Gou et al., 2016),并在泥质麻粒岩中清楚的记录了四个变质演化阶段,构成一典型碰撞造山有关的顺时针P-T演化轨迹(Gou et al., 2016),这种同期和类似的顺时针P-T演化轨迹也发现于中部带泥质麻粒岩中(Qian et al., 2013, 2015; Wei et al., 2014; Qian and Wei, 2016; Zhao et al., 2017),表明1.95~1.85Ga期间鄂尔多斯地块作为一独立微陆块先后与北部阴山地块及东部陆块碰撞拼合形成华北克拉通统一基底。在碰撞拼合晚期的1.85Ga左右,陆壳抬升、发生减压熔融在孔兹岩带和中部构造带中出现大量S型花岗岩浆侵入(耿元生等, 2000, 2006; Zhao et al., 2008; Yin et al., 2009, 2011, 2014; Peng et al., 2012; Jiao et al., 2013b; Wang et al., 2017; ),指示碰撞造山已接近晚期并向伸展拉张演化阶段转化,此后进一步拉张裂解大范围出现~1.78Ga镁铁质岩墙群侵入(Peng et al., 2006, 2007, 2010; 彭澎,2016),标志着华北陆块终极克拉通化基本结束,继而进入到克拉通盖层沉积的稳定演化阶段(翟明国,2011)。

图 7 鄂尔多斯地块基底花岗岩、副片麻岩和孔兹岩带继承碎屑锆石以及华北中部带花岗岩锆石Hf同位素组成 数据引自本研究及赵瑞幅等,2011Dan et al., 2012; 杜利林等,2012Santosh et al., 2015; Zhang et al., 2015; 作者未刊数据 Fig. 7 Hf isotopic composition of the magmatic zircon from the granitoids and para-gneisses in the Ordos basement, detrital zircons from Khondalite Belt and magmatic zircons from the granitoids in the Trans-North China Orogen
4 结论

(1)华北克拉通西部阴山和鄂尔多斯地块基底正、副片麻岩及其盖层碎屑岩中均出现新太古和中太古代继承岩浆锆石,锆石Hf同位素二阶段模式年龄主要介于2.9~2.6Ga之间(峰值~2.75Ga),并存在中太古和古太古代锆石Hf模式年龄,与阴山地块确定的2.7Ga岩石一道证明,西部不同地块基底可能于新太古代早期已形成,并在新太古代~2.7Ga发生了一期陆壳快速生长;

(2) 西部陆块在~2.7Ga经历一期陆壳快速生长后,在~2.5Ga又发生强烈的陆壳再造和少量陆壳生长,而后于2.2~2.0Ga期间沿鄂尔多斯地块北缘和东缘发生俯冲增生及1.95~1.85Ga的陆块碰撞拼合与改造。其中,2.55~2.45Ga期间强烈陆壳再造和生长过程,出现大量壳源和幔源岩浆侵入和麻粒岩相变质作用,揭示了由新太古代末的汇聚挤压转为古元古代初期的伸展,这与华北克拉通大范围岩浆变质事件十分类似,代表了华北克拉通首次克拉通化。2.2~2.0Ga期间,沿鄂尔多斯地块北缘和东缘发生大洋俯冲引起的陆缘弧岩浆活动,导致鄂尔多斯地块基底陆壳进一步增生和再造;于1.95~1.85Ga期间鄂尔多斯地块北部的孔兹岩带和东部的中部造山带均发生了具顺时针P-T演化轨迹的变质作用,形成陆-陆碰撞构造带,至~1.85Ga陆壳抬升伸展、导致陆壳物质减压熔融发生强烈混合岩化和壳源S型花岗岩的形成,其后镁铁质岩墙侵入,标志着克拉通化最终完成。

致谢 感谢组稿人万渝生研究员的热情邀稿!耿元生研究员和朱文斌教授两位评审人员的建设性建议,对本文的进一步完善和提高有很大的帮助,在此表示感谢!
参考文献
Bao C, Chen YL, Li DP and Wang SH. 2014. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC). Journal of Asian Earth Sciences, 96: 296-307. DOI:10.1016/j.jseaes.2014.09.006
Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 241: 161-184. DOI:10.1016/j.precamres.2013.11.012
Cai J, Liu FL, Liu PH, Wang F and Shi JR. 2015. Geochronology of the Paleoproterozoic khondalite rocks from the Wulashan-Daqinshan area, the Khondalite Belt. Acta Petrologica Sinica, 31(10): 3081-3106.
Chen L. 2007. Geochronology and geochemistry of the Guyang greenstone belt. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-40 (in Chinese)
Chen NHC, Zhao GC, Jahn BM, Sun M and Zhou H. 2017a. U-Pb zircon ages and Hf isotopes of~2.5Ga granitoids from the Yinshan Block, North China Craton:Implications for crustal growth. Precambrian Research, 303: 171-182. DOI:10.1016/j.precamres.2017.03.016
Chen NHC, Zhao GC, Sun M and Zhou H. 2017b. Geochemistry of~2.5Ga granitoids at the northern margin of the Yinshan Block:Implications for the crustal evolution of the North China Craton. Precambrian Research, 303: 673-686. DOI:10.1016/j.precamres.2017.08.022
Condie KC and Kröner A. 2008. When did plate tectonics begin? Evidence from the orogenic record. The Geological Society of America, 440: 281-294.
Condie KC, O'Neill C and Aster RC. 2009. Evidence and implications for a widespread magmatic shutdown for 250My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. DOI:10.1016/j.epsl.2009.03.033
Dan W, Li XH, Guo JH, Liu Y and Wang XC. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton:Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 222-223: 143-158. DOI:10.1016/j.precamres.2011.07.016
Deng J, Wang QF, Huang DH, Gao BF, Yang LQ and Xu H. 2005. Basement evolution of the Ordos Basin and its constraint on cap rock. Earth Science Frontiers, 12(3): 91-99.
Diwu CR, Sun Y, Dong ZC, Wang HL, Chen DL, Chen L and Zhang H. 2010. In situ U-Pb geochronology of Hadean zircon xenocryst (4.1~3.9Ga) from the western of the Northern Qinling Orogenic Belt. Acta Petrologica Sinica, 26(4): 1171-1174.
Diwu CR, Sun Y, Guo AL, Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at~2.5Ga:Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research, 20(1): 149-170. DOI:10.1016/j.gr.2011.01.011
Diwu CR, Sun Y, Zhang H, Wang Q, Guo AL and Fan LG. 2012. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China:Constraints from detrital zircon U-Pb ages. Journal of Asian Earth Sciences, 47: 107-122. DOI:10.1016/j.jseaes.2011.07.012
Diwu CR, Sun Y, Wilde SA, Wang HL, Dong ZC, Zhang H and Wang Q. 2013. New evidence for~4.45Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Research, 23(4): 1484-1490. DOI:10.1016/j.gr.2013.01.001
Dong CY, Liu DY, Li JJ, Wang YS, Zhou HY, Li CD, Yang YH and Xie LW. 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton:New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(21): 2984-2994. DOI:10.1007/s11434-007-0404-9
Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125. DOI:10.1007/s11430-012-4459-3
Dong CY, Wan YS, Wilde SA, Xu ZY, Ma MZ, Xie HQ and Liu DY. 2014. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt:Constraints on craton evolution. Gondwana Research, 25(4): 1535-1553. DOI:10.1016/j.gr.2013.05.021
Dong XJ. 2009. The metamorphism times and tectonic significance of high-grade metamorphic rocks in Xiwulangbulang area Inner Mongolia. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary) http://www.journals.uchicago.edu/doi/full/10.1086/317966
Dong XJ, Xu ZY, Liu ZH and Sha Q. 2012. 2.7Ga granitic gneiss in the Northern Foot of Daqingshan Mountain, central Inner Mongolia, and its geological implications. Earth Science (Journal of China University of Geosciences), 31(Suppl.): 20-27.
Du LL, Yang CH, Ren LD, Song HX, Geng YS and Wan YS. 2012. The 2.2~2.1Ga magmatic event and its tectonic implication in the Lüliang Mountains, North China Craton. Acta Petrologica Sinica, 28(9): 2751-2769.
Gao GM, Kang GF, Li GQ and Bai CH. 2015. Crustal magnetic anomaly in the Ordos region and its tectonic implications. Journal of Asian Earth Sciences, 109: 63-73. DOI:10.1016/j.jseaes.2015.04.033
Geng YS, Wan YS, Shen QH, Li HM and Zhang RX. 2000. Chronological framework of the Early Precambrian important events in the Lüliang area, Shanxi Province. Acta Geologica Sinica, 74(3): 216-223.
Geng YS, Yang CH and Wan YS. 2006. Paleoproterozoic granitic magmatism in the Lüliang area, North China Craton:Constraint from isotopic geochronology. Acta Petrologica Sinica, 22(2): 305-314.
Geng YS, Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magrnatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945-1966.
Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529. DOI:10.1016/j.gr.2011.07.006
Geng YS, Shen QH, Du LL and Song HX. 2016. Regional metamorphism and continental growth and assembly in China. Acta Petrologica Sinica, 32(9): 2579-2608.
Gong WB, Hu JM, Wu SJ, Chen H, Qu HJ, Li ZH, Liu Y and Wang LJ. 2014. Possible southwestward extrusion of the Ordos Block in the Late Paleoproterozoic:Constraints from kinematic and geochronologic analysis of peripheral ductile shear zones. Precambrian Research, 255: 716-733. DOI:10.1016/j.precamres.2014.05.001
Gou LL, Zhang CL, Zhang LF and Wang Q. 2014. Precipitation of rutile needles in garnet from sillimanite-bearing pelitic granulite from the Khondalite Belt, North China Craton. Chinese Science Bulletin, 59(32): 4359-4366. DOI:10.1007/s11434-014-0598-6
Gou LL, Zhang CL, Brown M, Piccoli PM, Lin HB and Wei XS. 2016. P-T-t evolution of pelitic gneiss from the basement underlying the northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research, 276: 67-84. DOI:10.1016/j.precamres.2016.01.030
Guan H, Sun M, Wilde SA, Zhou XH and Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex:Implications for formation and assembly of the North China Craton. Precambrian Research, 113(1-2): 1-18. DOI:10.1016/S0301-9268(01)00197-8
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142. DOI:10.1016/j.precamres.2011.07.020
He XF, Santosh M, Bockmann K, Kelsey DE, Hand M, Hu JM and Wan YS. 2016. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton. Lithos, 262: 44-57. DOI:10.1016/j.lithos.2016.06.022
He XL, Yin CQ, Long XP, Qian JH, Wang LJ and Qiao HZ. 2017. Archean to Paleoproterozoic continental crust growth in the Western Block of North China:Constraints from zircon Hf isotopic and whole-rock Nd isotopic data. Precambrian Research, 303: 105-116. DOI:10.1016/j.precamres.2017.02.018
Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Qu HJ and Chen H. 2013. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin, 58(1): 118-127. DOI:10.1007/s11434-012-5274-0
Huang GY, Jiao SJ, Guo JH, Peng P, Wang D and Liu P. 2016. P-T-t constraints of the Barrovian-type metamorphic series in the Khondalite belt of the North China Craton:Evidence from phase equilibria modeling and zircon U-Pb geochronology. Precambrian Research, 283: 125-143. DOI:10.1016/j.precamres.2016.07.011
Huang XL, Niu YL, Xu YG, Yang QJ and Zhong JW. 2010. Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton:Implications for Late Archean crustal accretion. Precambrian Research, 182(1-2): 43-56. DOI:10.1016/j.precamres.2010.06.020
Jahn BM, Auvray B, Shen QH, Liu DY, Zhang ZQ, Dong YJ, Ye XJ, Zhang QZ, Cornichet J and Mace J. 1988. Archean crustal evolution in China:The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 38(4): 381-403. DOI:10.1016/0301-9268(88)90035-6
Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232-269. DOI:10.2475/03.2008.03
Jayananda M, Martin H, Peucat JJ and Mahabaleswar B. 1995. Late Archaean crust-mantle interactions:Geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, Southern India. Contributions to Mineralogy and Petrology, 119(2-3): 314-329. DOI:10.1007/BF00307290
Jia JD, He GQ, Li MS, Zhou DC and Zhang LX. 1997. Structural feature of basement in the Ordos basin and its control to Paleozoic gas. Geological Journal of China Universities, 3(2): 144-153.
Jia XL, Zhu XY, Zhai MG, Zhao Y, Zhang H, Wu JL and Liu T. 2016. Late Mesoarchean crust growth event:Evidence from the ca. 2.8Ga granodioritic gneisses of the Xiaoqinling area, southern North China Craton. Science Bulletin, 61(12): 974-990. DOI:10.1007/s11434-016-1094-y
Jian P, Zhang Q, Liu DY, Jin WJ, Jia XQ and Qian Q. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(l): 151-157.
Jian P, Kröner A, Windley BF, Zhang Q, Zhang W and Zhang LQ. 2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton:Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambrian Research, 222-223: 230-254. DOI:10.1016/j.precamres.2012.03.002
Jiao SJ, Guo JH, Harley SL and Peng P. 2013a. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks:Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237: 78-100. DOI:10.1016/j.precamres.2013.09.008
Jiao SJ, Guo JH, Harley SL and Windley BF. 2013b. New constraints from garnetite on the P-T path of the Khondalite belt:Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758. DOI:10.1093/petrology/egt029
Jiao SJ, Guo JH, Wang LJ and Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269: 31-57. DOI:10.1016/j.precamres.2015.08.002
Jin W, Li SX and Liu XS. 1991. A Study on Characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic gynamics. Acat Petrologica Sinica, (4): 29-102.
Jin W and Li SX. 1996. PTt Path and crustal thermodynamic model of Late Archaean-Early Proterozoic high-grade metamorphic terrain in North China. Acat Petrologica Sinica, 12(2): 208-221.
John T, Klemd R and Gao J and Garbe-Schönberg CD. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103(1-2): 1-24. DOI:10.1016/j.lithos.2007.09.005
Kamei A, Owada M, Nagao T and Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, Southwest Japan arc:Evidence from clinopyroxene and whole rock compositions. Lithos, 75(3-4): 359-371. DOI:10.1016/j.lithos.2004.03.006
Kröner A, Compston W, Zhang GW, Guo AL and Zhang T. 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16(3): 211-215. DOI:10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2
Kröner A, Wilde SA, Li JH and Wang KY. 2005a. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595. DOI:10.1016/j.jseaes.2004.01.001
Kröner A, Wilde SA, O'Brien PJ, Li JH, Passchier CW, Walte NP and Liu DY. 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archaean to Palaeoproterozoic lower crustal section in the Hengshan terrain of northern China. Acta Geologica Sinica, 79(5): 605-632.
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE and Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125. DOI:10.1016/j.gr.2012.12.023
Li M, Yan L and Han SY. 2012. The basement tectonic characteristics in Ordos Basin. Journal of Jilin University (Earth Science Edition), 42(Suppl.3): 38-43.
Li TS, Zhai MG, Peng P, Chen L and Guo JH. 2011. Ca. 2.5 billion year old coeval ultramafic-mafic and syenitic dykes in Eastern Hebei:Implications for cratonization of the North China Craton. Precambrian Research, 180(3-4): 143-155.
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339-342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Yang CX, Zhang YX and Gao LZ. 2008. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1-2): 140-154.
Liu F, Guo JH, Lu XP and Diwu CR. 2009. Crustal growth at~2.5Ga in the North China Craton:Evidence from whole-rock Nd and zircon Hf isotopes in the Huai'an gneiss terrane. Chinese Science Bulletin, 54(24): 4704-4713.
Liu JH, Liu FL, Ding ZJ, Chen JQ, Liu PH, Shi JR, Cai J and Wang F. 2013. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton. Acta Petrologica Sinica, 29(2): 485-500.
Liu JH, Liu FL, Ding ZJ, Liu PH, Chen JQ, Liu CH, Wang F, Yang H, Cai J and Shi JR. 2017. Late Neoarchean-Paleoproterozoic arc-continent accretion along the Khondalite Belt, Western Block, North China Craton:Insights from granitoid rocks of the Daqingshan-Wulashan area. Precambrian Research, 303: 494-519. DOI:10.1016/j.precamres.2017.06.006
Liu L, Zhang LC, Dai YP, Wang CL and Li ZQ. 2012. Formation age, geochemical signatures and geological significance of the Sanheming BIF-type iron deposit in the Guyang greenstone belt, Inner Mongolia. Acta Petrologica Sinica, 28(11): 3623-3637.
Liu PH, Liu FL, Cai J, Liu JH, Shi JR and Wang F. 2013. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484.
Liu PH, Liu FL, Liu CH, Liu JH, Wang F, Xiao LL, Cai J and Shi JR. 2014. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246: 334-357. DOI:10.1016/j.precamres.2014.02.015
Liu SJ, Tsunogae T, Li WS, Shimizu H, Santosh M, Wan YS and Li JH. 2012a. Paleoproterozoic granulites from Heling'er:Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos, 148: 54-70. DOI:10.1016/j.lithos.2012.05.024
Liu SW, Zhang J, Li QG, Zhang LF, Wang W and Yang PT. 2012b. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173-190. DOI:10.1016/j.precamres.2011.07.006
Lu LZ, Xu XC and Liu FL. 1996. The Early Precambrian Khondalite Series in the North China. Changchun: Changchun Publishing House: 1-125.
Lu ZL, Song HX, Du LL, Ren LD, Geng YS and Yang CH. 2014. Delineation of the ca. 2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance. Acta Petrologica Sinica, 30(10): 2872-2884.
Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY, Liu DY and Guo CL. 2012. Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827. DOI:10.1016/j.gr.2012.02.020
Ma MZ, Xu ZY, Zhang LC, Dong CY, Dong XJ, Liu SJ, Liu DY and Wan YS. 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area, Wuchuan, Inner Mongolia. Acta Petrologica Sinica, 29(2): 501-516.
Ma XD, Fan HR, Santosh M and Guo JH. 2013a. Geochemistry and zircon U-Pb chronology of charnockites in the Yinshan Block, North China Craton:Tectonic evolution involving Neoarchaean ridge subduction. International Geology Review, 55(13): 1688-1704. DOI:10.1080/00206814.2013.796076
Ma XD, Guo JH, Liu F, Qian Q and Fan HR. 2013b. Zircon U-Pb ages, trace elements and Nd-Hf isotopic geochemistry of Guyang sanukitoids and related rocks:Implications for the Archean crustal evolution of the Yinshan Block, North China Craton. Precambrian Research, 230: 61-78. DOI:10.1016/j.precamres.2013.02.001
Ma XD, Fan HR and Guo JH. 2013. Neoarchean magmatism, metamorphism in the Yinshan Block:Implication for the genesis of BIF and crustal evolution. Acta Petrologica Sinica, 29(7): 2329-2339.
Ma XD, Fan HR, Santosh M, Liu X and Guo JH. 2014a. Origin of sanukitoid and hornblendite enclaves in the Dajitu pluton from the Yinshan Block, North China Craton:Product of Neoarchaean ridge subduction?. International Geology Review, 56(10): 1197-1212. DOI:10.1080/00206814.2014.929055
Ma XD, Fan HR, Santosh M and Guo JH. 2014b. Chronology and geochemistry of Neoarchean BIF-type iron deposits in the Yinshan Block, North China Craton:Implications for oceanic ridge subduction. Ore Geology Reviews, 63: 405-417. DOI:10.1016/j.oregeorev.2014.02.010
Ma XD, Fan HR, Santosh M and Guo JH. 2016. Petrology and geochemistry of the Guyang hornblendite complex in the Yinshan block, North China Craton:Implications for the melting of subduction-modified mantle. Precambrian Research, 273: 38-52. DOI:10.1016/j.precamres.2015.12.001
Moyen JF, Martin H and Jayananda M. 2001. Multi-element geochemical modelling of crust-mantle interactions during Late-Archaean crustal growth:The Closepet granite (South India). Precambrian Research, 112(1-2): 87-105. DOI:10.1016/S0301-9268(01)00171-1
Peng P, Zhai MG and Guo JH. 2006. 1. 80~1. 75Ga mafic dyke swarms in the central North China craton: Implications for a plume-related break-up event. In: Hanski E, Mertanen S, Rämö T and Vuollo J (eds. ). Dyke Swarms-Time Markers of Crustal Evolution. London: Taylor & Francis, 99-112
Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China craton. Gondwana Research, 12(1-2): 29-46. DOI:10.1016/j.gr.2006.10.022
Peng P, Zhai MG, Zhang HF and Guo JH. 2010. Geochronological constraints on the Paleoproterozoic evolution of the North China craton:SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492-508.
Peng P, Guo JH, Windley BF, Liu F, Chu Z and Zhai MG. 2012. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton:Implications for ridge subduction. Precambrian Research, 222-223: 107-123. DOI:10.1016/j.precamres.2011.06.002
Peng P, Wang XP, Windley BF, Guo JH, Zhai MG and Li Y. 2014. Spatial distribution of ca.1950~1800Ma metamorphic events in the North China Craton:Implications for tectonic subdivision of the craton. Lithos, 202-203: 250-266. DOI:10.1016/j.lithos.2014.05.033
Peng P. 2016. Map of Precambrian Dyke Swarms and Relaed Plutonic/Volcanic Units in the North China Block (Intruductions). Beijing: Science Press: 19-28.
Qian JH, Wei CJ, Zhou XW and Zhang YH. 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296. DOI:10.1016/j.precamres.2013.05.012
Qian JH, Wei CJ, Clarke GL and Zhou XW. 2015. Metamorphic evolution and zircon ages of garnet-orthoamphibole rocks in southern Hengshan, North China Craton:Insights into the regional Paleoproterozoic P-T-t history. Precambrian Research, 256: 223-240. DOI:10.1016/j.precamres.2014.11.013
Qian JH and Wei CJ. 2016. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton:Insights from phase equilibria and geochronology. Journal of Metamorphic Geology, 34(5): 423-446. DOI:10.1111/jmg.2016.34.issue-5
Ren YW. 2010. The study of granite-greenstone belt in Xihongshan area, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University, 1-69 (in Chinese with English summary)
Santosh M, Wilde SA and Li JH. 2007a. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196. DOI:10.1016/j.precamres.2007.06.006
Santosh M, Tsunogae T, Li JH and Liu SJ. 2007b. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263-285. DOI:10.1016/j.gr.2006.10.009
Santosh M, Wan YS, Liu DY, Dong CY and Li JH. 2009a. Anatomy of zircons from an ultrahot orogen:The amalgamation of the North China craton within the supercontinent columbia. Journal of Geology, 117(4): 429-443. DOI:10.1086/598949
Santosh M, Sajeev K, Li JH, Liu SJ and Itaya T. 2009b. Counterclockwise exhumation of a hot orogen:The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos, 110(1-4): 140-152. DOI:10.1016/j.lithos.2008.12.010
Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton:A SHRIMP zircon study. Precambrian Research, 227: 29-54. DOI:10.1016/j.precamres.2011.11.004
Santosh M, Yang QY, Teng XM and Tang L. 2015. Paleoproterozoic crustal growth in the North China Craton:Evidence from the Lüliang Complex. Precambrian Research, 263: 197-231. DOI:10.1016/j.precamres.2015.03.015
Shen QH, Xu HF, Zhang ZQ, Gao JF, Wu JS and Ji CL. 1992. Granulites of Early Precambrian in China. Beijing: Geological Publishing House: 1-400.
Sheng QH, Geng YS, Song B and Wan YS. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze blocks, and Qinling-Dabie Orogenic Belt. Acta Geologica Sinica, 79(5): 616-627.
Shimoda G, Tatsumi Y, Nohda S, Ishizaka K and Jahn BM. 1998. Setouchi high-Mg andesites revisited:Geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160(3-4): 479-492. DOI:10.1016/S0012-821X(98)00105-8
Sun Y, Yu Z and Kröner A. 1994. Geochemistry and single zircon geochronology of Archaean TTG gneisses in the Taihua high-grade terrain, Lushan area, central China. Journal of Southeast Asian Earth Sciences, 10(3-4): 227-233. DOI:10.1016/0743-9547(94)90022-1
Tao JX and Hu FX. 2002. The Formation of the garnet-bearing migmatitic granite in Zhuozishan area, Inner Mongolia, China. Progress in Precambrian Research, 25(1): 59-64.
Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271. DOI:10.1016/j.precamres.2006.06.006
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian khondalite belt in the Daqingshan area, North China Craton:Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society, London, Special Publications, 323(1): 73-97. DOI:10.1144/SP323.4
Wan YS, Liu DY, Wang W, Song TR, Kröner A, Dong CY, Zhou HY and Yin XY. 2011a. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton:An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research, 20(1): 219-242. DOI:10.1016/j.gr.2011.02.009
Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH and Diwu CR. 2011b. ~2.7Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province):Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research, 186(1-4): 169-180. DOI:10.1016/j.precamres.2011.01.015
Wan YS, Dong CY, Liu DY, Kröner A, Yang CH, Wang W, Du LL, Xie HQ and Ma MZ. 2012. Zircon ages and geochemistry of Late Neoarchean syenogranites in the North China Craton:A review. Precambrian Research, 222-223: 265-289. DOI:10.1016/j.precamres.2011.05.001
Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY and Du LL. 2013a. Is the ordos block Archean or paleoproterozoic in age? Implications for the Precambrian evolution of the North China craton. American Journal of Science, 313(7): 683-711. DOI:10.2475/07.2013.03
Wan YS, Xu ZY, Dong C Y, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Cu H. 2013b. Episodic Paleoproterozoic (~2.45, ~1.95 and~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton:SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93. DOI:10.1016/j.precamres.2012.09.014
Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW and Ren P. 2015. Formation and evolution of Archean continental crust of the North China Craton. In: Zhai MG (ed. ). Precambrian Geology of China. Berlin, Heidelberg: Springer, 59-136
Wang D, Guo JH and Liu F. 2014. Geochemistry, zircon U-Pb chronology and HF isotopic characteristics of Late Archean metamorphic volcanic rocks in Wulan Boulang area, western Wuchuan, Inner Mongolia: On the North China Craton formation and evolution of the Yinshan terrane indicate. Beijing: China Annual Meeting of Geosciences (in Chinese) http://www.tandfonline.com/doi/full/10.1080/00206814.2017.1329032
Wang D, Guo JH, Huang GY and Scheltens M. 2015a. The Neoarchean ultramafic-mafic complex in the Yinshan Block, North China Craton:Magmatic monitor of development of Archean lithospheric mantle. Precambrian Research, 270: 80-99. DOI:10.1016/j.precamres.2015.09.002
Wang HL, Chen L, Sun Y, Liu XM, Xu XY, Chen JL, Zhang H and Diwu CR. 2007. ~4.1Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chinese Science Bulletin, 52(21): 3002-3010. DOI:10.1007/s11434-007-0316-8
Wang LJ, Guo JH, Yin CQ and Peng P. 2017. Petrogenesis of ca. 1.95Ga meta-leucogranites from the Jining Complex in the Khondalite Belt, North China Craton:Water-fluxed melting of metasedimentary rocks. Precambrian Research, 303: 355-371. DOI:10.1016/j.precamres.2017.04.036
Wang T, Xu MJ, Wang LS, Liu SW and Hu XZ. 2007. Aeromagnetic anomaly analysis of Ordos and adjacent regions and its tectonic implications. Chinese Journal of Geophysics, 50(1): 163-170.
Wang W, Liu XS, Hu JM, Li ZH, Zhao Y, Zhai MG, Liu XC, Clarke G, Zhang SH and Qu HJ. 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China:Petrology, phase equilibrium modelling and U-Pb geochronology. Precambrian Research, 251: 181-196. DOI:10.1016/j.precamres.2014.06.016
Wang ZT, Zhou HR, Wang XL and Jing XC. 2015b. Characteristics of the crystalline basement beneath the Ordos Basin:Constraint from aeromagnetic data. Geoscience Frontiers, 6(3): 465-475. DOI:10.1016/j.gsf.2014.02.004
Wei CJ, Qian JH and Zhou XW. 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton. Geoscience Frontiers, 5(4): 485-497. DOI:10.1016/j.gsf.2014.02.008
Wu CH, Sun M, Li HM, Zhao GC and Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton:Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica, 22(11): 2639-2654.
Wu JL, Zhang HF, Zhai MG, Guo JH, Liu L, Yang WQ, Wang HZ, Zhao L, Jia XL and Wang W. 2016. Discovery of pelitic high-pressure granulite from Manjinggou of the Huai'an Complex, North China Craton:Metamorphic P-T evolution and geological implications. Precambrian Research, 278: 323-336. DOI:10.1016/j.precamres.2016.03.001
Wu SJ, Zhang YS and Xing EY. 2015. LA-ICP-MS U-Pb dating of detrital zircons of the Ordos basin metamorphic basement and its tectonic significance. Acta Geologica Sinica, 89(11): 2171-2186.
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. DOI:10.1007/BF03184122
Xia XP, Sun M, Zhao GC and Luo Y. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199-212. DOI:10.1016/j.precamres.2005.11.004
Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JH and Luo Y. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581-593. DOI:10.1016/j.epsl.2005.11.024
Xie XY and Heller PL. 2013. U-Pb detrital zircon geochronology and its implications:The early Late Triassic Yanchang Formation, south Ordos Basin, China. Journal of Asian Earth Sciences, 64: 86-98. DOI:10.1016/j.jseaes.2012.11.045
Xu ZY, Liu ZH, Dong XJ, Dong CY and Wan YS. 2011. Discoveryof kyanite garnet quartzfeldspathic gneiss in the north side of Daqing Mts., Inner Mongolia, and its petrography, geochemistry and zircon SHRIMP dating. Geological Review, 57(2): 243-252.
Xu ZY, Wan YS, Dong CY, Ma MZ and Liu DY. 2015. Late Neoarchean magmatism identified in Daqingshan, Inner Mongolia:SHRIMP zircon U-Pb dating. Acta Petrologica Sinica, 31(6): 1509-1517.
Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Geng YS. 2013. Delineation of the ca. 2.7Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications. Journal of Asian Earth Sciences, 72: 178-189. DOI:10.1016/j.jseaes.2012.09.031
Yang QY and Santosh M. 2015. Paleoproterozoic arc magmatism in the North China Craton:No Siderian global plate tectonic shutdown. Gondwana Research, 28(1): 82-105. DOI:10.1016/j.gr.2014.08.005
Yin CQ, Zhao GC, Sun M, Xia XP, Wei CJ, Zhou XW and Leung W. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78-94. DOI:10.1016/j.precamres.2009.06.008
Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38. DOI:10.1016/j.lithos.2010.11.010
Yin CQ, Zhao GC, Wei CJ, Sun M, Guo JH and Zhou XW. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex:Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172-186. DOI:10.1016/j.precamres.2013.12.025
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682.
Zhai MG. 2009. Two kinds of granulites (HT-HP and HT-UHT) in North China Craton:Their genetic relation and geotectonic implications. Acta Petrologica Sinica, 25(8): 1753-1771.
Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36.
Zhai MG. 2011. Cratonization and the ancient North China continent:A summary and review. Science China (Earth Sciences), 54(8): 1110-1120. DOI:10.1007/s11430-011-4250-x
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20(1): 6-25. DOI:10.1016/j.gr.2011.02.005
Zhai MG. 2012. Evolution of the North China Craton and early plate tectonics. Acta Geologica Sinica, 86(9): 1335-1349.
Zhai MG. 2014. Multi-stage crustal growth and cratonization of the North China Craton. Geoscience Frontiers, 5(4): 457-469. DOI:10.1016/j.gsf.2014.01.003
Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Gou LL, Lin HB, Wei XS and Zhao J. 2015. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267: 121-136. DOI:10.1016/j.precamres.2015.06.001
Zhang DH, Wei JH, Fu LB, Schmitt AK, Wang DZ, Tan J and Liu JK. 2017. Petrogenesis and thermal overprint of S-type granites in Helanshan region, North China Craton: Constraints on the 1.90Ga khondalites decompression melting and 1.32Ga tectono-thermal event. Precambrian Research, 303: 660-672. DOI:10.1016/j.precamres.2017.08.016
Zhang K. 1982. The structural characteristics of Ordos fault-block during Archean era and Early Proterozoic era. Scientia Geologica Sinca, (4): 352-363.
Zhang L, Dong CY, Liu SJ, Bai WQ, Ren P and Wan YS. 2016. Early Precambrian magmatism and metamorphism in Ural Mountain Area, North China Craton: SHRIMP U-Pb zircon dating and rock geochemical study. Geological Review, 62(6): 1419-1438.
Zhang XH, Yuan LL, Xue FH and Zhai MG. 2014. Neoarchean metagabbro and charnockite in the Yinshan block, western North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 255: 563-582. DOI:10.1016/j.precamres.2013.11.003
Zhang YQ, Wang T, Jia HY and Zhang ZX. 2003. U-Pb Ages of zircons from the Xi Ulanbulang hypersthene-plagioclase granulite in the North Daqing Mountains, Central Inner Mongolia. Geology in China, 30(4): 394-399.
Zhang YQ and Liu JJ. 2004. Zircon U-Pb age of the quartz diorite in North Daqing Mountains, central Inner Mongolia. Geology and Mineral Resources of South China, (4): 22-27.
Zhang YQ, Zhang YK, Zheng BJ, Xu GQ, Han JG, Mu JJ and Zhang LQ. 2006. Geological character and significance of adakite and TTG in Xiaonangou-Mingxinggou district in central of Inner Mongolia. Acta Petrologica Sinica, 22(11): 2762-2768.
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53. DOI:10.1016/S0040-1951(99)00152-3
Zhao GC, Cawood PA, Wilde SA and Lu LZ. 2001. High-pressure granulites (Retrograded eclogites) from the hengshan complex, North China Craton: Petrology and tectonic implications. Journal of Petrology, 42(6): 1141-1170. DOI:10.1093/petrology/42.6.1141
Zhao GC, Sun M and Wilde SA. 2002. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23-38.
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao GC, Wilde SA, Sun M, Li SZ, Li XP and Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4): 213-226. DOI:10.1016/j.precamres.2007.07.004
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792.
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276. DOI:10.1016/j.precamres.2009.12.007
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76. DOI:10.1016/j.precamres.2012.09.016
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240. DOI:10.1016/j.gr.2012.08.016
Zhao J, Gou LL, Zhang CL, Guo AL, Guo XJ and Liu XY. 2017. P-T-t path and tectonic significance of pelitic migmatites from the Lüliang Complex in Xiyupi area of Trans-North China Orogen, North China Craton. Precambrian Research, 303: 573-589. DOI:10.1016/j.precamres.2017.07.010
Zhao RF, Guo JH, Peng P and Liu F. 2011. 2.1Ga crustal remelting event in Hengshan Complex: Evidence from zircon U-Pb dating and Hf-Nd isotopic study on potassic granites. Acta Petrologica Sinica, 27(6): 1607-1623.
Zhong CT, Deng JF, Wan YS and Tu WP. 2014. Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia: Geochemistry, SHRIMP zircon dating and geological significance. Acta Petrologica Sinica, 30(11): 3172-3188.
Zhou XW and Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843-1852.
Zhu XY, Zhai MG, Chen FK, Lyu B, Wang W, Peng P and Hu B. 2013. ~2.7Ga crustal growth in the north china craton: Evidence from zircon U-Pb ages and hf isotopes of the Sushui complex in the zhongtiao terrane. Journal of Geology, 121(3): 239-254. DOI:10.1086/669977
Zhou YY, Zhao TP, Zhai MG, Gao JF and Sun QY. 2014. Petrogenesis of the Archean tonalite-trondhjemite-granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: Implications for crustal accretion and transformation. Precambrian Research, 255: 514-537. DOI:10.1016/j.precamres.2014.06.023
蔡佳, 刘福来, 刘平华, 王舫, 施建荣. 2015. 内蒙古孔兹岩带乌拉山-大青山地区古元古代孔兹岩系年代学研究. 岩石学报, 31(10): 3081-3106.
陈亮. 2007. 固阳绿岩带的地球化学和年代学. 博士后科研报告. 北京: 中国科学院地质与地球物理研究所, 1-40
邓军, 王庆飞, 黄定华, 高帮飞, 杨立强, 徐浩. 2005. 鄂尔多斯盆地基底演化及其对盖层控制作用. 地学前缘, 12(3): 91-99.
第五春荣, 孙勇, 董增产, 王洪亮, 陈丹玲, 陈亮, 张红. 2010. 北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展. 岩石学报, 26(4): 1171-1174.
董晓杰. 2009. 内蒙古西乌兰不浪地区高级变质岩的变质作用特征、时代及其构造意义. 硕士学位论文. 长春: 吉林大学 http://cdmd.cnki.com.cn/article/cdmd-10183-2009093791.htm
董晓杰, 徐仲元, 刘正宏, 沙茜. 2012. 内蒙古大青山北麓2.7Ga花岗质片麻岩的发现及其地质意义. 地球科学—中国地质大学学报, 31(增): 20-27.
杜利林, 杨崇辉, 任留东, 宋会侠, 耿元生, 万渝生. 2012. 吕梁地区2.2~2.1Ga岩浆事件及其构造意义. 岩石学报, 28(9): 2751-2769.
耿元生, 万渝生, 沈其韩, 李惠民, 张如心. 2000. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 74(3): 216-223.
耿元生, 杨崇辉, 万渝生. 2006. 吕梁地区古元古代花岗岩浆作用――来自同位素年代学的证据. 岩石学报, 22(2): 305-314.
耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 26(7): 1945-1966.
耿元生, 沈其韩, 杜利林, 宋会侠. 2016. 区域变质作用与中国大陆地壳的形成与演化. 岩石学报, 32(9): 2579-2608.
贾进斗, 何国琦, 李茂松, 周鼎潮, 张林祥. 1997. 鄂尔多斯盆地基底结构特征及其对古生界天然气的控制. 高校地质学报, 3(2): 144-153.
简平, 张旗, 刘敦一, 金维浚, 贾秀勤, 钱青. 2005. 内蒙古固阳晚太古代赞岐岩(sanukite) ――角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151-157.
金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, (4): 29-102.
金巍, 李树勋. 1996. 华北晚太古代-早元古代高级变质区的变质PTt轨迹及其地壳热动力学演化模式. 岩石学报, 12(2): 208-221.
李明, 闫磊, 韩绍阳. 2012. 鄂尔多斯盆地基底构造特征. 吉林大学学报(地球科学版), 42(增3): 38-43.
刘富, 郭敬辉, 路孝平, 第五春荣. 2009. 华北克拉通2.5Ga地壳生长事件的Nd-Hf同位素证据:以怀安片麻岩地体为例. 科学通报, 54(17): 2517-2526.
刘建辉, 刘福来, 丁正江, 陈军强, 刘平华, 施建荣, 蔡佳, 王舫. 2013. 乌拉山地区早古元古代花岗质片麻岩的锆石U-Pb年代学、地球化学及成因. 岩石学报, 29(2): 485-500.
刘利, 张连昌, 代堰锫, 王长乐, 李智泉. 2012. 内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义. 岩石学报, 28(11): 3623-3637.
刘平华, 刘福来, 蔡佳, 刘建辉, 施建荣, 王舫. 2013. 华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究. 岩石学报, 29(2): 462-484.
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社: 1-125.
路增龙, 宋会侠, 杜利林, 任留东, 耿元生, 杨崇辉. 2014. 华北克拉通阜平杂岩中~2.7GaTTG片麻岩的厘定及其地质意义. 岩石学报, 30(10): 2872-2884.
马铭株, 徐仲元, 张连昌, 董春艳, 董晓杰, 刘守偈, 刘敦一, 万渝生. 2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成. 岩石学报, 29(2): 501-516.
马旭东, 范宏瑞, 郭敬辉. 2013. 阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示. 岩石学报, 29(7): 2329-2339.
彭澎. 2016. 华北陆块前寒武纪岩墙群及相关岩浆岩地质图说明书. 北京: 科学出版社: 19-28.
任云伟. 2010. 内蒙古西红山地区花岗-绿岩带的研究. 硕士学位论文. 长春: 吉林大学, 1-69 http://cdmd.cnki.com.cn/article/cdmd-10183-2010109974.htm
沈其韩, 徐惠芬, 张宗清, 高吉凤, 伍家善, 吉成林. 1992. 中国早前寒武纪麻粒岩. 北京: 地质出版社: 57-62.
沈其韩, 耿元生, 宋彪, 万渝生. 2005. 华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息. 地质学报, 79(5): 616-627.
陶继雄, 胡凤翔. 2002. 内蒙卓资山地区深熔作用形成的石榴混合花岗岩. 前寒武纪研究进展, 25(1): 59-64.
王丹, 郭敬辉, 刘富. 2014. 内蒙武川西乌兰不浪地区晚太古代变质火山岩的地球化学、锆石U-Pb年代学及Hf同位素特征: 对华北克拉通阴山地块形成与演化的指示. 见: 2014年中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 中国地质学会
王洪亮, 陈亮, 孙勇, 柳小明, 徐学义, 陈隽璐, 张红, 第五春荣. 2007. 北秦岭西段奥陶纪火山岩中发现近4.1Ga的捕虏锆石. 科学通报, 52(14): 1685-1693. DOI:10.3321/j.issn:0023-074x.2007.14.015
王涛, 徐鸣洁, 王良书, 刘绍文, 胡旭芝. 2007. 鄂尔多斯及邻区航磁异常特征及其大地构造意义. 地球物理学报, 50(1): 163-170.
吴昌华, 孙敏, 李惠民, 赵国春, 夏小平. 2006. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究. 岩石学报, 22(11): 2639-2654.
吴素娟, 张永生, 邢恩袁. 2015. 鄂尔多斯盆地变质基底中碎屑锆石的LA-ICP-MS U-Pb年龄及其构造意义. 地质学报, 89(11): 2171-2186.
徐仲元, 刘正宏, 董晓杰, 董春艳, 万渝生. 2011. 内蒙古大青山北麓蓝晶石榴长英质片麻岩的发现:岩相学、地球化学和锆石SHRIMP定年. 地质论评, 57(2): 243-252.
徐仲元, 万渝生, 董春艳, 马铭株, 刘敦一. 2015. 内蒙古大青山地区新太古代晚期岩浆作用:来自锆石SHRIMP U-Pb定年的证据. 岩石学报, 31(6): 1509-1517.
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
翟明国. 2009. 华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题. 岩石学报, 25(8): 1753-1771.
翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36.
翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学(地球科学), 41(8): 1037-1046.
翟明国. 2012. 华北克拉通的形成以及早期板块构造. 地质学报, 86(9): 1335-1349.
张抗. 1982. 鄂尔多斯断块太古代至早元古代构造发育特征. 地质科学, (4): 352-363.
张琳, 董春艳, 刘守偈, 白文倩, 任鹏, 万渝生. 2016. 华北克拉通乌拉山地区早前寒武纪岩浆作用和变质作用——锆石SHRIMP U-Pb定年及岩石地球化学研究. 地质论评, 62(6): 1419-1438.
张玉清, 王弢, 贾和义, 张志祥. 2003. 内蒙古中部大青山北西乌兰不浪紫苏斜长麻粒岩锆石U-Pb年龄. 中国地质, 30(4): 394-399.
张玉清, 刘俊杰. 2004. 内蒙古大青山北前壕石英闪长岩锆石U-Pb年龄及地质意义. 华南地质与矿产, (4): 22-27.
张永清, 张有宽, 郑宝军, 徐国权, 韩建刚, 母吉君, 张履桥. 2006. 内蒙古中部小南沟-明星沟地区新太古代TTG岩系及其地质意义. 岩石学报, 22(11): 2762-2768.
赵国春, 孙敏, Wilde SA. 2002. 华北克拉通基底构造单元特征及早元古代拼合. 中国科学(D辑), 32(7): 538-549.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
赵瑞幅, 郭敬辉, 彭澎, 刘富. 2011. 恒山地区古元古代2.1Ga地壳重熔事件:钾质花岗岩锆石U-Pb定年及Hf-Nd同位素研究. 岩石学报, 27(6): 1607-1623.
钟长汀, 邓晋福, 万渝生, 涂伟萍. 2014. 内蒙古大青山地区古元古代花岗岩:地球化学、锆石SHRIMP定年及其地质意义. 岩石学报, 30(11): 3172-3188.
周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843-1852.