岩石学报  2018, Vol. 34 Issue (3): 567-585   PDF    
东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约
陈国超1,2 , 裴先治1 , 李瑞保1 , 李佐臣1 , 刘成军1 , 陈有炘1 , 裴磊3 , 李小兵1     
1. 长安大学地球科学与资源学院, 西部矿产资源与地质工程教育部重点实验室, 国土资源部岩浆作用与找矿重点实验室, 西安 710054;
2. 南阳理工学院, 南阳 473000;
3. 中国地质大学地球科学与资源学院, 北京 100083
摘要:可日岩体位于东昆仑造山带东段东昆北构造带,岩性为含暗色微粒包体正长花岗岩。LA-ICP-MS锆石U-Pb同位素定年结果显示寄主岩和暗色微粒包体的结晶年龄分别为231.58±0.49Ma和232.6±2.3Ma。可日正长花岗岩主体为弱过铝质中钾钙碱性I型花岗岩,具有较高的SiO2含量(72.06%~74.49%)和Na2O/K2O(1.00~1.35)、Nb/Ta(15.4~27.9)比值,较低的Mg#值(14~31)和Rb/Ba(0.10~0.46)比值,富集大离子亲石元素(LILE),亏损高场强元素(HFSE)。岩体为巴颜喀拉地块同东昆仑地块碰撞后,板片断离持续作用产生的镁铁质熔体底侵中下地壳使其部分熔融的结果。暗色微粒包体同寄主岩具有相近的结晶年龄、较细粒度、含有寄主岩捕获晶、针状磷灰石,显示包体是镁铁质岩浆注入寄主岩快速冷却的产物。由于寄主岩分离结晶,残留熔体与包体的浓度梯度差导致元素扩散,使两者具有物质交换。东昆仑东段晚古生代-早中生代幔源岩浆对花岗质岩浆的影响是一个持续的过程,从俯冲阶段早期流体交代地幔熔融,到俯冲阶段后期板片断离,然后同碰撞阶段板片断离的持续影响,再到后碰撞阶段加厚地壳的拆沉作用,由于地球动力学体制不同,导致幔源岩浆影响的大小和特征不同。可日岩体年龄及岩石成因显示东昆仑地区在232Ma左右处于同碰撞阶段。
关键词: 东昆仑造山带     可日正长花岗岩     暗色微粒包体     中三叠世    
Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun
CHEN GuoChao1,2, PEI XianZhi1, LI RuiBao1, LI ZuoChen1, LIU ChengJun1, CHEN YouXin1, PEI Lei3, LI XiaoBing1     
1. MOE Key Laboratory of Western China's Mineral Resources and Geological Engineering, Key MLR Laboratory for the study of Focused Magmatism and Giant Ore Deposits, Faculty of Earth Science and Resources, Chang'an University, Xi'an 710054, China;
2. Nanyang Institutte of Technology, Nanyang 473000, China;
3. School of Earth Science and Resource, China University of Geosciences, Beijing 100083, China
Abstract: The Keri pluton located in the north tectonic belt of the eastern part of East Kunlun Orogenic Belt, is mainly syenogranite contained with mafic microgranular enclaves (MMEs). The LA-ICP-MS zircon U-Pb chronology of host rock and MMEs yield an age of 231.58±0.49Ma and 232.6±2.3Ma respectively. Keri pluton is weakly peraluminous Ⅰ-type granite, and belongs to middle-K calc-alkaline series. Keri pluton are high in SiO2 (72.06%~74.49%), Na2O/K2O (1.00~1.35) and Nb/Ta (15.4~27.9), and relatively low in Mg# (14~31) and Rb/Ba (0.10~0.46). The rocks generally have a similar variation trend, such as systematic enrichment of LILE and depletion of HFSE. Keri pluton is a result of partial melting of the middle-lower crust, due to the underplating of the mafic melt caused by the plate break-off after the collision between Bayan Har block and East Kunlun block. The MMEs is similar to its host rock in crystallizing age, but the size is relatively finer. The MMEs contain a few phenocrys captured from the host rock, and some acicular apatites. Above evidences suggest the MMEs is the result of the rapid condensation of mafic melt after infusing into the host rock. Due to the fractional crystallization, the concentration gradient differences between the relic melt and MMEs lead to the element diffusion, cause the interchange of material in them. The influence to the granitoid melts by the Late Palozoic-Early Mesozoic mantle-derived magma of East Kunlun is a continuous process, which was from the mantle melting with fluid metasomatism in early subduction stage to the large-scale plate break-off in late subduction atage, from the continuous influence of plate break-off in syn-collision stage to delamination of thicken crust in post-collision stage. The influence degrees and features of mantle-derived magma were different in the different geodynamic system of the process. The age and lithogenesis of Keri pluton indicate a syn-collision stage in 232Ma of East Kunlun.
Key words: East Kunlun Orogen     Keri syenogranites     Mafic microgranular enclave     Middle Triassic    

东昆仑造山带作为一个复合型大陆造山带,是我国中央造山系的重要组成部分(图 1),在长期的地质演化过程中,经历了复杂多样的构造演化,广泛出露不同时代、不同成因的花岗岩,其中晚古生代晚期-早中生代花岗岩构成东昆仑岩浆岩带的主体(姜春发等, 1992, 2000; 罗照华等, 1999; 莫宣学等, 2007; 许志琴等, 2013)。

图 1 东昆仑造山带及邻区构造单元划分简图(a)和东昆仑东段可日岩体分布示意图(b) Fig. 1 Tectonic units division of the East Kunlun Orogen and its adjacent area (a) and distribution diagram for Keri pluton in eastern part of Eastern Kunlun (b)

东昆仑造山带有关中三叠世侵入岩的记录较少,一般归因于这一时期为东昆仑晚古生代-早中生代构造演化的同碰撞阶段(柴耀楚等, 1983; 许荣华等, 1990; 袁万明等, 2000; Zhang et al., 2012Xiong et al., 2014)。但Huang et al. (2014)对东昆仑花岗质岩石研究认为,260~240Ma花岗质岩石为同碰撞环境下洋壳部分熔融的产物,布青山-阿尼玛卿洋在晚二叠世已经闭合。Ding et al. (2014)对早三叠世花岗质岩脉(244Ma)的研究,认为其具有A2型花岗岩特征,东昆仑在早三叠世已进入到后碰撞阶段。另外,同碰撞阶段处于挤压环境,矿物脱水、减压或者地壳内的剪切作用导致地梯温度升高使地壳部分熔融产生S型花岗岩,一般没有幔源岩浆的贡献(Chappell and White, 1992; Pitcher, 1997)。东昆仑地区一些花岗岩可能为同碰撞阶段的产物,岩体中含有暗色微粒包体。以上地质证据说明东昆仑地区在古特提斯洋的闭合时间和各构造阶段转换时限上还存在一定的争论,并且构造演化过程中幔源岩浆对花岗质岩浆的贡献还不是很明确。

可日岩体位于东昆仑造山带东段东昆北构造带(图 1),为含暗色微粒包体正长花岗岩。本文以该岩体为例,在锆石U-Pb同位素精确定年的基础上,通过岩石学、矿物学和岩石地球化学等方面分析,研究该岩体的源区特征、岩石成因及其构造意义,并结合研究区沉积、变质和构造等方面成果探讨东昆仑中三叠世花岗质岩浆岩形成的地球动力学背景。

1 区域地质背景及岩体地质特征

东昆仑造山带位于青藏高原东北缘,经过原特提斯洋和古特提斯洋的演化,地质构造复杂多样。东昆仑造山带东段由北到南可划分为东昆北构造带、东昆中蛇绿构造混杂岩带、东昆南构造带和布青山-阿尼玛卿蛇绿构造混杂岩带(殷鸿福和张克信, 1997; 许志琴等, 2006; Meng et al., 2013; 裴先治等, 2015)。研究区位于东昆仑东段东昆北构造带。东昆北构造带北部以柴达木南缘断裂为界与柴达木地块相邻,南部以东昆中断裂为界与东昆南构造带相邻,向西延伸进入新疆境内,向东被NW向瓦洪山断裂终止,呈近东西向展布。该构造带出露大面积前寒武纪中深变质岩系以及少量泥盆纪、石炭纪和三叠纪沉积地层。结晶基底主要为古元古界白沙河岩组(Pt1b)和中元古界小庙岩组(Pt2x)。该带一个明显的特征是出露巨量花岗岩类,以晚华力西期-印支期为主,显示出弧岩浆岩特征,因此也有东昆北弧岩浆岩带之称(罗照华等, 1999, 2002; 杨经绥等, 2005; 莫宣学等, 2007; Chen et al., 2015)。

可日岩体位于东昆北构造带东部的巴隆乡东南部,出露面积约20km2。岩体侵位于中元古界小庙岩组,南部与香加南山花岗岩基相接触,北部大部分被第四系覆盖,岩体西部和东部露头较好,中部由于风化只有零星出露,其余被第四系覆盖(图 1)。岩体岩性整体较均一,为浅肉红色中粗粒正长花岗岩(图 2a)。岩体含有少量暗色微粒包体,包体大小不一,主体介于10~30cm,偶见大于60cm巨型包体;包体大部分呈椭圆状,少量呈近圆状(图 2a, b)。

图 2 东昆仑东段可日正长花岗岩野外露头(a、b)和镜下显微照片(c-f) Q-石英;Pl-斜长石;Kf-钾长石;Amp-角闪石;Bi-黑云母;Ap-磷灰石;Zr-锆石 Fig. 2 Outcrop photos (a, b) and photomicrographs (c-f) of the typical textures for syenogranite from Keri area in eastern part of Eastern Kunlun
2 岩相学特征

岩体岩性为正长花岗岩,呈浅肉红色,成分均匀,具中粗粒花岗结构,块状构造(图 2a, b),主要组成矿物为钾长石(50%±)、斜长石(10%±)、石英(25%±)和黑云母(10%±),另有少量磷灰石、磁铁矿和锆石等副矿物。钾长石颗粒较粗大,呈半自形,格子双晶发育,粒度约4~12mm,中间包裹有黑云母、磷灰石和锆石等矿物。斜长石含量较低,呈自形-半自形板柱状,聚片双晶发育,部分斜长石具一定绢云母化,粒度约1×3mm~3×5mm。石英呈他形粒状分布于长石间隙。黑云母呈片状零散分布于岩石中(图 2c),偶见磁铁矿、磷灰石包裹体。

暗色微粒包体主要为闪长质,灰黑色细粒结构,块状构造。主要矿物组成为斜长石(55%±)、角闪石(30%±)和黑云母(10%±),另有少量石英和钾长石。副矿物主要为磷灰石、锆石和磁铁矿等。斜长石呈自形-半自形,聚片双晶发育,约0.1×0.3mm~0.2×0.5mm。角闪石呈自形-半自形柱状(图 2d),绿-浅黄绿色,发育双晶,少量具一定的绿泥石化。黑云母多为半自形片状,深褐-浅黄色,少量黑云母具弱绿泥石化。包体中含有他形石英捕掳晶,粒度约5~7mm,周围被角闪石和黑云母环绕(图 2e)。磷灰石呈针柱状包裹于斜长石中(图 2f),长度约0.3~0.5mm。

3 样品采集与分析方法 3.1 样品采集

样品采集于东昆仑造山带东段可日一带,分析样品为中粗粒正长花岗岩和闪长质暗色微粒包体,样品新鲜无蚀变。共采集锆石U-Pb定年样品2件,样品编号为XRD114/2和XRD114/4;岩石地球化学样品11件,样品编号为XRD114/1、XRD114/2、XRD114/4、XRD114/5、XRD114/8、XRD114/9、XRD114/11、XRD115/1、XRD115/3、XRD201/1、XRD202/1。同位素年龄采样点地理坐标为N35°59.842′,E97°36.665′。

3.2 锆石U-Pb定年

样品在河北廊坊区域地质矿产调查研究所采用常规方法进行粉碎,并用常规浮选方法进行分选出锆石后,再用双目镜挑选出晶形和透明度较好的锆石颗粒作为测定对象。将锆石颗粒粘在双面胶上,经环氧树脂固定-环氧树脂固化-表面抛光工序后,进行锆石显微照相和阴极发光照相。锆石的反射光和透射光显微照相及阴极发光(CL)显微照相在北京锆年领航科技有限公司完成。

锆石U-Pb同位素测试在天津地质矿产研究所同位素实验室完成,用激光烧蚀多接收器等离子体质谱仪(LA-ICP-MS)进行微区原位分析,仪器为Thermo Fisher公司制造的Neptune,具体实验过程及试验方法见李怀坤等(2010)。数据采用Andersen软件对测试数据进行普通铅校正,年龄计算及谐和图绘制采用ISOPLOT(2.49版)软件完成。所有数据点年龄值的误差均为1σ,采用206Pb/238U年龄,其加权平均值具95%的置信度(Anderson, 2002; Ludwig, 2003)。

3.3 岩石地球化学分析

样品碎样工作在河北省廊坊区域地质矿产调查研究所实验室完成,岩石样品首先粗碎至2~4cm,然后用3%~5%的稀盐酸经超声波清除表面杂质,再研磨至200目。岩石的地球化学成分测试在长安大学西部矿产资源与地质工程教育部重点实验室完成。主量元素使用X-射线荧光光谱仪法测试。微量元素及稀土元素采用ThermoX7电感耦合等离子质谱仪测定。先将粉末样品(500mg)置于PTFE坩锅,加入添加剂(1.0mL高纯HF和1.5mL高纯HNO3),按照标准测试程序,反复添加、加热、冷却后,最后在离心管中稀释到50mL;将所得溶液在电感耦合等离子体质谱仪(ICP-MS)上完成测定,分析精度和准确度优于10%。

4 分析结果 4.1 锆石U-Pb年代学

可日正长花岗岩的锆石为浅黄色-无色透明,在CL图像中,锆石较自形,大部分呈长柱状、少量为短柱状(图 3a),长度多为100~210μm。样品(XRD114/2)共测试了21个点。测点的206Pb/238U和207Pb/235U谐和性较好(图 3c),其206Pb/238U年龄介于229±1Ma~233±2Ma之间(表 1),206Pb/238U加权平均年龄为231.58±0.49Ma(MSWD=0.45)。因此,本文将可日正长花岗岩的结晶年龄确定为231.58±0.49Ma。

图 3 东昆仑东段可日正长花岗岩和暗色微粒包体代表性单颗粒锆石的阴极发光(CL)图像(a、b)及其LA-ICP-MS锆石U-Pb年龄谐和图和直方图(c、d) Fig. 3 Cathodoluminescence images (CL) of typical single-crystal zircons (a, b) and LA-ICP-MS zircon U-Pb concordant age diagram and weighted histogram (c, d) of syenogranites and their MMEs from Keri area in eastern part of Eastern Kunlun

表 1 东昆仑东段可日正长花岗岩和暗色微粒包体LA-ICP-MS锆石U-Pb同位素分析结果 Table 1 LA-ICP-MS zircon U-Pb isotope analysis results for the syenogranites and their MMEs from Keri area in eastern part of Eastern Kunlun

暗色微粒包体的锆石为浅黄色-无色透明,在CL图像中,大部分锆石较自形,呈长柱状(图 3b),长度多为70~130μm。样品(XRD114/4)也测试了21个点,其中3个测点的206Pb/238U和207Pb/235U谐和性较差,7个测点的206Pb/238U年龄低于锆石的主体年龄,部分锆石颜色发黑(图 3d),可能存在一定铅丢失,不参与计算。另外11个测点的206Pb/238U和207Pb/235U谐和性较好(图 3d),其206Pb/238U年龄介于230±1Ma~237±2Ma之间(表 1),206Pb/238U加权平均年龄为232.6±2.3Ma(MSWD=1.3)。因此,本文将暗色微粒包体的结晶年龄确定为232.6±2.3Ma。

4.2 主量元素

可日正长花岗岩的SiO2变化范围较小(表 2),为72.06%~74.49%;Na2O含量较高,为3.50%~4.14%,平均为3.90%;K2O为2.99%~3.90%,平均为3.48%,Na2O/K2O为1.00~1.35,平均1.13;Al2O3为13.46%~13.88%,岩体的A/CNK介于1.00~1.13之间,大部分小于1.10,平均为1.06,为弱过铝质中钾钙碱性系列(图 4a, b);在TAS图中,可日正长花岗岩落入到花岗岩范围(图 4c)。岩体FeOT、MgO和TiO2含量较低,FeOT含量为1.75%~2.74%;MgO含量为0.19%~0.68%,Mg#为14~31,平均为24;TiO2含量为0.19%~0.34%,平均为0.27%。在哈克图解中(图 5),随着SiO2含量的增加,TiO2、FeOT、CaO、MgO和P2O5含量下降,Na2O、Al2O3变化不明显,K2O随SiO2含量的增加而增加。

表 2 东昆仑东段可日正长花岗岩和暗色微粒包体主量元素(wt%)和微量元素(×10-6)分析结果 Table 2 Major element (wt%) and trace element (×10-6) analysis results for the syenogranites and their MME from Keri area in eastern part of Eastern Kunlun

图 4 东昆仑东段可日正长花岗岩和暗色微粒包体A/CNK-A/NK图解(a, 据Maniar and Piccoli, 1989)、SiO2-K2O图解(b, 据Rollinson, 1993)和SiO2-ALK分类命名图解(c, 据Wilson, 1989) 数据来源:中三叠世花岗岩(Zhang et al., 2012; Xia et al., 2014; Xiong et al., 2014);后碰撞幔源岩浆(Hu et al., 2016);俯冲幔源岩浆(熊富浩等, 2011);俯冲阶段花岗岩范围(刘成东等, 2004; 杨经绥等, 2005; 陈宣华等, 2011; 丰成友等, 2012; 李碧乐等, 2012; Xiong et al., 2012, 2014; Zhang et al., 2012; 罗明非等, 2015; Xia et al., 2015b);后碰撞阶段花岗岩范围(陈国超等, 2013b; 李佐臣等, 2013; 罗明非等, 2014; Xia et al., 2014, 2015a; Li et al., 2015);后图数据来源及图例同此图 Fig. 4 A/CNK vs. A/CNK diagrams (a, after Maniar and Piccoli, 1989), SiO2 vs. K2O diagrams (b, after Rollinson, 1993) and SiO2 vs. ALK classifying-naming diagrams (c, after Wilson, 1989) for syenogranites and their MMEs from Keri area in eastern part of Eastern Kunlun

图 5 东昆仑东段可日正长花岗岩和暗色微粒包体Harker图解 Fig. 5 Harker diagrams for syenogranites and their MMEs from Keri area in eastern part of Eastern Kunlun

暗色微粒包体的SiO2、K2O、MnO含量较低,但Na2O、CaO、FeOT、MgO、Al2O3含量较高。SiO2含量为56.00%~59.03%,TiO2含量为0.82%~1.44%,Al2O3含量为16.61%~16.96%,铝饱和指数A/CNK介于0.88~0.95之间,为准铝质(图 4a)。Na2O含量为2.28%~4.94%,平均为4.93%,K2O含量为1.49%~2.18%,平均为1.81%,K2O+Na2O为4.72%~5.11%,Na2O/K2O比值为2.17~3.43,平均2.81,为中钾钙碱性-高钾钙碱性系列(图 4b)。MgO含量为2.68%~3.20%,FeOT为7.00%~8.71%,Mg#为35~43,在TAS图中投入二长岩范围(图 4c)。

4.3 稀土元素

可日正长花岗岩的稀土元素总量(REE)为46.88×10-6~136.5×10-6,LREE/HREE比值为7.75~15.4,(La/Yb)N比值为7.20~26.8,平均为14.7,在球粒陨石标准化稀土元素配分图解上(图 6a),稀土元素分馏较强,富集轻稀土元素,亏损重稀土元素。Yb含量为0.61×10-6~1.44×10-6,Lu含量在0.11×10-6~0.21×10-6,Yb/Lu比值为5.55~6.46,(Gd/Yb)N比值为2.00~3.13,平均为2.70,表现出较为平坦的重稀土元素配分模式。样品δEu介于0.29~0.51之间,显示较明显Eu负异常。

图 6 东昆仑东段可日正长花岗岩和暗色微粒包体球粒陨石标准化稀土元素配分图(a、c,标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b、d,标准化值据Sun and McDonough, 1989) 有关数据来源:IAB (Niu and O’Hara, 2003);OIB,N-MORB,E-MORB (Sun and McDonough, 1989);Middle Crust (Rudnick and Gao, 2003) Fig. 6 Chondrite-normalized REE distribution patterns (a, c, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, d, normalization values after Sun and McDonough, 1989) for syenogranites and their MMEs from Keri area in eastern part of Eastern Kunlun

暗色微粒包体的稀土元素总量(REE)为90.33×10-6~153.4×10-6,LREE/HREE比值为3.27~9.29,(La/Yb)N比值为1.40~12.6,在球粒陨石标准化稀土元素配分图解上(图 6c),稀土元素具有一定的分馏,富集轻稀土元素,亏损重稀土元素。Yb含量为1.25×10-6~5.06×10-6,Lu含量为0.20×10-6~0.79×10-6,Yb/Lu比值为5.82~6.43,(Gd/Yb)N比值为2.00~3.38,平均为2.67,表现出较为平坦的重稀土元素配分模式。样品δEu介于0.23~0.55之间,具明显Eu负异常。

4.4 微量元素

在原始地幔标准化微量元素蛛网图中,可日岩体富集Rb、Th、Ba、Cs等大离子亲石元素(LILE),亏损Nb、Ta、Ti等高场强元素(HFSE),配分曲线与中地壳相似(图 6b)。Rb含量为47.93×10-6~152.9×10-6,Sr含量为70.67×10-6~210.8×10-6,Rb/Sr比值为0.35~1.24;Y含量为7.45×10-6~14.8×10-6,Sr/Y比值为8.10~18.4,平均值为12.68。岩石的Nb含量为2.98×10-6~11.82×10-6、Ta含量为0.19×10-6~0.69×10-6,Nb/Ta比值为15.4~27.9,平均为18.8。Cr含量变化范围较大,介于0.89×10-6~38.96×10-6之间,平均为7.01×10-6;Ni含量为8.52×10-6~54.55×10-6,平均为31.98×10-6

暗色微粒包体与可日岩体相似,富集大离子亲石元素(LILE),亏损高场强元素(HFSE),配分曲线与俯冲作用形成的IAB相似,明显不同于E-MORB和N-MORB(图 6d),但高场强元素的亏损程度小于可日岩体,并且有一个样品具Nb和Ta正异常。Sr含量为291.4×10-6~369.5×10-6;Y含量为15.26×10-6~75.57×10-6,Sr/Y比值为3.91~22.5。样品的Nb含量为9.90×10-6~50.84×10-6、Ta含量为0.58×10-6~1.90×10-6,Nb/Ta比值为13.7~26.8,平均为19.8。Cr含量为5.11×10-6~15.25×10-6,Ni含量较高,为161.3×10-6~180.6×10-6

5 讨论 5.1 岩石成因与源区

可日岩体含有暗色微粒包体,说明岩体可能为包体代表的中基性岩浆分离结晶的产物。研究显示,岩体和包体具有近似的Nb/Ta、Rb/Sr比值和δEu值,包体的REE含量高于岩体(图 6a),在哈克图解中,岩体和包体存在着明显的物质成分间断(图 5)。这些特征显示岩体不是包体代表的中基性岩浆分离结晶的结果。

可日岩体含有大量的钾长石,具有较高的SiO2含量,可能为S型或A型花岗岩。镜下特征显示,岩体主要造岩矿物为钾长石、斜长石、石英、黑云母,未见代表S型花岗岩的石榴石和堇青石等过铝质矿物(吴福元等, 2007)。岩体的P2O5含量均很低(<0.08%),随着分异作用P2O5具有递减的演化趋势(图 5f);A/CNK大部分小于1.1,为弱过铝质;在原始地幔标准化微量元素蛛网图中,岩体虽具有Ba、Sr、P、Ti的负异常(图 6b),但是明显小于典型S型花岗岩(Chappell and White, 1992; Champion and Bultitude, 2013)。

可日岩体的FeOT/MgO比值为(4.03~11.16),平均为6.06,远低于世界A型花岗岩的平均值(22.84),接近于一般I型花岗岩(2.27)(Whalen et al., 1987)。岩体的10000×Ga/Al比值介于0.85~2.67之间(平均2.04),同I型花岗岩平均值近似(为2.18),低于A型花岗岩3.75(Whalen et al., 1987)。Zr+Nb+Ce+Y介于75.37×10-6~288.7×10-6,平均为227.0×10-6,低于A型花岗岩的下限值(350×10-6)(Whalen et al., 1987)。在区分A型花岗岩的相关判别图解上,样品基本均落在I、S型花岗岩区(图 7)。计算显示岩体的全岩锆石饱和温度平均值为767.4℃,低于A型花岗岩形成的平均温度(800℃, 刘昌实等, 2003),与高分异I型花岗岩近似(764℃, King et al., 1997)。以上显示可日岩体不是A和S型花岗岩,为I型花岗岩,源岩可能为变火成岩。研究显示(表 3),东昆仑地区240~230Ma花岗岩的(87Sr/86Sr)i介于0.707339~0.713550之间,平均为0.710067;εNd(t)介于-9.95~-4.2之间,平均为-6.65,Nd的tDM2为1.25~1.56Ga,平均为1.42Ga;εHf(t)介于-8.4~5.0之间,平均为-1.80,Hf的tDM2为0.95~1.80Ga,平均为1.39Ga,以上显示,东昆仑地区240~230Ma的花岗岩为古老下地壳部分熔融的结果(图 8),中间可能有幔源物质的混入,这些花岗岩的Sr-Nd和Hf同位素具有较大的变化区间可能与幔源物质混入的多少相关。岩体具有较高的CaO/Na2O比值为0.27~0.49(平均0.39)和较低的Rb/Ba(平均0.20),与杂砂岩或变火成岩熔融形成的花岗质岩石相似(Sylvester, 1998),显示可日岩体源岩具有变沉积岩特征,这可能是岩浆经历了较强的分异作用。岩体的DI介于88.0~92.6之间,较高的Rb/Sr比值,锆石饱和温度与高分异I型花岗岩近似,也说明岩体存在较强的分异作用。

图 7 东昆仑东段可日正长花岗岩10000×Ga/Al-Nb图解(a)和(Zr+Nb+Ce+Y)-FeOT/MgO图解(b)(据Whalen et al., 1987) Fig. 7 Diagrams of 10000×Ga/Al vs. Nb (a) and (Zr+Nb+Ce+Y) vs. FeOT/MgO (b) (after Whalen et al., 1987) for syenogranites from Keri area in eastern part of Eastern Kunlun

表 3 东昆仑地区240~230Ma花岗岩的Sr-Nd和Hf同位素组成 Table 3 Sr-Nd and Hf isotopic data for 240~230Ma granite in East Kunlun area

图 8 东昆仑地区240~230Ma花岗岩的(87Sr/86Sr)i-εNd(t)图解(a)和年龄-εHf(t)同位素图解(b) Fig. 8 Diagrams of (87Sr/86Sr)i vs. εNd(t) (a) and Age vs. εHf(t) (b) for 240~230Ma granite in East Kunlun area

在Hark图解中(图 5),随着SiO2含量的增加,TiO2、CaO、MgO、FeOT和P2O5减少,Al2O3、Na2O变化不明显,说明岩体可能存在着斜长石、角闪石、黑云母、磷灰石及钛铁矿的分离结晶。在SiO2-Sr图解中(图 5j),随着SiO2增加Sr含量较少,这说明岩体可能存在斜长石分离结晶(Castillo et al., 1999; Bindeman and Davis, 2000; Bédard, 2006)。在SiO2对相容元素Sc、Ni和Co图解中(图 5g-i),随着SiO2增加相容元素减少,这与主量元素FeOT和MgO相对应,说明随着岩浆演化,角闪石和黑云母可能参加了分离结晶。相对于HREE,角闪石可以很好的相容MREE,角闪石的分离结晶可以降低Dy/Yb比值(Bea et al., 1994)。在SiO2-Dy/Yb图解中(图 5m),随着SiO2增加,Dy/Yb比值变化不大;并且在SiO2-Zr/Sm图解中(图 5o),不具有角闪石演化趋势,这说明了岩浆演化过程中角闪石的分离结晶影响不大(Chiaradia et al., 2009)。

可日岩体具有较高的Nb/Ta比值(平均18.8),高于原始地幔(Nb/Ta=17.5)(McDonough and Sun, 1995; Weyer et al., 2003)和大陆地壳(Nb/Ta=13.4)(Rudnick and Gao, 2003)。Nb的富集可能与岩浆交代富辉石岩石圈地幔相关,由这种交代作用形成的熔体Nb/Ta比值可高达33(刘勇胜和高山, 2007)。可日岩体为地壳部分熔融产物,熔体交代地幔不能解释岩体高Nb/Ta比值。角闪石、黑云母、金红石对Nb/Ta的分异有控制作用。黑云母的分离结晶会使残留熔体富集Ta,并使Nb/Ta比值增高(Stepanov et al., 2014)。SiO2同微量元素哈克图解(图 5),Nb、Ta、Nb/Ta呈弱负相关性,说明黑云母的分离结晶不是造成高Nb/Ta比值的因素。金红石的DNb/Ta小于1(Prowatke and Klemme, 2005),残留相中出现金红石可以导致熔体高Nb/Ta比值(Klemme et al., 2005)。但是金红石稳定区域需较高的压力,可日岩体具有较低的Sr、Al2O3含量和Sr/Y比值,较高的Y和Yb含量,Eu具明显负异常,这些特征显示岩体的形成压力不大(Martin et al., 2005; Castillo, 2006),所以残留相含有金红石也不能解释岩体高Nb/Ta比值。角闪石的DNb/Ta大于1(Prowatke and Klemme, 2005),如果源区的角闪石熔融进入熔体,会使原生岩浆具有较高的Nb/Ta比值。如前所述,可日岩体演化过程中只有少量角闪石分离结晶,所以岩体高Nb/Ta比值与源区的角闪石熔融相关。

东昆仑在245~240Ma期间经历了巨量的岩浆作用,在242Ma左右达到峰期(图 9)(袁万明等, 2000; 孙雨等, 2009; 丰成友等, 2012; 李佐臣等, 2013; Liu et al., 2014; 罗明非等, 2014, 2015; Xia et al., 2014, 2015a; Chen et al., 2015; Li et al., 2015),这么强烈的岩浆作用可能为俯冲阶段板片断离作用的结果。但岩浆活动在240~230Ma期间很弱,只有零星岩体出露,可能与陆陆碰撞阶段板片断离的峰值期已过有关。可日岩体含有暗色微粒包体,但岩体中包体含量很少,显示幔源岩浆对岩体成分影响较小,幔源岩浆对岩体的影响更多的是提供热源,俯冲晚期板片断离作用的后续影响可以解释可日岩体成因。巴颜喀拉地块同东昆仑地块碰撞后,板片断离后持续作用继续使少量地幔熔融形成镁铁质岩浆,幔源岩浆上升底侵地壳使其熔融形成可日岩体,岩体在演化过程中又经历了斜长石、黑云母、磷灰石和钛铁矿的分离结晶。

图 9 东昆仑地区277~200Ma岩浆岩年龄直方图 Fig. 9 Age probability diagram for 277~200Ma magmatite in East Kunlun area
5.2 暗色微粒包体成因

暗色微粒包体成因主要有以下三种观点:(1)花岗岩源区熔融的残留或围岩的捕掳体(Chappell and White, 1992);(2)寄主岩早期演化的堆晶矿物(Noyes et al., 1983; Clemens and Wall, 1988; Shellnutt et al., 2010);(3)镁铁质岩浆注入长英质岩浆混合的产物(Vernon, 1984; Barbarin, 2005; Chen et al., 2009)。

可日岩体中暗色微粒包体通常呈椭圆形,具有典型的岩浆岩结构和构造(图 2d-f),包体同寄主岩有着相近的结晶年龄,说明其不是源区的残留体或围岩捕虏体(White et al., 1999; 陈国超等, 2016, 2017c)。包体中未发现堆积结构,在哈克图解中(图 5),包体和寄主岩有着明显的间断,部分包体的稀土元素含量高于寄主岩,并且包体与寄主岩有着较为相近δEu值,这也不符合同源岩浆演化结果(Dahlquist, 2002; Donaire et al., 2005)。

比较合理的解释是暗色微粒包体是镁铁质岩浆注入长英质岩浆混合的产物。首先,暗色微粒包体大部分呈椭圆状(图 2a, b),为镁铁质岩浆在寄主岩中呈塑性状态下拉伸的结果(Wiebe et al., 1997, 2007; 陈国超等, 2017d, e)。在包体中还发现有暗色环边石英(图 2b, e),这些暗色矿物晚于石英结晶,石英可能为包体捕获寄主岩矿物。石英在高温的镁铁质岩浆中(包体)受到熔蚀,熔蚀过程中的吸热效应使石英的边部快速冷却,其边部的岩浆快速结晶,导致暗色矿物围绕石英晶出(Troll and Schmincke, 2002)。再者,包体中含有针状磷灰石(图 2f),也是高温镁铁质岩浆注入低温长英质岩浆快速冷却的标志(Baxter and Feely, 2002)。岩石地球化学方面也支持岩浆混合作用,在同分母比值Al2O3/FeOT-Na2O/FeOT图解中呈线性趋势(图 10a),在Al2O3/FeOT-Na2O/CaO图中具双曲线趋势(图 10b),具岩浆混合特征(Langmuir et al., 1978)。大量捕获寄主岩矿物可以使包体的主量元素含量有较大变化,从哈克图解中(图 5),包体与寄主岩有着很大的变化区间,这说明晶体交换对岩浆混合影响不大(Paterson et al., 2004)。可日岩体中包体稀土元素含量高于寄主岩,这可能是因为寄主岩结晶分离作用,使残余熔体中含量较高,这样在包体和寄主岩中存在稀土元素的浓度差,寄主岩中的稀土元素扩散到包体,导致包体稀土元素含量增高(Farner et al., 2014)。可日岩体中暗色微粒包体含有大量含水矿物(角闪石和黑云母),这为包体同寄主岩之间元素扩散提供了载体(Bussy, 1991)。

图 10 东昆仑东段可日正长花岗岩和暗色微粒包体岩浆混合作用图解 Fig. 10 Diagrams of the magma mixing for syenogranites and their MMEs from Keri area in eastern part of Eastern Kunlun
5.3 东昆仑晚二叠世-晚三叠世岩浆作用与洋陆转换

东昆仑古特提斯演化过程中俯冲作用的岩浆记录一般认为开始于260Ma左右(姜春发等, 1992, 2000; 郭正府等, 1998; 杨经绥等, 2005),在240Ma左右进入到洋壳俯冲作用的晚期(刘成东等, 2004; 谌宏伟等, 2005; 李碧乐等, 2012; Chen et al., 2017a, b)。最近研究显示,东昆仑出露277.76Ma镁铁质岩浆岩,为受俯冲流体交代的地幔部分熔融形成,这表明布青山-阿尼玛卿洋的俯冲开始时间应该不晚于277.76Ma(Liu et al., 2014)。笔者通过对东昆中蛇绿构造混杂岩带沟里地区曲什昂片麻状花岗岩体的研究,显示东昆中断裂的韧性剪切作用时间晚于246Ma,说明巴颜喀拉地块和东昆仑地块的碰撞时间应该在早三叠世以后(Chen et al., 2017a)。东昆仑下三叠统洪水川组为布青山-阿尼玛卿古特提斯洋向北俯冲的沉积反映(李瑞保等, 2012, 2015);并且东昆仑早三叠世存在着与洋壳俯冲相关的中压变质作用(陈能松等, 2007)。以上显示,俯冲作用一直持续到早三叠世。

东昆仑地区在240~230Ma期间侵入岩出露稀少,这可能与东昆仑处于同碰撞挤压环境相关(柴耀楚等, 1983; Zhang et al., 2012; 夏锐等, 2014; Xiong et al., 2014)。这一时期岩体基本都投到或靠近同碰撞花岗岩区域(图 11a, b)。此外,中三叠统希里克特组在东昆仑地区只有零星出露,具海陆相交互相沉积特征(李瑞保等, 2012),代表了巴颜喀拉地块与东昆仑地块的碰撞和布青山-阿尼玛卿洋的消失,印证了当时东昆仑处于抬升阶段,使局部受到沉积。

图 11 东昆仑东段可日正长花岗岩构造环境判别图解(a, 据Pearce et al., 1984; b, 据Batchelor and Bowden, 1985) Fig. 11 Diagrams of the tectonic setting for syenogranites from Keri area in eastern part of Eastern Kunlun (a, after Pearce et al., 1984; b, after Batchelor and Bowden, 1985)

晚三叠世东昆仑岩浆岩主体为高钾钙碱性-钾玄岩系列(图 4b),具有后碰撞岩浆岩特征(Condie, 1976; Liegeois, 1998)。部分岩体具A型花岗岩特征也反映了东昆仑地区晚三叠世已处于伸展构造背景(丁烁等, 2011; Hu el al., 2016)。近几年大量中晚三叠世埃达克质岩浆岩的发现,对后碰撞的构造演化起到了限定作用,这些岩体形成于220Ma左右,部分含有暗色微粒包体,是加厚下地壳部分熔融的产物(陈国超等, 2013a, b, c; 罗明非等, 2014; Xia et al., 2014; Xiong et al., 2014; Li et al., 2015)。地球物理资料显示,东昆仑地区普遍缺失基性下地壳,在青藏高原内部存在高速异常带,东昆仑地区可能存在拆沉作用(许志琴等, 2001, 2004)。上三叠统八宝山组为陆相碎屑岩沉积组合,从沉积角度印证东昆仑地区在晚三叠世已经完全进入到后碰撞演化阶段。

5.4 幔源岩浆对构造演化过程中花岗质岩浆岩贡献

东昆仑造山带晚古生代-早中生代花岗质岩浆岩中发育暗色微粒包体,说明幔源岩浆对花岗质岩浆的影响贯穿于整个构造演化过程(俯冲-同碰撞-后碰撞)。但构造演化过程的三个阶段明显不同。俯冲阶段(中二叠世-中三叠世早期)的花岗质岩石含有大量暗色微粒包体(哈拉尕吐花岗岩基, 孙雨等, 2009),其密度比同碰撞和后碰撞阶段高出很多,并且在这一阶段,出露有与包体同时代的镁铁质岩浆,如大量的镁铁质岩脉、一些小的镁铁质岩体。同碰撞阶段(中三叠世晚期-晚三叠世早期),还未见到镁铁质岩体出露,但少量岩体中含有暗色微粒包体(可日岩体),包体的密度明显小于俯冲和后碰撞阶段。后碰撞阶段(晚三叠世早期-早侏罗世),有少量的镁铁质岩体和岩脉报道(罗照华等, 2002; 马昌前等, 2013; 奥琮等, 2015; Hu et al., 2016),包体的密度大于同碰撞阶段(和勒冈希里可特岩体, 陈国超等, 2013b, c),但是和俯冲阶段相比还有不少差距。这些现象表明,在演化过程中,幔源岩浆对花岗质岩浆的影响是一个连续的过程,呈幕式变化。后碰撞阶段壳源和幔源岩浆的强度可能与拆沉的规模有关,如秦岭造山带晚古生代-早中生代演化过程中后碰撞岩浆占主体(张宏飞等, 2007; 张成立等, 2008; Dong et al., 2011);东昆仑造山带拆沉的规模可能较小,出露的后碰撞岩体较少。

俯冲阶段和后碰撞阶段幔源岩浆的地球化学特征也有所不同,俯冲阶段多为中钾钙碱性系列,后碰撞阶段主体为高钾钙碱性-钾玄岩系列;后碰撞幔源岩浆高场强元素比俯冲阶段富集(图 3b图 6b, d)。在构造环境判别图中,俯冲阶段幔源岩浆多投到火山弧玄武岩范围,而后碰撞阶段多投到板内玄武岩范围(图 12a, b)。东昆仑晚古生代-早中生代幔源岩浆对花岗质岩浆的贡献,从俯冲阶段早期流体交代地幔熔融(图 13a),到俯冲阶段后期板片断离(图 13b),然后到同碰撞阶段板片断离后持续影响(图 13c),再到后碰撞阶段加厚地壳的拆沉作用(图 13d),由于地球动力学体制不同,导致各阶段幔源岩浆影响大小和特征不同。

图 12 东昆仑中基性岩浆构造环境判别图解(a, 据Mullen, 1983; b, 据Pearce and Cann, 1973) Fig. 12 Diagrams of the tectonic setting for intermediate-basic magmatic rock in Eastern Kunlun (a, after Mullen, 1983; b, after Pearce and Cann, 1973)

图 13 东昆仑东段晚古生代-早中生代板块和岩浆岩演化图 Fig. 13 Schematic diagrams illustrating the tectonic and magmatic evolution of the eastern part of Eastern Kunlun during the late Paleozoic-early Mesozoic
6 结论

(1) 锆石U-Pb定年结果显示可日正长花岗岩结晶年龄为231.58±0.49Ma,岩体中暗色微粒包体的结晶年龄为232.6±2.3Ma。

(2) 巴颜喀拉地块同东昆仑地块碰撞后板片断离作用的持续影响,使地幔熔融形成的镁铁质岩浆底侵中下地壳形成可日岩体。

(3) 可日岩体暗色微粒包体为镁铁质岩浆注入寄主岩快速冷却结果,包体与寄主岩由于元素浓度差存在物质交换。

(4) 中三叠世东昆仑古特提斯构造体制发生转变,俯冲阶段结束,进入同碰撞阶段。

致谢 感谢高景民、吴树宽和魏方辉等师弟在野外工作的帮助;特别感谢两位匿名评审老师和编辑部俞良军老师所提的宝贵修改意见使本文更加完善。
参考文献
Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Ao C, Sun FY, Li BL, Wang G, Li L, Li SJ and Zhao JW. 2015. U-Pb dating, geochemistry and tectonic implications of xiaojianshan gabbro in Qimantage Mountain, Eastern Kunlun orogenic belt. Geotectonica et Metallogenia, 39(6): 1176-1184.
Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin, and relations with the hosts. Lithos, 80(1-4): 155-177. DOI:10.1016/j.lithos.2004.05.010
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-45. DOI:10.1016/0009-2541(85)90034-8
Baxter S and Feely M. 2002. Magma mixing and mingling textures in granitoids:Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1-2): 63-74.
Bea F, Pereira MD and Stroh A. 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4): 291-312. DOI:10.1016/0009-2541(94)90133-3
Bédard JH. 2006. Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta, 70(14): 3717-3742. DOI:10.1016/j.gca.2006.05.003
Bindeman IN and Davis AM. 2000. Trace element partitioning between plagioclase and melt:Investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta, 64(16): 2863-2878. DOI:10.1016/S0016-7037(00)00389-6
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Bussy F. 1991. Enclaves of the Late Miocene monte capanne granite, Elba Island, Italy. In: Didier J and Barbarin B (eds. ). Enclaves and Granite Petrology. Developments in Petrology, Vol. 13. Amsterdam: Elsevier, 167-178
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. DOI:10.1007/s004100050467
Castillo PR. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 257-268. DOI:10.1007/s11434-006-0257-7
Chai YC, Feng BG and Yang JS. 1983. On the geological feature and genesis of the granitic zone in the Dong-Xidatan area of Middle-Eastern Kunlun Mountains. In: Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau (15). Beijing: Geological Society of China, 78-90 (in Chinese)
Champion DC and Bultitude RJ. 2013. The geochemical and Sr-Nd isotopic characteristics of Paleozoic fractionated S-types granites of North Queensland:Implications for S-type granite petrogenesis. Lithos, 162-163: 37-56. DOI:10.1016/j.lithos.2012.11.022
Chappell BW and White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2): 1-26. DOI:10.1017/S0263593300007720
Chen B, Chen ZC and Jahn BM. 2009. Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton. Lithos, 110(1-4): 343-358. DOI:10.1016/j.lithos.2009.01.015
Chen GC, Pei XZ, Li RB, Li ZC, Pei L, Liu ZQ, Chen YX, Liu CJ, Gao JM and Wei FH. 2013a. Zircon U-Pb geochronology, geochemical characteristics and geological significance of cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun. Acta Geologica Sinica, 87(2): 178-196.
Chen GC, Pei XZ, Li RB, Li ZC, Pei L, Liu ZQ, Chen YX and Liu CJ. 2013b. Late Triassic magma mixing in the East Kunlun orogenic belt:A case study of Helegang Xilikete granodiorites. Geology in China, 40(4): 1044-1065.
Chen GC, Pei XZ, Li RB, Li ZC, Pei L, Liu ZQ, Chen YX, Liu CJ, Gao JM and Wei FH. 2013c. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the eastern East Kunlun Orogenic Belt and their tectonic significance. Acta Geologica Sinica, 87(10): 1525-1541.
Chen GC, Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX, Xu T and Zhang YM. 2016. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun orogen:Evidence from mafic microgranular enclaves (MMEs). Earth Science Frontiers, 23(4): 226-240.
Chen GC, Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX, Pei L, Wang M and Li XB. 2017a. Paleo-tethyan oceanic crust subduction in the eastern section of the East Kunlun orogenic belt:Geochronology and petrogenesis of the Qushi'ang granodiorite. Acta Geologica Sinica, 91(2): 565-580. DOI:10.1111/acgs.2017.91.issue-2
Chen GC, Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX and Pei L. 2017b. Magma mixing and mingling for Xiangjiananshan granitic batholith at eastern area of the East Kunlun orogenic belt. Acta Geologica Sinica, 91(Suppl.1): 63.
Chen GC, Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX, Pei L, Zhang YM, Wang M, Li XB and Zhang Y. 2017c. Age and petrogenesis of Jialuhe basic-intermediate pluton in Xiangjia'nanshan granite batholith in the eastern part of East Kunlun orogenic belt, and its geological significance. Geotectonica et Metallogenia, 41(6): 1097-1115.
Chen GC, Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX, Pei L, Zhang YM, Wang M, Zhang Y and Li XB. 2017d. Mineralogical features of the amphiboles and biotites on the quartz xenocrysts rim of Jialuhe intermediate-basic pluton, eastern East Kunlun Orogen:Constraints on the magma mixing and mingling process. Earth Science Frontiers, 24(6): 10-24.
Chen GC, Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX, Pei L, Wang M, Zhang Y and Li XB. 2017e. Components of the plagioclase of granitic batholith in Xiangjiananshan in the eastern section of East Kunlun and their implications for magma evolution and mixing effect. Acta Geologica Sinica, 91(12): 2651-2666.
Chen HW, Luo ZH, Mo XX, Liu CD and Ke S. 2005. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt. Geology in China, 32(3): 386-395.
Chen NS, Sun M, Wang QY, Zhao GC, Chen Q and Shu GM. 2007. EMP chemical ages of monazites from central zone of the eastern Kunlun orogen:Records of multi-tectonometamorphic events. Chinese Science Bulletin, 52(16): 2252-2263. DOI:10.1007/s11434-007-0299-5
Chen XH, Yin A, Gehrels G, Li L and Jiang RB. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam Basin, Northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157-171.
Chen XH, Gehrels G, Yin A, Zhou Q and Huang PH. 2015. Geochemical and Nd-Sr-Pb-O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan Plateau:Implications for the evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114: 674-692. DOI:10.1016/j.jseaes.2014.11.013
Chiaradia M, Müntener O, Beate B and Fontignie D. 2009. Adakite-like volcanism of Ecuador:Lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 158(5): 563-588. DOI:10.1007/s00410-009-0397-2
Clemens JD and Wall VJ. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21(1): 53-66. DOI:10.1016/0024-4937(88)90005-9
Condie KC. 1976. Plate Tectonics and Crustal Evolution. Oxford: Pergamon Press: 1-476.
Dahlquist JA. 2002. Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. DOI:10.1016/S0895-9811(02)00112-8
Ding QF, Jiang SY and Sun FY. 2014. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China:Petrogenesis and tectonic implications. Lithos, 205: 266-283. DOI:10.1016/j.lithos.2014.07.015
Ding S, Huang H, Niu YL, Zhao ZD, Yu XH and Mo XX. 2011. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrologica Sinica, 27(12): 3603-3614.
Donaire T, Pascual E, Pin C and Duthou JL. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:The case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. DOI:10.1007/s00410-005-0652-0
Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China:Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. DOI:10.1016/j.jseaes.2011.03.002
Farner MJ, Lee CTA and Putirka KD. 2014. Mafic-felsic magma mixing limited by reactive processes:A case study of biotite-rich rinds on mafic enclaves. Earth and Planetary Science Letters, 393: 49-59. DOI:10.1016/j.epsl.2014.02.040
Feng CY, Wang S, Li GC, Ma SC and Li DS. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China:Chronology, geochemistry and metallogenic significances. Acta Petrologica Sinica, 28(2): 665-678.
Gao YB, Li WY, Ma XG, Zhang ZW and Tang QY. 2012. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun. Journal of Lanzhou University (Natural Sciences), 48(2): 36-47.
Gao YB, Li K, Qian B, Li WY, Li DS, Su SS, Zhang CG, Zhang DM and Wang SM. 2015. The genesis of granodiorites and dark enclaves from the Kaerqueka deposit in East Kunlun belt:Evidence from zircon U-Pb dating, geochemistry and Sr-Nd-Hf isotopic compositions. Geology in China, 42(3): 646-662.
Guo ZF, Deng JF, Xu ZQ, Mo XX and Luo ZH. 1998. Late Palaeozoic-Mesozoic intracontinental orogenic process and intermediate-acidic igneous rocks from the eastern Kunlun Mountains of northwestern China. Geoscience, 12(3): 345-352.
Hu Y, Niu YL, Li JY, Ye L, Kong JJ, Chen S, Zhang Y and Zhang GR. 2016. Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 254: 205-222.
Huang H, Niu YL, Nowell G, Zhao ZD, Yu XH, Zhu DC, Mo XX and Ding S. 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 370: 1-18. DOI:10.1016/j.chemgeo.2014.01.010
Jiang CF, Yang JS and Feng BG. 1992. Oping-closing Tectonics of Kunlun Mountains. Beijing: Geological Publishing House: 58-100.
Jiang CF, Wang ZQ and Li JY. 2000. Opening-closing Tectonics of the Central Orogenic Belt. Beijing: Geological Publishing House: 1-154.
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
Klemme S, Prowatke S, Hametner K and Günther D. 2005. Partitioning of trace elements between rutile and silicate melts:Implications for subduction zones. Geochimica et Cosmochimica Acta, 69(9): 2361-2371. DOI:10.1016/j.gca.2004.11.015
Langmuir CH, Vocke RD Jr, Hanson GN and Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380-392. DOI:10.1016/0012-821X(78)90053-5
Li BL, Sun FY, Yu XF, Qian Y, Wang G and Yang YQ. 2012. U-Pb dating and geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted basement and granitic belt. Acta Petrologica Sinica, 28(4): 1163-1172.
Li BL, Zhi YB, Zhang L, Ding QF, Xu QL, Zhang YJ, Qian Y, Wang G, Peng B and Ao C. 2015. U-Pb dating, geochemistry, and Sr-Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu-(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China. Ore Geology Reviews, 67: 1-10. DOI:10.1016/j.oregeorev.2014.11.008
Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140.
Li RB, Pei XZ, Li ZC, Liu ZQ, Chen GC, Chen YX, Wei FH, Gao JM, Liu CJ and Pei L. 2012. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254.
Li RB, Pei XZ, Li ZC, Pei L, Chen YX, Liu CJ, Chen GC and Liu TJ. 2015. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains. Geological Bulletin of China, 34(12): 2302-2314.
Li ZC, Pei XZ, Liu ZQ, Li RB, Pei L, Chen GC, Liu CJ, Chen YX, Gao JM, Wei FH, Wu SK, Wang YC and Yang J. 2013. Geochronology and geochemistry of the gerizhuotuo diorites from the Buqingshan tectonic mélange belt in the southern margin of East Kunlun and their geologic implications. Acta Geologica Sinica, 87(8): 1090-1103.
Liegeois GP. 1998. Preface-some words on the post-collisional magmatism. Lithos, 45: 1-14. DOI:10.1016/S0024-4937(98)00023-1
Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J and Jiang HA. 2014. 40Ar-39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China:Petrogenesis and tectonic implications. International Geology Review, 56(1): 57-73. DOI:10.1080/00206814.2013.818804
Liu CD, Mo XX, Luo ZH, Yu XH, Chen HW, Li SW and Zhao X. 2004. Mixing events between the crust-and mantle-derived magmas in Eastern Kunlun:Evidence from zircon SHRIMP Ⅱ chronology. Chinese Science Bulletin, 49(8): 828-834.
Liu CS, Chen XM, Chen PR, Wang RC and Hu H. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites. Geological Journal of China Universities, 9(4): 573-591.
Liu YS and Gao S. 2007. High Nb/Ta ratios of the Mesozoic basalts from North China:Records of continental crust recycling. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1): 19-28.
Ludwig KR. 2003. Isoplot 30:A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center: 1-70.
Luo MF, Mo XX, Yu XH, Li XW, Huang XF and Yu JC. 2014. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun. Acta Petrologica Sinica, 30(11): 3229-3241.
Luo MF, Mo XX, Yu XH, Li XW and Huang XF. 2015. Zircon U-Pb geochronology, petrogenesis and implication of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinhai Province. Earth Science Frontiers, 22(5): 182-195.
Luo ZH, Deng JF, Cao YQ, Guo ZF and Mo XX. 1999. On Late Paleozoic Early Mesozoic volcanism and regional tectonic evolution of Eastern Kunlun, Qinghai Province. Geoscience, 13(1): 51-56.
Luo ZH, Ke S, Cao YQ, Deng JF and Chen HW. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun. Geological Bulletin of China, 21(6): 292-297.
Ma CQ, Xiong FH, Zhang JY, Liu B, Huang J and Jiang HA. 2013. The effects of subduction plate of magmatism in the stage of plate subduction to post-tectonic:Evidence of mafic dike of Early Permian-Late Triassic East Kunlun. Acta Geologica Sinica, 87(Suppl.1): 79-81.
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24. DOI:10.1016/j.lithos.2004.04.048
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253. DOI:10.1016/0009-2541(94)00140-4
Meng FC, Zhang JX and Cui MH. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance. Gondwana Research, 23(2): 825-836. DOI:10.1016/j.gr.2012.06.007
Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 13(3): 403-414.
Mullen ED. 1983. MnO/TiO2/P2O5:A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62. DOI:10.1016/0012-821X(83)90070-5
Niu YL and O'Hara MJ. 2003. Origin of ocean island basalts:A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 108(B4): 2209.
Noyes HJ, Frey FA and Wones DR. 1983. A tale of two plutons:Geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California. The Journal of Geology, 91(5): 487-509. DOI:10.1086/628801
Paterson SR, Pignotta GS and Vernon RH. 2004. The significance of microgranitoid enclave shapes and orientations. Journal of Structural Geology, 26(8): 1465-1481. DOI:10.1016/j.jsg.2003.08.013
Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300. DOI:10.1016/0012-821X(73)90129-5
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Pei XZ, Hu N, Liu CJ, Li RB, Li ZC, Chen YX, Pei L, Liu ZQ, Chen GC and Yang J. 2015. Detrital composition, geochemical characteristics and provenance analysis for the maerzheng formation sandstone in Gerizhuotuo area, southern margin of East Kunlun Region. Geological Review, 61(2): 307-323.
Pitcher WS. 1997. The Nature and Origin of Granite. London: Chapman & Hall.
Prowatke S and Klemme S. 2005. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 69(3): 695-709. DOI:10.1016/j.gca.2004.06.037
Ren HD, Wang T, Zhang L, Wang XX, Huang H and Feng CY. 2016. Ages, sources and tectonic settings of the Triassic igneous rocks in the easternmost segment of the East Kunlun Orogen, Central China. Acta Geologica Sinica, 90(2): 641-668. DOI:10.1111/acgs.2016.90.issue-2
Rollinson HR. 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. New York: Longman: 1-352.
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed. ). Treatise on Geochemistry, Volume 3. Oxford: Elsevier, 1-64
Shao FL, Niu YL, Liu Y, Chen S, Kong JJ and Duan M. 2017. Petrogenesis of triassic granitoids in the East Kunlun orogenic belt, northern Tibetan Plateau and their tectonic implications. Lithos, 282-283: 33-34. DOI:10.1016/j.lithos.2017.03.002
Shellnutt JG, Jahn BM and Dostal J. 2010. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1-2): 34-46. DOI:10.1016/j.lithos.2010.07.011
Stepanov A, Mavrogenes JA, Meffre S and Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167: 1009. DOI:10.1007/s00410-014-1009-3
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun Y, Pei XZ, Ding SP, Li RB, Feng JY, Zhang YF, Li ZC, Chen YX, Zhang XF and Chen GC. 2009. Halagatu magma mixing granite in the East Kunlun Mountains:Evidence from zircon U-Pb dating. Acta Geologica Sinica, 83(7): 1000-1010.
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44. DOI:10.1016/S0024-4937(98)00024-3
Troll VR and Schmincke HU. 2002. Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite 'A', Gran Canaria, Canary Islands. Journal of Petrology, 43(2): 243-270. DOI:10.1093/petrology/43.2.243
Vernon RH. 1984. Microgranitoid enclaves in granites:Globules of hybrid magma quenched in a plutonic environment. Nature, 309(5967): 438-439. DOI:10.1038/309438a0
Weyer S, Münker C and Mezger K. 2003. Nb/Ta, Zr/Hf and REE in the depleted mantle:Implications for the differentiation history of the crust-mantle system. Earth and Planetary Science Letters, 205(3-4): 309-324. DOI:10.1016/S0012-821X(02)01059-2
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. DOI:10.1007/BF00402202
White RV, Tarney J, Kerr AC, Saunders AD, Kempton PD, Pringle MS and Klaver GT. 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean:Implications for the generation of continental crust. Lithos, 46(1): 43-68. DOI:10.1016/S0024-4937(98)00061-9
Wiebe RA, Smith D, Sturm M, King EM and Seckler MS. 1997. Enclaves in the cadillac mountain granite (Coastal Maine):Samples of hybrid magma from the base of the chamber. Journal of Petrology, 38(3): 393-423. DOI:10.1093/petroj/38.3.393
Wiebe RA, Jellinek M, Markley MJ, Hawkins DP and Snyder D. 2007. Steep schlieren and associated enclaves in the Vinalhaven granite, Maine:Possible indicators for granite rheology. Contributions to Mineralogy and Petrology, 153(2): 121-138.
Wilson BM. 1989. Igneous Petrogenesis:A Global Tectonic Approach. Netherlands: Springer: 295-323.
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238.
Xia R, Wang CM, Deng J, Carranza EJM, Li WL and Qing M. 2014. Crustal thickening prior to 220Ma in the East Kunlun Orogenic Belt:Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton. Journal of Asian Earth Sciences, 93: 193-210. DOI:10.1016/j.jseaes.2014.07.013
Xia R, Qing M, Wang CM and Li WL. 2014. The genesis of the Ore-Bearing porphyry of the tuoketuo porphyry Cu-Au(Mo) deposit in the East Kunlun, Qinghai Province:Constraints from zircon U-Pb geochronological and geochemistry. Journal of Jilin University (Earth Science Edition), 44(5): 1502-1524.
Xia R, Wang CM, Qing M, Deng J, Carranza EJM, Li WL, Guo XD, Ge LS and Yu WQ. 2015a. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geology Reviews, 66: 114-131. DOI:10.1016/j.oregeorev.2014.10.024
Xia R, Wang CM, Qing M, Li WL, Carranza EJM, Guo XD, Ge LS and Zeng GZ. 2015b. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys. Lithos, 234-235: 47-60. DOI:10.1016/j.lithos.2015.07.018
Xiong FH, Ma CQ, Zhang JY and Liu B. 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrologica Sinica, 27(11): 3350-3364.
Xiong FH, Ma CQ, Zhang JY and Liu B. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. DOI:10.1007/s00710-011-0187-1
Xiong FH, Ma CQ, Zhang JY, Liu B and Jiang HA. 2014. Reworking of old continental lithosphere:An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic Ⅰ-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. DOI:10.1144/jgs2013-038
Xiong FH, Ma CQ, Jiang HA and Zhang H. 2016. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun Orogen, West China:Juvenile lower crustal melting during post-collisional extension. Journal of Earth Science, 27(3): 474-490. DOI:10.1007/s12583-016-0674-6
Xu RH, Harris NBW and Lewis CL. 1990. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. In: Chinese British Tibet Plateau Geological Expedition (ed. ). The Geological Evolution of the Tibetan Plateau. Beijing: Science Press, 282-302 (in Chinese)
Xu ZQ, Yang JS, Jiang M, Yuan XC, Li HB, Xue GQ and Qian H. 2001. Deep structure and lithospheric shear faults in the East Kunlun-Qiangtang region, northern Tibetan Plateau. Science in China (Series D), 44(Suppl.1): 1-9.
Xu ZQ, Jiang M, Yang JS, Xue GQ, Su HP, Li HB, Cui JW, Wu CL and Liang FH. 2004. Mantle structure of Qinghai-Tibet Plateau:Mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Science Frontiers, 11(4): 329-343.
Xu ZQ, Li HB and Yang JS. 2006. An orogenic plateau:The orogenic collage and orogenic types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17.
Xu ZQ, Yang JS, Li WC, Li HQ, Cai ZH, Yan Z and Ma CQ. 2013. Paleo-Tethys system and accretionary orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860.
Yang JS, Xu ZQ, Li HB and Shi RD. 2005. The paleo-Tethyan volcanism and plate tectonic regime in the A'nyemaqen region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369-380.
Yin HF and Zhang KX. 1997. Characteristics of the Eastern Kunlun orogenic belt. Earth Science (Journal of China University of Geosciences), 22(4): 339-342.
Yu M, Feng CY, Zhao YM and Li DX. 2015. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos, 239: 45-59. DOI:10.1016/j.lithos.2015.08.022
Yuan WM, Mo XX, Yu XH and Luo ZH. 2000. The record of Indosinian tectonic setting from the granotoid of Eastern Kunlun Mountains. Geological Reviews, 46(2): 203-211.
Zhang CL, Wang T and Wang XX. 2008. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt. Geological Journal of China Universities, 14(3): 304-316.
Zhang HF, Wang J, Xu WC and Yuan HL. 2007. Derivation of adakitic magma by partial melting of subducted continental crust. Geological Journal of China Universities, 13(2): 224-234.
Zhang JY, Ma CQ, Xiong FH and Liu B. 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. DOI:10.1017/S0016756811001142
奥琮, 孙丰月, 李碧乐, 王冠, 李良, 李世金, 赵俊伟. 2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U-Pb年代学及其构造意义. 大地构造与成矿学, 39(6): 1176-1184.
柴耀楚, 冯秉贵, 杨经绥. 1983. 东昆仑中段东西大滩花岗岩带的基本特征及其成因的探讨. 见: 青藏高原地质文集(15)——岩石、构造地质. 北京: 中国地质学会, 78-90
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013a. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178-196.
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军. 2013b. 东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例. 中国地质, 40(4): 1044-1065.
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013c. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义. 地质学报, 87(10): 1525-1541.
陈国超, 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 徐通, 张永明. 2016. 东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据. 地学前缘, 23(4): 226-240.
陈国超, 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 张永明, 王盟, 李小兵, 张玉. 2017c. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义. 大地构造与成矿学, 41(6): 1097-1115.
陈国超, 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 张永明, 王盟, 张玉, 李小兵. 2017d. 东昆仑东段加鲁河中基性岩体环石英捕虏晶角闪石和黑云母矿物学特征及其对岩浆混合过程的约束. 地学前缘, 24(6): 10-24.
陈国超, 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 王盟, 张玉, 李小兵. 2017e. 东昆仑东段香加南山花岗岩基斜长石成分组成与岩浆演化和混合作用. 地质学报, 91(12): 2651-2666.
谌宏伟, 罗照华, 莫宣学, 刘成东, 柯珊. 2005. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制. 中国地质, 32(3): 386-395.
陈能松, 孙敏, 王勤燕, 赵国春, 陈强, 舒桂明. 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录. 科学通报, 52(11): 1297-1306. DOI:10.3321/j.issn:0023-074X.2007.11.014
陈宣华, 尹安, Gehrels G, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157-171.
丁烁, 黄慧, 牛耀龄, 赵志丹, 喻学惠, 莫宣学. 2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因. 岩石学报, 27(12): 3603-3614.
丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义. 岩石学报, 28(2): 665-678.
高永宝, 李文渊, 马晓光, 张照伟, 汤庆艳. 2012. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约. 兰州大学学报(自然科学版), 48(2): 36-47.
高永宝, 李侃, 钱兵, 李文渊, 李东生, 苏生顺, Zhang CG, 张大民, 王生明. 2015. 东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因:锆石U-Pb年龄、岩石地球化学及Sr-Nd-Hf同位素证据. 中国地质, 42(3): 646-662.
郭正府, 邓晋福, 许志琴, 莫宣学, 罗照华. 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 345-352.
姜春发, 杨经绥, 冯秉贵. 1992. 昆仑开合构造. 北京: 地质出版社: 58-100.
姜春发, 王宗起, 李锦轶. 2000. 中央造山带开合构造. 北京: 地质出版社: 1-154.
李碧乐, 孙丰月, 于晓飞, 钱烨, 王冠, 杨延乾. 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163-1172.
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140.
李瑞保, 裴先治, 李佐臣, 刘战庆, 陈国超, 陈有炘, 魏方辉, 高景民, 刘成军, 裴磊. 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254.
李瑞保, 裴先治, 李佐臣, 裴磊, 陈有炘, 刘成军, 陈国超, 刘图杰. 2015. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复. 地质通报, 34(12): 2302-2314. DOI:10.3969/j.issn.1671-2552.2015.12.016
李佐臣, 裴先治, 刘战庆, 李瑞保, 裴磊, 陈国超, 刘成军, 陈有炘, 高景民, 魏方辉, 吴树宽, 王银川, 杨杰. 2013. 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义. 地质学报, 87(8): 1090-1103.
刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004. 东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据. 科学通报, 49(6): 596-602.
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591.
刘勇胜, 高山. 2007. 华北地区中生代玄武岩高Nb/Ta值对地壳岩石再循环的直接记录. 矿物岩石地球化学通报, 26(1): 19-28.
罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞, 于峻川. 2014. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义. 岩石学报, 30(11): 3229-3241.
罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞. 2015. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义. 地学前缘, 22(5): 182-195.
罗照华, 邓晋福, 曹永清, 郭正府, 莫宣学. 1999. 青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化. 现代地质, 13(1): 51-56.
罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297.
马昌前, 熊富浩, 张金阳, 刘彬, 黄坚, 蒋红安. 2013. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响:东昆仑早二叠世-晚三叠世镁铁质岩墙群的证据. 地质学报, 87(增1): 79-81.
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
裴先治, 胡楠, 刘成军, 李瑞保, 李佐臣, 陈有炘, 裴磊, 刘战庆, 陈国超, 杨杰. 2015. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析. 地质论评, 61(2): 307-323.
孙雨, 裴先治, 丁仨平, 李瑞保, 冯建赟, 张亚峰, 李佐臣, 陈有炘, 张晓飞, 陈国超. 2009. 东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据. 地质学报, 83(7): 1000-1010.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
夏锐, 卿敏, 王长明, 李文良. 2014. 青海东昆仑托克妥Cu-Au (Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束. 吉林大学学报(地球科学版), 44(5): 1502-1524.
熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙La-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364.
许荣华, Harris NBW, Lewis CL. 1990. 拉萨至格尔木的同位素地球化学. 见: 中英青藏高原综合地质考察队编. 青藏高原地质演化. 北京: 科学出版社, 280-302
许志琴, 杨经绥, 姜枚, 袁学诚, 李海兵, 薛光琦, 钱辉. 2001. 青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层. 中国科学(D辑), 31(增1): 1-7.
许志琴, 姜枚, 杨经绥, 薛光琦, 宿和平, 李海兵, 崔军文, 吴才来, 梁凤华. 2004. 青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉. 地学前缘, 11(4): 329-343.
许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17.
许志琴, 杨经绥, 李文昌, 李化启, 蔡志慧, 闫臻, 马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860.
杨经绥, 许志琴, 李海兵, 史仁灯. 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系. 岩石矿物学杂志, 24(5): 369-380.
殷鸿福, 张克信. 1997. 东昆仑造山带的一些特点. 地球科学-中国地质大学学报, 22(4): 339-342.
袁万明, 莫宣学, 喻学惠, 罗照华. 2000. 东昆仑印支期区域构造背景的花岗岩记录. 地质论评, 46(2): 203-211.
张成立, 王涛, 王晓霞. 2008. 秦岭造山带早中生代花岗岩成因及其构造环境. 高校地质学报, 14(3): 304-316.
张宏飞, 王婧, 徐旺春, 袁洪林. 2007. 俯冲陆壳部分熔融形成埃达克质岩浆. 高校地质学报, 13(2): 224-234.