岩石学报  2017, Vol. 33 Issue (12): 3897-3908   PDF    
华北北缘大同地区三叠纪煌斑岩铂族元素成因研究
牛晓露 , 冯光英 , 刘飞 , 杨经绥     
中国地质调查局大陆动力学研究中心, 地幔研究中心, 中国地质科学院地质研究所, 北京 100037
摘要:华北克拉通北缘中段大同地区发育呈岩墙形式产出的煌斑岩,该煌斑岩为超钾质碱性岩,极度低硅低钠高镁高钙高钾,且富H2O和CO2等流体组分。本文利用镍锍试金-电感耦合等离子体质谱法测定了这套煌斑岩的铂族元素组成,获得了其形成及演化过程的一些信息。大同煌斑岩铂族元素含量极低,∑PGE=2.14×10-9~4.50×10-9,原始地幔标准化铂族元素配分型式为左倾型,亏损Ir亚组(IPGE),富集Pd亚组(PPGE),(Pd/Ir)N=3.48~10.43。低铂族元素含量、高Cu/Ni比值(48101~90926)和高(Pd/Ir)N比值指示大同煌斑岩形成于地幔低程度部分熔融(1%~13%),熔体形成时仍有部分硫化物残留于源区。岩浆演化过程中,未发生明显的结晶分异作用和地壳混染作用,硫未达到饱和-过饱和,未发生硫化物熔离作用。计算获得铂族元素在原始地幔与煌斑岩熔体间的分配系数分别为DOs=35~124,DIr=13~35,DRu=34~91,DRh=5.8~10,DPt=3.1~9.7,DPd=2.2~4.5;PPGE较IPGE明显更不相容。与峨眉山大火成岩省玄武岩对比研究发现,岩浆岩中的铂族元素含量主要受源区地幔部分熔融程度和演化过程中硫化物熔离作用共同影响;而铂族元素之间的分异受源区部分熔融程度和岩浆分离结晶作用共同影响。
关键词: 地幔部分熔融     硫化物分异     铂族元素     煌斑岩     华北克拉通    
Genetic study upon the platinum-group element geochemistry of the Triassic lamprophyres in the Datong area (Shanxi Province), northern margin of the North China Craton
NIU XiaoLu, FENG GuangYing, LIU Fei, YANG JingSui     
CARMA, Centre for Continental Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Abundant lamprophyre dykes occur near the northern margin of the North China Craton, in Datong area, Shanxi Province. The lamprophyres are ultrapotassic alkaline mantle-derived melts, characterized by low contents of SiO2, Na2O, and high contents of MgO, CaO, K2O, and high fluid compositions (H2O and CO2). Using Nickel Sulfide Fire Assay-ICPMS method, we have acquired the platinum-group element (PGE) concentrations of the lamprophyres, and obtained some information on their formation and evolution processes. The lamprophyres have extremely low total PGE contents ranging from 2.14×10-9 to 4.50×10-9. They show left-leaning primitive mantle-normalized PGE patterns with depletion in Iridium group (IPGE) and enrichment in Palladium group (PPGE), with (Pd/Ir)N=3.48~10.43. Their low PGE contents, high Cu/Ni ratios (48101~90926) and high (Pd/Ir)N ratios reveal that the lamprophyres were originated by low degree of partial melting (1%~13%) of the mantle source, with sulfides remain in the mantle during partial melting. Sulfide segregation could not happen during the evolution of the lamprophyres, due to the fact that neither significant fractional crystallization nor crustal contamination has been involved in the formation of the lamprophyres. We determined the PGE distribution coefficients for the lamprophyres, with DOs=35~124, DIr=13~35, DRu=34~91, DRh=5.8~10, DPt=3.1~9.7 and DPd=2.2~4.5, which clearly indicates that the PPGE are more incompatible than IPGE. Based on the comparative studies of the lamprophyres and the Emeishan continental flood basalts, we find that the PGE contents in igneous rocks are related with the degrees of partial melting in the mantle source and the removal of sulfides before their emplacement; whereas the fractionation of IPGE and PPGE are mainly controlled by the degrees of partial melting and fractional crystallization processes together.
Key words: Partial melting of mantle     Sulfide segregation     Platinum-group element     Lamprophyre     North China Craton    

铂族元素(PGE)包括Ru、Rh、Pd、Os、Ir和Pt,原子序数分别为44、45、46、76、77和78,属于亲硫、亲铁元素,相对于硅酸盐矿物,它们更容易进入硫化物相和金属相,因此,这些元素主要富集在地核和地幔中,PGE在基性和超基性火成岩中的含量多为10-9量级(Barnes et al., 1985)。

根据熔融温度的不同及元素组合特点,铂族元素可以分为两个亚组:Ir亚组(IPGE:Os、Ir和Ru)和Pd亚组(PPGE:Rh、Pt和Pd)。Ir亚组为难熔金属,熔融温度>2000℃(Os、Ir和Ru的熔点分别为3045℃、2410℃和2310℃);Pd亚组熔融温度<2000℃(Rh、Pt和Pd的熔融温度分别为1966℃、1722℃和1552℃)(Woodland et al., 2002)。铂族各元素间性质的不同导致其在地质过程中具有不同的化学行为从而极易发生分异,进而可以用来探讨岩浆岩形成过程中地幔部分熔融程度以及岩浆演化过程中的岩浆混合、地壳混染、分离结晶、硫饱和度及硫化物分异等过程和参数,近些年来已经得到地学界的广泛重视和应用(储雪蕾等,2001许成等,2003Zhong et al., 2006Wang et al., 2007a; Qi et al., 2008; 刘军锋等,2008刘庆等,2008孙赫等,2008Song et al., 2009; 宋谢炎等,2009冯光英等,2010赵正等,2010Li et al., 2012a, b; Zhang et al., 2014)。

煌斑岩是地球上分布较为稀少的一类岩石,为中色-深色浅成岩浆岩(通常以岩墙产出),以发育斑状结构为特征,斑晶为镁铁质矿物(通常为黑云母和/或角闪石,偶尔为辉石),基质常见斜长石、碱性长石、似长石、黑云母、角闪石、单斜辉石、橄榄石、方解石和/或其他热液矿物;根据具体的矿物组成,煌斑岩又分为云煌岩(minette;主要矿物为黑云母+碱性长石)、云斜煌岩(kersantite;黑云母+斜长石)、闪正煌岩(vogesite;角闪石+碱性长石)、闪斜煌岩(spessartite;角闪石+斜长石)、霞闪正煌岩(sannaite;角闪石+碱性长石+似长石)、闪煌岩(camptonite;角闪石+斜长石+似长石)和沸煌岩(monchiquite;角闪石+玻璃或似长石)(Le Maitre, 2002)。尽管分布稀少,但煌斑岩通常为原生幔源岩浆,具有极端的元素组成(如极其富集大离子亲石元素),且通常来源于交代的岩石圈地幔,因此,它们可以提供其源区地幔性质及成因的重要信息(李献华等,2002Chen and Zhai, 2003; Riley et al., 2003; Guo et al., 2004; Yang et al., 2004; 刘燊等,2005Tappe et al., 2006; Wang et al., 2007b; Owen, 2008; Jiang et al., 2010; Aghazadeh et al., 2015)。

邵济安等(2003)报道了在华北克拉通北缘大同地区呈岩墙形式产出的煌斑岩,并获得其Rb-Sr等时线年龄为229±11Ma,Niu et al.(2017)最近获得其斑晶金云母的Ar-Ar坪年龄为234±2Ma,基质Ar-Ar等时线年龄为222±6Ma。这些年龄数据指示大同煌斑岩侵位于晚三叠世。邵济安等(2003)Niu et al.(2017)已开展了对这些煌斑岩的矿物组成及主微量和Sr-Nd同位素组成的地球化学研究,表明其形成于含大量金云母、单斜辉石和碳酸盐矿物富集岩石圈地幔的低程度部分熔融;该性质的地幔形成于地幔交代作用,交代介质为富碳酸盐、富钾流体,流体来源于古亚洲洋俯冲带下来的碳酸盐化沉积物,揭示了古亚洲洋的俯冲对华北克拉通北缘下覆岩石圈地幔进行了成分改造。这些发现丰富了对华北克拉通早中生代岩石圈地幔演化的认识。

鉴于煌斑岩这类岩石的特殊性,本文对大同地区这套三叠世煌斑岩开展了铂族元素研究,获得了它们的铂族元素组成,计算了该特殊岩浆体系下铂族元素的分配系数,并利用铂族元素的特殊性质,获得了煌斑岩在源区上地幔部分熔融程度及岩浆演化过程等方面的一些信息。

1 地质背景

华北克拉通是世界上最古老的克拉通之一(Liu et al., 1992),于古元古代时经东、西两个块体聚合形成(Zhao et al., 2005),其基底主要为太古代-古元古代片麻岩、麻粒岩和斜长角闪岩(Jahn et al., 1987; Jahn and Ernst, 1990)。中-新元古代沉积岩(石英岩、砂岩和灰岩)不整合覆盖于基底之上,指示克拉通在晚元古代之前已稳定。早古生代时,蒙古洋向南俯冲到华北克拉通之下,形成了一系列的岛弧增生杂岩(490~446Ma; Xiao et al., 2003; Windley et al., 2007; Jian et al., 2008; Xu et al., 2013)。中-晚古生代时, 俯冲作用持续, 导致华北克拉通北缘发育了一套安第斯型陆缘弧岩浆岩组合,成分从钙碱性辉长岩、闪长岩到花岗闪长岩(390~270Ma;Zhang et al., 2007a, b, 2009; Ma et al., 2013)。中晚二叠世时,西伯利亚板块与华北克拉通最终碰撞缝合(270~250Ma; Chen et al., 2009; Zhang et al., 2009)。三叠纪时,华北克拉通北缘可能已经进入了伸展构造动力学背景中,以发育大量碱性岩浆作用为特征,其时代主要集中在233~209Ma之间(Yan et al., 1999吴福元等,2005任荣等,2009Niu et al., 2012, 2016; Yang et al., 2012; Chen et al., 2013)。这些碱性岩体西起内蒙古包头市,向东延至吉林省中部,呈带状分布在克拉通北缘,绵延数千千米(牟保磊和阎国翰, 1992; Yan et al., 1999阎国翰等, 2001)。本文所研究的煌斑岩即位于该三叠纪碱性岩带的西段(图 1a),以岩墙形式侵入二叠系砂岩和含煤岩系地层中(图 1b)。

图 1 华北克拉通局部地质简图(a)和大同煌斑岩的野外产出(b)(据Niu et al., 2017修改) Fig. 1 Simplified geological map of the local North China Craton (a) and map of the Datong lamprophyre dykes showing the location of the analyzed samples (b) (modified after Niu et al., 2017)
2 大同煌斑岩

本文样品采自山西大同地区怀仁县鹅毛口矿区,命名为“大同煌斑岩”。关于大同煌斑岩详细的岩石矿物特征、主量和微量元素组成,以及Sr-Nd-Os同位素组成,Niu et al.(2017)一文中已做了细致描述。为方便讨论,此处将大同煌斑岩的基本地质情况及其主要矿物和元素组成特征概述如下:

大同煌斑岩呈近南北向岩墙产出(走向NE10°~NW20°之间),倾向正东或北东东(NEE60°~E90°),个别倾向正西,倾角70°~87°之间,近直立。宽0.4~2m不等,长40~400m不等,两端消失在二叠纪砂岩中(图 2a)。煌斑岩为灰绿色-灰黑色-黑色(图 2b),发育斑状结构,斑晶为自形金云母,基质主要由金云母、钾长石和方解石组成(图 2c, d);基质矿物多发生蚀变,常见绿泥石化、绢云母化、泥化等。副矿物有石英、磷灰石、磁铁矿和黄铁矿。方解石呈结合体团块或单颗粒形式发育,常见方解石和钾长石相互生长在一起,指示方解石为岩浆成因。根据国际地科联(IUGS)推荐的火成岩分类命名原则,这些岩石属于典型煌斑岩,具体分类为云煌岩(Le Maitre, 2002)。

图 2 大同煌斑岩的野外及显微镜下特征 (a)呈岩墙产出;(b)手标本,见明显的方解石集合体;(c)煌斑岩的结构特征,由斑晶金云母、方解石集合体和基质组成;(d)基质由细粒金云母和钾长石组成 Fig. 2 Field photographs and photomicrographs of the Datong lamprophyres (a) lamprophyre dykes cutting Permian sandstone; (b) hand specimen of the lamprophyres with obvious calcite aggregates; (c) the photomicrograph of the texture of the lamprophyres in plane-polarized light; (d) groundmass mainly composed of fine-grained phlogopite and sanidine

化学组成上,以低硅、低钠、高镁、高钙、高钾和高K2O/Na2O比值为特征;高相容元素含量;具有放射性成因Sr和非放射性成因Nd同位素组成(87Sr/86Sr)i=0.7070~0.7075;εNd(t)=-12.8~-9.2;具有轻稀土富集的右倾型稀土配分模式((La/Yb)N=17.8~22.2),无Eu异常;在原始地幔标准化微量元素蛛网图上,明显富集Rb、Ba和Sr等大离子亲石元素,亏损Nb、Ta和Ti等高场强元素;元素Ba、K、Sr和P为波峰,而元素Rb、Th和U为波谷(Niu et al., 2017)。

3 铂族元素分析方法

本文铂族元素测试分析在国家地质实验测试中心完成。采用镍锍试金-电感耦合等离子体质谱法方法测定。基本流程:将样品(200目,10g)与混合溶剂(硼砂+碳酸钠+氧化镍+二氧化硅+硫磺粉+面粉)按比例混合,于1100℃高温熔融;贵金属通过镍锍捕集与其他元素分离,用盐酸溶剂镍锍扣,抽滤,沉淀和滤膜转入封闭溶样器中,用王水溶解;在电感耦合等离子体质谱仪(ICP-MS)上直接测定铂族元素,其中锇用同位素稀释法测定。实验空白本底:Ru、Ir、Pd和Os小于0.3×10-9,Ph和Pt小于0.06×10-9。标准样品(GPT24和GPT27)测定结果与推荐值吻合较好。详细的分析过程可参考何红蓼等(2001)吕彩芬等(2002)

4 大同煌斑岩的铂族元素组成

大同煌斑岩的铂族元素组成及代表性主量和微量元素含量详见表 1

表 1 大同煌斑岩的铂族元素(×10-9)及其他代表性主量(wt%)和微量(×10-6)元素组成 Table 1 Whole-rock platinum-group element (×10-9) and typical major (wt%) and trace (×10-6) element concentrations of the Datong lamprophyres

大同煌斑岩PGE含量较低,PGE总量为2.14×10-9~4.50 × 10-9(平均为2.91×10-9;原始地幔PGE平均含量为23.5×10-9McDonough and Sun, 1995),其中,Os=0.03×10-9~0.10 ×10-9(平均为0.06×10-9),Ir=0.10×10-9~0.25×10-9(平均为0.14×10-9),Ru=0.06×10-9~0.15×10-9(平均为0.10×10-9),Rh=0.09×10-9~0.16 ×10-9(平均为0.12×10-9),Pt=0.82×10-9~2.31 ×10-9(平均为1.32×10-9),Pd=0.95×10-9~1.78×10-9(平均为1.18×10-9);Pd/Ir=4.24~12.71(平均为8.89)。其IPGE=0.19×10-9~0.50×10-9(平均为0.29×10-9),PPGE=1.89×10-9~4.21×10-9(平均为2.61×10-9),IPGE/PPGE=0.07~0.22,分异较大(原始地幔的IPGE、PPGE及IPGE/PPGE分别为11.6×10-9、11.9×10-9和0.97;McDonough and Sun, 1995)。在各铂族元素对SiO2协变图解上(图 3),样品分布散乱,各元素与SiO2无明显相关性。

图 3 大同煌斑岩的各铂族元素对SiO2协变图解 Fig. 3 Plots of platinum group element vs. SiO2 contents for the Datong lamprophyres

大同煌斑岩的原始地幔标准化铂族元素配分图解见图 4。为比较研究,图 4也给出了克拉通地幔(Irvine et al., 2003; Pearson et al., 2004; Becker et al., 2006; 王建等,2012)、大洋地幔(Luguet et al., 2003)、峨眉山大火成岩省的各类岩石(石英拉斑玄武岩、橄榄拉斑玄武岩和苦橄岩;Song et al., 2006, 2009; Wang et al., 2007a; Qi et al., 2008; Zhang et al., 2005, 2006; Li et al., 2012a)的铂族元素配分图解。如图 4所示,大同煌斑岩亏损IPGE,富集PPGE,呈左倾配分模式,(Pd/Ir)N=3.48~10.43(平均为7.29),与克拉通地幔和大洋地幔配分模式明显不同。大同煌斑岩的配分模式,与峨眉山大火成岩省岩石(尤其是苦橄岩和石英拉斑玄武岩)的配分模式明显不同,表现为IPGE和PPGE不同的分异程度和不同的PGE含量,这可能指示了其不同的成因和演化过程。

图 4 大同煌斑岩的原始地幔标准化铂族元素配分图解(标准化值据McDonough and Sun, 1995) 为对比研究,图中也给出了克拉通地幔(Irvine et al., 2003; Pearson et al., 2004; Becker et al., 2006; 王建等,2012)、大洋地幔(Luguet et al., 2003)和峨眉山大火成岩省各类岩石(Song et al., 2006, 2009; Wang et al., 2007a; Qi et al., 2008; Zhang et al., 2005, 2006; Li et al., 2012a)的铂族元素配分图解 Fig. 4 Primitive mantle-normalized platinum group element patterns for the Datong lamprophyres (normalization values after McDonough and Sun, 1995) Also displayed for comparison are the patterns of cratonic peridotites (Irvine et al., 2003; Pearson et al., 2004; Becker et al., 2006; Wang et al., 2012), abyssal peridotites (Luguet et al., 2003) and Emeishan continental flood basalts (Song et al., 2006, 2009; Wang et al., 2007a; Qi et al., 2008; Zhang et al., 2005, 2006; Li et al., 2012a)
5 讨论 5.1 岩浆演化过程中未发生硫化物熔离作用

本文将大同煌斑岩的铂族元素组成与研究较系统深入的峨眉山大火成岩省各类玄武岩的铂族元素组成做了对比研究,原始地幔标准化铂族元素配分模式见图 4,各类岩石的PGE总量及(Pd/Ir)N比值详见表 2图 5

表 2 大同煌斑岩、峨眉山大火成岩省玄武岩及代表性地幔端元的PGE含量及(Pd/Ir)N比值 Table 2 PGE contents and (Pd/Ir)N ratios of the Datong lamprophyres, Emeishan basalts and mantle end-members

图 5 大同煌斑岩的(Pd/Ir)N比值与总PGE含量协变图解 图中也给出了峨眉山大火成岩省各类岩石的(Pd/Ir)N及PGE含量分布(数据来源同图 4) Fig. 5 Plot of (Pd/Ir)N vs. total PGE contents for the Datong lamprophyres Emeishan continental flood basalts are also displayed (data sources are same as in Fig. 4)

对比研究发现,大同煌斑岩以铂族元素含量较低为特征,∑PGE=2.14×10-9~4.50×10-9,平均为2.91×10-9,远低于苦橄岩、石英拉斑玄武岩和大部分橄榄拉斑玄武岩的PGE组成(表 2图 5)。铂族元素含量低,可以由两方面原因导致,一是岩浆演化过程中发生了硫化物熔离;二是岩浆形成于地幔低程度部分熔融。

由于PGE具有较高的硫化物/硅酸盐熔体分配系数(D硫化物/硅酸盐;DIr=1500~4700,DRu=1200~4100,DPt=1100~6900,DPd=1200~6300;Fleet et al., 1999),因此,硫化物熔离可能是导致岩浆PGE亏损的一个机制。

但是,大同煌斑岩的各项特征指示其演化过程中未经历明显的硫化物熔离作用。发生硫化物熔离的前提是熔体中的硫达到饱和-过饱和,这可以由强烈的结晶分异作用导致。在结晶分异过程中,硫不会进入硅酸盐矿物,而保留在熔体中(Keays, 1995),因此,随着结晶分异作用的进行和温度压力的降低,熔体中的硫浓度会升高直至过饱和。但是,大同煌斑岩演化过程中,并未经历明显的结晶分异作用:首先,大同煌斑岩具有较高的Mg#(62~84)和相容元素含量(Cr=386×10-6~1146×10-6、Co=41.5×10-6~72.5×10-6、Ni=97×10-6~304×10-6、Sc=18.9×10-6~27.3×10-6Niu et al., 2017),表明其为原始岩浆或近原始岩浆;其次,在主微量元素哈克图解上,样品呈分散状分布,无规律演化趋势(Niu et al., 2017);在PGE-SiO2二元图解上(图 3),样品也无明显演化规律,这均排除了岩浆演化过程中强烈结晶分异作用的发生。此外,一些研究发现,地壳物质对幔源岩浆的混染,可以增加岩浆的硅含量,降低岩浆的温度,这也会导致硫化物的饱和及熔离(Li et al., 2012a)。但大同煌斑岩并未受到明显的地壳混染作用,证据包括:首先,大同煌斑岩呈岩墙产出,岩墙是岩浆快速侵位到现存破裂系统中冷却形成,排除了与地壳长时间作用的可能;其次,对大同煌斑岩的Os同位素模拟计算发现,即使存在地壳混染,其混染比例也低于4.4%(Niu et al., 2017),这并不能明显改变岩浆体系的成分和温度。因此,大同煌斑岩在演化过程中,硫很难达到饱和,不可能发生硫化物熔离作用。因此,其较低的PGE含量,可能是由于地幔源区部分熔融程度较低导致的。

5.2 低程度部分熔融

如上所述,大同煌斑岩较低的PGE含量反映了其形成于源区地幔较低程度的部分熔融,这与其高(Pd/Ir)N比值(3.48~10.4,平均为7.29)和高Cu/Pd比值(48101~90926,平均为66080)是一致的。

铂族元素为亲硫元素,若部分熔融过程结束时,地幔源区仍有硫化物残留,则形成的熔体具有低的PGE含量。此外,由于Pd在硫化物中的分配系数远大于Cu(DPd≈105,DCu≈103;Naldrett, 2011),且Pd在部分熔融和结晶分异过程中的地球化学行为主要受硫化物控制;因此,若熔融结束时,地幔源区仍有硫化物存在,则形成的熔体硫不饱和,容纳铂族元素能力低,将相对Pd富Cu而具有较高的Cu/Pd比值。据Keays(1995)研究结果,若原始地幔中硫含量为250×10-6,部分熔融程度达到25%时,源区硫化物才会全部溶解而进入熔体;这时,熔体达到硫不饱和状态,可以吸纳足够多的铂族元素,此时的PGE含量与原始地幔中的PGE含量相当。如图 6所示,大同煌斑岩相对Pd富Cu,落在硫饱和区域内,反映了其形成时仍有部分硫化物残留于源区地幔中。

图 6 大同煌斑岩的Pd-Cu协变图解 图中也给出了峨眉山大火成岩省各类岩石的Pd-Cu含量分布(数据来源同图 4);硫饱和与硫不饱和的分界线来自Vogel and Keays (1997) Fig. 6 Plot of Pd vs. Cu for the Datong lamprophyres Emeishan continental flood basalts are also displayed (data sources are same as in Fig. 4). The division for S-saturated and S-undersaturated basalts is from Vogel and Keays (1997)

此外,大同煌斑岩IPGE和PPGE明显分异,(Pd/Ir)N比值较高,这也是地幔低程度部分熔融导致的。在地幔橄榄岩中,IPGE通常以离散矿物或硫化物、合金或氧化物形式存在,且通常呈包裹体包裹在硅酸盐矿物中(如橄榄石和尖晶石内),而PPGE则主要呈填隙状硫化物或合金形式存在(Alard et al., 2000)。部分熔融作用发生时,富IPGE矿物包裹在硅酸盐矿物中,熔融温度较高,表现为较强的相容性,而呈填隙状存在的富PPGE硫化物熔融温度较低,相对不相容,倾向于易进入熔体中;因此,熔融程度较低时,形成熔体的PGE会发生明显分异,富PPGE而亏损IPGE,(Pd/Ir)N比值会比较高,大同煌斑岩就是这种情况;随着熔融程度的增高,IPGE和PPGE分异会越不明显,Pd/Ir比值会变小,如峨眉山大火成岩省的苦橄岩(图 4表 2)。

该认识与根据微量元素计算获得的熔融程度一致。大同煌斑岩的源区为位于石榴石稳定区的含金云母和单斜辉石的富集岩石圈地幔(Niu et al., 2017)。以元素Rb为例,假设源区矿物组成为:单斜辉石(cpx)=11%、斜方辉石(opx)=19%、橄榄石(ol)=55%, 石榴石(grt)=9%、金云母(phlog)=6%;源区Rb含量为15×10-6(由华北克拉通古生代岩石圈地幔(Rb=1.5×10-6郑建平和路凤香,1999)和俯冲沉积物(Rb=57×10-6Plank and Langmuir, 1998)混合计算获得;混合比例:75%岩石圈地幔+25%俯冲沉积物;Niu et al., 2017)。Cpx、opx、ol、grt和phlog对Rb的分配系数Dminmelt分别为0.003、0、0、0.013和1.44(Schmidt et al., 1999Dasgupta et al., 2009),计算获得综合分配系数DRb=0.0879。利用批式部分熔融模型(也即平衡部分熔融),CL/CO=1/[D+F(1-D)],变换得熔融程度F=[(CO/CL)-D)]/(1-D),其中CO为地幔源区的元素含量,CL为分异熔体中的元素含量,F为熔融程度,D为元素分配系数(即元素在地幔岩与熔体之间的分配系数)。如表 3所示,计算获得大同煌斑岩不同样品的熔融程度在1%~13%之间。样品EM-1-1和EM-1-2具有最高的Cr含量(995×10-6和971×10-6),获得的其部分熔融程度仅为3%和2%。如此低程度的部分熔融与煌斑岩极端的主量元素组成(低SiO2=31.0%~41.5%,高K2O=4.40%~7.12%,低Na2O=0.01%,高CaO=13.1%~20.8%;表 1)是一致的,也与其极低的铂族元素含量是一致的。

5.3 煌斑岩PGE分配系数计算

煌斑岩分布较为稀少,而大同煌斑岩为超钾质碱性岩,具有特殊的地球化学组成,低硅低钠高钙高钾高镁,且富流体组分(CO2和H2O),因此,有必要计算下该特殊岩浆体系下PGE的分配系数。

利用批式部分熔融模型(平衡部分熔融),CL/CO=1/[D+F(1-D)],变换得分配系数D=[(CO/CL)-F)]/(1-F)。其中,F采用对应样品根据元素Rb计算获得的熔融程度值(表 3);Co为源区地幔的铂族元素含量;大同煌斑岩未发生明显的结晶分异作用,也未经历明显的地壳混染,因此,可以认为本文获得的样品铂族元素组成可以近似代表原始熔体的铂族元素组成。

表 3 大同煌斑岩部分熔融程度及铂族元素分配系数计算 Table 3 Calculated partial melting degrees and PGE distribution coefficients for the Datong lamprophyres

计算结果见表 3,表中计算结果一采用的Co为原始地幔的铂族元素含量(Os=3.4×10-9;Ir=3.2×10-9;Ru=5×10-9;Rh=0.9×10-9;Pt=7.1×10-9;Pd=3.9×10-9McDonough and Sun, 1995),计算结果二采用的Co为鲁西中生代闪长岩中方辉橄榄岩捕掳体的铂族元素含量(Os=3.9×10-9;Ir=4.59×10-9;Ru=5.48×10-9;Pt=3.91×10-9;Pd=0.5×10-9王建等, 2012)。采用原始地幔铂族元素含量计算获得的分配系数分别为:DOs=35~124(平均78),DIr=13~35(平均26),DRu=34~91(平均63),DRh=5.8~10(平均8.6),DPt=3.1~9.7(平均6.5),DPd=2.2~4.5(平均3.6)。采用鲁西中生代方辉橄榄岩捕掳体铂族元素含量计算获得的分配系数分别为:DOs=40~143(平均90),DIr=19~50(平均37),DRu=38~100(平均69),DPt=1.7~5.3(平均3.5),DPd=0.3~0.45(平均0.4)。这两组计算结果略有差别,但趋势是一致的,即IPGE的分配系数明显大于PPGE的分配系数。这与在地幔部分熔融过程中IPGE和PPGE的实际行为是一致的,即IPGE倾向于留在地幔中,而PPGE倾向于进入熔体中。

5.4 大同煌斑岩与峨眉山大火成岩省玄武岩铂族元素成因对比研究

本文将大同煌斑岩的铂族元素组成与峨眉山大火成岩省玄武岩的铂族元素组成进行对比研究。之所以选择峨眉山大火成岩省玄武岩,而非其他地区类似岩石进行对比,原因在于:(1)煌斑岩是分布较为稀少的一类岩石,而对煌斑岩铂族元素组成的研究更是匮乏,目前国内外关于煌斑岩铂族元素组成的研究仅见于云南哀牢山断裂带内与金矿相关的个别煌斑岩(Wang et al., 2001潘伟坚等, 2012Gan and Huang, 2017),除此之外,便再无其它数据供参考;(2)比较而言,前人对峨眉山大火成岩省玄武岩铂族元素组成的研究程度较高,对形成于不同熔融程度、经历不同演化过程的各类玄武岩均积累了大量数据供对比,对各类铂族元素组成都做了细致深入的探讨(Zhang et al., 2005, 2006; Song et al., 2006, 2009; Wang et al., 2007a; Qi et al., 2008; Li et al., 2012a),这既便于开展对比研究,也有利于对铂族元素组成的影响因素做出合理解释。

图 4图 5图 6表 2所示,大同煌斑岩与峨眉山大火成岩省各类玄武岩具有明显不同的PGE组成,表现为不同的PGE含量及不同的IPGE和PPGE分异程度(即(Pd/Ir)N比值),这与他们不同的成因过程是一致的。

本文主要对比的峨眉山大火成岩省岩石类型为橄榄拉斑玄武岩、石英拉斑玄武岩和苦橄岩(Li et al., 2012a)。其中,苦橄岩是较为特殊的一类岩石,属于富橄榄石玄武岩,其MgO>18%,(Na2O+K2O)=1%~3%(当(Na2O+K2O)<1%、且TiO2低于1%时称为科马提岩)。苦橄岩通常形成于地幔高程度部分熔融(30%~40%),此时形成的熔体中含有较高含量的溶解的橄榄石,因而,在冷却结晶时,熔体会结晶出大量的橄榄石。

与峨眉山大火成岩省玄武岩相比,大同煌斑岩PGE含量较低,这主要取决于源区地幔部分熔融程度不同,大同煌斑岩形成于较低程度部分熔融(约1%~13%),而峨眉山拉斑玄武岩熔融程度相对较高(10%~20%;Song et al., 2009),而苦橄岩熔融程度更高(>30%);熔融程度越高,会有更多的硫化物溶解进入到熔体中,进而熔体中的铂族元素含量会越高。

大同煌斑岩与峨眉山玄武岩的PGE分异程度也不同,具有不同的(Pd/Ir)N比值。这一方面与熔融程度相关:理论上,熔融程度越低,IPGE与PPGE分异越明显,(Pd/Ir)N比值越大,即熔融程度发挥着稀释效应(dilution effect);但实际上,岩浆演化过程中的结晶分异作用可能对(Pd/Ir)N比值的影响更大。大同煌斑岩未经历明显矿物结晶分异作用,而峨眉山玄武岩经历了明显的橄榄石、斜方辉石、单斜辉石、斜长石、尖晶石、磁铁矿和PGE矿物(如,硫-钌-锇矿、Os-Ir-Ru合金等)的结晶分离作用(Zhong et al., 2006Qi and Zhou, 2008; Qi et al., 2008; Song et al., 2009Li et al., 2012a),不同PGE元素在各矿物相中的相容性有差异,导致剩余熔体PGE元素之间发生分异。此外,大同煌斑岩未经历明显的地壳混染作用,而峨眉山玄武岩经历了明显的地壳混染(Qi et al., 2008; Song et al., 2009Li et al., 2012a)。在分离结晶和地壳混染的双重作用下,峨眉山部分玄武岩在演化过程中,达到硫饱和,发生了硫化物熔离作用,这可能正是峨眉山大火成岩省发育铜镍硫化物矿床的原因。硫化物熔离作用,会导致剩余熔体PGE总含量降低,但对PGE分异影响不大。

6 结论

本文通过对大同煌斑岩特殊岩浆体系铂族元素组成的研究,以及与峨眉山大火成岩省玄武岩铂族元素组成的对比,得出以下结论:

(1) 大同煌斑岩岩浆演化过程中,未发生硫化物熔离作用,成铜镍硫化物矿床的概率较低;

(2) 大同煌斑岩形成于地幔低程度部分熔融作用(1%~13%),导致其铂族元素含量极低,Ir亚组元素(IPGE)和Pd亚组(PPGE)分异明显;

(3) 铂族各元素在地幔岩与煌斑岩熔体中的分配系数差别较大,PPGE较IPGE明显更不相容;

(4) 对比研究揭示,岩浆岩铂族元素含量主要受源区地幔部分熔融程度和演化过程中硫化物熔离作用共同影响;而铂族元素之间的分异受源区部分熔融程度和岩浆分离结晶作用共同决定。

致谢 李诺研究员和李小伟副教授对本文做了细致审阅,并提出了宝贵的修改意见,在此深表谢意!
参考文献
Aghazadeh M, Prelevic' D, Badrzadeh Z, Braschi E, van den Bogaard P and Conticelli S. 2015. Geochemistry, Sr-Nd-Pb isotopes and geochronology of amphibole-and mica-bearing lamprophyres in northwestern Iran:Implications for mantle wedge heterogeneity in a palaeo-subduction zone. Lithos, 216-217: 352-369. DOI:10.1016/j.lithos.2015.01.001
Alard O, Griffin WL, Lorand JP, Jackson SE and O'Reilly SY. 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature, 407(6806): 891-894. DOI:10.1038/35038049
Barnes SJ, Naldrett AJ and Gorton MP. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53(3-4): 303-323. DOI:10.1016/0009-2541(85)90076-2
Becker H, Horan MF, Walker RJ, Gao S, Lorand JP and Rudnick RL. 2006. Highly siderophile element composition of the earth's primitive upper mantle:Constraints from new data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550. DOI:10.1016/j.gca.2006.06.004
Chen B and Zhai MG. 2003. Geochemistry of Late Mesozoic lamprophyre dykes from the Taihang Mountains, North China, and implications for the sub-continental lithospheric mantle. Geological Magazine, 140(1): 87-93. DOI:10.1017/S0016756802007124
Chen B, Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257. DOI:10.1016/j.jseaes.2008.05.007
Chen B, Niu XL, Wang ZQ, Gao L and Wang C. 2013. Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton. Science China Earth Sciences, 56(8): 1294-1307. DOI:10.1007/s11430-013-4603-8
Chu XL, Sun M and Zhou MF. 2001. The platinum-group element geochemistry in chemical geodynamics. Acta Petrologica Sinica, 17(1): 112-122.
Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M and Withers AC. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chemical Geology, 262(1-2): 57-77.
Feng GY, Liu S, Su WC, Feng CX, Wang T and Yang YH. 2010. PGE geochemistry of Alkaline Ultramafic dykes in southwestern Guizhou Province, China. Acta Mineralogica Sinica, 30(2): 207-214.
Fleet ME, Crocket JH, Liu MH and Stone WE. 1999. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos, 47(1-2): 127-142. DOI:10.1016/S0024-4937(99)00011-0
Gan T and Huang ZL. 2017. Platinum-group element and Re-Os geochemistry of lamprophyres in the Zhenyuan gold deposit, Yunnan Province, China:Implications for petrogenesis and mantle evolution. Lithos, 282-283: 228-239. DOI:10.1016/j.lithos.2017.03.018
Guo F, Fan WM, Wang YJ and Zhang M. 2004. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China:Implications for enrichment processes beneath continental collisional belt. Lithos, 78(3): 291-305. DOI:10.1016/j.lithos.2004.05.001
He HL, Lü CF, Zhou ZR, Shi SY and Li B. 2001. Determination of platinum group elements and gold in geochemical exploration samples by Nickel Sulphide Fire Assay-ICPMS Ⅰ. Simplification of the analytical procedure. Rock and Mineral Analysis, 20(3): 191-194.
Irvine GJ, Pearson DG, Kjarsgaard BA, Carlson RW, Kopylova MG and Dreibus G. 2003. A Re-Os isotope and PGE study of kimberlite-derived peridotite xenoliths from Somerset Island and a comparison to the Slave and Kaapvaal cratons. Lithos, 71(2-4): 461-488. DOI:10.1016/S0024-4937(03)00126-9
Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH and Liu DY. 1987. 3.5Ga old amphibolites from eastern Hebei Province, China:Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Research, 34(3-4): 311-346. DOI:10.1016/0301-9268(87)90006-4
Jahn BM and Ernst WG. 1990. Late Archean Sm-Nd isochron age for mafic-ultramafic supracrustal amphibolites from the northeastern Sino-Korean Craton, China. Precambrian Research, 46(4): 295-306. DOI:10.1016/0301-9268(90)90017-K
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth. Lithos, 101(3-4): 233-259. DOI:10.1016/j.lithos.2007.07.005
Jiang YH, Jiang SY, Ling HF and Ni P. 2010. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3-4): 127-151. DOI:10.1007/s00710-010-0124-8
Keays RR. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34(1-3): 1-18. DOI:10.1016/0024-4937(95)90003-9
Le Maitre RW. 2002. Igneous Rocks:A Classification and Glossary of Terms:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press: 19.
Li CS, Tao Y, Qi L and Ripley EM. 2012a. Controls on PGE fractionation in the Emeishan picrites and basalts:Constraints from integrated lithophile-siderophile elements and Sr-Nd isotopes. Geochimica et Cosmochimica Acta, 90: 12-32. DOI:10.1016/j.gca.2012.04.046
Li XH, Zhou HW, Wei GJ, Liu Y, Chung SL, Lo QH and Lee CY. 2002. Geochemistry and Sr-Nd isotopes of Cenozoic ultrapotassic lamprophyres in western Yunnan:Constraints on the composition of sub-continental lithospheric mantle. Geochimica, 31(1): 26-34.
Li YQ, Li ZL, Sun YL, Santosh M, Langmuir CH, Chen HL, Yang SF, Chen ZX and Yu X. 2012b. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, Northwest China:Implications for the evolution of the Tarim Large Igneous Province. Chemical Geology, 328: 278-289. DOI:10.1016/j.chemgeo.2012.03.007
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu JF, Sun WD, Sun Y, Sun YL and Liu FJ. 2008. Geochemistry and platinum-group elements of ultramafic rocks from the Songshugou area in the eastern Qinling:Constraints on petrogenesis. Geological Review, 54(1): 57-64.
Liu Q, Hou QL, Zhou XH and Xie LW. 2008. Platinum-group element geochemistry of Cretaceous mafic-ultramafic rocks in the northern Dabie. Geology in China, 35(5): 859-868.
Liu S, Hu RZ, Zhao JH, Feng CX, Zhong H, Cao JJ and Shi DN. 2005. Geochemical characteristics and petrogenetic investigation of the Late Mesozoic lamprophyres of Jiaobei, Shandong Province. Acta Petrologica Sinica, 21(3): 947-958.
Luguet A, Lorand JP and Seyler M. 2003. Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites:A coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK Area, Atlantic Ocean). Geochimica et Cosmochimica Acta, 67(8): 1553-1570. DOI:10.1016/S0016-7037(02)01133-X
Lü CF, He HL, Zhou ZR, Zhi XX, Li B and Zhang Q. 2002. Determination of platinum group elements and gold in geochemical exploration samples by Nickel Sulfide Fire Assay-ICPMS Ⅱ. Reduction of reagent blank. Rock and Mineral Analysis, 20(3):21(1):7-11 (in Chinese with English abstract)
Ma X, Chen B, Chen JF and Niu XL. 2013. Zircon SHRIMP U-Pb age, geochemical, Sr-Nd isotopic, and in-situ Hf isotopic data of the Late Carboniferous-Early Permian plutons in the northern margin of the North China Craton. Science China (Earth Sciences), 56(1): 126-144. DOI:10.1007/s11430-012-4456-6
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253. DOI:10.1016/0009-2541(94)00140-4
Mu BL and Yan GH. 1992. Geochemistry of Triassic alkaline of subalkaline igneous complexes in the Yan-Liao area and their significance. Acta Geologica Sinica, 66(2): 108-121.
Naldrett AJ and Duke JM. 1980. Platinum metals magmatic sulfide ores. Science, 208(4451): 1417-1424. DOI:10.1126/science.208.4451.1417
Naldrett AJ. 2011. Fundamentals of magmatic sulfide deposits. Reviews in Economic Geology, 17: 1-50.
Niu XL, Chen B, Liu AK, Suzuki K and Ma X. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton. Lithos, 149: 146-158. DOI:10.1016/j.lithos.2012.05.017
Niu XL, Yang JS, Liu F, Zhang HY and Yang MC. 2016. Origin of Baotoudong syenites in North China Craton:Petrological, mineralogical and geochemical Evidence. Science China (Earth Sciences), 59(1): 95-110. DOI:10.1007/s11430-015-5216-1
Niu XL, Chen B, Feng GY, Liu F and Yang JS. 2017. Origin of Lamprophyres from the northern margin of the North China Craton:Implications for mantle metasomatism. Journal of the Geological Society, 174(2): 353-364. DOI:10.1144/jgs2016-044
Owen JP. 2008. Geochemistry of lamprophyres from the Western Alps, Italy:Implications for the origin of an enriched isotopic component in the Italian mantle. Contributions to Mineralogy and Petrology, 155(3): 341-362. DOI:10.1007/s00410-007-0246-0
Pan WJ, Sun XM and Shi GY. 2012. Platinum-group element geochemistry of lamprophyres in the gold deposit, Ailaoshan suture, Yunnan Province. Mineral Deposits, 31(Suppl): 707-708.
Pearson DG, Irvine GJ, Ionov DA, Boyd FR and Dreibus GE. 2004. Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction:A study of massif and xenolith peridotite suites. Chemical Geology, 208(1-4): 29-59. DOI:10.1016/j.chemgeo.2004.04.005
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394. DOI:10.1016/S0009-2541(97)00150-2
Qi L and Zhou MF. 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2): 83-103. DOI:10.1016/j.chemgeo.2007.11.004
Qi L, Wang CY and Zhou MF. 2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China. Lithos, 106(3-4): 222-236. DOI:10.1016/j.lithos.2008.07.012
Ren R, Mu BL, Han BF, Zhang L, Chen JF, Xu Z and Song B. 2009. Zircon SHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica, 25(3): 588-594.
Riley TR, Leat PT, Storey BC, Parkinson IJ and Millar IL. 2003. Ultramafic lamprophyres of the Ferrar large igneous province:Evidence for a HIMU mantle component. Lithos, 66(1-2): 63-76. DOI:10.1016/S0024-4937(02)00213-X
Schmidt KH, Bottazzi P, Vannucci R and Mengel K. 1999. Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth and Planetary Science Letters, 168(3-4): 287-299. DOI:10.1016/S0012-821X(99)00056-4
Shao JA, Zhang YB, Zhang LQ, Mu BL, Wang PY and Guo F. 2003. Early Mesozoic dike swarms of carbonatites and lamprophyres in Datong area. Acta Petrologica Sinica, 19(1): 93-104.
Song XY, Zhou MF, Keays RR, Cao ZM, Sun M and Qi L. 2006. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:Implications for sulfide segregation. Contributions to Mineralogy and Petrology, 152(1): 53-74. DOI:10.1007/s00410-006-0094-3
Song XY, Keays RR, Xiao L, Qi HW and Ihlenfeld C. 2009. Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chemical Geology, 262(3-4): 246-261. DOI:10.1016/j.chemgeo.2009.01.021
Song XY, Hu RZ and Chen LM. 2009. Geochemical natures of copper, nicker and PGE and their significance for the study of origin and evolution of mantle-derived magmas and magmatic sulfide deposits. Earth Science Frontiers, 16(4): 287-305.
Sun H, Qin KZ, Li JX, Tang DM, Fan X and Xiao QH. 2008. Constraint of mantle partial melting on PGE mineralization of mafic-ultramafic intrusions in Eastern Tianshan:Case study on Tulargen and Xiangshan Cu-Ni deposits. Acta Petrologica Sinica, 24(5): 1079-1086.
Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N and Hoefs J. 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador:A consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology, 47(7): 1261-1315. DOI:10.1093/petrology/egl008
Vogel DC and Keays RR. 1997. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia. Chemical Geology, 136(3-4): 181-204. DOI:10.1016/S0009-2541(96)00142-8
Wang CY, Zhou MF and Qi L. 2007a. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district:Mantle sources, crustal contamination and sulfide segregation. Chemical Geology, 243(3-4): 317-343. DOI:10.1016/j.chemgeo.2007.05.017
Wang J, Xie ZP, Xu WL and Hattori K. 2012. Origin of ultramafic xenoliths in high-Mg pyroxene-diorites from western Shandong Province:Evidence from oxidation state (fO2) and platinum group elements. Journal of Jilin University (Earth Science Edition), 42(5): 1390-1403.
Wang JH, Qi L, Yin A and Xie GH. 2001. Emplacement age and PGE geochemistry of lamprophyres in the Laowangzhai gold deposit, Yunnan, SW China. Science in China (Series D), 44(Suppl.1): 146-154.
Wang XX, Wang T, Jahn BM, Hu NG and Chen W. 2007b. Tectonic significance of Late Triassic post-collisional lamprophyre dykes from the Qinling Mountains (China). Geological Magazine, 144(5): 837-848.
Windley BF, Alexelev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Woodland SJ, Pearson DG and Thirlwall MF. 2002. A platinum group element and Re-Os isotope investigation of siderophile element recycling in subduction zones:Comparison of Grenada, Lesser Antilles Arc, and the Izu-Bonin Arc. Journal of Petrology, 43(1): 171-198. DOI:10.1093/petrology/43.1.171
Wu FY, Yang JH and Liu XM. 2005. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317.
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. DOI:10.1029/2002TC001484
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. DOI:10.1016/j.gr.2012.05.015
Xu C, Huang ZL, Liu CQ, Zhai SK, Li WB and Guan T. 2003. Review on geochemistry of platinum-group elements. Earth Science Frontiers, 10(4): 520-528.
Yan GH, Mu BL, Xu BL, He GQ, Tan LK, Zhao H, He ZF, Zhang RH and Qiao GS. 1999. Triassic alkaline intrusives in the Yanliao-Yinshan area:Their chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China Series D:Earth Sciences, 42(6): 582-587. DOI:10.1007/BF02877785
Yan GH, Xu BL, Mu BL, He GQ, Tong Y, Ren KX, Qiao GS, Xu RH, Zhang RH and Chu ZY. 2001. Characteristics and implications of Nd, Sr, Pb in Mesozoic alkaline-riched intrusions of North China. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 234-237.
Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160. DOI:10.1016/j.lithos.2003.12.003
Yang JH, Sun JF, Zhang M, Wu FY and Wilde SA. 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology, 328: 149-167. DOI:10.1016/j.chemgeo.2011.09.011
Zhang JW, Huang ZL, Luo TY and Yan ZF. 2014. LA-ICP-MS zircon geochronology and platinum-group elements characteristics of the Triassic basalts, SW China:Implications for post-Emeishan large igneous province magmatism. Journal of Asian Earth Sciences, 87: 69-78. DOI:10.1016/j.jseaes.2014.02.023
Zhang SH, Zhao Y, Kröner A, Liu XM, Xie LW and Chen FK. 2009. Early Permian plutons from the northern North China Block:Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441-1467. DOI:10.1007/s00531-008-0368-2
Zhang SH, Zhao Y, Song B and Liu DY. 2007a. Petrogenesis of the Middle Devonian Gushan diorite pluton on the northern margin of the North China block and its tectonic implications. Geological Magazine, 144(3): 553-568. DOI:10.1017/S0016756807003275
Zhang SH, Zhao Y, Song B, Yang ZY, Hu JM and Wu H. 2007b. Carboniferous granitic plutons from the northern margin of the North China block:Implications for a Late Palaeozoic active continental margin. Journal of the Geological Society, 164(2): 451-463. DOI:10.1144/0016-76492005-190
Zhang ZC, Mao JW, Mahoney JJ, Wang FS and Qu WJ. 2005. Platinum group elements in the Emeishan large igneous province, SW China:Implications for mantle sources. Geochemical Journal, 39(4): 371-382. DOI:10.2343/geochemj.39.371
Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997-2019. DOI:10.1093/petrology/egl034
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao Z, Qi L, Huang ZL, Yan ZF and Xu C. 2010. Geochemical charateristics of platinum-group elements of Jijie alkaline-ultrabasic rocks, Yunnan Province. Acta Petrologica Sinica, 26(3): 938-946.
Zhen JP and Lu FX. 1999. Mantle xenoliths from kimberlites, Shandong and Liaoning:Paleozoic mantle character and its heterogeneity. Acta Petrologica Sinica, 15(1): 65-74.
Zhong H, Zhu WG, Qi L, Zhou MF, Song XY and Zhang Y. 2006. Platinum-group element (PGE) geochemistry of the Emeishan basalts in the Pan-Xi area, SW China. Chinese Science Bulletin, 51(7): 845-854.
储雪蕾, 孙敏, 周美夫. 2001. 化学地球动力学中的铂族元素地球化学. 岩石学报, 17(1): 112-122.
冯光英, 刘燊, 苏文超, 冯彩霞, 王涛, 杨毓红. 2010. 黔西南碱性超基性脉岩的铂族元素地球化学. 矿物学报, 30(2): 207-214.
何红蓼, 吕彩芬, 周肇茹, 史世云, 李冰. 2001. 锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金Ⅰ. 分析流程的简化.岩矿测试, 20(3): 191-194.
李献华, 周汉文, 韦刚健, 刘颖, 钟孙霖, 罗清华, 李寄嵎. 2002. 滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约. 地球化学, 31(1): 26-34.
刘军锋, 孙卫东, 孙勇, 孙亚莉, 刘方杰. 2008. 东秦岭松树沟超镁铁质岩体地球化学和铂族元素特征:对成因的指示. 地质论评, 54(1): 57-64.
刘庆, 侯泉林, 周新华, 谢烈文. 2008. 北大别白垩纪镁铁-超镁铁岩的铂族元素地球化学研究. 中国地质, 35(5): 859-868.
刘燊, 胡瑞忠, 赵军红, 冯彩霞, 钟宏, 曹建劲, 史丹妮. 2005. 胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究. 岩石学报, 21(3): 947-958.
吕彩芬, 何红蓼, 周肇如, 支辛辛, 李冰, 张勤. 2002. 锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金Ⅱ. 分析流程空白的降低.岩矿测试, 21(1): 7-11.
牟保磊, 阎国翰. 1992. 燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义. 地质学报, 66(2): 108-121.
潘伟坚, 孙晓明, 石贵勇. 2012. 云南哀牢山金矿带煌斑岩铂族元素地球化学. 矿床地质, 31(增刊): 707-708.
任荣, 牟保磊, 韩宝福, 张磊, 陈家富, 徐钊, 宋彪. 2009. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄. 岩石学报, 25(3): 588-594.
邵济安, 张永北, 张履桥, 牟保磊, 王佩瑛, 郭峰. 2003. 大同地区早中生代煌斑岩-碳酸岩岩墙群. 岩石学报, 19(1): 93-104.
宋谢炎, 胡瑞忠, 陈列锰. 2009. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义. 地学前缘, 16(4): 287-305.
孙赫, 秦克章, 李金祥, 唐冬梅, 范新, 肖庆华. 2008. 地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束——以图拉尔根和香山铜镍矿为例. 岩石学报, 24(5): 1079-1086.
王建, 谢志鹏, 许文良, Hattori K. 2012. 鲁西中生代高镁辉石闪长岩中超镁铁质捕虏体成因:氧化态和铂族元素证据. 吉林大学学报(地球科学版), 42(5): 1390-1403.
吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, 11(3): 305-317.
许成, 黄智龙, 刘丛强, 翟世奎, 李文博, 管涛. 2003. 铂族元素地球化学研究评述. 地学前缘, 10(4): 520-528.
阎国翰, 许保良, 牟保磊, 何国琦, 童英, 任康绪, 乔广生, 许荣华, 张任祜, 储著银. 2001. 中国北方中生代富碱侵入岩钕、锶、铅同位素特征及其意义. 矿物岩石地球化学通报, 20(4): 234-237.
赵正, 漆亮, 黄智龙, 严再飞, 许成. 2010. 云南鸡街碱性超基性岩铂族元素地球化学特征. 岩石学报, 26(3): 938-946.
郑建平, 路凤香. 1999. 胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性. 岩石学报, 15(1): 65-74.