岩石学报  2017, Vol. 33 Issue (12): 3842-3860   PDF    
滇西高黎贡造山带始新世岩浆活动及其对印度板块与欧亚大陆碰撞的响应
张诗启 , 戚学祥 , 韦诚 , 张超 , 吉风宝     
中国地质科学院地质研究所, 北京 100037
摘要:高黎贡构造带构成腾冲地块的东部边界,其内出露的新生代花岗岩与印度板块和欧亚大陆的碰撞有关。本文通过岩石学、岩石地球化学、锆石LA-ICP-MS U-Pb定年和Lu-Hf同位素示踪对腾冲地块东缘——高黎贡构造带内3个始新世花岗岩体进行了研究,结果表明其形成时代为43~47Ma。岩石具有高钾钙碱性、高硅、富钾、低钙、低磷,A/CNK值介于1.05~1.14之间,LREE富集以及Eu、Sr、Ba、Nb、P和Ti强烈负异常等特征。锆石Lu-Hf同位素测试结果表明九斤粮岩体和大中山岩体的锆石εHft)值特征相近,分布于-8.4~-0.8之间,对应的tDMC值为1317~1730Ma;董家园岩体的锆石εHft)值则分布于球粒陨石线两侧(-7.0~+5.7),对应的tDMC值为907~1531Ma。这些特征说明九斤粮岩体和大中山花岗岩岩浆来源于中-新元古代变沉积岩部分熔融的产物,董家园花岗岩岩浆来源于中-新元古代变基性岩和变沉积岩的部分熔融。岩石地球化学特征和构造环境判别图解显示该期花岗岩形成于同碰撞的构造环境,是腾冲地块内晚白垩世和古新世岩浆活动的延续,是对印度板块与欧亚大陆碰撞的响应。
关键词: 腾冲地块     高黎贡构造带     始新世花岗岩     锆石U-Pb定年     Lu-Hf同位素    
Eocene magmatism in the Gaoligong orogen, southwestern Yunnan, and its response to the collision of the India-Eurasia
ZHANG ShiQi, QI XueXiang, WEI Cheng, ZHANG Chao, JI FengBao     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Gaoligong orogen is the eastern boundary of the Tengchong block, and the Cenozoic granites outcropped in this orogen are related to the collision of the Indian and Eurasian plates. Here we report a new chronological and petrochemical study for the Eocene granites from the Gaoligong orogen in eastern Tengchong block. The zircon LA-ICP-MS U-Pb dating from three granites yielded weighted mean 206Pb/238U ages ranging from 47Ma to 43Ma. The zircon εHf(t) values show a range of -8.4~-0.8 with tDMC of 1317~1730Ma for Jiujinliang and Dazhongshan granites, and -7.0~+5.7 with tDMC of 907~1531Ma for Dongjiayuan granite. These rocks are characteristized by high-K calc-alkaline, high SiO2, K2O and low CaO, P2O5 contents, metaluminous to peraluminous, enrichment of LILE and LREE, with strongly negative Ba, Nb, Sr, P and Ti anomalies, indicating a collision affinity. These features shows that the granitic magmas for the Jiujinliang and Dazhongshan granites are derived from the partial melting of the Mid-Neoproterozoic metasedimentary rocks, while the Dongjiayuan granite was considered to be derived from melting of metaigneous and metasedimentary rocks. According to petrological and geochemical characteristics of these granites together with the tectonic diagram analysis, all of these granites are formed within a collision-related tectonic setting. The Eocene magmatism is the response to the collision of the Indian and Tengchong blocks.
Key words: Tengchong block     Gaoligong tectonic belt     Eocene granite     Zircon U-Pb dating     Lu-Hf isotope    
1 引言

滇西腾冲地块位于青藏高原东南缘三江构造带西缘,在经历了中特提斯洋俯冲后与保山地块碰撞拼合,并随着新特提斯洋闭合与印度板块碰撞,形成东以班公湖-怒江缝合带的东南延伸带――高黎贡构造带与保山地块相隔、西以密支那缝合带为界与印度板块相邻的区域构造格局(Mitchell, 1993Mitchel et al., 2004Morley, 2004Metcalfe, 2006Acharyya, 2007Kapp et al., 2007杨经绥等,2012),此外区内还叠加了新生代块体旋转挤出而发生的大规模韧性走滑剪切变形(丁林,1991钟大赉等,1991钟大赉,1998王二七等,2006Morley, 2007Searle et al., 2007Cao et al., 2010)。区内岩浆活动频繁,构造变形强烈,是研究中特提斯洋和新特提斯洋从形成到消亡、印度板块与腾冲-拉萨地块碰撞及青藏高原东南缘块体旋转挤出的最佳场所。为此,前人对腾冲地块东西两侧的中特提斯和新特提斯缝合带的性质及后期叠加的变形构造进行了广泛的研究,基本揭示了中特提斯和新特提斯缝合带的时空分布和构造演化过程。同时,对腾冲地块内部的中、新生代岩浆岩进行了深入的研究,认为区内早白垩世花岗岩带形成于同碰撞环境,与腾冲地块和保山地块碰撞拼合有关(杨启军等,2006Xu et al., 2012戚学祥等,2012);晚白垩世-始新世岩浆活动是对印度板块与腾冲地块碰撞的响应(Xu et al., 2012Qi et al., 2015);而上新世-更新世火山活动则与块体旋转挤出作用有关(胥颐等,2012张虎等,2015)。近年来,笔者在腾冲地块东南缘——高黎贡构造带内识别出一系列始新世花岗岩体,对进一步查明该区新生代构造岩浆演化提供了重要信息。鉴于此,本文将通过岩石学、同位素年代学、岩石地球化学以及与地块内同时代花岗岩进行对比研究,为揭示始新世印度板块与腾冲地块碰撞的构造演化过程提供依据。

2 区域地质背景

高黎贡造山带位于腾冲地块东侧并构成其东部边界,东以泸水-龙陵-瑞丽断裂与保山地块分隔,西以龙川江断裂为界,该断裂自北向南呈弧形向西南延伸,北止于喜马拉雅东构造结,南经龙陵转向南西延伸至缅甸境内,为Sagaing断裂所截(图 1)。高黎贡造山带宽5~20km,主体为元古界高黎贡山群黑云母斜长片麻岩、花岗片麻岩、混合岩、云英片岩、斜长角闪岩和变粒岩(钟大赉,1998陈福坤等,2006),向南与缅甸境内的Mogok岩群(Barley et al., 2003Searle et al., 2007李再会等,2012bEroǧlu et al., 2013Yonemura et al., 2013王丹丹等,2013)相连,并经历了新生代(36~18Ma)大规模右行走滑剪切变形变质作用的叠加改造(Zhong et al., 2000季建清等,2000Wang et al., 2006Lin et al., 2009Zhang et al., 2012Eroǧlu et al., 2013)。构造带东侧为早古生代浅变质岩系,西侧腾冲地块内部出露的地层有元古界高黎贡山群中深变质岩系,晚古生代泥盆系-石炭系-二叠系含砾石英砂岩、含砾长石石英砂岩、粉砂岩、浅变质粉砂岩、绢云板岩、千枚岩、粉砂质泥质板岩、灰岩、泥质灰岩、含砾砂质泥岩、泥质粉砂岩夹砾岩、含生物碎屑灰岩、硅质岩、白云岩、大理岩等(邹光富等,2014曹华文,2015),中生代三叠系灰岩、大理岩、钙质砾岩、泥质灰岩、粉砂质泥岩以及新近系陆相沉积砾岩、砂岩和粘土岩夹褐煤层(邹光富等,2014曹华文,2015)。

图 1 高黎贡构造带区域地质略图(据云南省地矿局,1975Xu et al., 2012Qi et al., 2015修编) 1-第四系;2-新生界地层;3-中生界地层;4-古生界地层;5-元古界地层;6-花岗岩;7-基性岩;8-断层;9-地质界线;10-韧性剪切带;11-U-Pb年龄;12-研究区位置.JSS-金沙江缝合带;LSS-龙木措-双湖缝合带;BNS-班公湖-怒江缝合带;YTS-雅鲁藏布江缝合带;MBT-主逆冲边界;IBR-印度-缅甸边界;WB-缅甸西部;SGF-Sagaing断裂带;TC-腾冲地块.U-Pb年龄数据来源:(1) Xu et al., 2012;(2) Ma et al., 2014;(3) Qi et al., 2015;(4) 李再会等,2012a;(5) 李再会等,2014;(6) 蓝江波等,2007;(7) 林木森等,2014;(8) Cao et al., 2014 Fig. 1 Schematic geological map of the Gaoligong tectonic belt(modified after Xu et al., 2012; Qi et al., 2015) 1-Quaternary; 2-Cenozoic strata; 3-Mesozoic strata; 4-Paleozoic strata; 5-Petrozoic strata; 6-granite; 7-mafic rock; 8-fault; 9-geological boundary; 10-ductile shear zone; 11-U-Pb ages; 12-studied area. JSS-Jinsha suture zone; LSS-Longmucuo-Shuanghu suturezone; BNS-Bangongco-Nujiang suture zone; YTS-Yarlung-Tsangpo suture zone; MBT-Main boundary thrust; IBR-Indo-Burma suture zone; WB-Western Burma; SGF-Sagaing fault; TC-Tengchong block. U-Pb ages sourced from: (1) Xu et al., 2012; (2) Ma et al., 2014; (3) Qi et al., 2015; (4) Li et al., 2012a; (5) Li et al., 2014; (6) Lan et al., 2007; (7) Lin et al., 2014; (8) Cao et al., 2014

① 云南省地矿局. 1975. 1:50万腾冲幅地质矿产图

3 分析方法

本文全岩主量和微量元素化学成分分析在中国地质科学院国家地质实验测试中心完成。主量元素采用X-荧光光谱法(X-ray fluorescence),测试仪器为3080E型X-荧光光谱仪,执行GB/T 14506.28-1993标准,H2O+执行GB/T14506—1993标准,CO2执行GB9835-1988标准,LOI执行LY/T1253—1999标准,分析精度优于5%;稀土元素和微量元素采用等离子质谱法(ICP-MS)测得,执行标准为T0223-200,微量元素含量大于10×10-6的元素分析误差优于5%,小于10×10-6的元素测试精度优于10%,样品处理过程和分析流程见Grégoire et al. (2000)Qi et al. (2000)

锆石样品在河北省地质调查院挑选纯度在99%以上的锆石制靶,阴极发光照在中国地质科学院离子探针中心完成。LA-ICP-MS分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成锆石U-Pb同位素定年,以国际标准锆石91500为外标和29Si(锆石中SiO2的含量为32.18%)为内标测定锆石中U、Th和Pb的含量(Hu et al., 2012),采用ICPMSDataCal(V3.7)软件对同位素比值数据进行处理(Liu et al., 2010)和ISOPLOT程序进行锆石加权平均年龄计算及谐和图的绘制(Ludwig, 2003)。

锆石Hf同位素在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室采用Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统完成。用He作为剥蚀物质载气,剥蚀直径55μm,使用锆石国际标样GJ1和Plesovice作为参考物质,相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ1和Plesovice的176Hf/177Hf测试加权平均值分别为0.282007±0.000007 (2σ, n=36)和0.282476±0.000004 (2σ, n=27),与文献报道值(侯可军等, 2007; Morel et al., 2008; áma et al., 2008)在误差范围内一致。初始176Hf/177Hf、εHf(t)值和地幔模式年龄计算参考Scherer et al.(2001)Bouvier et al.(2008)Griffin et al.(2000, 2002)。

4 花岗岩岩石学和地球化学特征

研究区位于高黎贡剪切带中北段龙陵-泸水之间,样品分别采自草园坡、九斤粮、董家园和大中山花岗岩体(图 2)。

图 2 高黎贡构造带中北段始新世花岗岩分布图(据侯蜀光等,2003;叶培盛等,2010;黄柏鑫等,2010和白宪洲等,2010修编) Fig. 2 Geological map of the Cenozoic granitic plutons in the middle-northern Gaoligong orogen

① 侯蜀光等. 2003. 1:5万大董街幅地质图

② 叶培盛等. 2010. 1:5万道街坝幅地质图

③ 黄柏鑫等. 2010. 1:5万清河街幅地质图

④ 白宪洲等. 2010. 1:5万镇安街幅地质图

4.1 岩石学特征

草园坡岩体位于龙陵县镇安镇北西约10km的草园坡村东侧,近南北向展布,长约2.5km,宽约1.5km,出露面积约3.8km2,侵位于奥陶纪花岗岩中(图 2),为本次填图工作根据侵入关系和岩石特征新厘定出来的1个小岩体。岩性为初糜棱岩化二云母二长花岗岩,主要矿物为钾长石,半自形-他形板柱状,粒度一般在0.1×0.22mm~2×3mm之间,发育微裂隙,含量约30%;斜长石,自形-半自形板柱状,粒度一般在0.1×0.2mm~1×2mm之间,含量约17%;石英呈他形粒状,粒度一般在0.1×0.2mm~0.2×0.5mm之间,含量约30%;黑云母(约3%)和白云母(约10%)呈半自形-他形片状;电气石呈半自形-他形柱状,含量达10%;副矿物主要有锆石、磷灰石和少量磁铁矿。岩石中部分长石和石英具有碎裂现象,云母弱定向分布,形成弱面理构造,但长石和云母都未发生明显的蚀变。

九斤粮岩体位于龙陵县顿东乡西约8km处,近南北向展布,长约7.5km,宽约0.7km,出露面积约5.2km2,侵位于元古界地层,与其东侧奥陶纪花岗岩断裂接触(图 2),为以往地质工作所发现,但未进行过年代学研究。岩性为糜棱岩化花岗岩,糜棱线理发育,旋转碎斑由钾长石和斜长石组成,粒度一般在0.3×0.8mm~1×2mm之间,在长石边部都为细粒化长石,含量约10%。基质由定向排列的细粒长石和石英及少量黑云母和白云母组成相对较粗和微细粒相间的条带,构成糜棱面理和拉伸线理。长石含量为50%,石英含量为30%,黑云母零星分布,含量仅为6%,电气石达到3%。副矿物主要有锆石、磷灰石和榍石(1%)。

董家园岩体位于腾冲县五合乡东南约6km董家园东侧,北西长约1.5km,宽约1km,出露面积约1.5km2,侵位于元古界地层(图 2),被北东向断裂错移,为以往地质工作所厘定的岩体。岩石具有片麻状构造,似斑状结构,面理清晰可见,碎斑发育,以斜长石为主,其次为钾长石,粒度一般在1×2mm~2×3mm之间,长石边部发生明显的细粒化作用,但无绢云母化等蚀变,含量40%。基质由定向排列的细粒长石、石英条带和黑云母组成的条带,构成糜棱面理。其中,长石含量约20%,石英约占34%,黑云母约为4%。此外,岩石中还偶见约1%细粒它形角闪石。副矿物主要有电气石、锆石、磷灰石和榍石(1%)。

大中山岩体位于腾冲县芒棒乡东约7.8km,近南北向展布,长约4.5km,宽约1km,出露面积约4.5km2,侵位于元古界地层(图 2),这也是本次地质填图新厘定的花岗岩体。岩性为强糜棱岩化花岗岩,糜棱面理和拉伸线理发育,旋转碎斑以钾长石为主,其次为斜长石,呈椭圆状,粒度一般在1~5mm之间,少量达1cm,含量约为8%。碎斑内部有强高岭土化钾长石和绢云母化斜长石及少量黑云母包裹体,碎斑边部为细粒化长石和条带状石英及少量细片状黑云母构成不对称旋转碎斑尾,展示其右旋运动方向。基质由定向排列的细粒化长石和段带状石英及少量黑云母组成。其中,长石约占50%,石英约占35%,黑云母含量仅为5%。副矿物主要有电气石、锆石、磷灰石、榍石(2%)。

总体来看,构造带内4个新生代花岗岩体都不同程度受到后期韧性剪切作用的改造,发生不同程度的糜棱岩化,但其主要造岩矿物石英发生韧性变形、长石和云母仅经历了细粒化脆性变形,未发生明显的蚀变,岩石中未出现新生变质矿物,表明变质作用局限于绿片岩相到低角闪岩相。

4.2 岩石地球化学特征

岩石地球化学分析结果(表 1)表明九斤粮和大中山2个花岗岩体的岩石化学组成相近,其主量元素特征为:SiO2总体含量为72.63%~76.85%,K2O+Na2O=7.64%~8.50%、K2O/Na2O=1.00~1.31,A/CNK=1.05~1.13,A/NK=1.24~1.34,里特曼指数σ=1.79~2.40,显示其为高钾钙碱性准铝质-弱过铝质花岗岩(图 3)。岩石的稀土及微量元素具有以下特征:(1) ∑REE为176×10-6~481×10-6、LREE/HREE在4.30~13.5之间、(La/Sm)N=2.66~5.71、(Gd/Yb)N=1.04~2.76、δEu=0.10~0.17、δCe=0.85~0.98,显示为轻稀土富集、分馏程度高、Eu强烈亏损;(2)稀土球粒陨石标准化配分模式图上呈“V”字型(图 4a);(3)微量元素原始地幔标准化蛛网图(图 4b)显示大离子亲石元素Rb和放射性元素U、Th相对原始地幔强烈富集,高场强元素Nb、Sr、P、Ti和大离子亲石元素Ba强烈负异常。

表 1 高黎贡造山带始新世花岗岩地球化学组成(主量元素:wt%; 稀土和微量元素:×10-6) Table 1 Geochemical compositions of the Eocene granites in the Gaoligong orogen(major elements:wt%; trace elements: ×10-6)

图 3 K2O+Na2O-SiO2火山岩分类命名图(a, 据Rickwood, 1989)和K2O-SiO2钙碱性判别图(b, 据Peccerillo and Taylor, 1976) Fig. 3 K2O+Na2O vs. SiO2 classification diagram (a, after Rickwood, 1989) and K2O vs. SiO2 calcium-alkaline discriminant diagram (b, after Peccerillo and Taylor, 1976) for the granites in the Gaoliegong tectonic belt

图 4 球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 4 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for the granites in the Gaoliegong tectonic belt (normalization values after Sun and McDonough, 1989)

岩石地球化学分析结果(表 1)表明,董家园花岗岩体的主量元素特征为:SiO2含量相对略低,总体为71.68%~72.32%,K2O+Na2O=8.15%~9.07%、K2O/Na2O=0.90~1.12,A/CNK=1.05~1.15、A/NK=1.26~1.37,里特曼指数σ=2.31~2.87,为高钾钙碱性准铝质-弱过铝质花岗岩(图 3)。岩石的稀土及微量元素特征为:(1) ∑REE为528×10-6~821×10-6、LREE/HREE在17.7~28.5之间、(La/Sm)N在5.85~6.71之间、(Gd/Yb)N为2.02~4.15、δEu=0.15~0.17、δCe=0.90~1.00,显示为轻稀土富集、分馏程度高、Eu强烈亏损;(2)稀土球粒陨石标准化配分模式图上呈“V”字型(图 4a);(3)微量元素原始地幔标准化蛛网图(图 4b)显示大离子亲石元素Rb和放射性元素U、Th相对原始地幔强烈富集,高场强元素Nb、Sr、P、Ti和大离子亲石元素Ba强烈负异常。

图 5 锆石阴极发光图像 (a)草园坡岩体;(b)九斤粮岩体;(c)董家园岩体;(d)大中山岩体 Fig. 5 The cathodoluminescence images of zircons from the granites in the Gaoliegong orogenic belt (a) Caoyuanpo granite; (b) Jiujinliang granite; (c) Dongjiayuan granite; (d) Dazhongshan granite
5 锆石特征、测年结果及Hf同位素组成 5.1 锆石特征

草园坡岩体的锆石无色透明-浅灰色,长柱状、不规则状,锆石粒径80~250μm,长宽比为1.2~3.5之间。阴极发光图片显示大部分锆石为韵律环带清晰的单一锆石,个别锆石存在继承核和新生边二元结构,且边部韵律环带清晰,为典型岩浆锆石特征(图 5a),其Th/U值在0.004~0.74之间(表 2),为Th/U值(﹤0.1)非常低的岩浆岩锆石(吴元保等,2002Gebauer et al., 1996Hidaka et al., 2002)。

表 2 高黎贡造山带新生代花岗岩锆石LA-ICP-MS U-Pb定年结果 Table 2 Zircon LA-ICP-MS U-Pb ages for the Cenozoic granites in the Gaoligong orogen

九斤粮岩体的锆石为无色透明柱状,粒径100~220μm,长宽比为1.1~1.5之间。阴极发光图像显示锆石为韵律环带清晰的单一锆石,个别锆石具溶蚀边和新生边(图 5b),Th/U值在0.37~1.11之间(表 2),为岩浆锆石特征(吴元保等,2004Hoskin and Schaltegger, 2003)。

董家园岩体的锆石无色透明-浅灰色,长柱状、不规则状,锆石粒径150~350μm,长宽比为1.1~3.5之间。阴极发光图像显示部分锆石有明显韵律环带,部分锆石具有新生边,少数具溶蚀边或包裹体(图 5c),Th/U值在0.12~0.58之间,平均0.34,为典型岩浆锆石特征(吴元保等,2004Hoskin and Schaltegger, 2003)。未见继承性锆石核和新生变质锆石边。

大中山岩体的锆石为浅灰色和无色透明,长柱状、短柱状和不规则状,粒径100~2500μm,长宽比为1.2~2.3之间。阴极发光图像显示锆石多具韵律环带,个别为弱分带,部分锆石表面和边部有溶蚀现象,部分具有继承核(图 5d),Th/U值在0.09~1.47之间(表 2),平均0.43,大部分大于0.40,展现出岩浆锆石特征(吴元保等,2004Hoskin and Schaltegger, 2003)。

5.2 锆石LA-ICP-MS U-Pb定年

草园坡岩体19颗锆石的206Pb/238U年龄分布在41~837Ma之间(表 2),其中3、8、14、19点为继承锆石核,对应的206Pb/238U年龄分别为837Ma、494Ma、453Ma、475Ma,其韵律环带清晰,无新生锆石边,属于典型的岩浆锆石(图 5a),与围岩-元古代地层和奥陶纪花岗岩时代一致,说明其为岩浆侵位过程中捕虏的围岩锆石,与该岩体侵位于奥陶纪花岗岩内吻合(图 2);点6和8打在了继承核和岩浆锆石的交界部,为混合年龄;点15和17的206Pb/238U年龄协和度较低,可能存在Pb丢失,他们不参与计算成岩年龄。剩余11个测点的加权平均年龄为43±1.0Ma(MSWD=15)(图 6a),代表岩浆锆石的结晶年龄。

图 6 锆石U-Pb年龄谐和图 虚线点未参与锆石U-Pb加权平均年龄计算 Fig. 6 The zircon LA-ICP-MS U-Pb concordia diagrams for the Cenozoic granites in the Gaoligong orogen The dotted circles are not calculated in the weight mean ages

九斤粮岩体20颗锆石的206Pb/238U年龄分布在43~46Ma之间(表 2),其中测点2、13、18、19的206Pb/238U年龄协和度较低,未参与成岩年龄的计算,剩余16个点的加权平均年龄为45±0.6Ma(MSWD=4.8)(图 6b),反映了岩浆锆石的结晶年龄。

董家园岩体23颗锆石的206Pb/238U年龄分布在43~49Ma之间(表 2)。23个测点中,1、4、5、11、14和17点的206Pb/238U年龄协和度分别为57%、52%、64%、54%、71%和74%,不参加计算成岩年龄,剩余17个测点的加权平均年龄为46±0.8Ma(MSWD=5.8)(图 6c),代表了岩浆锆石的结晶年龄,反映其成岩时代为始新世。

大中山岩体25颗锆石的206Pb/238U年龄存在明显的3组,分别为46~48Ma、58~62Ma和69~75Ma(表 2)。其中,前者和后者相对集中,对应的加权平均值分别为47±0.5Ma(MSWD=1.3)和73±1.3Ma(MSWD=1.3)。3、10、13和24测点206Pb/238U年龄处在上述2组年龄之间,变化很大,在谐和图上虽然位于谐和线上,但呈零星分布态势,可能为上述2组年龄锆石之间的混合年龄。点5、7、11、14、15和23的206Pb/238U年龄协和度较低,未参与加权平均年龄计算(图 6d)。锆石阴极发光图像显示3和9号锆石存在继承性核外,其它锆石都相对均一,韵律环带清晰,Th/U比值大于0.1,反映其岩浆锆石的特征,测试结果获得的2组锆石加权平均年龄都是岩浆锆石结晶的年龄,但47Ma年龄组锆石的Th、U和Th/U值普遍小于73 Ma年龄组(表 2),反映二者锆石结晶时岩浆中的Th、U含量是不同的。此外,这2组锆石之间未构成核-边结构,而且73Ma年龄组的锆石不存在明显的溶蚀现象,说明后者并非来自早期侵位的岩浆岩,而是存在不同阶段结晶的锆石,即73Ma组锆石可能是在岩浆房中结晶的,47Ma组锆石是在岩浆侵位期间结晶的,代表了岩浆侵位时代。

5.3 锆石Lu-Hf同位素

锆石Lu-Hf同位素为相应U-Pb定年同颗锆石测年点相邻近且结构相同部位测定,176Hf/177Hf初始比值和εHf(t)值和二阶段模式年龄tDMC根据同一锆石U-Pb定年数据计算(Xu et al., 2008),分析测试结果见表 3。九斤粮岩体(10QTG-26)中锆石17个分析点获得的同位素176Hf/177Hf初始比值为0.282622~0.282635,εHf(t)值介于-7.32~-0.83之间,加权平均值为-3.68 ± 0.9,εHf(t)值柱状图上峰值为-5.4~-2.4,对应的二阶段模式年龄为1317~1730Ma,集中分布于1300~1600Ma(图 7ab)。董家园岩体(10QTG-28)中锆石23个分析点获得的同位素176Hf/177Hf初始比值为0.282622~0.282772,εHf(t)值介于-6.96~+5.71之间,加权平均值为0.6±1.2,对应的二阶段模式年龄为907~1531Ma;其中,εHf(t)值-6.96~-0.39对应的tDMC为1291~1531Ma,εHf(t)值+0.08~+5.71对应的tDMC分布于907~1266Ma(图 7cd)。大中山岩体(10QTG-62)中锆石17个分析点获得的同位素176Hf/177Hf初始比值为0.282772,εHf(t)值介于-8.42~-4.34之间,加权平均值为-5.98 ± 0.6,εHf(t)值柱状图上峰值为-6.0~-4.0,对应的二阶段模式年龄为1364~1623Ma,集中分布于1400~1480Ma(图 7ef);其中,锆石U-Pb年龄为47Ma年对应的εHf(t)值(-5.80~-5.02)和tDMC值(1407~1457Ma)与73Ma年对应的εHf(t)值(-7.80~-5.61)和tDMC值(1445~1584Ma)基本一致。

表 3 锆石Hf同位素组成 Table 3 Zircon Lu-Hf isotope data

图 7 锆石εHf(t)值柱状图和锆石Hf同位素二阶段模式年龄柱状图(据Xu et al., 2008) Fig. 7 Histogram of the εHf(t) values and the two-stages' model ages (tDMC) of the zircons from the granites (after Xu et al., 2008)
6 讨论 6.1 韧性变形对花岗岩地球化学成分和锆石测年的影响

高黎贡剪切带在新生代(36~18Ma)经历了大规模右行走滑剪切变形变质作用的叠加改造,带内岩石均有不同程度糜棱岩化(季建清等,2000Zhong et al., 2000Wang et al., 2006Lin et al., 2009Eroǧlu et al., 2013)。前人研究表明,形成于中深构造层次的韧性变形不仅使矿物发生细粒化,而且还会使岩石内流体迁移析出和形成新矿物,从而改变了原岩的化学组成,其中SiO2、Al2O3和Na2O等活动组分最易析出迁移形成石英或长英质条带或团块(O'Hara, 1988O'Hara and Blackburn, 1989Condie and Sinha, 1996),同时还会造成其地球化学分析中较高的烧失量(Gibson et al., 1982Wood et al., 1979)。研究区内4个花岗岩体虽经受不同程度的糜棱岩化,但岩体内未见长英质脉体,岩石中的斜长石和钾长石仅发生轻微的绢云母化和高岭土化,石英虽然经历了韧性变形呈段带状或条带状集合体,但未形成穿插于岩体中的石英脉,岩石中也未出现其它新生矿物等,说明岩石的变质作用程度在绿片岩相-低角闪岩相,韧性变形作用对岩石成份的影响很小,对封闭温度在700℃以上(Harris, 1996Hourigan et al., 2004Flower et al., 2005)的锆石U-Pb定年几乎没有任何影响。此外,岩石化学分析结果显示最易析出迁移组分SiO2、Al2O3和Na2O与中国花岗岩(SiO2=72.26%、Al2O3=14.19%、Na2O=3.55%)和喜马拉雅造山带花岗岩(SiO2=73.60%、Al2O3=14.37%、Na2O=3.54%)的SiO2、Al2O3、Na2O平均值基本一致(史长义等,2005),烧失量也较低(0.34%~0.64%)。综上所述,研究区内花岗岩在糜棱岩化过程中没有明显的化学组分析迁,基本保持了原岩的化学组分。Hastie et al. (2007)研究成果表明在糜棱岩化条件下岩石的稀土元素、高场强元素(Zr、Nb、Ta、Hf等)和过渡元素(Cr、Ni、Th等)不受影响。研究区内新生代糜棱岩化花岗岩的∑REE、LREE/HREE、(La/Sm)N、La和Ce含量均不低于中国花岗岩的平均值(史长义等,2005),表明岩石的稀土元素并未流失。由此可见,糜棱岩化作用对岩石的地球化学成分和锆石U-Th-Pb同位素体系没有实质性影响。

6.2 岩浆成因

花岗岩岩浆主要有以下3种来源:(1)古老地壳物质部分熔融;(2)新生地壳物质(火成岩)部分熔融;和(3)壳源岩浆和幔源岩浆混合形成的混合岩浆(Fort et al., 1987Miller, 1985Alberto and Douce, 1995)。其中,来源于新生地壳或地幔物质部分熔融形成的岩浆,其Lu-Hf同位素以高Lu/Hf比值和εHf(t)值(高于球粒陨石值)为特征,来源于古老地壳物质部分熔融形成的岩浆其Lu/Hf比值和εHf(t)值都较低(低于球粒陨石值),来源于幔源岩浆和壳源岩浆混合形成的岩浆,其Lu/Hf比值和εHf(t)值可能高于或低于球粒陨石值(Kinny and Maas, 2003Ji et al., 2009)。如表 3图 7所示,九斤粮岩体和大中山岩体的锆石εHf(t)值分别为-7.32~-0.83和-8.42~-4.34,在锆石U-Pb年龄和εHf(t)值图解上位于球粒陨石线(CHUR)下方(图 8),对应的tDMC分别为1317~1730Ma和1364~1623Ma,与腾冲地块内新生代花岗岩(50~60Ma,Xu et al., 2012Wang et al., 2014, 2015Ma et al., 2014Zhao et al., 2015)一致,反映其岩浆来源于中元古代地壳物质部分熔融的产物。董家园岩体(10QTG-28)锆石206Pb/238U年龄值非常稳定(43~49Ma),加权平均值为46Ma,但其对应的εHf(t)值却变化很大,分布于-6.96~+5.71之间,其中,高于球粒陨石线的13个锆石(+0.08~+5.71)和小于球粒陨石线的7个锆石(-6.96~-0.39)对应的tDMC明显不同,前者(907~1266Ma)远小于后者(1291~1531Ma),反映该花岗岩体的岩浆具有混合岩浆的特征。在腾冲地块中西部,尤其是腾缅边界一带发育一系列新生代岩浆岩(50~76Ma),其岩石地球化学特征和同位素组成(图 8)揭示其岩浆来源于新特提斯洋壳反转导致幔源物质部分熔融形成基性岩浆(Wang et al., 2014, 2015)和洋壳俯冲或同碰撞诱发壳源物质部分熔融形成酸性岩浆(Xu et al., 2012Qi et al., 2015Zhao et al., 2015)。然而,高黎贡构造带位于腾冲地块东缘,是早白垩纪班公湖-怒江洋关闭,保山地块向腾冲地块下俯冲碰撞拼贴并经历新生代大型走滑改造而形成的构造带(季建清,2000戚学祥等,2011Qi et al., 2015Zhu et al., 2015),远离腾缅边界,如果俯冲洋壳于50Ma在中缅边界一带发生反转或俯冲形成大陆边缘弧型岩浆岩带,则俯冲洋壳就不可能延伸到高黎贡构造带附近,用新特提斯洋壳俯冲导致幔源物质部分熔融形成的基性岩浆与壳源物质部分熔融形成的酸性岩浆混合模式来解释董家园岩体内锆石εHf(t)值的“双峰”特征显然不合适(图 7c)。为此,该花岗岩体的岩浆可能为印度板块与欧亚大陆碰撞致使地壳增厚诱发中元古代沉积岩和晚元古代火成岩部分熔融的混合物。

图 8 高黎贡造山带始新世花岗岩锆石εHf(t)与U-Pb年龄图 拉萨和腾冲数据来自Xie et al.(2016) Fig. 8 Plot of the εHf(t) values vs. the U-Pb ages of the Eocene granites in the Gaoligong orogeny The age data of the Lhasa and the Tengchong granites are from Xie et al. (2016)

研究区内新生代花岗岩中,除草园坡岩体外都未出现白云母、堇青石和石榴石等过铝质矿物,但都含有少量的黑云母和电气石,在董家园岩体中还存在少量角闪石;其A/CNK值介于1.05~1.15之间;另外,其P2O5含量都<0.07%,远低于S型花岗岩中P2O5的含量(0.65%,Chappell, 1999),这些都反映了岩石的准过铝质性质。岩石高硅、富钾、低钙、LREE富集、Eu和Sr、Ba强烈负异常特征,在Al2O3/(MgO+FeOT)-CaO/(MgO+FeOT)和Rb/Ba-Rb/Sr图解(图 9)中所有样品均落在靠近泥质岩区,进一步证实其源岩为地壳物质为主(Rudnick and Fountain, 1995Taylor and McLennan, 1995Rudnick and Gao, 2003)。角闪石的存在及正的锆石εHf(t)值说明源岩中有基性火成岩组分。低钙和Eu、Sr、Ba强烈负异常及电气石的普遍存在说明源岩部分熔融程度较低,部分斜长石留在残留相中,且岩浆中含富硼挥发份。

图 9 Al2O3/(MgO+FeOT)-CaO/(MgO+FeOT)图解(a, 据Altherr et al., 2000)和Rb/Ba-Rb/Sr图解(b, 据Sylvester, 1998) Fig. 9 Diagram of Al2O3/(MgO+FeOT) vs. CaO/(MgO+FeOT) (a, after Altherr et al., 2000) and Rb/Ba vs. Rb/Sr (b, after Sylvester, 1998) for the granites in the Gaoliegong tectonic belt

综上所述,研究区内新生代花岗岩岩浆来源于中-新元古代地层部分熔融的产物,董家园花岗岩体中的岩浆有基性火成岩部分熔融组分的加入。

6.3 构造环境及其地质意义

腾冲地块内二叠纪地层(碎屑岩和碳酸盐)、古生物地理和缺失二叠纪地幔柱型玄武岩等特征,尤其是早白垩世、晚白垩世和始新世发育大规模岩浆活动,与拉萨地块非常相似,而明显不同于Sibumasu(保山)和南羌塘地块(Shi et al., 2008Wopfner and Jin, 2009Zhang et al., 2013Liao et al., 2015Zhu et al., 2015Xie et al., 2016)。自班公湖-怒江缝合带至雅鲁藏布江-密支那缝合带,拉萨地体和腾冲地块内岩浆岩的成岩年龄由早白垩世-新生代逐渐演化,且其地球化学特征、Sr-Nd同位素特征和εHf(t)值类似(杨启军等,2006李化启等,2011Xu et al., 2012Wang et al., 2015Qi et al., 2015),说明冈瓦纳大陆裂解过程中,腾冲地块与拉萨地块相连,并一起向北漂移,于早白垩世与南羌塘-Sibumasu地块碰撞拼贴。古地磁显示拉萨地块东南部的腾冲地体在印度-欧亚板块拼合的强烈挤压作用下,在约40Ma时沿顺时针发生了约87°的挤出旋转,形成了现今的构造地质格局(Kornfeld et al., 2014),高黎贡构造带构成了分隔腾冲和保山地块边界的班公湖-怒江缝合带的东南延伸部分(Shi et al., 2008Wopfner and Jin, 2009杨启军等,2009戚学祥等,2011Zhang et al., 2013Qi et al., 2015Liao et al., 2015Zhu et al., 2015Xie et al., 2016)。印度板块与拉萨-腾冲地块始碰撞时间虽然存在65Ma(Jaeger et al., 1989莫宣学等,2003Mo et al., 2008)或55Ma(Aitchison et al., 2007Klootwijk et al., 1992Leech et al., 2005)或34Ma(Najman et al., 2010)的不同认识,但在雅鲁藏布缝合带附近发现的高压变质岩(53~33Ma,Leech et al., 2005Najman et al., 2010Zhang et al., 2010)表明其始碰撞时间应早于53Ma,即在53Ma腾冲地块已处于陆内碰撞地壳增厚阶段,而俯冲的洋壳于50Ma左右在腾缅边界发生反转形成一系列基性岩和花岗岩(Wang et al., 2014, 2015)。由此可见,远离腾缅边界的高黎贡构造带内中始新世花岗岩浆形成于地壳增厚的同碰撞环境。本文研究的花岗岩在其成岩后,在韧性变形过程中没有遭受强烈蚀变或有新矿物生成,化学分析的烧失量也很低,保持了其原岩的化学组分,因此,在构造环境判别图解(Pearce et al., 1984)中,花岗岩投点均落入同碰撞花岗岩区(图 10)也印证了成岩于地壳增厚的同碰撞环境。大中山岩体中部分锆石U-Pb年龄(73Ma)与腾冲地块中部出露的晚白垩世花岗岩时代及εHf(t)值一致,形成于与俯冲有关的地壳部分熔融岩浆(Qi et al., 2015),另一部分锆石(47Ma)是在岩浆侵位后结晶的,代表了岩浆的侵入时代。由此可见,高黎贡构造带内始新世岩浆活动是印度板块与腾冲-拉萨地块碰撞的远程效应。

图 10 构造环境判别图解(据Pearce et al., 1984) Fig. 10 Discrimination diagrams of tectonic settings for the Eocene granites in the Gaoliegong tectonic belt(after Pearce et al., 1984)

拉萨地块内除广泛发育与腾冲地块相对应的110~130Ma、65~75Ma、50~60Ma岩浆岩外,还大量出露50~40Ma花岗岩(图 8)。本文在高黎贡构造带内首次厘定的4个形成于43~47Ma的花岗岩体充实了腾冲地块内与拉萨地块相对应的50~40Ma时间段内形成于同碰撞环境的岩浆岩,为进一步证实腾冲地块是拉萨地块的东南延伸提供了证据。

7 结论

(1) 高黎贡构造带内始新世花岗岩为高钾钙碱性花岗岩,形成于43~47Ma。

(2) 岩石矿物组成,高硅、富钾、低钙、低磷、A/CNK值介于1.05~1.15之间、LREE富集、Eu和Sr、Ba强烈负异常等地球化学特征以及锆石εHf(t)值(-8.42~+5.71)和tDMC值(0.9~1.7Ga)显示花岗岩岩浆来源于中-新元古代变质沉积岩部分熔融的产物,其中董家园花岗岩体中的岩浆有基性火成岩部分熔融组分的加入。

(3) 构造带内4个中始新世花岗(43~47Ma)岩浆均形成于印度板块与欧亚大陆始碰撞后的同碰撞环境,是印度板块与腾冲-拉萨地块碰撞的远程效应。

致谢 佘宏全研究员和蔡明海教授审阅了本文并提出了宝贵的修改意见;田永飞博士、钟世华博士和高利娥博士在写作过程中提供了大量帮助; 在此一并感谢!
参考文献
Acharyya SK. 2007. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture. Journal of Asian Earth Sciences, 29(2-3): 229-242. DOI:10.1016/j.jseaes.2006.03.003
Aitchison JC, Ali JR and Davis AM. 2007. When and where did India and Asia collide?. Journal of Geophysical Research, 112: B05423.
Alberto E and Douce P. 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. Journal of Geophysical Research Atmospheres, 1001(B8): 15623-15640.
Altherr RH, Albert H, Ernst, Langer C and Kreuzer H. 2000. High-potassium, calc-alkaline plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. DOI:10.1016/S0024-4937(99)00052-3
Barley ME, Pickard AL, Zaw K, Rak P and Doyle MG. 2003. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics, 22(3): 4-1.
Bouvier A, Vervoort JD and Patchett JP. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48-57. DOI:10.1016/j.epsl.2008.06.010
Cao HW, Zhang ST, Lin JZ, Zheng L, Wu JD and Li D. 2014. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China):Regional tectonic implications. Journal of Asian Earth Sciences, 81: 142-152. DOI:10.1016/j.jseaes.2013.11.002
Cao HW. 2015. Research on Mesozoic-Cenozoic magmatic evolution and its relation with metallogeny in Tengchong-Lianghe tin ore belt, western Yunnan. Ph. D. Dissertation. Beijing:China University of Geosciences, 52-58 (in Chinese with English summary)
Cao SY, Liu JL and Leiss B. 2010. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32(5): 606-622. DOI:10.1016/j.jsg.2010.03.012
Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551. DOI:10.1016/S0024-4937(98)00086-3
Chen FK, Li QL, Wang XL and Li XH. 2006. Zircon age and Sr-Nd-Hf isotopic composition of migmatite in the eastern Tengchong block, western Yunnan. Acta Petrologica Sinica, 28(6): 1846-1856.
Condie KC and Sinha AK. 1996. Rare earth and other trace element mobility during mylonitization:A comparison of the Brevasrd and Hope Valley shear zones in the Appalachian Mountains, USA. Journal of Metamorphic Geology, 14(2): 213-226. DOI:10.1046/j.1525-1314.1996.05899.x
Cong F, Lin SL, Tang HF, Xie T, Li ZH, Zou GF, Peng ZM and Liang T. 2010. Trace elements and Hf isotope compositions and U-Pb age of igneous zircons from the Triassic granite in Lianghe, western Yunnan. Acta Geologica Sinica, 84(8): 1155-1164.
Ding L. 1991. The characteristics of deformation and tectonic implications in south Gaoligong western Yunnan, China. Master Degree Thesis. Beijing:Institute of Geology, Chinese Academy of Sciences, 1-92 (in Chinese with English summary)
Eroǧlu S, Siebel W, Danišík M, Pfänder JA and Chen FK. 2013. Multi-system geochronological and isotopic constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. Journal of Asian Earth Sciences, 73: 218-239. DOI:10.1016/j.jseaes.2013.03.031
Flowers RM, Bowring SA, Tulloch AJ and Klepeis KA. 2005. Tempo of bufial and exhumation within the deep roots of a magmatic are, Fiordland, New Zealand. Geology, 33(1): 17-20. DOI:10.1130/G21010.1
Fort PL, Cuney M, Deniel C, France LC, Sheppard SMF, Upreti BN and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1-3): 39-57. DOI:10.1016/0040-1951(87)90248-4
Gebauer DA. 1996. A P-T-t path for an (ultra-?)high-pressure ultramafic-mafic rock-association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example:Alpe Arami (Central Swiss Alps). In:Earth Processes Reading the Isotopic Code, Geophysical Mono-graph 95:307-329
Gibson IL, Kirkpatrick RJ, Emmerman R, Schmincke HU, Pritchard G, Oakley PO, Thorpe RS and Marriner GF. 1982. The trace element composition of the lavas and dikes from a 3-km vertical section through the lava pile of Eastern Iceland. Journal of Geophysical Research Solid Earth, 87(B8): 6532-6546. DOI:10.1029/JB087iB08p06532
Grégoire M, Moine BN, O'Reilly SY, Cottin JY and Giret A. 2000. Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate-and carbonate-rich melts (Kerguelen Isands, Indian Ocean). Journal of Petrology, 41(4): 77-509.
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Achterbergh EV, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133-147. DOI:10.1016/S0016-7037(99)00343-9
Griffin WL, Wang X, Jackson SE, Pearson NJ, O' Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269. DOI:10.1016/S0024-4937(02)00082-8
Harris N. 1996. Radiogenic isotopes and the interpretation of granitic rocks. Episodes, 19(4): 107-113.
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357. DOI:10.1093/petrology/egm062
Hidaka H, Shimizu H and Adachi M. 2002. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan:Evidence for an Archean provenance. Chemical Geoloogy, 187: 278-293.
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamprphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-82. DOI:10.2113/0530027
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. LA-MC-ICP-MS technique for Hf isotope microanalysis of zircon. Acta Petrologica Sinica, 23(10): 2594-2604.
Hourigan JK, Soloviev AV, Ledneva GV, Garver JI, Brandon MT and Reiners PW. 2004. Timing of syenite intrusions on the eastern slope of the Sredinnyi Range, Kamchatka:Rate of accretionary structure exhumation. Geochemistry International, 42(2): 131-141.
Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L and Yang L. 2012. Improved Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of by multiple collector. Journal of Analytical Atomic Spectrometry, 27: 1391-1399. DOI:10.1039/c2ja30078h
Jaeger JJ, Courtillot V and Tapponnier P. 1989. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17(4): 316-319. DOI:10.1130/0091-7613(1989)017<0316:PVOTAO>2.3.CO;2
Ji JQ, Zhong DL and Zhang LS. 2000. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, West Yunnan:Implications for the block movement in the southeastern Tibet Plateau. Chinese Journal of Geology, 35(3): 336-349.
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. DOI:10.1016/j.chemgeo.2009.01.020
Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7): 917-932.
Kinny PD and Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. DOI:10.2113/0530327
Klootwijk CT, Gee JS, Peirce Jw, Smith GM and McFadden PL. 1992. An early India-Asia contact:Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20(5): 395-398. DOI:10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2
Kornfeld D, Eckert S, Appel E, Ratschbacher L, Sonntag BL, pfander JA, Ding L and Liu DL. 2014. Cenozoic clockwise rotation of the Tengchong block, southeastern Tibetan Plateau:A paleomagnetic and geochronologic study. Tectonophysics, 628(2014): 105-122.
Lan JB, Xu YG, Yang QJ and Huang XL. 2007. ~40Ma OIB-type mafic magmatism in the Gaoligong belt:Results of break-of between subducting Tethyan slab and Indian plate?. Acta Petrologica Sinica, 23(6): 1334-1346.
Leech ML, Singh S, Jain AK, Klemperer SL and Manickavasagam RM. 2005. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters, 234(1-2): 83-97. DOI:10.1016/j.epsl.2005.02.038
Li HQ, Xu ZQ, Cai ZH, Tang ZM and Yang M. 2011. Indosinian epoch magmatic event and geological significance in the Tengchong block, western Yunnan Province. Acta Petrologica Sinica, 27(7): 2165-2172.
Li ZH, Wang LQ, Lin SL, Cong F, Xie T and Zou GF. 2012a. LA-ICP-MS zircon U-Pb age of granitic mylonite in the Gaoligong shear zone of western Yunnan Province and its tectonic signigicance. Geological Bulletin of China, 31(8): 1287-1295.
Li ZH, Lin SL, Cong F, Xie T and Zou GF. 2012b. U-Pb ages of zircon from metamorphic rocks of the Gaoligongshan Group in western Yunnan and its tectonic significance. Acta Petrologica Sinica, 28(5): 1529-1541.
Li ZH, Tang FW, Lin SL, Cong F, Xie T and Zou GF. 2014. Zircon LA-ICP-MS U-Pb geochronology of the Beryl-bearing pegmatite and its geological significance, western Yunnan, Southwest China. Journal of Jilin University (Earth Science Edition), 44(2): 554-565.
Liao SY, Wang DB, Tang Y, Yin FG, Cao SN, Wang LQ, Wang BD and Sun ZM. 2015. Late Paleozoic Woniusi Basaltic Province from Sibumasu terrane:Implications for the break-up of eastern Gondwana's northern margin. Geological Society of America Bulletin, 127(9): 1313-1330.
Lin MS, Peng SB, Qiao WT and Li H. 2014. Petro-geochemistry and geochronology of Late Cretaceous-Eocene granites in high geothermal anomaly areas in the Tengchong block, Yunnan Procince, China and their tectonic implications. Acta Petrologica Sinica, 30(2): 527-546.
Lin TH, Lo CH, Chung SL, Hsu FJ, Yeh MW, Lee TY, Ji JQ, Wang YZ and Liu DY. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones:Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34: 674-685. DOI:10.1016/j.jseaes.2008.10.009
Liu YS, Hu ZC, Zong KQ, Gao CG and Gao S. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. DOI:10.1007/s11434-010-3052-4
Ludwig KR. 2003. ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication
Ma LY, Wang YJ, Fan WM, Geng HY, Cai YF, Zhong H, Liu HC and Xing XW. 2014. Petrogenesis of the Early Eocene I-type granites in West Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research, 25(1): 401-419. DOI:10.1016/j.gr.2013.04.010
Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context. Gondwana Research, 9(1-2): 24-46. DOI:10.1016/j.gr.2005.04.002
Miller CF. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources?. The Journal of Geology, 93(6): 673-689. DOI:10.1086/628995
Mitchell AHG. 1993. Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region. Journal of the Geological Society, 150: 1089-1102. DOI:10.1144/gsjgs.150.6.1089
Mitchell AHG, Ausa CA, Deiparine L, Hlaing T, Htay N and Khine A. 2004. The Modi Taung-Nankwe gold districk Slate, central Myanmar:Mesothermal veins in a Mesozoic orogen. Journal of Asian Earth Sciences, 23(3): 321-341. DOI:10.1016/S1367-9120(03)00138-X
Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148.
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1): 49-67.
Morley CK. 2004. Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia. Journal of the Geological Society, 161(5): 799-812. DOI:10.1144/0016-764903-124
Morley CK. 2007. Variations in Late Cenozoic-recent strike-slip and oblique-extensional geometries, within Indochina:The influence of pre-existing fabrics. Journal of Structural Geology, 29(1): 36-58. DOI:10.1016/j.jsg.2006.07.003
Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS and Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical geology, 255: 231-235. DOI:10.1016/j.chemgeo.2008.06.040
Najman Y, Appel E, Fadel BM, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R and Vezzoli G. 2010. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, 115(115): 1-70.
O'Hara K. 1988. Fluid flow and volume loss during mylonitization:An origin for phyllonite in an overthrust setting, North Carolina, U.S.A.. Tectonophysics, 156: 21-36. DOI:10.1016/0040-1951(88)90280-6
O'Hara K and Blackburn WH. 1989. Volume-loss model for trace-element enrichments in mylonites. Geology, 17: 524-527. DOI:10.1130/0091-7613(1989)017<0524:VLMFTE>2.3.CO;2
Pearce JA, Harris NBW and Harris and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Qi L, Hu J and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513. DOI:10.1016/S0039-9140(99)00318-5
Qi XX, Zhu LH, Hu ZC and Li ZQ. 2011. Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica, 27(11): 3409-3421.
Qi XX, Zhao YH, Zhu LH and Li ZQ. 2012. Discovery of high-pressure pelitic granulite in Ailaoshan orogenic belt southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica, 28(6): 1846-1856.
Qi XX, Zhu LH, Jens GC and Hu ZC. 2015. Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu-Hf isotopic and geochemical data:Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. Journal of Asian Earth Sciences, 110: 170-188. DOI:10.1016/j.jseaes.2014.07.019
Rickwood SC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263. DOI:10.1016/0024-4937(89)90028-5
Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics, 33(3): 267-310. DOI:10.1029/95RG01302
Rudnick R and Gao S. 2003. The role of lower crustal recycling in continent formation. Geochimica et Cosmochimica Acta Supplement, 67(18): 403.
Scherer E, Munker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293: 683-687. DOI:10.1126/science.1061372
Searle MP, Noble SR, Cottle JM, Waters DJ, Mitchell AHG, Hlaing T and Horstwood MSA. 2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics, 26(3): 623-626.
Shi CY, Yan MC, Liu CM, Chi QH, Hu SQ, Gu TX, Bu W and Yan WD. 2005. The element abundance and characteristics of different type granites in China. Geophysical Computing Technology, 27(3): 256-262.
Shi YK, Jin XC, Huang H and Yang XN. 2008. Permian fusulinids from the Tengchong block, western Yunnan, China. Journal of Paleontology, 82(1): 118-127. DOI:10.1666/06-036.1
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plesovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35. DOI:10.1016/j.chemgeo.2007.11.005
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29-44. DOI:10.1016/S0024-4937(98)00024-3
Taylor SR and Mclennan SM. 1985. The Continental Crust:Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications
Wang DD, Li BL, Ji JQ, Song SG, Wei CJ and Gong JF. 2013. The thermal evolution and deformational time limit of the Gaoligong metamorphic belt in West Yunnan. Acta Geologica Sinica, 87(12): 1887-1900.
Wang EQ, Fan C, Wang G, Shi XH, Chen LZ and Chen ZL. 2006. Deformational and geomorphic processes in the formation of the Ailao Shan-Diancang Range, West Yunnan. Quaternary Sciences, 26(2): 220-227.
Wang YJ, Fan WM, Zhang YH, Peng TP, Chen XY and Xu YG. 2006. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China:Implications for Early Oligocene tectonic extrusion of SE Asia. Tectonophysics, 418: 235-254. DOI:10.1016/j.tecto.2006.02.005
Wang YJ, Zhang LM, Cawood PA, Ma LY, Fan WM, Zhang AM, Zhang YZ and Bi XW. 2014. Eocene supra-subduction zone mafic magmatism in the Sibumasu Block of SW Yunnan:Implications for Neotethyan subduction and India-Asia collision. Lithos, 206(206-207): 384-399.
Wang YJ, Li SB, Ma LY, Fan WM, Cai YF, Zhang YH and Zhang FF. 2015. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction. Gondwana Research, 27(4): 1474-1486. DOI:10.1016/j.gr.2014.01.007
Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326-336. DOI:10.1016/0012-821X(79)90133-X
Wopfner H and Jin XC. 2009. Pangea megasequences of Tethyan Gondwana-margin reflect global changes of climate and tectonism in Late Palaeozoic and Early Triassic times:A review. Palaeowold, 18(2-3): 169-192.
Wu YB, Chen DG, Xia QK, Tu XL and Cheng H. 2002. The trace element characteristics of zircon from eclogite in Huangzhen, Dabieshan. Chinese Science Bulletin, 47(11): 859-863.
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 15: 1554-1569.
Xie JC, Zhu DC, Dong GC, Zhao ZD, Wang Q and Mo XX. 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Resarch, 39(2106): 217-229.
Xu Y, Zhong DL and Liu JH. 2012. Constraints of deep structures on the crust-mantle decoupling in the western Yunnan and magma activity in the Tengchong volcanic area. Progress in Geophysics, 27(3): 846-855.
Xu YG, Luo ZY, Huang XL, He B, Xiao L, Xie LW and Shi YR. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mangle plume. Science Direct, 72(2008): 3084-3104.
Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR and Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151-175. DOI:10.1016/j.jseaes.2011.06.018
Yang JS, Xu ZQ, Duan XD, Li J and Xiong FH. 2012. Discovery of a Jurassic SSZ ophiolite in the Myitkyina region of Myanmar. Acta Petrologica Sinica, 28(6): 1710-1730.
Yang QJ, Xu YG, Huang XL and Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan:Tectonic implications. Acta Petrologica Sinaca, 22(4): 817-834.
Yang QJ, Xu YG, Huang XL, Luo ZY and Shi YR. 2009. Geochronology and geochemistry of granites in the Tengliang area, western Yunnan:Tectonic implication. Acta Petrologica Sinica, 25(5): 1092-104.
Yonemura K, Osanai Y, Nakano N, Adachi T, Charusiri P and Zaw TN. 2013. EPMA U-Th-Pb monazite dating of metamorphic rocks from the Mogok Metamorphic Belt, central Myanmar. Journal of Mineralogical and Petrological Sciences, 108(3): 184-188. DOI:10.2465/jmps.121019a
Zhang B, Zhang JJ, Zhong DL, Yang LK, Yue YH and Yan SY. 2012. Polystage deformation of the Gaoligong metamorphic zone:Structures, 40Ar/39Ar mica ages, and tectonic implications. Journal of Structural Geology, 37: 1-18. DOI:10.1016/j.jsg.2012.02.007
Zhang H, Wu ZH, Ye PS, Chen GY, Tian SM and Yao X. 2015. The collapse of Tengchong-Gangdise Cenozoic orogenic belt and the formation of intercontinental rift:Petrological records of Pliocene-Pleistocene dacite in Tengchong. Geological Bulletin of China, 34(1): 171-182.
Zhang YC, Shi GR and Shen SZ. 2013. A review of Permian stratigraphy, paleobiogeography and palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24(1): 55-76. DOI:10.1016/j.gr.2012.06.010
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010. Two-stages of granulite-facies metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733.
Zhao SW, Lai SC, Qin JF and Zhu RZ. 2015. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan Plateau:Constraints from granitic gneisses and granitoid intrusions. Gondwana Research, 1(1): 56-66.
Zhong DL, Wang Y and Ding L. 1991. The Tertiary Gaoligong intracontinental strike-slip fault and its associated extensional structure in western Yunnan, China. Annual Report 1989-1990 Lab. Lithos. Tecton. Evolution., Inst. Geol., Academia Sinica. Beijing:Science and Technology of China Press, 18-24 (in Chinese with English abstract)
Zhong DL. 1998. The Tethyan Orogenic Belt in Western Yunnan. Beijing: Science Press: 1-231.
Zhong DL, Ding L, Liu FT, Liu JH, Zhang JJ, Ji JQ and Chen H. 2000. Multi-oriented and layered structures of lithosphere in orogenic belt and their effects on Cenozoic magmatism. Science in China (Series D), 43: 122-133.
Zhu RZ, Lai SC, Qin JF and Zhao SW. 2015. Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 100: 145-163. DOI:10.1016/j.jseaes.2015.01.014
Zou GF, Mao Y, Lin SL, Cong F, Li ZH, Xie T and Gao YJ. 2014. Zircon U-Pb age and geochemistry of the Shibancun biotite monzo-granites and its tectonic implications in Mangshi County, western Yunnan. Geological Review, 60(6): 1425-1436.
曹华文. 2015. 滇西腾-梁西矿带中-新生代岩浆岩演化与成矿关系研究. 博士学位论文. 北京: 中国地质大学, 52-58 http://cdmd.cnki.com.cn/Article/CDMD-11415-1015385637.htm
陈福坤, 李秋立, 王秀丽, 李向辉. 2006. 滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成. 岩石学报, 22(2): 439-448.
丁林. 1991. 滇西高黎贡山南体南段构造变形特征及演化历史讨论. 硕士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-92 http://d.wanfangdata.com.cn/Thesis/Y111687
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2594-2604.
季建清, 钟大赉, 张连生. 2000. 滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义. 地质科学, 35(3): 336-349.
蓝江波, 徐义刚, 杨启军, 黄小龙. 2007. 滇西高黎贡带~40Ma OIB型基性岩浆活动:消减特提斯洋片与印度板块断离的产物?. 岩石学报, 23(6): 1334-1346.
李化启, 许志琴, 蔡志慧, 唐哲民, 杨梅. 2011. 滇西三江构造带西部腾冲地块内印支期岩浆热事件的发现及其地质意义. 岩石学报, 27(7): 2165-2172.
李再会, 王立全, 林仕良, 丛峰, 谢韬, 邹光富. 2012a. 滇西高黎贡剪切带内花岗质糜棱岩LA-ICP-MS锆石U-Pb年龄及其构造意义. 地质通报, 31(8): 1287-1295.
李再会, 林仕良, 丛峰, 谢韬, 邹光富. 2012b. 滇西高黎贡山群变质岩的锆石年龄及其构造意义. 岩石学报, 28(5): 1529-1541.
李再会, 唐发伟, 林仕良, 丛峰, 谢韬, 邹光富. 2014. 滇西含绿柱石伟晶岩锆石U-Pb年代学及地质意义. 吉林大学学报(地球科学版), 44(2): 554-565.
林木森, 彭松柏, 乔卫涛, 李辉. 2014. 腾冲地块高地热异常区晚白垩世-始新世钾玄质强过铝花岗岩岩石地球化学、年代学特征及构造意义. 岩石学报, 30(2): 527-546.
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148.
戚学祥, 朱路华, 胡兆初, 李志群. 2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMP U-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报, 27(11): 3409-3421.
戚学祥, 赵宇浩, 朱路华, 李志群. 2012. 青藏高原东南缘哀牢山构造带泥质高压麻粒岩的发现及其构造意义. 岩石学报, 28(6): 1846-1856.
史长义, 鄢明才, 刘崇民, 迟清华, 胡树起, 顾铁新, 卜维, 鄢卫东. 2005. 中国不同岩石类型花岗岩类元素丰度及特征. 物探化探计算技术, 27(3): 256-262.
王丹丹, 李宝龙, 季建清, 宋述光, 魏春景, 龚俊峰. 2013. 滇西高黎贡变质带热史演化与变形时限研究. 地质学报, 87(12): 1887-1900.
王二七, 樊春, 王刚, 石许华, 陈良忠, 陈智樑. 2006. 滇西哀牢山-点苍山形成的构造和地貌过程. 第四纪研究, 26(2): 220-227.
吴元保, 陈道公, 夏群科, 涂湘林, 程昊. 2002. 大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征. 科学通报, 47(11): 859-863. DOI:10.3321/j.issn:0023-074X.2002.11.013
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
胥颐, 钟大赉, 刘建华. 2012. 滇西地区壳幔解耦与腾冲火山区岩浆活动的深部构造研究. 地球物理学进展, 27(3): 846-855. DOI:10.6038/j.issn.1004-2903.2012.03.003
杨经绥, 许志琴, 段向东, 李静, 熊发挥. 2012. 缅甸密支那地区发现侏罗纪的SSZ型蛇绿岩. 岩石学报, 28(6): 1710-1730.
杨启军, 徐义刚, 黄小龙, 罗震宇. 2006. 高黎贡构花岗的年代学和地球化学及其构造意义. 岩石学报, 22(4): 817-834.
杨启军, 徐义刚, 黄小龙, 罗震宇, 石玉若. 2009. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义. 岩石学报, 25(5): 1092-1104.
张虎, 吴中海, 叶培盛, 陈光艳, 田素梅, 姚雪. 2015. 腾冲-冈底斯新生代造山带的垮塌及陆间裂谷的形成. 地质通报, 34(1): 171-182.
钟大赉, 王毅, 丁林. 1991. 滇西高黎贡陆内第三纪走滑断裂及其伴生拉张构造.中国科学院地质研究所岩石圈构造演化开放研究实验室年报. 北京: 中国科学技术出版社: 18-24.
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社: 12-31.
邹光富, 毛英, 林仕良, 丛峰, 李再会, 谢韬, 高永娟. 2014. 滇西芒市地区石板村黑云母二长花岗岩的年代学、地球化学特征及地质意义. 地质论评, 60(6): 1425-1436.