岩石学报  2017, Vol. 33 Issue (12): 3829-3841   PDF    
新疆萨尔托海糜棱岩化石英菱镁岩元素地球化学特征及其对金成矿作用的贡献
邱添1,2 , 朱永峰2     
1. 中国地质科学院地质研究所地幔研究中心, 北京 100037;
2. 北京大学地球与空间科学学院, 北京 100871
摘要:新疆萨尔托海石英菱镁岩产在达拉布特蛇绿混杂岩带中,是蛇纹岩在剪切带深部发生热液交代作用的产物。蛇纹岩先转变为滑石片岩,再进一步转变为石英菱镁岩。石英菱镁岩局部发生剪切变形,形成糜棱岩化石英菱镁岩。与蛇纹岩相比,石英菱镁岩的MgO和SiO2含量降低,Al2O3和CaO含量升高;而糜棱岩化石英菱镁岩的MgO含量较石英菱镁岩降低,Al2O3和SiO2含量较石英菱镁岩升高。微量元素地球化学对比研究表明石英菱镁岩继承了蛇纹岩的微量元素特征;而糜棱岩化石英菱镁岩的微量元素含量较蛇纹岩发生了显著变化,稀土元素、高场强元素和自然金的含量明显升高,指示这些元素在剪切变形过程中发生迁移富集。剪切变形伴随强烈的流体/岩石反应,并导致剪切带流体组成和物理化学性质发生改变,从而影响矿物结晶或分解,并控制微量元素的带入迁出。蛇纹岩转变为石英菱镁岩的过程释放Au,可为糜棱岩化石英菱镁岩中的金矿化提供成矿元素。
关键词: 石英菱镁岩     元素地球化学     剪切变形     蛇绿混杂岩     萨尔托海    
Element geochemical characteristics of mylonitized listwaenite and its contribution to gold mineralization in Sartohay, Xinjiang
QIU Tian1,2, ZHU YongFeng2     
1. CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract: Listwaenites, located within the Darbut ophiolitic mélange belt in the Sartohay region, Xinjiang, are the product of metasomatism from serpentinite in deep levels of shear zones. Serpentinite was transformed into talc schist followed by listwaenite. Listwaenite lenses within the shear zone were deformed as mylonitized listwaenite along rims. Listwaenite is characterized by lower contents of MgO and SiO2, but higher contents of Al2O3 and CaO compared with serpentinite. However, contents of SiO2 and Al2O3 in mylonitized listwaenite are higher than those in listwaenite, whereas MgO is lower than that in listwaenite. Listwaenite has similar characteristics on trace elements as serpentinite, which could be inherited from serpentinite, whereas mylonitized listwaenite is characterized by distinctly different behavior of trace elements from serpentinite. Rare earth elements, high field strength elements and native gold apparently increase in mylonitized listwaenite, implying that these trace elements were concentrated during shearing deformation. Shearing deformation will cause high fluid/rock ratio and facilitate fluid-rock reaction, corresponding to variations on the composition of fluids and physic-chemical conditions in shear zones, accordingly control the decomposition or crystallization of minerals and the mobility of trace elements. Native gold released from serpentinite could be the source for gold mineralization in mylonitized listwaenite.
Key words: Listwaenite     Element geochemistry     Shear deformation     Ophiolitic mélange     Sartohay    
1 引言

蛇绿混杂岩带中蛇纹石化超基性岩易发生碳酸盐蚀变形成含碳酸盐矿物的多种蚀变组合,统称为蛇绿碳酸岩(O’Hanley, 1996; Kerrick and Connolly, 1998)。在深部中温条件下(270~390℃、1~3kbar、8~10km),蛇纹石化超基性岩发生热液蚀变形成石英菱镁岩(Schandl and Naldrett, 1992; Auclair et al., 1993; Aftabi and Zarrinkoub, 2013; Zhang et al., 2015)。石英菱镁岩以石英、菱镁矿、铬云母、少量黄铁矿和残余铬尖晶石为特征矿物组合(Halls and Zhao, 1995; Ucurum, 2000),常形成于蛇绿岩推覆构造基底面与围岩的接触带上,沿着断裂带或剪切带分布。断裂带、剪切带以及蛇纹岩疏松多孔的构造为热液流体迁移提供了通道(Ucurum, 2000; Yigit, 2006)。

石英菱镁岩常与金矿化密切相关,其成因及元素迁移富集行为受到越来越多研究者的关注(Buisson and Leblanc, 1985, 1987; Leblanc and Fischer, 1990; Auclair et al., 1993; Halls and Zhao, 1995; Zoheir and Lehmann, 2011; Aftabi and Zarrinkoub, 2013; Emam and Zoheir, 2013; Belogub et al., 2017; Hinsken et al., 2017)。研究发现蛇纹岩转变为石英菱镁岩,岩石主量元素、微量元素以及成矿元素含量均发生明显变化(Tuysuz and Eler, 1993; Ucurum and Larson, 1999; Azer, 2013; Zhang et al., 2015)。然而,这个过程中元素变化的规律及其控制因素尚不清楚,石英菱镁岩与金矿化的关系也没有统一的认识。新疆萨尔托海蛇绿混杂岩中的石英菱镁岩,与赋存在石英菱镁岩中的金矿体均受剪切带控制(邱添和朱永峰,2012);石英菱镁岩的成矿元素含量与岩石韧性变形的强度呈正比(Qiu and Zhu, 2015)。在前期研究的基础上,本文对比研究萨尔托海石英菱镁岩、糜棱岩化石英菱镁岩和蛇纹岩的主、微量元素的含量变化,明确石英菱镁岩形成过程及其发生剪切变形过程中的元素变化规律,以期进一步限定石英菱镁岩和金矿化的关系。

2 区域地质

新疆西准噶尔地处中亚造山带巴尔喀什-准噶尔地体东段,与准噶尔盆地西北缘毗邻(图 1a)。西准噶尔地区主要出露古生代地层,寒武纪形成的洋岛玄武岩夹深海复理石建造(朱永峰等,2007)仅在局部可见。奥陶纪以来,形成了早奥陶世塔尔巴哈台-洪古勒楞蛇绿混杂岩、奥陶纪唐巴勒、玛依勒、克拉玛依蛇绿混杂岩和志留纪达拉布特蛇绿混杂岩带(张弛和黄萱,1992何国琦等,2007)。泥盆纪砂砾岩(含植物化石)和泥盆纪-早石炭世火山碎屑岩不整合覆盖在蛇绿混杂岩以及相关复理石建造之上(Zhu et al., 2011; Zong et al., 2015)。早石炭世火山-沉积地层的火山凝灰岩中获得锆石SHRIMP年龄为328~357Ma(王瑞和朱永峰,2007安芳和朱永峰,2009郭丽爽等,2010)。晚石炭世-早二叠世大规模中酸性侵入体以及岩墙群侵入上述地层单元和蛇绿岩中(Xiao et al., 2008; 陈石和郭召杰, 2010; Choulet et al., 2012; Xu et al., 2013; Zhu et al., 2013)。

图 1 新疆西准噶尔地区蛇绿岩展布图(a)、萨尔托海地区区域地质简图(b)(据朱永峰等,2013修改)以及研究区蛇绿混杂岩野外露头地质图(c) Fig. 1 Simplified geological map showing the distribution of ophiolites in western Junggar (a), geological map of Sartohay (b) (modified after Zhu et al., 2013) and outcrops of the ophiolite mélange in studied region (c)

萨尔托海地区位于西准噶尔东南部,达拉布特断裂带呈NE向贯穿其中。达拉布特断裂带的倾向NW,倾角65°~80°,发育几十条较密集的次级走滑断裂,呈雁行式排列。雁行排列的构造走向与达拉布特主断裂呈锐角相交,具有左行走滑和逆冲性质,总体上呈现斜向挤压构造特征(张琴华等,1989新疆维吾尔自治区地质矿产局,1993杨庚等,2011吴延之,2012)。达拉布特蛇绿岩沿达拉布特断裂展布,总长约100km,最宽处约1km(图 1b)。火山岩元素地球化学及同位素地球化学分析显示,达拉布特蛇绿岩可能形成于洋中脊环境,具有N-MORB和E-MORB特征(雷敏等,2008)或形成于弧后盆地,与俯冲带有关(Yang et al., 2014)。Zhu et al.(2015)认为达拉布特蛇绿岩代表准噶尔洋扩张脊的产物,为古大洋残余。由于多期构造活动,达拉布特蛇绿岩遭受构造肢解,呈混杂岩产出,主要岩石组合包括蛇纹石化橄榄岩、辉长岩和火山熔岩等。蛇纹石化橄榄岩包括蛇纹石化的方辉橄榄岩和少量纯橄岩和二辉橄榄岩。火山熔岩主要为浅变质的玄武岩,块状构造或杏仁状构造,无斑结构或含自形板条状斜长石斑晶。辉长岩常呈岩块的形式分布在蛇纹石化橄榄岩中,块体规模一般不超过5×10m2,呈混杂堆积态产出(图 1c图 2a)。不同辉长岩岩块的结构、构造以及变质程度均有差异。蛇绿混杂岩中劈理非常发育,产状稳定,走向NEE,倾向NW,倾角70°~80°,与片理面上的橄榄石碎斑长轴线理产状一致。各个岩块之间、或岩块与基质之间都发育不同强度的韧性剪切带,将岩石分割成大小悬殊的岩块(杨庚等,2011)。蛇纹石化橄榄岩或蛇纹岩与玄武岩之间的断裂带以及蛇纹岩、玄武岩内部的次级断裂带中出露多个石英菱镁岩透镜体(图 1c)。有的石英菱镁岩直接出露地表,有的石英菱镁岩则通过探槽或钻孔揭露出来(图 2a-c)。石英菱镁岩透镜体的分布受韧性剪切带控制,呈雁行式排列,大小不等,最大的透镜长约100m,最小的不超过1m,长轴延伸方向与剪切带的方向夹角小于45°。石英菱镁岩与蛇纹岩和滑石片岩伴生产出,且遭受强烈构造破坏,产生密集的片理(图 2c)(邱添和朱永峰,2012)。透镜体沿边缘发生剪切变形,发育强烈密集的S-C面理组构,形成糜棱岩化石英菱镁岩,并被石英脉穿切(图 2d-e)。萨尔托海地区多个石英脉型的金矿床/点,如萨Ⅰ金矿和萨Ⅱ金矿等(图 1b),均沿着萨尔托海断裂带分布。金矿直接围岩为蛇绿混杂岩带中的石英菱镁岩,金矿体受剪切作用形成的片理裂隙带控制。

图 2 达拉布特蛇绿混杂岩带中石英菱镁岩野外露头和手标本照片 (a)探槽揭示蛇绿混杂岩中石英菱镁岩和辉长岩呈透镜出现在蛇纹岩基质中;(b)石英菱镁岩透镜与玄武岩构造接触;(c)石英菱镁岩与滑石片岩和蛇纹岩伴生;(d)石英菱镁岩透镜体边缘发生韧性变形,形成糜棱岩化石英菱镁岩;(e)含石英脉的糜棱岩化石英菱镁岩手标本 Fig. 2 Photos of outcrops and hand specimens of listwaenite in the Darbut ophiolitic mélange belt (a) exploratory trench showing listwaenite and gabbro lenses in serpentinite matrix of ophiolitic mélange; (b) listwaenite lenses and their wall-rock of basalt, showing tectonic contact relationship; (c) listwaenite associated with talc schist and serpentinite; (d) listwaenite was deformed on the edge of lenses, forming mylonitized listwaenite; (e) a hand specimen of mylonitized listwaenite with quartz vein
3 岩石学

蛇纹岩  研究区达拉布特蛇绿混杂岩带中超镁铁质岩石均蚀变为蛇纹岩。蛇纹岩具有块状、网脉状构造(图 3a),由蛇纹石(>90%)、少量滑石、绿泥石、磁铁矿、铬尖晶石和碳酸盐矿物组成。蛇纹石呈叶片状、鳞片状或纤维状集合体。铬尖晶石呈不规则粒状,普遍破碎。磁铁矿呈浸染状分布在蛇纹石基质中,有的沿着铬尖晶石的边缘和裂隙结晶。滑石和菱镁矿从边部和裂隙交代蛇纹石(图 3a)。

图 3 达拉布特蛇绿混杂岩中石英菱镁岩及其它相关岩石的显微照片和背散射图像 (a)蛇纹岩呈网脉状结构,蛇纹石从边缘及裂隙被菱镁矿和滑石交代;(b)滑石片岩中的菱镁矿变斑晶浸染状分布在鳞片状滑石基质中;(c)滑石片岩中石英呈球状集合体分布在滑石基质中或围绕菱镁矿和铬尖晶石边缘结晶;(d)石英菱镁岩中石英集合体转变为粗粒等粒结构的石英,与菱镁矿镶嵌共生;(e)糜棱岩化石英菱镁岩中细粒石英和铬云母定向排列;(f)糜棱岩化石英菱镁岩中石英拉长呈丝带状与铬云母共生,构成糜棱面理;(g、h)糜棱岩化石英菱镁岩中结晶金红石、磷灰石、锆石和独居石,与铬云母和石英共生;(i)糜棱岩化石英菱镁岩中铬尖晶石边部蚀变为铬铁矿,二者边界截然.(a-f)正交偏光显微照片; (g-i)背散射图像 Fig. 3 Microphotographs and back-scattered electron (BSE) images of listwaenite and related rocks in the Darbut ophiolitic mélange (a) serpentinite is characterized by stockwork texture in which serpentine was metasomatized by magnesite and talc along its rims and fractures; (b) magnesite was disseminated in talc matrix of talc schist; (c) quartz occurs as spherical aggregate within talc matrix or occurs around magnesite and Cr-spinel as ring texture; (d) coarse-grained and equigranular quartz coexists with magnesite in listwaenite, showing mosaic symbiosis; (e) fine-grained quartz and mariposite were directionally distributed in mylonitized listwaenite; (f) quartz occurs as ribbon and coexists with mariposite, forming mylonitic foliation in mylonitized listwaenite; (g, h) rutile, apatite, zircon and monazite coexist with mariposite and quartz in mylonitized listwaenite; (i) Cr-spinel in mylonitized listwaenite was transformed into chromite along its rims

滑石片岩  滑石片岩呈片状构造,似斑状结构(图 3b),主要由细小鳞片状的滑石集合体(>95%)组成,含少量菱镁矿、透闪石、黝帘石、铬尖晶石、蛇纹石和磁铁矿。有的滑石片岩中菱镁矿含量可达20%~40%,形成菱镁矿滑石片岩。菱镁矿呈自形-半自形结构,与透闪石和黝帘石伴生,浸染状分布在岩石中。铬尖晶石边缘和裂隙结晶磁铁矿。部分滑石片岩中出现石英,呈球状集合体,浸染状分布在滑石基质中,或呈花环状围绕菱镁矿和铬尖晶石结晶(图 3c)。

石英菱镁岩  石英菱镁岩呈块状构造,粒状变晶结构(图 3d),由菱镁矿(52%~64%)、石英(32%~43%)和少量白云石、铬云母、铬尖晶石、滑石和硫化物组成。菱镁矿呈粗粒结构,与石英镶嵌共生。石英主要为粗粒等粒结构,少量呈球状集合体。滑石多出现在石英球状集合体的粒间,而在粗粒等粒结构的石英粒间则少见(图 3d)。铬云母(<0.5%)仅沿着铬尖晶石的边缘和裂隙出现,呈细鳞片状结构。石英菱镁岩是蛇纹岩发生热液蚀变的产物,经过了两个连续的阶段:1)滑石和菱镁矿从边部或裂隙交代蛇纹石(图 3a),蛇纹岩逐渐转变为滑石片岩(图 3b);2)滑石分解形成球状石英集合体和菱镁矿,以变斑晶的形式出现在滑石基质中(图 3c)。随着滑石不断分解,石英由球状集合体逐渐转变为粗粒等粒结构,与菱镁矿镶嵌共生,形成石英菱镁岩,呈粒状变晶结构(图 3d)。

糜棱岩化石英菱镁岩  糜棱岩化石英菱镁岩呈糜棱结构、条带状构造(图 2e),其中菱镁矿的含量约40%~50%,石英43%~53%,铬云母2%~6%,含少量白云石、铬尖晶石和硫化物。铬尖晶石残斑和菱镁矿、石英变斑晶形成眼球状构造(邱添和朱永峰,2012)。与石英菱镁岩相比,糜棱岩化石英菱镁岩中菱镁矿和铬尖晶石的含量减少,石英和铬云母的含量增多;石英和菱镁矿的粒度明显减小,且趋于一致(图 3e);石英拉长变形呈丝带状,与铬云母交织共生,定向排列构成岩石的糜棱面理(图 3e, f)。铬云母属于富Si白云母的含铬变种,Cr2O3含量在2.2%~4.1%范围内变化(邱添和朱永峰,2012)。糜棱岩化石英菱镁岩的糜棱面理中结晶金红石、锆石、独居石和磷灰石,粒径约3~8μm,与铬云母共生(图 3g, h)。糜棱岩化石英菱镁岩中铬尖晶石边部普遍蚀变为铬铁矿,二者的边界截然(图 3i)。

4 样品与分析方法

选取3件蛇纹岩、3件滑石片岩、3件石英菱镁岩以及3件糜棱岩化石英菱镁岩样品进行全岩主、微量元素测试。样品破碎至60目,用玛瑙研钵磨至200目以下。主量元素分析前处理过程中,准确称取0.4g岩石样品粉末,与3g偏硼酸锂混合,在铂金坩埚中搅拌均匀,加热至1150℃使其溶解,冷却后制成玻璃饼,利用XRF (Rigaku RIX2100)测定主要氧化物成分。高含量氧化物测试精度<2%,低含量氧化物的测试精度<10%。微量元素分析过程中,先将粉末样品进行溶样处理,并使用LA-ICP-MS (Aligent 7500Ce)测试微量元素含量。微量元素分析测试选取超基性岩(GBW07101)和辉长岩(GSR-10)作为标样。微量元素和稀土元素含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素测试精度为10%,小于1×10-6的元素测试精度约为20%。全岩主、微量元素测试分析均在北京大学造山带与地壳演化教育部重点实验室完成。样品处理过程和测试方法同Zhu et al. (2015)。研究样品的自然金数据来源于Qiu and Zhu (2015)

5 测试结果 5.1 主量元素

萨尔托海蛇纹岩、滑石片岩、石英菱镁岩和糜棱岩化石英菱镁岩的主量元素分析显示,蛇纹岩的MgO含量为37.53%~38.08%,滑石片岩中MgO含量为28.82%~31.23%,石英菱镁岩中MgO的含量为24.62%~30.44%(表 1)。蛇纹岩经热液交代形成滑石片岩,再进一步转变为石英菱镁岩的过程中,岩石MgO的含量逐渐降低,SiO2和Fe2O3含量也降低(图 4a, b),而Al2O3和CaO的含量逐渐增加(图 4c, d),与石英菱镁岩中出现铬云母和白云石的现象吻合。萨尔托海蛇纹岩、滑石片岩和石英菱镁岩的TiO2含量均很低(<0.05%,大部分<0.01%)且基本无变化(图 4e)。蛇纹岩和滑石片岩中K2O和P2O5含量低于检测限,而石英菱镁岩中K2O和P2O5含量明显升高(表 1),这与石英菱镁岩中结晶铬云母(含K)和磷灰石(含P)的岩相学特征一致。蛇纹岩的烧失量(LOI)为12.56%~12.96%,主要与蛇纹石为含水矿物有关。滑石片岩和石英菱镁岩的烧失量明显增加,分别为17.86%~26.61%和32.43%~35.58%。前者的烧失量主要来自碳酸盐矿物和滑石,后者主要来自碳酸盐矿物和铬云母。

图 4 萨尔托海石英菱镁岩及相关岩石主量元素SiO2(a)、Fe2O3(b)、Al2O3(c)、CaO (d)、TiO2(e)和LOI (烧失量) (f)与MgO的协变图解 Fig. 4 Co-variation diagrams of SiO2(a), Fe2O3(b), Al2O3(c), CaO (d), TiO2(e) and LOI (f) versus MgO in listwaenite and related rocks of the Sartohay region

图 5 萨尔托海石英菱镁岩及相关岩石球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for listwaenite and related rocks from the Sartohay region (normalization values after Sun and McDonough, 1989)

与石英菱镁岩相比较,糜棱岩化石英菱镁岩中MgO的含量(20.77%~21.74%)降低,但SiO2(32.17%~36.17%)、Al2O3(4.00%~4.60%)、TiO2(0.44%~0.63%)、K2O(0.61%~1.29%)和P2O5(0.05%~0.07%)的含量明显升高(图 4a-e表 1)。这些元素含量的变化与糜棱岩化石英菱镁岩中菱镁矿含量减少,石英、铬云母、金红石和磷灰石的含量逐渐增多的现象一致。糜棱岩化石英菱镁岩中Fe2O3(7.12%~9.66%)和CaO(1.84%~2.33%)的含量与石英菱镁岩中的含量变化不明显。糜棱岩化石英菱镁岩的烧失量(27.55%~27.97%)比石英菱镁岩略低(图 4f),反映了糜棱岩化石英菱镁岩中菱镁矿含量降低。

表 1 萨尔托海石英菱镁岩、滑石片岩和蛇纹岩主量元素(wt%)及微量和稀土元素(×10-6)地球化学数据 Table 1 The major element (wt%) and rare earth element (×10-6) data of listwaenite, talc schist and serpentinite in the Sartohay
5.2 微量元素

萨尔托海蛇纹岩具有“U”型分布的稀土配分模式,(La/Yb)N比为0.66~2.61。滑石片岩略富集轻稀土元素,呈平坦至右倾式分布,(La/Yb)N比为0.94~13.97。滑石片岩的稀土总量为0.28×10-6~1.01×10-6,显示Eu正异常(1.55<δEu<9.01)。石英菱镁岩具有较平坦的稀土配分模式[(La/Yb)N=0.87~2.08],Eu正异常(2.23<δEu<5.39)。尽管不同蛇纹岩、滑石片岩和石英菱镁岩的稀土元素配分模式存在差异,但重稀土的配分模式基本重叠(图 5a),指示滑石片岩和石英菱镁岩继承了蛇纹岩的重稀土元素特征。滑石片岩和石英菱镁岩较蛇纹岩略富集轻稀土元素以及Rb、Ba和Sr(图 5a, b),可能反映了流体交代的结果。滑石片岩和石英菱镁岩显示Eu正异常,指示蛇纹岩转变为石英菱镁岩时,体系为氧化环境。

糜棱岩化石英菱镁岩和蛇纹岩、滑石片岩以及石英菱镁岩具有明显不同的稀土配分模式和微量元素蛛网图谱(图 5a, b)。糜棱岩化石英菱镁岩显示轻稀土略富集的稀土配分,(La/Yb)N比为2.81~5.37,不显示Eu异常(图 5a)。糜棱岩化石英菱镁岩的稀土元素总量为23.29×10-6~28.79×10-6,远高于石英菱镁岩的稀土总量(0.22×10-6~1.83×10-6)。微量元素蛛网图谱显示,除了元素Sr,所有的微量元素(包括高场强元素Nb、Ti、Zr和Hf)均在糜棱岩化石英菱镁岩中显著富集(图 5b)。碳酸盐矿物易富集Sr(Kodolányi et al., 2012),因此滑石片岩和石英菱镁岩显示Sr正异常;而糜棱岩化石英菱镁岩中碳酸盐矿物的相对含量降低,Sr表现出平坦或弱负异常的趋势。

6 讨论:剪切变形过程中石英菱镁岩的元素地球化学行为

在蛇绿岩的以往研究中,认为部分微量元素(如高场强元素)在低-中级变质作用过程中不发生迁移,可用来指示蛇绿岩的形成环境(Montigny et al., 1973Pearce, 2014)。然而,越来越多的研究显示稀土元素和高场强元素在某些特定环境中也可以迁移(Dostal et al., 1980; Salvi and Williams-Jones, 1990; Banks et al., 1994Deschamps et al., 2013; Pearce, 2014; Cao et al., 2017)。例如,Ti、Zr和Y在富CO2流体参与的变质反应中为活动元素(Hynes,1980);俯冲带中变质脱挥发分产生的含水流体有利于高场强元素的迁移(Kessel et al., 2005; Hattori and Guillot, 2007; Deschamps et al., 2013; Louvel et al., 2014);剪切带中高水岩比和流体富CO2的特点也使其成为微量元素迁移富集的有利场所(Pearce, 2014)。

萨尔托海石英菱镁岩沿着剪切带出露,经历了不同程度韧性变形,伴随着大量元素的带入迁出。蛇纹岩、石英菱镁岩和糜棱岩化石英菱镁岩中微量元素协变图解(图 6)显示,蛇纹岩和石英菱镁岩中微量元素含量的变化趋势不明显,但糜棱岩化石英菱镁岩中对应的微量元素含量显著升高,Rb和Ce、Ba和Zr含量呈正相关关系(图 6a, b),与剪切变形过程中同时结晶铬云母、独居石和锆石的岩相学特征吻合(图 3g, h)。糜棱岩化石英菱镁岩中Ti和P的含量也急剧增加(图 6c),与岩石中结晶金红石和磷灰石的现象一致。糜棱岩化石英菱镁岩中的轻稀土元素可能主要受独居石和磷灰石的控制,而重稀土元素的富集与金红石和锆石有关。Rolland et al.(2003)提出剪切带中稀土元素的活动性与变质过程形成的富含REE的副矿物种类和含量密切相关,极少量的副矿物(<2%)可导致岩石REE含量升高5倍。糜棱岩化石英菱镁岩中出现铬云母,以及铬尖晶石蚀变为铬铁矿的现象(图 3e-i, Qiu and Zhu, 2017),说明Cr和Al等元素也在剪切变形过程中再活化迁移。此外,糜棱岩化石英菱镁岩的Au含量远高于蛇纹岩和石英菱镁岩,且与岩石的稀土总量、Ba和Ti呈正相关关系(图 6d-f表 1),指示剪切变形可能也促使成矿元素发生了富集。

图 6 萨尔托海石英菱镁岩、糜棱岩化石英菱镁岩及蛇纹岩的微量元素协变图解 Fig. 6 Co-variation diagrams of some trace elements of listwaenites, mylonitized listwaenites and serpentinites from the Sartohay

剪切带中,流体与变形岩石之间的物质成分交换改变了原岩的化学组成,还可能导致岩石体积和质量也发生变化(O’Hara, 1988)。因此,直接对比蚀变岩石前后测得的某元素的质量分数不能正确反映岩石在热液蚀变或变质过程中元素实际的带入迁出量。质量平衡分析是确定一个体系中物质组分带入迁出、物质密度、体积变化的定量分析方法。将该方法应用到韧性剪切带中的岩石,根据Grant(1986, 2005)的计算公式,使用等浓度图可以准确评价剪切带中蛇纹岩转变为石英菱镁岩和糜棱岩化石英菱镁岩过程中元素的迁移情况。在使用质量平衡分析时,需对岩石进行一个基本假设,即在交代蚀变过程中岩石中某一组分或多组分不活动,它们在蚀变前后的变化很小或接近于零(Grant, 1986)。这一假设的意义在于:由于蚀变岩石质量或体积变化,不活动组分会因其他活动组分的净增加或净减少而被动表现亏损或富集的特征,但实际上它们在整个蚀变体系中的绝对丰度是恒定的,因此可以用不活动组分蚀变前后的质量分数来衡量蚀变作用中其他元素的含量变化。通常认为Al、Ti、Fe、P、Zr、Nb、Y和REE在水岩反应过程中不迁移(Selverstone et al., 1991; Cail and Cline, 2001; Grant, 2005)。但是,根据前人总结的不迁移元素的选择标准(Ague and van Haren,1996),这些元素均不能选作蛇纹岩转变为石英菱镁岩过程中的不迁移元素。首先,萨尔托海蛇纹岩、石英菱镁岩和糜棱岩化石英菱镁岩具有相对高的Al2O3含量,但Al2O3主要赋存在铬尖晶石中,而铬尖晶石在岩石中的分布不规律。而且,有研究认为在某些变质流体中Al可以发生一定程度的迁移(Dipple et al., 1990; Ague, 1991),因此Al2O3不适合选作不迁移元素。其次,O’Hara(1988)Ague and van Haren(1996)认为只有在变质过程中富集在残余矿物相中的元素(而不是富集在新结晶的矿物相中的元素)可以选作不迁移元素。萨尔托海糜棱岩化石英菱镁岩具有较高的Ti、P、Zr、Nb、Y和REE含量,但这些元素富集在剪切变形过程中结晶的金红石、磷灰石、锆石和独居石中;Winchester and Max(1984)的研究表明这些元素在韧性剪切带中可以迁移,因此也不是该体系中不迁移元素的理想选择。再次,蚀变岩石中含量较低的元素,例如MnO,不适合选作不迁移元素。因此,在蛇纹岩转变为石英菱镁岩或滑石片岩的质量平衡分析中,常假设Fe2O3不发生迁移(Tuysuz and Erler, 1993; Schandl and Gorton, 2012)。

在等浓度图中,蛇纹岩的元素含量(3个蛇纹岩样品中同一元素含量的平均值)作为横坐标,石英菱镁岩和糜棱岩化石英菱镁岩中对应元素的含量(平均值)分别作为纵坐标(图 7)。由于数据点分散,为了更好的显示各组分的带入迁出情况,本文对横纵坐标均进行对数处理。图中虚线表示质量守恒线,即理想状态下(不考虑体积和质量变化)某些元素在交代过程中不发生移动时,其在原岩和交代岩石中的绝对含量不改变。这些元素在等浓度图中构成一条过原点、斜率为1的直线,定义为质量守恒线。图中实线代表Fe2O3不迁移的等浓度线,该等浓度线过Fe2O3数据点,且与质量守恒线平行。当元素落在Fe2O3等浓度线左侧,代表这一元素在交代过程中被带入体系;而落在Fe2O3等浓度线右侧,代表从体系中迁出。越靠近Fe2O3等浓度线的元素,其在交代过程中的含量变化越小,反之,其含量变化越大。图 7a显示,石英菱镁岩和蛇纹岩相比,岩石中大多数元素均投影在Fe2O3等浓度线左侧,说明这些元素在蛇纹岩转变为石英菱镁岩过程中随流体带入体系。而SiO2、MgO、MnO、Tm、Yb、Lu、Nb和Cr落在Fe2O3等浓度线附近,显示这些元素迁移量很小或基本不发生迁移。Co、Ni和Au位于Fe2O3等浓度线右侧,说明蛇纹岩转变为石英菱镁岩时,岩石的Co、Ni和Au随流体带出。而蛇纹岩转变为糜棱岩化石英菱镁岩的过程,元素带入迁出的程度更加明显(图 7b)。岩石中大部分元素(包括Au)落在Fe2O3等浓度线左侧,且远离Fe2O3等浓度线,显示这些元素在此过程中强烈富集;但MgO、Co和Ni落在Fe2O3等浓度线右侧,说明被带出体系(图 7b)。蛇纹岩转变为石英菱镁岩,岩石中Au随流体带出;当形成糜棱岩化石英菱镁岩时,流体带入Au。以上现象说明蛇纹岩转变为石英菱镁岩的过程可以为糜棱岩化石英菱镁岩发生金矿化提供部分Au,这可以作为石英菱镁岩中常赋存金矿床的一种解释。由于萨尔托海地区经历多期次岩浆构造活动,混杂岩带各类岩石单元成分复杂,也不能排除其在剪切活动中提供成矿物质的可能性。

图 7 蛇纹岩转变为石英菱镁岩(a)和糜棱岩化石英菱镁岩(b)化学成分等浓度线图 以Fe2O3在蛇纹岩转变为石英菱镁岩和糜棱岩化石英菱镁岩过程中不迁移为依据作图.主量元素单位为%,微量元素单位为×10-6 Fig. 7 The log isocon diagrams showing chemical compositions variation from serpentinite to listwaenite (a) and mylonitized listwaenite (b) The diagrams based on the hypothesis that Fe2O3 is immobile during transformation from serpentinite to listwaenite and to mylonitized listwaenite. Major element oxides are in %, and trace elements are in ×10-6

质量平衡分析表明,蛇纹岩转变为石英菱镁岩和糜棱岩化石英菱镁岩的过程中,大多数组分(包括高场强元素和所有稀土元素)随流体带入体系,而MgO、Co和Ni被流体带出。蛇纹岩转变为糜棱岩化石英菱镁岩过程中元素的迁移富集程度明显高于蛇纹岩转变为石英菱镁岩过程中对应元素的富集程度,说明元素的迁移富集主要受剪切变形的控制。剪切变形作用常伴随着强烈的流体/岩石反应,并导致剪切带流体组成和物理化学性质发生改变,从而影响矿物的结晶或分解,并控制微量元素的带入迁出(Mccaig, 1984O’Hara, 1994Rolland et al., 2003)。这些微量元素可能来源于深部流体,或萃取自蛇绿岩中的其他岩石单元,仍有待于进一步研究。

7 结论

新疆萨尔托海石英菱镁岩是蛇纹岩在剪切带深部发生热液交代作用的产物。蛇纹岩转变为滑石片岩,再进一步转变为石英菱镁岩。滑石片岩和石英菱镁岩继承了蛇纹岩的微量元素特征,而糜棱岩化石英菱镁岩的微量元素含量明显高于蛇纹岩。糜棱岩化石英菱镁岩中结晶独居石、锆石、磷灰石和金红石,指示高场强元素和稀土元素在剪切变形过程中迁移富集。剪切变形作用伴随高的流体通量和水岩比,从而影响矿物结晶或分解,并控制微量元素的带入迁出。蛇纹岩转变为石英菱镁岩的过程为糜棱岩化石英菱镁岩发生金矿化提供成矿物质,可能是石英菱镁岩常伴生金矿床的原因。

致谢 北京大学古丽冰老师指导了样品的微量元素分析前处理,马芳老师协助完成微量元素分析;安芳副教授、陈博助理研究员参加了野外工作并提供了诸多帮助;两名审稿专家提出了详细的审稿意见和修改建议,对完善本文帮助极大;在此一并表示感谢。
参考文献
Aftabi A and Zarrinkoub MH. 2013. Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran:Implications for possible epigenetic Cu-Au ore exploration in metaophiolites. Lithos, 156-159: 186-203. DOI:10.1016/j.lithos.2012.11.006
Ague JJ. 1991. Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, 19(8): 855-858. DOI:10.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;2
Ague JJ and van Haren JLM. 1996. Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Economic Geology, 91(7): 1169-1182. DOI:10.2113/gsecongeo.91.7.1169
An F and Zhu YF. 2009. SHRIMP U-Pb zircon ages of tuff in Baogutu Formation and their geological significances. Acta Petrologica Sinica, 25(6): 1437-1445.
Auclair M, Gauthier M, Trottier J, Jebrak M and Chartrand F. 1993. Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Economic Geology, 88(1): 123-138. DOI:10.2113/gsecongeo.88.1.123
Azer MK. 2013. Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in south Eastern Desert, Egypt. Geologica Acta, 11(1): 113-128.
Banks DA, Yardley BWD, Campbell AR and Jarvis KE. 1994. REE composition of an aqueous magmatic fluid:A fluid inclusion study from the Capitan pluton, New Mexico, U. S. A.. Chemical Geology, 113(3-4): 259-272. DOI:10.1016/0009-2541(94)90070-1
Belogub EV, Melekestseva IY, Novoselov KA, Zabotina MV, Tret'yakov GA, Zaykov VV and Yuminov AM. 2017. Listvenite-related gold deposits of the South Urals (Russia):A review. Ore Geology Reviews, 85: 247-270. DOI:10.1016/j.oregeorev.2016.11.008
Buisson G and Leblanc M. 1985. Gold in carbonatized ultramafic rocks from ophiolite complexes. Economic Geology, 80(7): 2028-2029. DOI:10.2113/gsecongeo.80.7.2028
Buisson G and Leblanc M. 1987. Gold in mantle peridotites from upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology, 82(8): 2091-2097. DOI:10.2113/gsecongeo.82.8.2091
Bureau of Geology and Mineral Resources of Xinjiang Uygur Antonomous Region. 1993. Regional Geology of Xinjiang Uygur Antonomous Region. Beijing: Geological Publishing House: 1-258.
Cail TL and Cline JS. 2001. Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Economic Geology, 96(6): 1343-1359. DOI:10.2113/gsecongeo.96.6.1343
Cao YT, Liu L, Chen DL, Wang C, Yang WQ, Kang L and Zhu XH. 2017. Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China. Journal of Asian Earth Sciences, 148: 223-240. DOI:10.1016/j.jseaes.2017.09.009
Chen S and Guo ZJ. 2010. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica, 26(8): 2336-2344.
Choulet F, Faure M, Cluzel D, Chen Y, Lin W and Wang B. 2012. From oblique accretion to transpression in the evolution of the Altaid collage:New insights from West Junggar, northwestern China. Gondwana Research, 21(2-3): 530-547. DOI:10.1016/j.gr.2011.07.015
Deschamps F, Godard M, Guillot S and Hattori K. 2013. Geochemistry of subduction zone serpentinites:A review. Lithos, 178: 96-127. DOI:10.1016/j.lithos.2013.05.019
Dipple GM, Wintsch RP and Andrews MS. 1990. Identification of the scales of differential element mobility in a ductile fault zone. Journal of Metamorphic Geology, 8(6): 645-661. DOI:10.1111/jmg.1990.8.issue-6
Dostal J, Strong DF and Jamieson RA. 1980. Trace element mobility in the mylonite zone within the ophiolite aureole, St. Anthony complex, Newfoundland. Earth and Planetary Science Letters, 49(2): 188-192. DOI:10.1016/0012-821X(80)90063-1
Emam A and Zoheir B. 2013. Au and Cr mobilization through metasomatism:Microchemical evidence from ore-bearing listvenite, South Eastern Desert of Egypt. Journal of Geochemical Exploration, 125: 34-45. DOI:10.1016/j.gexplo.2012.11.004
Grant JA. 1986. The isocon diagram:A simple solution to Gresens' equation for metasomatic alteration. Economic Geology, 81(8): 1976-1982. DOI:10.2113/gsecongeo.81.8.1976
Grant JA. 2005. Isocon analysis:A brief review of the method and applications. Physics and Chemistry of the Earth, Parts A/B/C, 30(17-18): 997-1004. DOI:10.1016/j.pce.2004.11.003
Guo LS, Liu YL, Wang ZH, Song D, Xu FJ and Su L. 2010. The zircon U-Pb LA-ICP-MS geochronology of volcanic rocks in Baogutu areas, western Junggar. Acta Petrologica Sinica, 26(2): 471-477.
Halls C and Zhao R. 1995. Listvenite and related rocks:Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3-4): 303-313. DOI:10.1007/BF00196366
Hattori KH and Guillot S. 2007. Geochemical character of serpentinites associated with high-to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas:Recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8: Q09010.
He GQ, Liu JB, Zhang YQ and Xu X. 2007. Keramay ophiolitic mélange formed during Early Paleozoic in western Junggar basin. Acta Petrologica Sinica, 23(7): 1573-1576.
Hinsken T, Bröcker M, Strauss H and Bulle F. 2017. Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece. Lithos, 282-283: 281-297. DOI:10.1016/j.lithos.2017.02.019
Hynes A. 1980. Carbonatization and mobility of Ti, Y, and Zr in Ascot formation metabasalts, SE Quebec. Contributions to Mineralogy and Petrology, 75(1): 79-87. DOI:10.1007/BF00371891
Kerrick DM and Connolly JAD. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26(4): 375-378. DOI:10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO;2
Kessel R, Schmidt MW, Ulmer P and Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180km depth. Nature, 437(7059): 724-727. DOI:10.1038/nature03971
Kodolányi J, Pettke T, Spandler C, Kamber BS and Gméling K. 2012. Geochemistry of ocean floor and fore-arc serpentinites:Constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235-270. DOI:10.1093/petrology/egr058
Leblanc M and Fischer W. 1990. Gold and platinum group elements in cobaltarsenide ores:Hydrothermal concentration from a serpentinite source-rock (Bou Azzer, Morocco). Mineralogy and Petrology, 42(1-4): 197-209. DOI:10.1007/BF01162691
Lei M, Zhao ZD, Hou QY, Zhang HF, Xu JF, Chen YL, Zhang BR and Liu XJ. 2008. Geochemical and Sr-Nd-Pb isotopic characteristics of the Dalabute ophiolite, Xinjiang:Comparison between the Paleo-Asian ocean and the Tethyan mantle domains. Acta Petrologica Sinica, 24(4): 661-672.
Louvel M, Sanchez-Valle C, Malfait WJ, Cardon H, Testemale D and Hazemann JL. 2014. Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments. American Mineralogist, 99(8-9): 1616-1625. DOI:10.2138/am.2014.4799
Mccaig AM. 1984. Fluid-rock interaction in some shear zones from the Pyrenees. Journal of Metamorphic Geology, 2(2): 129-141. DOI:10.1111/jmg.1984.2.issue-2
Montigny R, Bougault H, Bottinga Y and Allegre CJ. 1973. Trace element geochemistry and genesis of the Pindos ophiolite suite. Geochimica et Cosmochimica Acta, 37(9): 2135-2147. DOI:10.1016/0016-7037(73)90012-4
O'Hanley DS. 1996. Serpentinites:Recorders of Tectonic and Petrological History. New York: Oxford University Press: 1-277.
O'Hara K. 1988. Fluid flow and volume loss during mylonitization:An origin for phyllonite in an overthrust setting, North Carolina, U. S. A.. Tectonophysics, 156(1-2): 21-36. DOI:10.1016/0040-1951(88)90280-6
O'Hara K. 1994. Fluid-rock interaction in crustal shear zones:A directed percolation approach. Geology, 22(9): 843-846. DOI:10.1130/0091-7613(1994)022<0843:FRIICS>2.3.CO;2
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108. DOI:10.2113/gselements.10.2.101
Qiu T and Zhu YF. 2012. Identification of a ductile shear zone in quartz-magnesitite and its controlling on gold deposits in the Sartohay region, western Junggar, Xinjiang. Acta Petrologica Sinica, 28(7): 2250-2256.
Qiu T and Zhu YF. 2015. Geology and geochemistry of listwaenite-related gold mineralization in the Sayi gold deposit, Xinjiang, NW China. Ore Geology Reviews, 70: 61-79. DOI:10.1016/j.oregeorev.2015.03.017
Qiu T and Zhu YF. 2017. Chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange, Xinjiang, NW China. Journal of Asian Earth Sciences. DOI:10.1016/j.jseaes.2017.08.011
Rolland Y, Cox S, Boullier AM, Pennacchioni G and Mancktelow N. 2003. Rare earth and trace element mobility in mid-crustal shear zones:Insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 214(1-2): 203-219. DOI:10.1016/S0012-821X(03)00372-8
Salvi S and Williams-Jones AE. 1990. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador:Evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 54(9): 2403-2418. DOI:10.1016/0016-7037(90)90228-D
Schandl ES and Naldrett AJ. 1992. CO2 metasomatism of serpentinites, south of Timmons, Ontario. The Canadian Mineralogist, 30: 93-108.
Schandl ES and Gorton MP. 2012. Hydrothermal alteration and CO2 metasomatism (natural carbon sequestration) of komatiites in the south-western Abitibi greenstone belt. The Canadian Mineralogist, 50(1): 129-146. DOI:10.3749/canmin.50.1.129
Selverstone J, Morteani G and Staude JM. 1991. Fluid channelling during ductile shearing:Transformation of granodiorite into aluminous schist in the Tauern Window, Eastern Alps. Journal of Metamorphic Geology, 9(4): 419-431. DOI:10.1111/jmg.1991.9.issue-4
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Tuysuz N and Erler A. 1993. Geochemistry and evolution of listwaenites in the Kagizman region (Kars, NE-Turkey). Chemie der Erde, 53(4): 315-329.
Ucurum A and Larson LT. 1999. Geology, base-precious metal concentration and genesis of the silica-carbonate alteration (listwaenites) from late Cretaceous ophiolitic mélanges at central east Turkey. Chemie der Erde, 59(2): 77-104.
Ucurum A. 2000. Listwaenites in Turkey:Perspectives on formation and precious metal concentration with reference to occurrences in East-Central Anatolia. Ofioliti, 25(1): 15-29.
Wang R and Zhu YF. 2007. Geology of the Baobei gold deposit in western Junggar and zircon SHRIMP age of its wall-rocks, western Junggar (Xinjiang, NW China). Geological Journal of China Universities, 13(3): 590-602.
Winchester JA and Max MD. 1984. Element mobility associated with syn-metamorphic shear zones near Scotchport, NW Mayo, Ireland. Journal of Metamorphic Geology, 2(1): 1-11. DOI:10.1111/jmg.1984.2.issue-1
Wu YZ. 2012. Characteristics of ore-controlling structures and prospective analysis of Hatu-Saertuohai gold belt in Western Junggar, Xinjiang. The Chinese Journal of Nonferrous Metals, 22(3): 854-862.
Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. DOI:10.1016/j.jseaes.2007.10.008
Xu Z, Han BF, Ren R, Zhou YZ and Su L. 2013. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China:Implications for tectonic evolution of the West Junggar. International Geology Review, 55(5): 633-656. DOI:10.1080/00206814.2012.741315
Yang G, Wang CB, Li BL and Shi X. 2011. Transpression and wrench faults of northwestern margin of Junggar Basin. Chinese Journal of Geology, 46(3): 696-708.
Yang GX, Li YJ, Safonova I, Yi SX, Tong LL and Seltmann R. 2014. Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt:Implications for a supra-subduction system. International Geology Review, 56(7): 823-844. DOI:10.1080/00206814.2014.902757
Yigit O. 2006. Gold in Turkey:A missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2): 147-179. DOI:10.1016/j.oregeorev.2005.04.003
Zhang C and Huang X. 1992. The ages and tectonic settings of ophiolites in West Junggar, Xinjiang. Geological Review, 38(6): 509-524.
Zhang L, Yang JS, Robinson PT, Xiong FH, Chen YH, Lai SM and Chen M. 2015. Origin of listwanite in the Luobusa ophiolite, Tibet:Implications for chromite stability in hydrothermal systems. Acta Geologica Sinica, 89(2): 402-417. DOI:10.1111/1755-6724.12438
Zhang QH, Wei ZL and Sun SH. 1989. The age of Darbut fault in West Junggar. Xinjiang Petroleum Geology, 10(1): 35-38.
Zhu YF, He GQ and An F. 2007. Geological evolution and metallogeny in the core part of the Central Asian metallogenic domain. Geological Bulletin of China, 26(9): 1167-1177.
Zhu YF, Yan QM, Ma HD and Lehmann B. 2011. Recent advances in geology and exploration in the Balkash-western Junggar region (Kazakhstan and Xinjiang, China):Report on the "International workshop on the large Balkash-western Junggar copper-gold province". Episodes, 34(3): 208-211.
Zhu YF, Chen B, Xu X, Qiu T and An F. 2013. A new geological map of the western Junggar, North Xinjiang (NW China):Implications for Paleoenvironmental reconstruction. Episodes, 36(3): 205-220.
Zhu YF, An F, Xu CY, Guo HT, Xia F, Xiao F, Zhang FJ, Lin CX, Qiu T and Wei SN. 2013. Geology and Au-Cu Deposits in the Hatu and its Adjacent Region (Xinjiang):Evolution and Prospecting Model. Beijing: Geological Publishing House: 1-161.
Zhu YF, Chen B and Qiu T. 2015. Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges:Implications for geological evolution of West Junggar, Xinjiang, NW China. Geological Magazine, 152(1): 41-69. DOI:10.1017/S0016756814000168
Zoheir B and Lehmann B. 2011. Listvenite-lode association at the Barramiya gold mine, Eastern Desert, Egypt. Ore Geology Reviews, 39(1-2): 101-115. DOI:10.1016/j.oregeorev.2010.12.002
Zong P, Becker RT and Ma XP. 2015. Upper Devonian (Famennian) and Lower Carboniferous (Tournaisian) ammonoids from western Junggar, Xinjiang, northwestern China:Stratigraphy, taxonomy and palaeobiogeography. Palaeobiodiversity and Palaeoenvironments, 95(2): 159-202. DOI:10.1007/s12549-014-0171-y
安芳, 朱永峰. 2009. 新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义. 岩石学报, 25(6): 1437-1445.
陈石, 郭召杰. 2010. 达拉布特蛇绿岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论. 岩石学报, 26(8): 2336-2344.
郭丽爽, 刘玉琳, 王政华, 宋达, 许发军, 苏犁. 2010. 西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究. 岩石学报, 26(2): 471-477.
何国琦, 刘建波, 张越迁, 徐新. 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定. 岩石学报, 23(7): 1573-1576.
雷敏, 赵志丹, 侯青叶, 张宏飞, 许继峰, 陈岳龙, 张本仁, 刘希军. 2008. 新疆达拉布特蛇绿岩带玄武岩地球化学特征:古亚洲洋与特提斯洋的对比. 岩石学报, 24(4): 661-672.
邱添, 朱永峰. 2012. 新疆萨尔托海石英菱镁岩中发育的韧性剪切带及其对金矿的控制. 岩石学报, 28(7): 2250-2256.
王瑞, 朱永峰. 2007. 西准噶尔宝贝金矿地质与容矿火山岩的锆石SHRIMP年龄. 高校地质学报, 13(3): 590-602.
吴延之. 2012. 新疆西准噶尔哈图-萨尔托海金矿带控矿构造特征及找矿前景分析. 中国有色金属学报, 22(3): 854-862.
新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社: 1-258.
杨庚, 王晓波, 李本亮, 石昕. 2011. 准噶尔西北缘斜向挤压构造与走滑断裂. 地质科学, 46(3): 696-708.
张弛, 黄萱. 1992. 新疆西准噶尔蛇绿岩形成时代和环境的探讨. 地质论评, 38(6): 509-524.
张琴华, 魏洲龄, 孙少华. 1989. 西准噶尔达尔布特断裂带的形成时代. 新疆石油地质, 10(1): 35-38.
朱永峰, 何国琦, 安芳. 2007. 中亚成矿域核心地区地质演化与成矿规律. 地质通报, 26(9): 1167-1177.
朱永峰, 安芳, 徐存元, 郭海棠, 夏芳, 肖飞, 张凤军, 林彩香, 邱添, 魏少妮. 2013. 新疆哈图及其周边金铜成矿规律和深部找矿预测. 北京: 地质出版社: 1-161.