岩石学报  2017, Vol. 33 Issue (12): 3766-3782   PDF    
西藏日喀则白马让蛇绿岩:亚洲大陆边缘的小洋盆
杨胜标1,2 , 李源2 , 杨经绥2 , 李瑞保3 , 董天赐1 , 裴磊3     
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质科学院地质研究所地幔研究中心, 北京 100037;
3. 长安大学地球科学与资源学院, 西安 710054
摘要:藏南雅鲁藏布蛇绿岩被认为是新特提斯大洋岩石圈的残留。该带中段的日喀则白马让蛇绿岩是保存较完整的蛇绿岩岩块之一。该蛇绿岩主要由橄榄岩、蛇纹岩、镁铁质侵入岩和玄武岩组成,缺堆晶岩系。镁铁质侵入岩主要呈辉绿岩脉、岩床和少量的岩墙产出。辉绿岩脉在整个蛇绿岩层序中均有分布,侵入橄榄岩的部分岩脉已经变为变辉绿岩和异剥钙榴岩。辉绿岩床(墙)向上逐渐过渡为玄武岩。局部可见日喀则群整合覆盖在玄武岩之上。地球化学分析显示不同产状的镁铁质岩均属于低钾或中钾的拉斑玄武岩,亏损Nb、Ta、Ti和LREE,具有弧前玄武岩(FAB)或弧后盆地玄武岩(BABB)的特征,它们的Ti/V和Yb/V的比值与BABB或正常大洋中脊玄武岩(N-MORB)相似,Sr-Nd-Pb同位素数据指示了亏损地幔(DM)与富集地幔(EM)过渡的源区。镁铁质岩野外产出关系和地球化学特征表明,白马让蛇绿岩的镁铁质岩组合可能形成于SSZ环境。考虑到超镁铁质岩、镁铁质岩和日喀则群在空间上的连续性,认为白马让蛇绿岩可能是起源于亚洲大陆边缘俯冲带上的洋盆,属于原地系统,而非外来的构造岩片。
关键词: 雅鲁藏布缝合带     日喀则蛇绿岩     构造环境     大陆边缘    
Baimarang ophiolite in Xigaze, Tibet: A small ocean basin close to the Asian continental margin
YANG ShengBiao1,2, LI Yuan2, YANG JingSui2, LI RuiBao3, DONG TianCi1, PEI Lei3     
1. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. School of Earth Science and Mineral Resources, Chang'an University, Xi'an 710054, China
Abstract: Yarlung Zangbo ophiolites in southern Tibet is considered as relics of the Neo-Tethyan oceanic lithosphere. The Baimarang ophiolite located in Xigaze, the middle section of the Yarlung Zangbo Suture Zone (YZSZ), is one of the best-preserved massifs. The ophiolite is scarcity of cumulate, and mainly includes peridotites, serpentines, mafic intrusions and basalts. Mafic intrusions in the Baimarang massif are mainly comprised of diabase dikes, sills and minor sheeted dikes. Diabase dikes are distributed in the whole ophiolite sequence and some of them invaded in peridotites had been altered into metadiabases or/and rodingites. Diabase sills gradually develop upward into basalts. Basalts conformably overlain by the Xigaze Group were observed in local areas. Geochemical analysis indicates that mafic rocks with different occurrences all belong to low-K and/or medium-K tholeiites, they characterized by depleted in Nb, Ta and LREE, which are similar to back-arc-basin basalts (BABBs) or fore-arc basalts (FABs). Their Ti/V ratios and Yb/V ratios are in accordance with BABBs and mid-ocean ridge basalts (N-MORB) and their Sr-Nd-Pb isotopic data shows a mantle source characterized by depleted mantle (DM) involvement of enriched component. Outcrops and petrogeochemistry indicate the Baimarang mafic rocks should be derived from supra-subduction zone (SSZ) setting. Given the spatial continuity among ultramafic rocks, mafic rocks and the Xigaze Group, we suggest that the Baimarang ophiolite is likely to origin form an ocean basin close to the Asian continental margin and probably belongs to autochthonous system rather than exotic tectonic blocks.
Key words: Yarlung Zangbo suture zone     Xigaze ophiolite     Tectonic setting     Continental margin    
1 引言

蛇绿岩是就位于大陆边缘的大洋岩石圈残片,记录了古洋盆从洋脊扩张、俯冲到最终闭合的岩浆活动和构造过程(Nicolas, 1989; Dilek and Furnes, 2011)。西藏雅鲁藏布蛇绿岩是青藏高原最南部的一条蛇绿岩带,代表了新特提斯大洋岩石圈的残留(Tapponnier et al., 1981; Nicolas et al., 1981; Girardeau et al., 1985a, b; 王希斌等, 1987),其构造背景的研究对于理解新特提斯洋的构造演化研究具有重要意义。研究表明东西向断续延伸近2000km的雅鲁藏布蛇绿岩具有非常相似的岩石组合和同位素年代学(Hébert et al., 2012; 吴福元等, 2014及其参考文献),超镁铁质岩出露厚度大,镁铁质岩主要以侵入岩为主,缺乏堆晶岩,与典型的Oman蛇绿岩明显不同。迄今该蛇绿岩的形成背景、演化历史还存在较大的争论:(1)慢速-超慢速扩张洋中脊(Nicolas et al., 1981; Girardeau et al., 1985a, b; 王希斌等, 1987; 吴福元等, 2014; Liu et al., 2014, 2016; Zhang et al., 2015)、接近洋脊与转换断层带交汇处(Pearce and Deng, 1988);(2)陆间小洋盆(肖序常和王军, 1998)、(3)弧后环境(刘小汉等, 2009; 李文霞等, 2012; Hébert et al., 2012; Bezard et al., 2012);(4)弧前盆地(陈根文等, 2003; Dai et al., 2013; An et al., 2014; Maffione et al., 2015; 李源等, 2016; Xiong et al., 2016, 2017a)以及由不同构造环境的蛇绿岩块体拼贴组成(张旗和周国庆, 2001; 胡敬仁等, 2004)等。

位于雅鲁藏布缝合带中段的日喀则蛇绿岩具有雅鲁藏布蛇绿岩的典型特征,是带中保存最完整的蛇绿岩之一。本文通过1:5万比例尺的填图,厘定了日喀则白马让蛇绿岩中各种类型镁铁质岩的产状、构造要素、与围岩的相互关系,结合镁铁质岩的岩石地球化学和同位素特征讨论了该蛇绿岩的构造背景。

2 地质背景

雅鲁藏布缝合带是西藏最南端的一条板块缝合带(图 1a)。从北向南依次为冈底斯岩浆弧、陆缘山前磨拉石带、弧前盆地复理石带、蛇绿岩带和印度板块北缘的复理石混杂带,被认为是典型沟-弧盆体系(李光岑和Mercier, 1984; 王希斌等, 1987; 王成善等, 1999; 郝杰等, 1999)。缝合带中的蛇绿岩带西起狮泉河经日喀则直至东构造结,东西向延伸近2000km,是晚侏罗世-白垩纪新特提斯岩石圈的残留(Nicolas et al., 1981; Tapponnier et al., 1981; Allègre et al., 1984; Girardeau et al., 1985a, b)。

图 1 雅鲁藏布江缝合带镁铁质岩区域地质图(a)与日喀则蛇绿岩地质图(b)(据李源等, 2016) NP-南迦帕尔特构造结; NB-南迦巴瓦构造结; KKF-喀喇昆仑断裂; GCT-大反冲断裂; STD-藏南拆离断裂; MCT-主中央冲断裂; MBT-主边界冲断裂; MFT-主前冲断裂 Fig. 1 Distribution of the Yarlung Zangbo ophiolites (a) and schematic tectonic map of southern Tibet (b) (after Li et al., 2016) NP-Nanga Parbat syntaxis; NB-Namche Barwa syntaxis; KKF-Karakorum fault; GT-Gangdese thrust; GCT-Great Counter thrust; STD-South Tibet detachment; MCT-Main Central thrust; MBT-Main Boundary thrust; MFT-Main Front thrust

日喀则蛇绿岩位于雅鲁藏布缝合带的中段,呈近东西向带状展布(图 1b)。东西向展布约100km,南北最宽约10km。蛇绿岩北侧被晚白垩统的日喀则弧前盆地复理石沉积整合覆盖或呈断层接触,南侧与晚侏罗统-早白垩统的嘎学群呈断层接触,或被古近系柳区砾岩角度不整合覆盖(图 1b)。被认为是在130~120Ma期间(王冉等, 2006; Dai et al., 2013; Zhang et al., 2015),新特提斯洋洋中脊(MOR)(Nicolas et al., 1981; Girardeau et al., 1985a, b; 王希斌等, 1987)或俯冲带之上(SSZ)(张旗和周国庆, 2001; 陈根文等, 2003, 2015; 王成善等, 2005; 李文霞等, 2012, 2016; Xu et al., 2015; Xiong et al., 2016, 2017a, b)形成的大洋岩石圈,经复杂的俯冲、仰冲、反冲等过程最终就位在就位现今的位置(王希斌等, 1987; 王成善等, 1999; Ding et al., 2005; Xu et al., 2015)。

本文研究的白马让蛇绿岩位于日喀则市以南~15km,岩块长约10km,宽4~6km。蛇绿岩层序保存完好,主要由方辉橄榄岩、含单斜辉石方辉橄榄岩、辉绿岩床(墙)和少量的辉绿岩-玄武岩组成(图 2)。超镁铁质岩出露面积大,以蛇纹石化的方辉橄榄岩为主,包含少量的二辉橄榄岩和纯橄榄岩。超镁铁质岩核部的方辉橄榄岩比较新鲜,少量的辉绿岩脉侵入其中,南北边部为两条近东西向展布、被大量辉绿岩脉侵入的糜棱岩化蛇纹岩带(图 2, 李源等, 2016)。蛇绿岩中缺乏堆晶岩,糜棱岩化蛇纹岩带的北侧可见大面积的镁铁质岩(图 2)。

图 2 西藏日喀则白马让蛇绿岩地质简测图及镁铁质岩代表性产状(据李源等, 2016) Fig. 2 Schematic map and representative occurrences of mafic rocks in the Baimarang massif, Xigaze ophiolite, Tibet (after Li et al., 2016)
3 镁铁质岩岩相学特征

白马让镁铁质岩主要分为玄武岩、辉绿岩床(墙)和辉绿岩脉三种类型。

玄武岩只出现在蛇绿岩北侧,最宽处约为350m,顶部被日喀则群冲堆组整合覆盖(图 3c)或呈互层(3e),底部过渡为辉绿岩床。玄武岩包括气孔杏仁状玄武岩和枕状玄武岩两种(图 3c, d),普遍发生细碧岩化。斑晶矿物主要为辉石和斜长石,基质为斜长石微晶和玻璃(图 4a)。

图 3 白马让蛇绿岩岩性柱状图与镁铁质岩野外产出照片 (a)白马让蛇绿岩岩性柱状图(据李源等, 2016); (b)辉绿岩床、辉绿岩脉与糜棱岩化蛇纹岩; (c)复理石与气孔杏仁状玄武岩的沉积接触界限; (d)枕状玄武岩; (e)含放射虫硅质岩与玄武岩的互层; (f)辉绿岩床、辉绿岩墙和辉绿岩脉; (g)辉绿岩床中的方辉橄榄岩; (h)侵入玄武岩的辉绿岩脉; (i)北侧蛇纹岩带的异剥钙榴岩布丁 Fig. 3 Lithological column and field occurrences of the Baimarang ophiolite (a) lithological column of the Baimarang ophiolite (after Li et al., 2016); (b) diabasic sills, dikes and mylonitic serpentinites; (c) sedimentary contact boundary of flysch formation and amygdaloidal basalts; (d) pillow lavas; (e) interbedding between radiolarian cherts and basalts; (f) diabasic sills, sheeted dikes and dike; (g) harzburgites in diabasic sills; (h) diabasic dikes invaded in basalts; (i) rodingites boudins in northern mylonitic serpentinites belt

图 4 白马让蛇绿岩镁铁质岩和超镁铁质岩显微镜照片 (a)气孔-杏仁状玄武岩; (b)似斑状结构的辉绿岩; (c)辉绿岩床中蛇纹石化的方辉橄榄岩; (d)岩体核部蛇纹石化的方辉橄榄岩; (e)辉绿岩床; (f)蛇纹岩中的变辉绿岩; (g、h)蛇纹岩中的异剥钙榴岩.Opx-斜方辉石; Cpx-单斜辉石; Pl-斜长石; Srp-蛇纹石; Ol-橄榄石; Mag-磁铁矿; Brc-水镁石; Ep-绿帘石; Act-阳起石; Chl-绿泥石; Grs-钙铝榴石; Tr-透闪石 Fig. 4 Photomicrgraphs of mafic and ultramafic rocks in the Baimarang ophiolite (a) amygdaloidal basalts; (b) diabases with porphyritic-like texture; (c) serpentinized harzburgites in diabasic sills; (d) serpentinized harzburgites in the central of this massif; (e) diabasic sills; (f) metadiabases in mylonitic serpentinites; (g, h) rodingites in mylonitic serpentinites. Opx-orthopyroxene; Cpx-clinopyroxene; Pl-plagioclase; Srp-serpentinite; Ol-olivine; Mag-magnetite; Brc-brucite; Ep-epidote; Act-actinolite; Chl-chlorite; Grs-grossularite; Tr-tremolite

辉绿岩床出露在橄榄岩北侧,向上逐渐过渡为玄武岩,呈似斑状结构和辉绿结构(图 4b)。辉绿岩床倾向310°~345°,倾角25°~35°,局部可见少量辉绿岩墙和方辉橄榄岩透镜体(图 3g)。辉绿岩墙倾向310°~345°,倾角50°~70°。方辉橄榄岩透镜体的矿物组成与蛇绿岩核部的方辉橄榄岩相同(图 4c, d)。新鲜的辉绿岩为辉绿结构,主要矿物包括斜长石(60%)、单斜辉石(15%)、斜方辉石(10%)(图 4e)。

辉绿岩脉在整个蛇绿岩的层序均有出露(图 3a, f, h, i)。洋壳单元中的部分辉绿岩脉近垂直切穿了辉绿岩墙和辉绿岩床(图 3f)。地幔单元中的辉绿岩脉产状变化较大,倾向为180°~15°,倾角为35°~85°。辉绿岩为辉绿辉长结构,主要矿物有斜长石(60%),单斜辉石(15%)和斜方辉石(10%)。片理化蛇纹岩中的辉绿岩脉强烈变形,为辉绿岩透镜体(图 3i),是片理化蛇纹岩同构造变形的产物(李源等, 2016)。辉绿岩透镜体普遍经历了绿片岩-低角闪岩相变质,部分完全转变为异剥钙榴岩。少量的辉绿岩透镜体核部还保留辉绿岩原岩的成分或结构特征(图 3i),次生矿物包括绿帘石、绿泥石、葡萄石、阳起石、钙铝榴石等(图 4g, h)。

4 分析方法

对白马让蛇绿岩的镁铁质岩进行了系统采样,采样位置如图 2所示。全岩主量元素和微量元素的分析测试在国土资源部国家地质实验测试中心完成。全岩主量元素用熔片X-射线荧光光谱仪(XRF-PW4400)测定,采用等离子光谱和化学法测定进行互相检测,分析精度小于10%。全岩微量元素和稀土元素用等离子质谱仪(ICP-MS-PE300D)测定,测试标样为AGV-2、BHVO-2、BCR-2和RGM-2,含量大于10×10-6的元素的测试精度为5%, 小于10×10-6的元素精度为10%, 含量低的样品测试误差大于10%,分析结果见表 1

表 1 白马让蛇绿岩镁铁质岩化学成份(主量元素: wt%; 微量和稀土元素: ×10-6) Table 1 Chemical composition of the mafic rocks in the Baimarang ophiolitie (major elements: wt%: trace elements: ×10-6)

Sr-Nd-Pb同位素分析在南京大学现代分析中心的VG354多接收质谱仪上完成。详细的Sm-Nd、Rb-Sr和U-Th-Pb化学制备和质谱测定方法见(王银喜等, 2006)。实验测定美国NBS987Sr同位素以88Sr/86Sr=0.1194为标准化值,87Sr/86Sr的测定值为0.710233±6;美国La Jolla标准样143Nd/144Nd测定值为0.511863±6,标准化值采用146Nd/144Nd=0.7219校正;测试NBS981标准样的206Pb/204Pb=16.941±0.008,207Pb/204Pb=15.487±0.011,208Pb/204Pb=36.715±0.009,测定值都用NBS981标样进行标准化校正。在计算εNd(t)时取143Nd/144Nd(CHUR)=0.512638,计算公式为εNd(t)=104×[(143Nd/144Nd)sample/(143Nd/144NdCHUR)-1]。同位素分析结果和参数列表见表 2

表 2 白马让蛇绿岩镁铁质岩Sr-Nd-Pb同位素组成 Table 2 Sr-Nd-Pb isotope compositions of the mafic rocks from the Baimarang ophiolite
5 分析结果 5.1 全岩主量元素和微量元素

本研究分析了18件镁铁质岩样品,岩石类型包括玄武岩、辉绿岩、变辉绿岩和异剥钙榴岩(表 1)。镁铁质岩的Na2O (0.04%~4.82%)、K2O (0.00%~1.14%)、CaO (7.92%~26.71%)等氧化物变化较大,流体活动元素氧化物(如K2O)的含量与烧失量LOI (2.32%~5.14%)呈弱相关性(图 5a),说明蚀变虽然导致样品成分发生了变化,但还能够代表原始的岩浆的成分组成。

图 5 白马让蛇绿岩镁铁质岩LOI+K2O-MgO (a)、Zr/Ti-Nb/Y (b)、K2O-SiO2(c)、FeOT/MgO-SiO2(d)、La-Yb (e)和Zr-Y (f)图解(据Falloon et al., 2014; Pearce, 2014; Miyashiro et al., 1974; Stern et al., 2013; Ural et al., 2015) B-玄武岩; B-A-玄武安山岩; A-安山岩; D-R-英安岩-流纹岩 Fig. 5 LOI+K2O vs. MgO (a), Zr/Ti vs. Nb/Y (b), K2O vs. SiO2(c), FeOT/MgO vs. SiO2(d), La vs. Yb (e) and Zr vs. Y (f) diagrams for mafic rocks in the Baimarang ophiolite (after Falloon et al., 2014; Pearce, 2014; Miyashiro et al., 1974; Stern et al., 2013; Ural et al., 2015) B-Basalt; B-A-Basaltic Andesite; A-Andesite; D&R-Dacite & Rhyolite

玄武岩和辉绿岩主量元素的SiO2含量变化于50.35%~52.66%,TiO2的含量较低为0.81%~1.38%,Al2O3在15.39%~17.05%之间,CaO变化于7.9%~10.6%,Na2O为3.39%~4.82%,K2O为0.04%~1.14%,MgO (6.16%~7.48%)的含量中等,Mg#变化于54.3~60.2之间,反映镁铁质岩发生了比较明显的分异结晶。

片理化蛇纹岩中异剥钙榴岩和变辉绿岩透镜体以低SiO2(41.6%~47.2%)、低TiO2(0.55%~0.98%)、低K2O (< 0.05%),高Mg#(64.2~71.9)、高CaO (18.6%~26.7%)为特征。它们与新鲜辉绿岩的成分差异指示同构造变形过程中可能存在流体活动导致了SiO2含量降低,CaO含量升高。

总体而言,白马让蛇绿岩洋壳单元的玄武岩和辉绿岩床与地幔单元中的辉绿岩脉MgO变化较大,具有低TiO2、低K2O,富Al2O3的特征,属于低钾-中钾和铁含量中等的拉斑玄武岩系列(图 5c-f)。

洋壳单元和地幔单元中的镁铁质岩微量元素和稀土元素分布型态相似。在N-MORB标准化图解中,镁铁质岩的分布型态与N-MORB相似,富集大离子亲石元素(LILE)Rb、Ba、U、Sr、Pb的特征类似于现代的弧前玄武岩(FAB)或弧后盆地玄武岩(BABB) (图 6a)。LILE可能受后期蚀变的影响,各元素含量的变化较大。镁铁质岩的高场强元素(HFSE)呈现出Nb、Ta负异常的特征,Nb/Ta (9.37~14.30)和Zr/Hf (27.40~37.53)的比值与N-MORB(Nb/Ta=17.65,Zr/Hf=36.90, Sun and McDonough, 1989)相似。其稀土元素总量∑REE变化于15.76×10-6~45.61×10-6之间,平均32.63×10-6,与N-MORB相近(39.11×10-6, Sun and McDonough, 1989)。镁铁质岩的REE形态总体平缓。(La/Sm)N=0.39~0.55,(La/Yb)N=0.30~0.62,(Gd/Lu)N=0.87~1.17,指示轻稀土弱亏损,轻重稀土元素分馏不强烈的分布形态。微量元素比值和REE球粒陨石标准化曲线显示研究区的镁铁质岩与FAB和BABB一样,都具有与N-MORB相似的地球化学组成(图 6a, b)。

图 6 白马让蛇绿岩镁铁质岩N-MORB标准化微量元素蛛网图(a)与球粒陨石标准化稀土元素配分图(b) (标准化值据Sun and McDonough, 1989) Fig. 6 N-MORB-normalized trace element patterns (a) and chondrite -normalized REE patterns diagrams (b) for the mafic rocks in the Baimarang ophiolite (normalization values after Sun and McDonough, 1989)
5.2 全岩Sr-Nd-Pb同位素

白马让岩块镁铁质岩Sr-Nd-Pb同位素测试及年龄校正结果见表 2。计算时取t=130Ma(日喀则及雅鲁藏布蛇绿岩镁铁质岩年龄,见Hébert et al., 2012; 吴福元等, 2014)。玄武岩的初始锶(87Sr/86Sr)i为0.704908~0.7054972,辉绿岩床为0.704253~0.705300,地幔单元中的辉绿岩脉为0.703297~0.704278。白马让镁铁质岩的(87Sr/86Sr)i高于大洋拉斑玄武岩(0.70229~0.70316),可与洋岛玄武岩(0.702720~0.705070)或菲律宾、马里亚纳和爪哇等与俯冲有关的火山岩进行类比(0.70332~0.70576, Rollison, 1993, 下同);玄武岩143Nd/144Nd(t)为0.512902~0.512907, εNd(t)变化于+8.42~+8.50之间,与辉绿岩床和地幔单元中辉绿岩脉的143Nd/144Nd(t)比(0.512902~0.512906, 0.512907~0.512920)和εNd(t)值(+8.41~+8.48,+8.51~+8.77)相似。143Nd/144Nd(t)的比值(0.512901~0.512920)与洋岛玄武岩(5.12312~5.13095)或Lr Antilles俯冲带的火山岩(0.512120~0.512978)的比值相近,低于大洋中脊N-MORB源区(0.5130~0.5133)的比值。

玄武岩206Pb/204Pb(t)介于17.33~17.56之间、207Pb/204Pb(t)为15.42~15.44、208Pb/204Pb(t)为37.67~37.71,辉绿岩床分别为17.28~17.48、15.38~15.41和36.50~37.46, 地幔单元中未变形的辉绿岩脉分别为17.30~17.42、15.35~15.37、37.36~37.40。三种类型的镁铁质岩的206Pb/204Pb(t)、207Pb/204Pb(t)和208Pb/204Pb(t)各自分布在17.28~17.56、15.35~15.44和36.50~37.71的范围内,可与印度洋N-MORB进行类比(206Pb/204Pb为17.31~18.5, 207Pb/204Pb为15.43~15.56, 208Pb/204Pb为37.1~38.7)。

总之,白马让洋壳单元的玄武岩、辉绿岩床与地幔单元中的辉绿岩脉具有相近的Sr-Nd-Pb同位素比值,指示它们形成于高87Sr/86Sr、低143Nd/144Nd、低206Pb/204Pb、高207Pb/204Pb和高 208Pb/204Pb的亏损地幔源区,具有EM和DM端元过渡的特征。

6 讨论与结论 6.1 白马让蛇绿岩镁铁质岩的源区

对产在岩块边部的玄武岩、辉绿岩以及侵入到方辉橄榄岩里的镁铁质岩的地球化学分析表明,不同产状的镁铁质岩具有相似的微量元素和稀土元素(图 6a, b)。La/Yb比值变化较小(0.42~0.85),说明结晶分离作用是影响岩浆成分变化的主导因素。Sr-Nd-Pb同位素比值反映研究区的镁铁质岩虽然产状各异,但是它们可能具有相同或相似的源区。

Dy/Dy*与(Dy/Yb)N的相互关系可以约束岩浆的源区和地质过程(Davidson et al., 2013),白马让镁铁质岩的Dy/Dy*-(Dy/Yb)N图解显示样品投入LREE亏损的亏损地幔源区,没有受到大陆地壳的同化混染作用(图 7), 说明白马让镁铁质岩与N-MORB具有相似的地幔源区。白马让镁铁质岩的源区在εNd(t)-(87Sr/86Sr)iεNd(t)-206Pb/204Pb(t)图解也显示出与N-MORB源区相似的特点(图 8a, b)。εNd(t)-(87Sr/86Sr)i图解可见研究区的镁铁质岩落入了亏损地幔区域,具有稳定的、高的εNd(t)值,且εNd(t)随着(87Sr/86Sr)i的增加而呈近水平分布,反映了单一的地幔流体交代或海水蚀变的特征(图 8a),显示洋壳单元的(87Sr/86Sr)i高于地幔单元中的镁铁质岩可能是洋底蚀变的结果(Bach et al., 2003)。Pb同位素的相关图解显示白马让镁铁质岩的源区具有亏损地幔(DM)向富集地幔(EM)过渡的特征(图 8b-d)。由207Pb/204Pb (t)-206Pb/204Pb(t)和 208Pb/204Pb(t)-206Pb/204Pb(t)图解可知,研究区样品总体上分布于北半球参考线之上的亏损地幔DM区域,部分样品具有印度洋MORB的DUPAL异常特征,白马让与日喀则蛇绿岩其它地区的样品共同组成了DM向EMI和EMII端元过渡的趋势(图 8c, d),说明白马让的镁铁质岩Pb同位素比值与印度洋MORB相似。研究表明,雅鲁藏布蛇绿岩起源于特提斯地幔域,继承了印度洋MORB源区DUPAL异常的特征(Xu and Castillo, 2004; 牛晓露等, 2006)。目前解释印度洋MORB源区DUPAL异常的观点主要包括(Meyzen et al., 2005):(1)长期存在的地幔柱;(2)大陆岩石圈地幔的混染;(3)俯冲蚀变洋壳或沉积物的对流和再循环;(4)克拉通下地壳的混染;(5)俯冲改造的地幔源区。一般认为,EMII同位素组成相当于上地壳、陆源沉积物或蚀变的大洋地壳;EMI与下地壳具有相似性,但也可能是代表蚀变洋壳的HIMU地幔和俯冲大洋沉积物混合作用形成的富集源区(Dupré and Allégre, 1983; Rolinson, 1993)。白马让镁铁质岩未受到大陆地壳的同化混染, 显示Pb同位素图解中的EM端元可能代表蚀变洋壳、俯冲的大洋沉积物或者它们的混合物。白马让镁铁质岩的同位素比值与爪哇等太平洋地区俯冲带的火山岩类似也说明俯冲改造可能是源区DM-EM过渡的主要原因。白马让镁铁质岩同位素显示俯冲带端元混染的迹象与其微量元素和稀土元素分析结果一致,说明虽然DUPAL异常的源区是印度洋地幔域的固有属性(Xu and Castillo, 2004; 牛晓露等, 2006),但俯冲物质的加入也影响日喀则蛇绿岩镁铁质岩的地幔源区物质组成。

图 7 白马让蛇绿岩镁铁质岩Dy/Dy*-(Dy/Yb)N图解(据Davidson et al., 2013) FAB、BABB和MORB数据引自PetDB: www.earthchem.org/petdb, 其它图例见图 5.DM-亏损地幔; PM-地幔; GLOSS-全球俯冲沉积物; OIB-洋岛玄武岩 Fig. 7 Dy/Dy* vs, (Dy/Yb)N diagram for the mafic rocks in the Baimarang ophiolite (after Davidson et al., 2013) FABs, BABBs and MORBs data are from PetDB: www.earthchem.org/petdb; Other legends see Fig. 5. DM-depleted mantle; PM-prevalent mantle; GLOSS-global subducting sediment; OIB-oceanic island basalt

图 8 白马让蛇绿岩镁铁质岩εNd(t)-(87Sr/86Sr)i(a)、εNd(t)-206Pb/204Pb(t) (b)、207Pb/204Pb(t)-206Pb/204Pb(t) (c)和208Pb/204Pb-206Pb/204Pb(t) (d)图解(据Moghadam et al., 2014; Rollinson, 1993) DM-亏损地幔; PERMA-普通地幔; EMI和EMII-富集地幔; HIMU-高μ地幔; NHRL-北半球参考线; DUPAL Group-EMI的实例 Fig. 8 εNd(t)-(87Sr/86Sr)i(a), εNd(t)-206Pb/204Pb(t) (b), 207Pb/204Pb(t)-206Pb/204Pb(t) (c) and 208Pb/204Pb-206Pb/204Pb(t) (d) diagrams for the mafic rocks in the Baimarang ophiolite (after Moghadam et al., 2014; Rollinson, 1993) DM-depleted mantle; PERMA-prevalent mantle; EMI and EMII-enrichment mantle; HIMU-high μ mantle; NHRL-Northern Hemisphere Reference Line; DUPAL Group-a EMI example

综上,认为白马让蛇绿岩的镁铁质岩可能来源于被俯冲改造的亏损地幔。

6.2 镁铁质岩的形成环境

LILE的流体活动性很强,洋底的火山喷发、岩浆后的蚀变以及深部源区流体富集都能改变的它们的含量。研究区样品流体活动元素的氧化物K2O与LOI具有弱的相关性(图 5a),反映蚀变改变了原始岩浆中的LILE的含量,与白马让镁铁质岩高的(87Sr/86Sr)i所反映的流体活动一致。指示白马让镁铁质岩中LILE的富集在一定程度上可能与海底蚀变有关,这与研究区的玄武岩普遍发生细碧岩化现象一致。

HFSE (如Zr、Y、Nb、Ni、Ti、V、Cr)与REE通常被认为是不受热液蚀变或洋底变质的影响的元素,可以用于判别蛇绿岩的构造环境(Winchester and Floyd, 1977; Wood, 1980; Pearce, 1984, 2008, 2014; Rollinson, 1993; Wehrmann et al., 2014)。在流体不活动元素图解中(Pearce, 2014),白马让镁铁质岩显示出Nb、Ta的负异常,与SSZ背景下形成的蛇绿岩相似(图 9a),Th/Yb-Nb/Yb图解可见研究区和日喀则蛇绿岩的镁铁质岩落在了MOR与SSZ蛇绿岩的过渡区域(图 9b)。Cr-Y图解(Pearce, 1984)可见研究区样品分布在MORB与岛弧玄武岩的过渡区域,且落入FAB和BABB重叠的区域(图 9c)。这类具有正常大洋中脊玄武岩与岛弧拉斑玄武岩过渡特征镁铁质岩被称为MORB-like玄武岩(Reagan et al., 2010), 代表了俯冲带上的弧前或者弧后环境(Pearce and Stern, 2006; Bézos et al., 2009; Reagan et al., 2010)。

图 9 白马让蛇绿岩镁铁质岩不活动元素(a)、Th/Yb-Nb/Yb (b)与Cr-Y (c)图解(据Pearce, 1984, 2014) FAB、BABB和MORB数据引自PetDB: www.earthchem.org/petdb. SSZ-俯冲带上; VBA-火山弧玄武岩 Fig. 9 Immobile elements (a), Th/Yb vs. Nb/Yb (b) and Cr vs. Y (c) diagrams for mafic rocks in Baimarang massif, Xigaze ophiolite, Tibet (after Pearce, 1984, 2014) FABs, BABBs and MORBs data are from PetDB: www.earthchem.org/petdb. SSZ-supra-subduction zone; VBA-volcano basalt of arc

最近有学者根据研究区东侧得几玻安岩提出日喀则蛇绿岩形成于洋内初始俯冲的观点(陈根文等, 2003; Dai et al., 2013; Bao et al., 2013)。玻安岩在多种构造背景下的蛇绿岩中均可出现(Sklyarov et al., 2016),Klein and Karsten (1995)在智利洋脊中也发现了具有岛弧特征的洋脊型玄武岩,因此,只根据蛇绿岩套岩石的地球化学是否含有岛弧或者是俯冲事件地球化学信息来判断蛇绿岩构造环境,结论是值得商榷的。Reagan et al.(2010, 2017)认为FAB的地幔源区比弧后盆地和大洋中脊的源区更亏损,导致Ti/V和Yb/V的比值更低。白马让镁铁质岩的Ti/V为15.33~30.25,Yb/V为0.008~0.012,在图解中主要落入BABB或BABB与FAB的边界上(图 10a, b),暗示其源区的特殊性。Sr和Nd同位素信息也指示白马让蛇绿岩的镁铁质岩源区比IBM弧前玄武岩更富集(图 8a)。弧前玄武岩(FAB)是上涌的软流圈减压熔融形成的,代表了初始俯冲首次喷发的岩浆,后期持续熔融产生的方辉橄榄岩残余被下沉的板片流体交代会产生典型SSZ环境下的岛弧拉斑玄武岩、钙碱性玄武岩和玻安岩(Reagan et al., 2010, 2017; Whattam and Stern, 2011; Stern et al., 2013; Ishizuka et al., 2014)。但本区甚至整个雅江缝合带均未发现具有玻安岩和镁质安山岩、拉斑和钙碱性岛弧玄武岩的岩浆岩组合。蛇绿岩北侧的日喀则弧前盆地和冈底斯花岗岩形成于安第斯型大陆边缘(Ji et al., 2009; Zhu et al., 2011),日喀则蛇绿岩两侧都缺乏与蛇绿岩形成时代相对应的洋内俯冲形成的岛弧,日喀则弧前盆地内107Ma左右呈东西走向的辉绿岩脉具有与白马让镁铁质岩相似的地幔源区,同样不属于俯冲带流体/熔体交代地幔楔形成的岛弧玄武岩(曾令森等,2017)。综上,我们认为马让蛇绿岩的镁铁质岩的源区比IBM弧前玄武岩更富集,缺乏IBM初始俯冲的岩石组合,可能不是典型的IBM洋内初始俯冲构造背景下形成的。

图 10 白马让蛇绿岩TiO2-V(a)与Yb-V(b)图解(据Reagan et al., 2010) FAB、BABB和MORB数据引自PetDB:www.earthchem.org/petdb Fig. 10 TiO2 vs. V (a) and Yb vs. V (b) diagrams for mafic rocks from the Baimarang ophiolite (after Reagan et al., 2010) FABs, BABBs and MORBs data are from PetDB:www.earthchem.org/petdb

白马让蛇绿岩橄榄岩与辉绿岩床呈侵入的接触关系,辉绿岩床向上逐渐过渡到玄武岩,这些观察表明蛇绿岩的橄榄岩和镁铁质岩在空间上是连续的。玄武岩与北侧的日喀则弧前盆地复理石之间呈沉积接触关系,可见玄武岩与硅质岩互层产出。Ziabrev et al. (2003)获得日喀则群冲堆组放射虫硅质岩的时代介于123~117Ma (Late Aptian to Late Barremian),与镁铁质岩的锆石U-Pb同位素年代学(Zhang et al., 2015; Liu et al., 2016)在时间上具有连续性。这些证据表明蛇绿岩与日喀则群复理石沉积在空间和时间上具有连续性,可能是日喀则复理石的沉积基底(Wang et al., 2017),当日喀则复理石沉积作用发生时,白马让蛇绿岩已经就位到现在的位置。日喀则群是形成在亚洲大陆边缘的海底扇沉积(王成善等,1999刘小汉等,2009; An et al., 2014; Huang et al., 2015; Wang et al., 2017),古生物和古地磁的研究也显示晚白垩纪时雅鲁藏布蛇绿岩与拉萨地体的位置相近(肖序常和王军,1998Maffione et al., 2015; Huang et al., 2015),因此我们认为白马让蛇绿岩的镁铁质岩应该形成在亚洲大陆边缘的位置。

日喀则蛇绿岩由大量的地幔橄榄岩、少量辉绿岩床和玄武岩组成,缺乏堆晶岩和席状岩墙群,被认为不同于典型的蛇绿岩(如Oman)和IBM弧前环境的蛇绿岩,而与形成在慢速-超慢速扩张脊岩石圈的岩石组合相似(Nicolas et al., 1981; Girardeau et al., 1985a, b; 吴福元等, 2014)。如果考虑到慢速-超慢速扩张的扩张速度(0.5~1cm/Myr)和日喀则蛇绿岩洋壳镁铁质岩的同位素年代学集中在狭窄的130~120Ma,认为白马让的镁铁质岩所代表的洋盆可能是形成于亚洲大陆边缘的小洋盆。

致谢 成文过程中与中国地质大学(武汉)博士研究生吴魏伟、连东洋和中国地质大学(北京)硕士研究生赵慧进行过有益的讨论;审稿人郑建平教授和戴紧根副教授提出的建设性修改意见对本文大有裨益。在此,一并致以诚挚的谢意!
参考文献
Allégre CJ, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Scharer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Gariepy C, Gopel C, Li TD and Xiao XC. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17-22. DOI:10.1038/307017a0
An W, Hu XM, Garzanti E, Marcelle K, Fadel B, Wang JG and Sun GY. 2014. Xigaze forearc basin revisited (South Tibet):Provenance changes and origin of the Xigaze ophiolite. Geological Society of America Bulletin, 126(11-12): 1595-1613. DOI:10.1130/B31020.1
Bach W, Peucker-Ehrenbrink B, Hart SR and Blusztajn JS. 2003. Geochemistry of hydrothermally altered oceanic crust:DSDP/ODP Hole 504B:Implications for seawater-crust exchange budgets and Sr and Pb isotopic evolution of the mantle. Geochemistry Geophysics Geosystems, 4(5): 1-12.
Bao PS, Su L, Wang J and Zhai QG. 2013. Study on the tectonic setting for the ophiolites in Xigaze, Tibet. Acta Geologica Sinica, 87(2): 395-425. DOI:10.1111/acgs.2013.87.issue-2
Bezard R, Hébert R, Wang CS, Dostal J, Dai JG and Zhong HT. 2011. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos, 125(1-2): 347-367. DOI:10.1016/j.lithos.2011.02.019
Bézos A, Escrig S, Langmuir CH, Michael PJ and Asimow PD. 2009. Origins of chemical diversity of back-arc basin basalts:A segment:Cale study of the Eastern Lau Spreading Center. Journal of Geophysical Research Solid Earth, 114(B6): 258-266.
Chen GW, Xia B, Zhong ZH and Wang GQ. 2003. Geochemical characteristics and geological significance of boninites in the Deji ophiolite, Tibet. Acta Mineral Sinica, 23(1): 91-96.
Chen GW, Liu R, Xia B and Deng T. 2015. Geochemistry of the Jiding ophiolite in SW Tibet. and its tectonic implications. Acta Petrologica Sinica, 31(9): 2495-2507.
Dai JG, Wang CS, Polat A, Santoshc M, Li YL and Ge YK. 2013. Rapid forearc spreading between 130 and 120 Ma:Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172-173(4): 1-16.
Davidson J, Turner S and Plank T. 2013. Dy/Dy*:Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 54(3): 525-537. DOI:10.1093/petrology/egs076
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411. DOI:10.1130/B30446.1
Ding L, Kapp P and Wan XQ. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3): 1-18.
Dupré B and Allègre CJ. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303(5913): 142-146. DOI:10.1038/303142a0
Escrig S, Bézos A, Goldstein SL, Langmuir CH and Michael PJ. 2013. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin-Tonga arc system. Geochemistry, Geophysics, Geosystems, 10(4): 115-123.
Falloon TJ, Meffre S, Crawford AJ, Hoernle K, Hauff F, Bloomer SH and Wright DJ. 2014. Cretaceous fore-arc basalts from the Tonga arc:Geochemistry and implications for the tectonic history of the SW Pacific. Tectonophysics, 630: 21-32. DOI:10.1016/j.tecto.2014.05.007
Girardeau J, Mercier JCC and Zao Y. 1985a. Structure of the Xigaze ophiolite, Yarlung Zangbo suture zone, southern Tibet, China:Genetic implication. Tectonics, 4(3): 267-288. DOI:10.1029/TC004i003p00267
Girardeau J, Mercier JCC and Wang XB. 1985b. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet. Conrtib. Minieral. Petrol., 90(4): 309-321. DOI:10.1007/BF00384710
Hao J, Chai YC and Li JL. 1999. Original tectonic setting of the Tsangpo ophiolite and sedimentary evolution of the Xigaze forearc basin. Scientia Geologica Sinica, 34(1): 1-9.
Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS and Liu ZF. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa Syntaxes, southern Tibet:First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Thethys. Gondwana Research, 22(2): 377-397. DOI:10.1016/j.gr.2011.10.013
Hu JR, Sun ZL, Chen GJ, Ni C, Xia BB, Liu HF, Wan YW, Jiang GW and Fan YH. 2004. New results and major progress in regional geological survey of the Xigaz(e) City Sheet. Geological Bulletin of China, 23(5): 463-470.
Huang W, Hinsbergen DJJV, Maffione M, Devon A, Or me, Dupont-Nivet G, Guilmette C, Ding L, Guo ZJ and Kapp P. 2015. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc:Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth and Planetary Science Letters, 415: 142-153. DOI:10.1016/j.epsl.2015.01.032
Ishizuka O, Tani K and Reagan M. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10(2): 13608.
Ji WQ, Wu FY, Liu CZ and Chung SL. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 52(9): 1240-1261. DOI:10.1007/s11430-009-0131-y
Klein EM and Karsten J. 1995. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature, 374(6517): 52-57. DOI:10.1038/374052a0
Li GC and Mercier JL. 1984. Sino-French Cooperative Investigation in Himalayas in 1980. Beijing: Geological Publishing House: 1-237.
Li WX, Zhao ZD, Zhu DC, Dong GC, Zhou S, Mo XX, DePaolo D and Dilek Y. 2012. Geochemical discrimination of tectonic environments of the Yalung Zangpo ophiolite in southern Tibet. Acta Petrologica Sinica, 28(5): 1663-1673.
Li WX, Zhao ZD, Zhu DC, Liu D, Mo XX and Lu YF. 2016. Study on the geochemistry and source characteristics of the Yalung Zangpo ophiolite in Xigaze, Tibet. Geoscience, 30(2): 294-302.
Li Y, Li RB, Dong TC, Yang SB and Pei L. 2016. Structure of the Baimarang massif in the Xigaze ophiolite, Yarlung Zangbo Suture Zone, southern Tibet, China. Science Bulletin, 61(25): 2823-2833.
Liu CZ, Zhang C, Yang LY, Zhang LL, Ji WQ and Wu FY. 2014. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 205(10): 127-141.
Liu T, Wu FY, Zhang LL, Zhai QG, Liu CZ, Jia WB, Zhang C and Xu Y. 2016. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet. Chemical Geology, 443: 67-86. DOI:10.1016/j.chemgeo.2016.09.015
Liu XH, Ju YT, Wei LJ and Li GW. 2009. Further discussion on tectonic model of the Yarlung Zangbo Suture zone. Science in China (Series D), (4): 448-463.
Maffione M, Van Hinsbergen D JJ, Koornneef LMT, Guilmette C, Hodges K, Borneman K, Huang WT, Ding L and Kapp P. 2015. Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 43(6): 475-478. DOI:10.1130/G36472.1
Meyzen CM, Ludden JN, Humler E, Luais B, Toplis MJ, Mével C and Storey M. 2005. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 6(11): 145-160.
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355. DOI:10.2475/ajs.274.4.321
Moghadam HS, Zaki Khedr M, Chiaradia M, Stern RJ, Bakhshizad F, Araib S, Chris J, Ottley F and Tamura A. 2014. Supra-subduction zone magmatism of the Neyriz ophiolite, Iran:constraints from geochemistry and Sr-Nd-Pb isotopes. International Geology Review, 56(11): 1395-1412. DOI:10.1080/00206814.2014.942391
Nicolas A, Girardeau J, Marcoux J, Dupre, Wang XB, Cao YG, Zheng HX and Xiao XC. 1981. The Xigaze ophiolite (Tibet):A peculiar oceanic lithosphere. Nature, 294(5840): 414-417. DOI:10.1038/294414a0
Nicolas A. 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht, Netherlands: Kluwer Academic Publishers: 1-367.
Niu XL, Zhao ZD, Mo XX, DePaolo DJ, Dong GC, Zhang SQ, Zhu DC and Guo TY. 2006. Elemental and Sr-Nd-Pb isotopic geochemistry for basic rocks form Decun-Angren ophiolite in Xigaze area, Tibet:Implication for the characteristics of Tethyan upper mantle domain. Acta Petrologica Sinica, 22(12): 2875-2888.
Pearce JA. 1984. Characteristics and tectonic significance of supra subduction zone ophiolites. Geological Society London Special Publications, 16(1): 77-94. DOI:10.1144/GSL.SP.1984.016.01.06
Pearce JA and Deng WM. 1988. The ophiolites of the Tibet.an Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 327: 215-238.
Pearce JA and Stern RJ. 2006. Origin of back-arc basin magmas:Trace element and isotope perspectives. Washington DC American Geophysical Union Geophysical Monograph, 166: 63-86.
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48. DOI:10.1016/j.lithos.2007.06.016
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108. DOI:10.2113/gselements.10.2.101
Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Toft JB, Bloomer S, Cash J, Fryer P, Hanan BB, Vargas RH, Kimura JI, Ishii T, Peate DW, Rowe MC and Woods M. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry Geophysics Geosystems, 11(3): 427-428.
Reagan MK, Pearce JA, Petronotis K, Almeev RR, Avery AJ, Carvallo, C, Chapman T, Christeson GL, Ferré EC, Godard M, Heaton DE, Kirchenbaur K, Kurz W, Kutterolf S, Li HY, Li YB, Michibayashi K, Morgan S, Nelson WR, Prytulak J, Python M, Robertson AHF, Ryan JG, Sager WW, Sakuyama T, Shervais JW, Shimizu K and Whattam SA. 2017. Subduction initiation and ophiolite crust:New insights from IODP drilling. International Geology Review, doi:10.1080/00206814.2016.1276482
Ribeiro JM, Stern RJ, Kelley KA, Martinez F, Ishizuka O, Manton WI and Ohara Y. 2013. Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana Forearc Rift. Geochemistry Geophysics Geosystems, 14(10): 4585-4607. DOI:10.1002/ggge.20244
Rollinson HR. 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Singapore:Addison Wesley Longman, 1-352
Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth & Planetary Science Letters, 59(1): 101-118.
Sklyarov EV, Kovach VP, Kotov AB, Kuzmichev AB, Lavrenchuk AV, Perelyaev VI and Shchipansky AA. 2016. Boninites and ophiolites:Problems of their relations and petrogenesis of boninites. Russian Geology & Geophysics, 57(1): 127-140.
Stern RJ, Reagan M, Ishizuka O, Ohara Y and Whattam S. 2013. To understand subduction initiation, study forearc crust:To understand forearc crust, study ophiolites. Lithoshere, 4(6): 469-483.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1):313-345
Tapponnier P, Mercier JL, Proust F, Andrieux J, Armijo R, Bassoullet JP, Brunel M, Burg JP, Colchen M, Dupré B, Girardeau J, Marcoux J, Mascle G, Matte P, Nicolas A, Li TD, Xiao XC, Chang CF, Lin PY, Li GC, Wang NW, Chen GM, Han TL, Wang XB, Den WM, Zhen HX, Sheng HB, Cao YG, Zhou J and Qiu HR. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294(5840): 405-410. DOI:10.1038/294405a0
Taylor B and Martinez F. 2003. Back-arc basin basalt systematics. Earth & Planetary Science Letters, 210(3-4): 481-497.
Ural M, Arslan M, Cemal Göncüoglu, Tekin K and Kürüm S. 2015. Late Cretaceous arc and back-arc formation within the southern Neotethys:Whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazıǧ, SE Turkey). Ofioliti, 40(1): 57-72.
Wang CS, Liu ZF, Li XH and Wan XQ. 1999. Xigaze Forearc Basin and Yarlung Zangbo Suture Zone, Tibet. Beijing: Geological Publishing House: 112-200.
Wang CS, Li YL, Liu ZF, Tang JX, Hebert R, Dubois C, Varfalvy V and Huot F. 2005. Yarlung Zangbo ophiolites revisited from geological survey to mineral records. Acta Geologica Sinica, 79(3): 323-330.
Wang R, Xia B, Zhou GQ, Zhang YQ, Yang ZQ, Li WQ, Wei DL, Zhong LF and Xu LF. 2006. SHRIMP zircon U-Pb dating for gabbro from the Jiding ophiolite in Tibet. Chinese Science Bulletin, 51(1): 114-117.
Wang XB, Bao PS and Xiao XC. 1987. Ophiolites of the Yarlung Zangbo (Tsangbo) River, Xizang (Tibet). Beijing: Publishing House of Surveying and Mapping: 1-118.
Wang JG, Hu XM, Garzanti E, An W and Liu XC. 2017. The birth of the Xigaze forearc basin in southern Tibet. Earth & Planetary Science Letters, 465: 38-47.
Wang YX, Gu LX, Zhang ZZ, Wu CZ, Zhang KJ, Li HM and Yang JD. 2006. Geochronology and Nd-Sr-Pb isotops of the bimodal volcanic rocks of the Bogda rift. Acta Petrologica Sinica, 22(5): 1215-1224.
Wehrmann H, Hoernle K, Garbe-Schönberg D, Jacques G, Mahlke J and Schumann K. 2014. Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. International Journal of Earth Sciences, 103(7): 1929-1944. DOI:10.1007/s00531-013-0917-1
Whattam SA and Stern RJ. 2011. The 'subduction initiation rule':A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162(5): 1031-1045. DOI:10.1007/s00410-011-0638-z
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4): 325-343.
Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth & Planetary Science Letters, 50(1): 11-30.
Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite:A critical updated view. Acta Petrologica Sinica, 30(2): 293-325.
Xiao QH, Li TD, Pan GT, Lu SN, Ding XZ, Deng JF, Feng YM, Liu Y, Kou CH and Yang LL. 2016. Petrologic ideas for identification of ocean-continent transition:Recognition of intra-oceanic arc and initial subduction. Geology in China, 43(3): 721-737.
Xiao XC and Wang J. 1998. A brief review of tectonic evolution and uplift of the Qinhai-Tibet Plateau. Geological Review, 44(4): 372-381.
Xiong Q, Griffin WL, Zheng JP, Suzanne Y, O'Reilly, Pearson NJ, Xu B and Belousova EA. 2016. Southward trench migration at ca.130~120Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 438: 57-65. DOI:10.1016/j.epsl.2016.01.014
Xiong Q, Griffin WL, Zheng JP, Pearson NJ, Suzanne Y and O'Reilly. 2017a. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry Geophysics Geosystems, 18: 1189-1213. DOI:10.1002/2016GC006681
Xiong FH, Yang JS, Robinson PT, Gao J, Chen YH and Lai SM. 2017b. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet:Implications for a suprasubduction zone origin. Journal of Asian Earth Sciences: 14656-75.
Xu JF and Castillo PR. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393(1): 9-27.
Xu ZQ, Dilek Y, Yang JS, Liang FH, Liu F, Ba DZ, Cai ZH, Li GW, Dong HW and Ji SC. 2015. Crustal structure of the Indus-Tsangpo Suture Zone and its ophiolites, Southern Tibet. Acta Geologica Sinica, 27(2): 507-524.
Zeng LS, Gao LE, Guo CL, Hou KJ and Wang Q. 2017. Early Cretaceous forearc extension of the Gangdese continental arc, southern Tibet. Acta Petrologica Sinica, 33(8): 2377-2394.
Zhang LL, Liu CZ, Wu FY, Zhang C, Ji WQ and Wang JG. 2016. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet:Constraints on its formation setting. Lithos, 258-259: 133-148. DOI:10.1016/j.lithos.2016.04.026
Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press: 1-182.
Zhang Q. 2015. Some problems on the Xigaze ophiolite. Acta Petrologica Sinica, 31(1): 37-46.
Ziabrev SV, Aitchison JC, Abrajevitch A, Ba DZ, Davis AM and Luo H. 2003. Precise Radiolarian age constrains ophiolite generation and sedimentation in Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society, 160(160): 591-599.
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. DOI:10.1016/j.epsl.2010.11.005
陈根文, 夏斌, 钟志洪, 王国强, 王核, 赵太平, 汪劲草, 张莉, 漆亮, 李荪蓉. 2003. 西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义. 矿物学报, 23(1): 91-96.
陈根文, 刘睿, 夏斌, 邓腾. 2015. 西藏吉定蛇绿岩地球化学特征及其构造指示意义. 岩石学报, 31(9): 2495-2507.
郝杰, 柴育成, 李继亮. 1999. 雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化. 地质科学, 34(1): 1-9.
胡敬仁, 孙中良, 陈国结, 尼采, 夏抱本, 刘鸿飞, 万永文, 蒋光武, 范跃春. 2004. 日喀则市幅地质调查新成果及主要进展. 地质通报, 23(5): 463-470.
李光岑, Mercier. 1984. 中法喜马拉雅考察成果. 北京: 地质出版社: 1-237.
李文霞, 赵志丹, 朱弟成, 董国臣, 周肃, 莫宣学, Depaolo D, Dilek Y. 2012. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别. 岩石学报, 28(5): 1663-1673.
李文霞, 赵志丹, 朱弟成, 刘栋, 莫宣学, 路远发. 2016. 西藏日喀则地区雅鲁藏布蛇绿岩地球化学特征及其源区性质. 现代地质, 30(2): 294-302.
李源, 李瑞保, 董天赐, 杨胜标, 裴磊. 2016. 日喀则蛇绿岩白马让岩体的穹窿形结构及构造意义. 科学通报, (25): 2823-2833.
刘小汉, 琚宜太, 韦利杰, 李广伟. 2009. 再论雅鲁藏布江缝合带构造模型. 中国科学(D辑), (4): 448-463.
牛晓露, 赵志丹, 莫宣学, Depaolo D, 董国臣, 张双全, 朱弟成, 郭铁鹰. 2006. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征. 岩石学报, 22(12): 2875-2888.
王成善, 刘志飞, 李祥辉, 万晓樵. 1999. 西藏日喀则弧前盆地与雅鲁藏布江缝合带. 北京: 地质出版社: 112-200.
王成善, 李亚林, 刘志飞, 李祥辉, 唐菊兴, Hebert R, Dubois C, Varfalvy V, Huot F. 2005. 雅鲁藏布江蛇绿岩再研究:从地质调查到矿物记录. 地质学报, 79(3): 323-330.
王冉, 夏斌, 周国庆, 张玉泉, 杨之青, 李文铅, 韦栋梁, 钟立峰, 徐立峰. 2006. 西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄. 科学通报, 51(1): 114-117.
王希斌, 鲍佩声, 肖序常. 1987. 雅鲁藏布江蛇绿岩. 北京: 测绘出版社: 1-118.
王银喜, 顾连兴, 张遵忠, 吴昌志, 张开均, 李惠民, 杨杰东. 2006. 博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征. 岩石学报, 22(5): 169-178.
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布江蛇绿岩——事实与臆想. 岩石学报, 30(2): 293-325.
肖庆辉, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 邓晋福, 冯益民, 刘勇, 寇彩化, 杨琳琳. 2016. 识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别. 中国地质, 43(3): 721-737. DOI:10.12029/gc20160303
肖序常, 王军. 1998. 青藏高原构造演化及隆升的简要评述. 地质论述, 44(4): 372-381.
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社: 1-182.
张旗. 2015. 日喀则蛇绿岩研究中的几个问题. 岩石学报, 31(1): 37-46.
曾令森, 高利娥, 郭春丽, 侯可军, 王倩. 2017. 西藏南部冈底斯大陆弧早白垩纪弧前伸展作用. 岩石学报, 33(8): 2377-2394.