岩石学报  2017, Vol. 33 Issue (12): 3691-3709   PDF    
东昆仑东段温泉地区片麻岩记录的岩浆和变质事件:锆石U-Pb年代学证据
孟繁聪 , 贾丽辉 , 任玉峰 , 刘强 , 段雪鹏     
中国地质科学院地质研究所, 北京 100037
摘要:本文采用LA-ICP-MS方法对东昆仑东端温泉地区含榴辉岩的副片麻岩和花岗片麻岩进行了锆石U-Pb年代学研究。副片麻岩中锆石的年龄范围为2400~430Ma,峰值范围为2000~1200Ma,其中检测出少量新元古代(1.0~0.9Ga)和早古生代(430Ma)的变质锆石,进一步限定了原岩的最早沉积时代为中元古代末期-新元古代早期(Pt2-3),指示该沉积岩经历了新元古代早期和志留纪的变质作用。花岗片麻岩的原岩时代为900Ma,1件样品的锆石εHft)值为-7.0~+5.5,多数为负值,单阶段亏损地幔模式年龄为1.83~1.25Ga,指示它们主要是古老地壳(可能为金水口岩群变沉积岩)熔融的产物。新元古代早期的岩浆-变质事件与全球Rodinia超大陆的形成有关。虽然副片麻岩锆石只给出少量早古生代志留纪变质的信息,考虑到片麻岩中的榴辉岩形成于早古生代(450~430Ma)及邻区柴北缘高压-超高压变质带的演化历史,推测该地区片麻岩也经历了早古生代榴辉岩相变质作用,片麻岩与榴辉岩为原地关系。根据柴达木盆地南北两侧相似的早期构造演化可以推测柴达木盆地基底演化与其类似,至少经历了新元古代和早古生代两期构造活动,并非是元古代以来的稳定克拉通。
关键词: 副片麻岩     花岗片麻岩     锆石     变质基底     东昆仑     柴达木盆地    
Magmatic and metamorphic events recorded in the gneisses of the Wenquan region, East Kunlun Mountains, Northwest China: Evidence from the zircon U-Pb geochronology
MENG FanCong, JIA LiHui, REN YuFeng, LIU Qiang, DUAN XuePeng     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The geochronology of the detrital zircons of the eclogite-hosting paragneiss and granitic orthogneiss in the Wenquan region, eastern part of the East Kunlun Mountains was studied by using LA-ICP-MS method in this paper. The ages of the detrital zircons of the paragneiss vary in a range of 2400~430Ma, with a peak age value range from 2000Ma to 1200Ma, and minor metamorphic zircons of 1.0~0.9Ga (Neoproterozoic) and 430Ma (Early Paleozoic) also found, implying that the protolith of the paragneiss deposited from Late Mesoproterozoic to Early Neoproterozoic (Pt2-3) and underwere metamorphism in Early Neoproterozoic and Silurian. Zircons of the granitic orthogneiss yield magmatic crystallization ages at 900Ma, with εHf(t) values of zircons from one sample varying from -7.0 to +5.5, but most of them showing negative values, and their tDM values from 1.8Ga to 1.3 Ga, demonstrating that the granites sourced mainly from the older basement melting (maybe metasediments from the Jinshuikou Group). The Neoproterozoic magmatic and metamorphic events should be related to the formation of global Rodinia supercontinent. Although only minor zircons of the paragneiss contain the information of an Early Paleozoic metamorphic event, we infer this gneiss experienced Early Paleozoic eclogite-facies metamorphism, linking that the paragneisses bearing the eclogite formed in Early Paleozoic (450~430Ma) as well as the in situ relationship between the gneiss and the eclogite, and tectonic evolution of HP-UHP belt in northern margin of the Qaidam Basin (QB). Base on similar tectonic histories of both the southern and northern margins of the QB, we speculate that the basement of the QB suffered Neoproterozoic and Early Paleozoic tectonic events, and the basement itself was not a stable craton scince Proterozoic.
Key words: Paragneiss     Granitic orthogneiss     Zircon     Basement     East Kunlun     Qaidam Basin    
1 引言

青藏高原东北部的东昆仑造山带从元古代以来经历了长期的构造演化,其中金水口岩群被认为是造山带中出露的最古老的变质基底岩石,主要由各类片麻岩组成,夹有斜长角闪岩和大理岩(王云山和陈基娘,1987),可能记录造山带早期的构造演化历史。其中的花岗质片麻岩实际为新元古代形成的花岗岩(谈生祥等,2004陈能松等,2006a陆松年等,2006张金明等,2012孟繁聪等,2013陈有炘等,2015),经历了早古生代的变质作用后所形成(孟繁聪等,2013陈有炘等,2015)。但是对其中副片麻岩的形成演化过程还存在较大争议,归纳起来有以下三种不同观点:(1)古元古代沉积变质(王云山和陈基娘,1987);(2)中元古代末期沉积,早古生代发生变质(陈能松等,2006b陆松年等, 2006, 2009);(3)古元古代沉积,经历了新元古代和早古生代多期变质事件(He et al., 2016)。东昆仑东段温泉榴辉岩的研究表明其原岩形成于新元古代,并在早古生代(450~430Ma)经历了榴辉岩相变质作用(Meng et al., 2013贾丽辉等,2014)。但是,对于含榴辉岩的副片麻岩及其中的花岗片麻岩是否经历了元古代和早古生代的变质作用仍不清楚。

本文针对温泉地区的片麻岩进行锆石年代学研究,进一步揭示东昆仑东段片麻岩的形成演化历史,这有助于深入认识东昆仑造山带早期的构造历史及柴达木盆地变质基底的性质。

2 地质背景

东昆仑造山带位于柴达木盆地南缘,西起阿尔金断裂、东至温泉断裂、南至东昆南断裂,东西长约1000km,南北宽100~150km。以东昆中断裂带(东昆仑主脊)为界可分为昆北地体和昆南地体两部分(图 1)(吴功建等,1989许志琴等,2006)。

图 1 东昆仑及其邻区榴辉岩分布图(据张建新等,2015修改) 东昆仑温泉榴辉岩(Meng et al., 2013贾丽辉等,2014);东昆仑浪木日榴辉岩(祁晓鹏等,2016);东昆仑夏日哈木榴辉岩(祁生胜等,2014);邻区榴辉岩(Song et al., 2003, 2006; Zhang et al., 2008b, 2010Yu et al., 2013及其参考文献) Fig. 1 Distributions of eclogites in the East Kunlun orogen and adjacent area (modified after Zhang et al., 2015) Wenquan eclogite of East Kunlun (Meng et al., 2013; Jia et al., 2014); Langmuri eclogite of East Kunlun (Qi et al., 2016); Xiarihamu eclogite from western segment of East Kunlun (Qi et al., 2014); and others eclogite (Song et al., 2003, 2006; Zhang et al., 2008b, 2010; Yu et al., 2013 and therein references)

前寒武纪高级变质岩主要分布在昆北地体,由金水口岩群和冰沟岩群组成。金水口岩群可进一步分为下部的白沙河岩组和上部的小庙岩组(青海省地质矿产局,1997),主要由各类片麻岩、片岩组成,局部夹有大理岩、斜长角闪岩、麻粒岩和榴辉岩(王云山和陈基娘,1987姜春发等,1992Meng et al., 2013祁生胜等,2014),主体变质程度为角闪岩相,局部达到麻粒岩相和榴辉岩相(王云山和陈基娘,1987陈能松等,1999李怀坤等,2006Meng et al., 2013祁生胜等,2014)。其原岩为一套基性火山岩、砂泥质岩石夹碳酸盐岩(王云山和陈基娘,1987陈能松等,1999),其中的小庙岩组的原岩可能形成于陆内裂谷环境(陈有炘等,2014)。金水口岩群的原岩沉积时代为古元古代(王云山和陈基娘,1987; 姜春发等,1992陈能松等,1999王国灿等, 2004, 2007He et al., 2016)或中元古代(陈能松等,2006a陆松年等,2009陈有炘等,2011),遭受了古元古代变质作用(王云山和陈基娘,1987)或中元古代末期-新元古代早期变质作用(0.9~1.0Ga)(王国灿等,2004He et al., 2016)和早古生代(510~400Ma)的变质作用(张建新等,2003Liu et al., 2005李怀坤等,2006龙晓平等,2006Chen et al., 2007陈能松等,2008陆松年等,2009Meng et al., 2013祁生胜等,2014He et al., 2016)以及中生代(250~210Ma)的变质作用(Liu et al., 2005Chen et al., 2007)。冰沟岩群主要由白云岩和少量片岩组成,包括丘吉东沟群(组)和狼牙山组(陆松年等,2006),原岩为碳酸盐岩夹砂泥岩,绿片岩相变质(王云山和陈基娘,1987姜春发等,1992),沉积时代为中元古代(姜春发等,1992He et al., 2016)或新元古代(陆松年等,2006),并在早古生代(400Ma)发生浅变质(He et al., 2016)。金水口岩群被新元古代早期(950~810Ma)形成的花岗岩侵入(谈生祥等,2004陆松年等,2006陈能松等, 2006b, 2008张金明等,2012孟繁聪等,2013陈有炘等,2015),这些花岗岩在早古生代(450~420Ma)发生了变质形成花岗质片麻岩(陈能松等,2008孟繁聪等,2013陈有炘等,2015),但更多地方被未变质的早古生代(460~400Ma)花岗岩和基性-超基性岩体(莫宣学等,2007Chen et al., 2012; 王晓霞等,2012刘彬等, 2012, 2013a, b王冠等,2014Li et al., 2015a, b姜常义等,2015)以及二叠纪-三叠纪(260~210Ma)花岗岩侵入或破坏(刘成东等,2004莫宣学等,2007Chen et al., 2015罗明非等, 2015a, bHuang et al., 2014马昌前等,2015)。另外,沿昆中断裂带断续出露有超基性岩、辉长岩、辉绿岩和基性火山岩,它们以岩片或岩块形式混杂在前寒武纪变质岩系和早古生代纳赤台群中,被认为是蛇绿岩(肖序常等,1986高延林等,1988古凤宝,1994Chen and Wang, 1996Yang et al., 1996潘裕生等,1996王国灿等,1999朱云海等, 1999, 2002Zhu et al., 2006冯建赟等,2010崔美慧等, 2011Meng et al., 2015),主要形成于早古生代(Yang et al., 1996Zhu et al., 2006; 崔美慧等,2011Meng et al., 2015),是原特提斯洋的残片。

昆南地体由前寒武纪的苦海岩群和万宝沟群、早古生代纳赤台群火山-沉积岩、晚泥盆世红色磨拉石建造、石炭纪-中三叠世浅海相地层和晚三叠世-侏罗纪陆相地层组成。其中苦海岩群由斜长角闪岩-长英质片麻岩及大理岩构成,原岩为碎屑岩-中基性火山岩-碳酸盐岩,角闪岩相变质(Liu et al., 2005);万宝沟群原岩为一套碎屑岩、大理岩和火山岩组合,遭受绿片岩相变质(姜春发等,1992潘裕生等,1996)。上述地层部分被三叠世花岗岩侵入(Chen et al., 2007)。沿昆南断裂由西向东分布有大九坝、黑茨沟、布青山、下大武、玛积雪山和玛沁等蛇绿岩体(姜春发等,1992Yang et al., 1996, 2009陈亮等, 2000, 2001Bian et al., 2004杨经绥等, 2004, 2005郭安林等,2006),这些蛇绿岩主要形成于晚古生代,是古特提斯洋的残片(陈亮等,2001Konstantinovskaia et al., 2003Bian et al., 2004杨经绥等, 2004, 2005; Yang et al., 2009刘战庆等,2011)。

研究区位于昆北地体最东端――昆中断裂与温泉断裂的交汇部位,向西北距都兰县约100km,向东南距温泉约40km(图 1)。区内主要出露有元古代金水口岩群白沙河岩组的各类片麻岩(Pt1b),其中含少量榴辉岩及榴闪岩透镜体(Meng et al., 2013孟繁聪等,2015)和规模不等的超基性岩块(王秉璋等,2001);此外还有石炭-二叠纪甘家组灰岩夹砂岩、板岩,二叠纪的火山弧岩片以及三叠纪的洪水川群。侵入体有新元古代花岗岩、泥盆纪石英闪长岩和花岗岩(图 2)。

图 2 温泉地区地质简图(据王秉璋等,2001修改) 样品编号:1-K11-5-1.1;2-K11-17-1.1;3-K11-5-6.1;4-K12-2-2.3 Fig. 2 Geologic sketch map of the Wenquan area (modified after Wang et al., 2001)

该地区金水口岩群白沙河岩组主要为二云二长片麻岩,呈灰-灰黑色,条带状构造,片麻理走向近东西,倾向北,倾角约60°(Meng et al., 2013孟繁聪等,2015)。榴辉岩呈透镜状分布在二云二长片麻岩中(图 2图 3a),形成温度为590~650℃,形成压力大于1.6GPa(Meng et al., 2013),变质时代为450~430Ma(Meng et al., 2013贾丽辉等,2014),其原岩为大陆拉斑玄武质岩石(孟繁聪等,2015),形成时代为934±11Ma(Meng et al., 2013)。超基性岩块也呈透镜状分布在二云二长片麻岩中(图 2),东西长约1000m、南北宽约200~300m,主要由蛇纹石化橄榄岩和透闪石化辉石岩组成,为一套堆晶的超镁铁岩,被认为是蛇绿岩。其形成环境和形成时代仍不确定(解玉月,1998王秉璋等,2001)。

图 3 温泉地区副片麻岩露头及显微岩石学特征 (a)退变榴辉岩成透镜状,其直接围岩为副片麻岩,点2为采样点,样品编号为K11-17-1.1;(b)副片麻岩片理发育,主要由白云母+黑云母+斜长石+钾长石组成,含少量石榴子石(正交偏光);(c)副片麻岩露头,点1为采样点,样品编号为K11-5-1.1;(d)副片麻岩主要由白云母+黑云母+斜长石+钾长石组成,含少量石榴子石(单偏光).R-Ec-退变榴辉岩;Pgn-副片麻岩;Kf-钾长石;Pl-斜长石;Qtz-石英;Mus-白云母,Bi-黑云母;Grt-石榴子石 Fig. 3 Outcrops and petrological characteristics of the paragneisses in Wenquan area (a) retrograded eclogites occurred as lens in paregneiss, point 2-sample K11-17-1.1; (b) foliated paragneisses mainly composed of muscovite, biotite, plagioclase and K-feldspar, together with minor garnet (cross polarized light); (c) outcrops of paragneisses, 1-location of sample K11-5-1.1; (d) paragneisses mainly composed of muscovite, biotite, plagioclase and K-feldspar, together with minor garnet (plane polarized ligh). R-Ec-retrograde eclogite; Pgn-paragneiss; Kf-K-feldspar; Pl-plagioclase; Qtz-quartz; Mus-muscovite; Bi-biotite; Grt-garnet
3 样品特征 3.1 副片麻岩

石榴二云母片麻岩(K11-5-1.1,35°36′09″N, 99°01′35″E),片麻状构造(图 3c),细粒鳞片粒状变晶结构(图 3d)。主要由黑云母(10%)、白云母(10%)、斜长石(20%)、石英(55%)及少量石榴子石组成。其中石英呈粒状,粒度0.5~1.5mm;斜长石呈板状,0.5~1.5mm;黑云母呈褐色,片状,定向分布;白云母片状,定向分布;石榴子石呈粒状,粒度0.5~1mm。推测其原岩为泥砂质岩石。

条带状二云二长片麻岩(K11-17-1.1,35°36′38″N, 99°03′15″E),片麻状构造,细粒鳞片粒状变晶结构(图 3b)。主要由白云母(20%)、黑云母(15%)、斜长石(10%)、钾长石(15%)、石英(35%)及少量石榴子石组成。其中石英呈粒状,粒度0.5~1.5mm;斜长石和钾长石呈板状,0.5~1.5mm;白云母片状,片径大于黑云母,定向分布;黑云母呈褐色,片状,分布在白云母周边;石榴子石呈粒状,粒度0.5~1mm。推测其原岩为泥砂质岩石。

3.2 花岗片麻岩

眼球状花岗片麻岩(K11-5-6.1,35°30′30″N, 99°01′42″E),样品采自温泉地区的金水口岩群,相当于白沙河岩组。片麻岩呈灰色-灰绿色,眼球状斑晶灰白色,大小约1cm×1.5cm(图 4a),斑晶约占15%~20%,主要由微斜长石和条纹长石及少量石英组成, 其中长石粒度2~3mm(图 4a, b)。基质主要由白云母(5%~10%)、石英(40%~45%)、微斜长石+条纹长石(40%~45%)和少量石榴子石及锆石组成。白云母、石英等均定向分布,其中石英定向拉长,塑性变形明显,宽约0.5~1mm,长/宽比约2~4(图 4b),长石粒度0.5~1mm。构成粒状-片状变晶结构。根据出现的少量石榴子石和角闪石,推测原岩为斑状钾长花岗岩,至少经历了角闪岩相变质变形作用。

图 4 温泉地区花岗片麻岩产状及显微岩石学特征 (a)温泉花岗片麻岩露头,眼球状斑晶(1cm×1.5cm)主要由微斜长石和条纹长石组成,采样点3,样品编号K11-5-6.1;(b)片麻岩(K11-5-6.1)基质由钾长石+石英+白云母组成,矿物定向分布,石英强烈塑性变形(正交偏光);(c)片麻岩(采样点4)附近的退变榴辉岩露头;(d)强变形的花岗片麻岩(点4-K12-2-2.3).R-Ec-退变榴辉岩;Kf-钾长石;Qtz-石英;Mus-白云母 Fig. 4 Occurrences of the granitic gneisses from Wenquan area and their petrological characteristics under microscope (a) the granitic gneiss with augen structure, which is composed of microcline and perthite (1cm×1.5cm, sampling point 3 on Fig. 2, sample-K11-5-6.1); (b) the matrix of granitic gneiss, consisting of K-feldspar, quartz and muscovite with directional arrangement (cross polarized light); (c) the outcrop of retrograde eclogites closed to granitic gneiss (sampling point 4); (d) intense deformed granitic gneiss (point 4, sample k12-2-2.3)

花岗片麻岩(K12-2-2.3,35°35′51″N, 99°02′29″E),该花岗片麻岩片理发育(图 4d),与副片麻岩的关系不清,推测为侵入接触关系,退变榴辉岩的直接围岩为副片麻岩(图 4c)。花岗片麻岩标本上显示毫米级的条带状构造,主要组成矿物为石英(45%)、长石(45%)和白云母(10%),矿物粒度1~2mm。

4 测试方法 4.1 锆石分选与制靶

锆石分选在廊坊区域地质调查研究院进行。将样品破碎至约100μm,先用磁法和重液分选,然后再双目镜下手工挑选。将代表性锆石颗粒制成环氧树脂浇注的样品靶,待固化后,将靶面磨光露出锆石,然后在光学显微镜下对锆石进行反射光、透射光及阴极发光图像照相,目的是了解锆石的内部结构。反射光、透射光照相在中国地质科学院地质研究所国土资源部大陆构造与动力学重点实验室完成,阴极发光图像照相在北京离子探针中心完成。

4.2 年代学测试

测试在天津地质矿产研究所测试中心完成。所用仪器为Neptune多接收电感耦合等离子体质谱仪和193nm激光取样系统(LA-MC-ICP-MS)。通常采用的激光剥蚀的束斑直径为35μm或50μm,激光能量密度为13~14J/cm2,频率为8~10Hz,激光剥蚀物质以He为载气送入Neptune,利用动态变焦扩大色散可以同时接收质量数相差很大的U-Pb同位素从而进行锆石U-Pb同位素原位测定。锆石标样采用TEMORA标准锆石,数据处理采用中国地质大学刘勇胜编写的ICPMS DataCal程序和Kenneth R. Ludwig的ISPLOT程序进行分析和作图,采用208Pb对普通铅进行校正,利用NIST612作为外标计算锆石样品的Pb、U、Th含量。详细测试流程见文献(侯可军等,2007李怀坤等,2009)。

4.3 Lu-Hf分析

锆石Lu-Hf同位素测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Neptune多接收等离子质谱和Newwave UP 213紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,分析点靠近U-Pb测定点,且在同一CL结构位置。εHf(t)计算采用衰变常数λ=1.865×10-11year-1,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR, 0=0.282772 (Blichert-Toft and Albarède, 1997),单阶段亏损地幔模式年龄(tDM1)计算采用(176Hf/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325 (Griffin et al., 2002),两阶段Hf模式年龄计算时,平均地壳的176Lu/177Hf比值为0.015。相关仪器运行条件及详细分析流程见侯可军等(2007)

5 结果 5.1 石榴二云母片麻岩(K11-5-1.1)

锆石形态多样,多数呈长柱状-椭圆状,少量为圆粒状,长度80~150μm,长宽比为1.5~2,其中一些锆石含有数量不等的矿物包裹体。阴极发光图像(CL)显示锆石具有核、边结构,其中核部锆石分为两类,一类具有明显的岩浆成因的韵律环带,CL图像为灰白色,以长柱状晶形为主(图 5a);另一类内部较为均一,环带不明显,CL图像为灰黑色或灰白色,形态为浑圆状(图 5a),以上特征显示核部锆石为碎屑锆石。边部锆石厚度不等,多数为10~30μm,CL图像显示为灰黑色,推测在变质过程中形成,由于边部锆石多数小于激光的剥蚀直径(35μm),只有少量边部锆石可满足测试要求。

图 5 东昆仑温泉地区副片麻岩代表性锆石阴极发光图像 圆圈中数字为测点号;锆石下方数字为年龄和Th/U比值 Fig. 5 Representative CL images of the analysed zircons from the paragneiss in Wenquan area in East Kunlun The circles on zircon mark analytic spots for dating; the age and Th/U ratios marked below the zircon

共测试了31粒锆石(表 1),26点选择锆石核部,所获数据均在谐和线上或其附近(图 6a),表明锆石没有发生铅丢失事件。其中最老的1粒锆石年龄207Pb/206Pb表面年龄为2480±8Ma(表 1图 6a),最年轻的1粒锆石207Pb/206Pb表面年龄为1074±24Ma(表 1),锆石的峰值年龄集中在1700~1500Ma(图 6b),其Th/U比值为0.2~0.8 (表 1)。这些锆石可能来自古-中元古代火成岩或变质岩的蚀源区,最大沉积时代可能在中元古代(Pt2)末期。边部锆石的2个测点获得206Pb/238U年龄为971Ma、924Ma,其Th/U比值为分别为0.05、0.10(表 1图 6a),另有2个测点获得的206Pb/238U年龄为512Ma、506Ma,其Th/U比值为分别为0.03、0.06(表 1图 6a),还有1个测点获得206Pb/238U年龄432±3Ma,其Th/U比值0.10(表 1图 6a)。其中最年轻的年龄值与该区榴辉岩的变质年龄基本一致(Meng et al., 2013),应该代表了片麻岩遭受榴辉岩相变质作用的时代。片麻岩是否在新元古代早期以及寒武纪也发生过变质作用还有待进一步研究。

表 1 东昆仑温泉副片麻岩锆石U-Pb同位素测试结果(LA-MC-ICP-MS) Table 1 LA-MC-ICP-MS U-Pb isotopic data of zircons from paragneisses in Wenquan area, East Kunlun

图 6 东昆仑温泉地区副片麻岩锆石U-Pb年龄谐和图和直方图 Fig. 6 U-Pb concordia diagrams and histograms of zircons from the paragneiss in Wenquan area, East Kunlun
5.2 条带状二云二长片麻岩(K11-17-1.1)

锆石呈长柱状-椭圆状,长度约100~200μm,长宽比为1.5~2。阴极发光图像(CL)显示锆石没有生长边或边很窄(< 10μm),可识别出两类锆石,一类具有明显的岩浆成因的韵律环带,CL图像为灰黑-灰白色,以长柱状晶形为主,此类锆石占70%(图 5b);另一类锆石结构较为均一,环带不明显,CL图像为灰黑色,形态为椭圆形,此类锆石占20%~30%(图 5b),这些特征显示锆石为岩浆岩来源为主的碎屑锆石。

共测试了36粒锆石,34点选择锆石核部,所获数据均在谐和线上或其附近(图 6c),表明锆石没有发生铅丢失事件。其中最老的1粒锆石年龄207Pb/206Pb表面年龄为2467±21Ma(表 1图 6c),最年轻的1粒锆石207Pb/206Pb表面年龄为1188±29Ma(表 1),锆石的峰值年龄集中在1800~1500Ma(图 6d),锆石的Th/U比值为0.10~1.1 (表 1)。这些锆石可能来自古-中元古代火成岩或变质岩的蚀源区,最大沉积时代可能在中元古代(Pt2)末期。2点选在锆石边部,1个测点获得的207Pb/206Pb表面年龄1632±15Ma,其Th/U比值为0.07(表 1图 6c),另1测点获得的206Pb/238U年龄为909±13Ma,其Th/U比值为0.07(表 1图 6c),前者代表了蚀源区的变质锆石年龄,后者是否代表片麻岩遭受了新元古代早期的变质事件还需要进一步证实。由于该样品锆石变质边很窄,未能检测出早古生代的变质年龄。

5.3 眼球状花岗片麻岩(K11-5-6.1)

温泉地区眼球状花岗质片麻岩的锆石呈长柱状,长度约150~200μm,长宽比为1.5~2,部分锆石裂纹发育。阴极发光图像(CL)显示柱状晶形保存较好,大部分锆石环带发育(图 7a),部分锆石具有核-幔-边结构,生长边厚约5~10μm,可能与变质或流体改造有关。采用LA-MC-ICP-MS法测试了25个有效点(表 2),其中年龄落在谐和线上的20个点的207Pb/238U加权平均年龄为901±4Ma(图 8a, b),代表了花岗片麻岩原岩的形成年龄,表明该地区存在新元古代的花岗质岩浆活动。检测出5粒锆石具有较高的207Pb/235U比值(大于1.6),落在谐和线下方,其206Pb/238U年龄范围为990~732Ma(表 2),可能存在铅丢失,没有明确的地质意义。

图 7 东昆仑温泉地区花岗质片麻岩代表性锆石阴极发光图像 实线圈为U-Pb年龄测点及编号,虚线圈为Lu-Hf测点,锆石下方数字为年龄和εHf(t) Fig. 7 Representative CL images of the analysed zircons from the granitic gneiss in Wenquan area, East Kunlun The solid and dashed circles mark analytic spots for dating and Lu-Hf analyses, respectively. The age and εHf(t) values marked below the zircon

表 2 东昆仑温泉花岗质片麻岩锆石U-Pb同位素测试结果(LA-MC-ICP-MS) Table 2 LA-MC-ICP-MS U-Pb isotopic data of zircons from granitic gneisses in Wenquan area, East Kunlun

图 8 东昆仑温泉地区花岗质片麻岩锆石U-Pb年龄谐和图及206Pb/238U年龄加权平均值 Fig. 8 U-Pb concordia diagrams and 206Pb/238U weighted average ages of zircons from the paragneiss in Wenquan area, East Kunlun

对19粒测年锆石分别进行了Lu-Hf同位素测试(表 3),其176Hf/177Hf比值分布在0.282108~0.282416之间,变化幅度较大,εHf(0)值为-26.4~-12.6,εHf(t)值为-7.0~+5.5,变化幅度较大,多数为低的的负值,单阶段亏损地幔模式年龄为1.83~1.25Ga。

表 3 东昆仑温泉地区花岗片麻岩(K11-5-6.1)锆石Lu-Hf同位素组成 Table 3 Lu-Hf isotopic compositions of zircons from granitic gneiss (K11-5-6.1) Wenquan area, East Kunlun
5.4 花岗质片麻岩(K12-2-2.3)

花岗质片麻岩中的锆石呈长柱状,长度约150~200μm,长宽比为1.5~2,部分锆石裂纹发育。阴极发光图像(CL)显示柱状晶形保存较好,大部分锆石环带发育(图 7b),部分锆石具有核-边结构,核部为浑圆状-不规则状,为继承性锆石,边部锆石具有生长环带,为岩浆成因。采用LA-MC-ICP-MS法测试了30个有效点,其中年龄落在谐和线上的27个点的207Pb/238U加权平均年龄为901±2Ma(图 8c),代表了花岗片麻岩原岩的形成年龄,表明该地区存在新元古代的花岗质岩浆活动。检测出3粒锆石具有较高的207Pb/235U比值(大于1.45),落在谐和线下方,其207Pb/206Pb年龄范围为1745~1184Ma(表 2),可能存在铅丢失事件,没有明确的地质意义。

6 讨论 6.1 中-新元古代构造热事件 6.1.1 副片麻岩原岩的沉积时代(中-新元古代)

2个副片麻岩样品均采自昆北地体的金水口岩群,其中的锆石为碎屑锆石,最老年龄为2400Ma,最年轻锆石年龄为900Ma,多数锆石的年龄值为1800~1000Ma(图 6),表明沉积岩的物源区主要为古元古代(Pt1)至中元古代(Pt2)的岩石。由于新元古代的碎屑锆石较少,我们还不能认定这些沉积岩形成于新元古代,但根据碎屑锆石的年龄峰值,可以确定这些沉积岩形成于中元古代中晚期。该地区出现新元古代早期(900Ma)形成的花岗岩,由于变质作用的改造,已不能确定这些花岗岩与变沉积岩(副片麻岩)的原始关系,但在柴达木北缘通常认为这些新元古代花岗岩侵位到变沉积岩中(Mattinson et al., 2006Song et al., 2012)。因此,我们认为东昆仑东段这些变沉积岩的原岩时代为中元古代末期-新元古代早期(Pt2-3)比较合理。

王云山和陈基娘(1987)早期采用全岩Rb-Sr法对拉陵灶火和金水口地区的金水口岩群中的条带状混合岩和混合花岗岩进行测年,获得了1990~1549Ma的年龄,作者将其解释为变质时代,由此认为该岩群的沉积时代为古元古代。实际上由于该岩群经历了后期地质事件的改造,这些年龄的地质意义并不清楚。另外,有的研究者根据片麻岩中碎屑锆石给出的上交点年龄为2.2Ga、下交点年龄为1.0~0.9Ga,而将前者解释为金水口岩群原岩的最大沉积时代、后者作为沉积岩发生变质作用的时代(He et al., 2016)。由于碎屑锆石代表的是物源区物质(陆松年等,2009),沉积时代只能限定在古元古代-中元古代。清水泉、巴隆和金水口地区的金水口岩群片麻岩碎屑锆石给出的最大沉积时代均为中元古代或中元古代晚期(陈能松等,2006a陆松年等,2009陈有炘等,2014),这些结果也都支持我们的认识。这与冰沟岩群形成于中元古代(王云山和陈基娘,1987姜春发等,1992He et al., 2016)并不矛盾,甚至根据该岩群含丰富的叠层石和微古植物化石推断其可能形成于新元古代中晚期(陆松年等,2006)。

6.1.2 沉积岩的第一期变质时代(新元古代?)

虽然早期认为金水口岩群在早元古代或新元古代变质,但没有可靠的年代学证据(王云山和陈基娘,1987陆松年等,2006)。本次研究的两件副片麻岩的锆石年龄数据大部分落在谐和线上(图 6),不能求出其上下交点年龄。在样品K11-5-1.1的锆石中锆石边部有2个测点获得206Pb/238U年龄为971Ma、924Ma,其Th/U比值为分别为0.05、0.10(表 1图 5图 6),可能为变质成因(Rubatto, 2002)。在样品K11-17-1.1的锆石中1个测点获得的206Pb/238U年龄为909±13Ma,其Th/U比值为0.07(表 1),也为变质成因。它们代表了源区的变质事件或样品本身的变质事件。根据该区新元古代(900Ma)的花岗岩侵入到副片麻岩中的事实(图 4),副片麻岩在此之前或同时发生变质是完全可能的。因此,我们认为这些年龄可能代表了沉积岩第一次遭受变质作用的时限(1.0~0.9Ga)。巴隆地区和洪水川地区的副片麻岩中的锆石也都记录了这次变质事件(王国灿等,2004He et al., 2016)。尽管类似的研究结果较少,仍需要进一步研究证实,但是这些碎屑锆石年龄揭示了一次重要的变质事件。这次变质事件与新元古代的花岗岩一样,都与新元古代中国西部克拉通的形成有关(王云山和陈基娘,1987葛肖虹和刘俊来,2000Song et al., 2012孟繁聪等,2013)。

6.1.3 新元古代的花岗岩

本文研究的花岗片麻岩的原岩-花岗岩形成于900Ma。根据现有资料,在东昆仑造山带新元古代的花岗岩可以分为四期:(1)950~920Ma,分布在东昆仑东段都兰沙柳河地区(Mattinson et al., 2006)和哈莉哈德山(许娅玲等,2011)以及东昆仑西段祁漫塔格地区(孟繁聪等,2013);(2)900Ma(本文;陈能松等, 2006a, b),分布在东昆仑东段的清水泉和温泉;(3)870~850Ma,分布在东昆仑东段的巴隆和清水泉(陆松年等,2006陈有炘等,2015);(4)830~810Ma,分布在祁漫塔格和金水口地区(谈生祥等,2004张金明等,2012陆松年等,2006)。早期(950~900Ma)的岩浆事件可能响应于中国西部不同陆块的汇聚过程(俯冲),花岗岩可能形成活动大陆边缘环境(孟繁聪等,2013),花岗片麻岩(K11-5-6.1)锆石的εHf(t)值主要为低的负值(表 3),表明花岗岩主要是陆壳物质熔融的产物,锆石的两阶段亏损地幔的模式年龄为1.8~1.3Ga(表 3),推测其源区物质为金水口岩群的变沉积岩。榴辉岩原岩可能代表了同时期的基性岩浆活动(孟繁聪等,2015),这可能是全球Rodinia超大陆形成过程的一部分。晚期(870~810Ma)的花岗岩形成于同碰撞环境(陈有炘等,2015),与北秦岭新元古代花岗岩的形成环境类似(陆松年等,2005)。上述岩浆活动响应于新元古代早期(900~800Ma)西域克拉通的形成过程(葛肖虹和刘俊来,2000)。

东昆仑还没有确切的新元古代晚期裂解的证据。虽然万宝沟岩群中玄武岩和辉长岩形成于拉张环境(姜春发等,1992任军虎等,2011),但其形成时代仍需进一步确定。东昆仑祁漫塔格早古生代SSZ型蛇绿岩的形成时代为487Ma(崔美慧等,2011),暗示了祁漫塔格洋盆在奥陶纪开始俯冲消亡,但该洋盆何时打开仍缺少证据。东昆仑东段布青山早古生代MORB型蛇绿岩的形成时代为516Ma(Bian et al., 2004; 刘战庆等,2011),意味着洋盆在此之前开始形成。因此,东昆仑早期的裂解事件可限定在810~520Ma之间。柴北缘的裂解事件发生在800~700Ma,其地质证据包括榴辉岩原岩的形成环境和时代(孟繁聪等,2003)、全吉群中的火山岩(李怀坤等,2003)以及都兰地区的A型花岗片麻岩(陆松年等,2002)。这与南秦岭裂谷型花岗岩的形成时代相近(810~710Ma,陆松年等,2005)。考虑到东昆仑与柴北缘、秦岭构造演化有很多相似性,推测东昆仑在800~700Ma之间发生裂解的可能性较大。

6.2 早古生代变质

研究区的闪长玢岩呈岩脉状侵入到片麻岩中,岩脉没有发生变质变形,其形成时代为377±2Ma(作者未发表数据),可以确定片麻岩遭受的第二次变质作用发生在泥盆纪之前。在样品K11-5-1.1的锆石中有2个测点获得的206Pb/238U年龄为512Ma、506Ma,可能为混合年龄,没有明确的地质意义(表 1图 6), 暗示变质作用发生在500Ma之后。还有1个测点获得206Pb/238U年龄432±3Ma,其Th/U比值为0.10(表 1图 6),这个年龄与榴辉岩的变质年龄相近(Meng et al., 2013),可能代表了片麻岩的变质时代。样品K11-17-1.1中由于锆石变质边很窄(< 30μm),不能准确测试,未检测出早古生代形成的锆石。2件花岗片麻岩的锆石也没有获得早古生代发生变质的证据(表 2),这可能与锆石在早古生代变质过程没有重新结晶有关。东昆仑东段温泉地区角闪岩中角闪石给出的40Ar/39Ar坪年龄为422±10Ma(Liu et al., 2005), 晚于该地区榴辉岩的峰期变质时代(450~430Ma,Meng et al., 2013贾丽辉等,2014),代表了该地区角闪岩相变质作用的时代。研究区西北巴隆地区花岗片麻岩中也检测出少量变质锆石,其Th/U比值小于0.1,给出的早古生代年龄为486~389Ma,可能与早古生代的变质事件有关(陈有炘等,2015)。东昆仑西段祁漫塔格花岗片麻岩检测出1粒志留纪的变质锆石(416±11Ma),白云母的40Ar/39Ar坪年龄和等时线年龄为406±2Ma(孟繁聪等,2013)。表明这些新元古代形成的花岗岩经历了早古生代构造-热事件。研究区北侧都兰地区的副片麻岩变质锆石给出的年龄为459~422Ma,反映了片麻岩发生榴辉岩相变质的年龄(Song et al., 2006; Yang et al., 2005; Mattinson et al., 2009)。花岗片麻岩中的锆石边也给出了少量早古生代的年龄信息,表明这些花岗岩经历了早古生代的榴辉岩相变质作用(Mattinson et al., 2006)。据此,我们推测温泉地区的正、副片麻岩都经历过早古生代的高压变质作用。根据片麻岩与榴辉岩具有相近的变质年龄,推测二者经历了共同构造演化历史,为“原地”关系,这与柴北缘高压-超高压变质带的情况相似。

另外,目前的资料显示金水口岩群经历的早古生代变质事件较为复杂,在不同地段表现出的变质程度和变质时代差别较大。如东段温泉地区榴辉岩相变质发生在450~430Ma(Meng et al., 2013贾丽辉等,2014),西段夏日哈木地区榴辉岩相变质发生在450~410Ma(祁生胜等,2014王冠等,2014);东段清水泉麻粒岩的形成时代为516Ma(李怀坤等,2006),而金水口地区的麻粒岩形成时代为460Ma(张建新等,2003)。金水口岩群主体为角闪岩相变质(王云山和陈基娘,1987),变质时限为520~400Ma(Liu et al., 2005陈能松等,2008陈有炘等,2015He et al., 2016),持续如此长时间的角闪岩相变质显然不太可能。因此,这些年龄的地质含义仍需要进一步厘定。

6.3 构造意义――柴达木盆地基底属性

柴达木盆地被新生代沉积物覆盖(图 1),其基底组成和性质仍不清楚。柴达木盆地南缘最古老的变质岩――金水口岩群的主体原岩在中-新元古代沉积(陆松年等,2009陈能松等,2006a陈有炘等,2014;本文),经历了新元古代的变质作用(王国灿等,2004He et al., 2016;本文),被新元古代花岗岩侵入(谈生祥等,2004陆松年等,2006陈能松等,2008张金明等,2012孟繁聪等,2013陈有炘等,2015)。这些岩石又卷入了早古生代造山过程(Liu et al., 2005陆松年等, 2006, 2009陈能松等,2008陈有炘等,2011孟繁聪等,2013He et al., 2016),其中的麻粒岩和榴辉岩都是早古生代变质事件的产物(王云山和陈基娘,1987张建新等,2003李怀坤等,2006陆松年等,2006Meng et al., 2013祁生胜等,2014)。柴达木盆地北缘也经历了类似的演化过程,如副片麻岩原岩在中元古代或新元古代沉积(Zhang et al., 2008aMattinson et al., 2009),新元古代变质(Zhang et al., 2008a, 2012, 2017Song et al., 2012Yu et al., 2013),被新元古代花岗岩侵入(Mattinson et al., 2006Zhang et al., 2008bSong et al., 2012; Yu et al., 2013),这些岩石也都经历了早古生代榴辉岩相变质作用(Yang et al., 2005Song et al., 2006Mattinson et al., 2006, 2009Zhang et al., 2008b, 2012, 2017Liu et al., 2009),榴辉岩和麻粒岩都是早古生代变质事件的产物(张建新等,2015及其参考文献)。由此,我们推测柴达木盆地基底与柴达木盆地两侧类似,都至少经历了新元古代和早古生代两个构造旋回的演化,基底岩石组成可能也与盆地两侧造山带的岩石组成类似。盆地南缘格尔木和诺木洪地区几个钻孔探测到混合片麻岩,盆地北缘冷湖和托素湖地区钻孔见到下元古界岩石和绿片岩(王云山和陈基娘,1987),这些资料也支持我们的认识,即柴达木盆地基底并不是由下元古界岩石组成的稳定陆块(王云山和陈基娘,1987),而是一个古活动带(陆松年等,2006)。

7 结论

根据东段温泉地区副片麻岩和花岗片麻岩锆石年代学研究,可得出以下认识:

(1) 副片麻岩原岩的最大沉积时代为中-新元古代(Pt2-3),可能在新元古代早期(1.0~0.9Ga)遭受了第一期变质作用;同时伴有花岗岩浆活动,新元古代花岗岩主要是金水口岩群片麻岩部分熔融的产物。该期岩浆-变质事件与中国西域克拉通的形成有关,响应于全球Rodinia超大陆的形成。

(2) 副片麻岩和花岗片麻岩都遭受了早古生代的高压变质作用,榴辉岩与片麻岩为“原地”关系,二者具有相同的构造演化历史。

(3) 柴南缘和柴北缘片麻岩(含榴辉岩)有类似的演化历史,推测柴达木盆地基底的组成和性质与它们类似。

致谢 崔美慧、吴祥珂、李云帅、田广阔和范亚洲五位研究生先后参加了野外工作;天津地质矿产研究所同位素实验室耿建珍协助完成了锆石U-Pb年龄测试;中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室郭春丽协助完成了锆石Lu-Hf同位素测试;李怀坤研究员和张建新研究员认真审阅了初稿并提出了中肯的修改意见;在此一并表示感谢。
参考文献
Bian QT, Li DH, Pospelov I, Yin LM, Li HS, Zhao DS, Chang CF, Luo XQ, Gao SL, Astrakhantsev O and Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23(4): 577-596. DOI:10.1016/j.jseaes.2003.09.003
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planetary and Science Letters, 148(1-2): 243-258. DOI:10.1016/S0012-821X(97)00040-X
Bureau of Geology and Mineral Resources of Qinghai Province. 1997. Stratigraphy (Lithostratic) of Qinghai Province. Wuhan: China University of Geosciences Press: 1-103.
Chen BW and Wang YB. 1996. Some characteristics of the orogenic belts in Qinghai-Tibet Plateau. Journal of Southeastern Asian Earth Sciences, 13(3-5): 237-242. DOI:10.1016/0743-9547(96)83685-3
Chen L, Sun Y, Liu XM and Pei XZ. 2000. Geochemistry of Derni ophiolite and its tectonic significance. Acta Petrologica Sinica, 16(1): 106-110.
Chen L, Sun Y, Pei XZ, Gao M, Feng T, Zhang ZQ and Chen W. 2001. Northernmost paleo-tethyan oceanic basin in Tibet:Geochronological evidence from 40Ar/39Ar age dating of Dur'ngoi ophiolite. Chinese Science Bulletin, 46(14): 1203-1205. DOI:10.1007/BF02900603
Chen NS, Zhu J, Wang GC, Hou GJ, Zhang KX, Zhu YH and Bai YS. 1999. Metamorphic petrological features of high-grade metamorphic microlithons in Qingshuiquan region, eastern section of Eastern Kunlun orogenic zone. Earth Science (Journal of China University of Geosciences), 24(2): 116-120.
Chen NS, Li XY, Wang XY, Chen Q, Wang QY and Wan YS. 2006a. Zircon SHRIMP U-Pb age of Neoproterozoic metagranite in the North Kunlun unit on the southern margin of the Qaidam block in China. Geological Bulletin of China, 25(11): 1311-1314.
Chen NS, Li XY, Zhang KX, Wang GC, Zhu YH, Hou GJ and Bai YS. 2006b. Lithological characteristics of the Baishahe Formation to the south of Xiangride Town, eastern Kunlun Mountains and its age constrained from zircon Pb-Pb dating. Geological Science and Technology Information, 25(6): 1-7.
Chen NS, Sun M, Wang QY, Zhao GC, Chen Q and Shu GM. 2007. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen:Records of multi-tectonometamorphic events. Chinese Science Bulletin, 52(16): 2252-2263. DOI:10.1007/s11434-007-0299-5
Chen NS, Sun M, Wang QY, Zhang KX, Wan YS and Chen HH. 2008. U-Pb dating of zircon from the Central Zone of the East Kunlun Orogen and its implications for tectonic evolution. Science in China (Series D), 51(7): 929-938. DOI:10.1007/s11430-008-0072-x
Chen XH, Gehrels G, Yin A, Li L and Jiang RB. 2012. Paleozoic and Mesozoic basement magmatisms of eastern Qaidam basin, northern Qinghai-Tibet Plateau:LA-ICP-MS zircon U-Pb geochronology and its geological significance. Acta Geologica Sinica, 86(2): 350-369. DOI:10.1111/j.1755-6724.2012.00665.x
Chen XH, Gehrels G, Yin A, Zhou Q and Huang PH. 2015. Geochemical and Nd-Sr-Pb-O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan Plateau:Implications for the evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114: 674-692. DOI:10.1016/j.jseaes.2014.11.013
Chen YX, Pei XZ, Li RB, Liu ZQ, Li ZC, Zhang XF, Chen CG, Liu ZG, Ding SP and Guo JF. 2011. Zircon U-Pb age of Xiaomiao Formation of Proterozoic in the eastern section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521.
Chen YX, Pei XZ, Li RB, Li ZC, Pei L, Liu ZQ, Chen GC, Liu CJ and Yang J. 2014. Rock association, geochemical characteristics and tectonic setting of the Xiaomiao Formation, east region of Eastern Kunlun orogenic belt. Acta Geologica Sinica, 88(6): 1038-1054.
Chen YX, Pei XZ, Li ZC, Li RB, Liu CJ, Chen GC, Pei L and Wei B. 2015. Geochronology, geochemical features and geological significance of the granitic gneiss in Balong area, east section of East Kunlun. Acta Petrologica Sinica, 31(8): 2230-2244.
Cui MH, Meng FC and Wu XK. 2011. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun:Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks. Acta Petrologica Sinica, 27(11): 3365-3379.
Feng JY, Pei XZ, Yu SL, Ding SP, Li RB, Sun Y, Zhang YF, Li ZC, Chen YX, Zhang XF and Chen GC. 2010. The discovery of the mafic-ultramafic mélange in Kekesha area of Dulan County, East Kunlun region, and its LA-ICP-MS zircon U-Pb age. Geology in China, 37(1): 28-38.
Gao YL, Wu XN and Zuo GC. 1988. The characters and tectonic significance of ophiolite first discovered in the East Kunlun area. Bulletin of Xi'an Institute of Geology and Mineral Resource, Chinese Academy of Geological Sciences, 21: 17-28.
Ge XH and Liu JL. 2000. Broken "Western China Craton". Acta Petrologica Sinica, 16(1): 59-66.
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269. DOI:10.1016/S0024-4937(02)00082-8
Gu FB. 1994. Geological characteristics of East Kunlun and tectonic evolution in late Paleozoic-Mesozoic Era. Geology in Qinghai, (1): 4-14.
Guo AL, Zhang GW, Sun YG, Zheng JK, Liu Y and Wang JQ. 2007. Geochemistry and spatial distribution of OIB and MORB in A'nyemaqen ophiolite zone:Evidence of Majixue-shan ancient ridge-centered hotspot. Science in China (Series D), 50(2): 197-208. DOI:10.1007/s11430-007-0197-3
He DF, Dong YP, Liu XM, Yang Z, Sun SS, Cheng B and Li W. 2016. Tectono-thermal events in East Kunlun, Northern Tibetan Plateau:Evidence from zircon U-Pb geochronology. Gondwana Research, 30: 179-190. DOI:10.1016/j.gr.2015.08.002
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604.
Huang H, Niu YL, Nowell G, Zhao ZD, Yu XH, Zhu DC, Mo XX and Ding S. 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 370: 1-18. DOI:10.1016/j.chemgeo.2014.01.010
Jia LH, Meng FC and Feng HB. 2014. Fluid activity during eclogite-facies peak metamorphism:Evidence from a quartz vein in eclogite in the East Kunlun, NW China. Acta Petrologica Sinica, 30(8): 2339-2350.
Jiang CF, Yang JS, Feng BG, Zhu ZZ, Zhao M, Chai YC, Shi XD, Wang HD and Hu JQ. 1992. Opening-Closing Tectonics of Kunlun Mountains. Beijing: Geological Publishing House: 1-224.
Jiang CY, Ling JL, Zhou W, Du W, Wang ZX, Fan YZ, Song YF and Song BZ. 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun:Implications for its extensional island arc environment. Acta Petrologica Sinica, 31(4): 1117-1136.
Konstantinovskaia EA, Brunel M and Malavieille J. 2003. Discovery of the Paleo-Tethys residual peridotites along the Anyemaqen-Kunlun suture zone (North Tibet). Comptes Rendus Geoscience, 335: 709-719. DOI:10.1016/S1631-0713(03)00118-4
Li CS, Zhang ZW, Li WY, Wang YL, Sun T and Ripley EM. 2015a. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, Western China. Lithos, 216-217: 224-240. DOI:10.1016/j.lithos.2015.01.003
Li HK, Lu SN, Wang HC, Xiang ZQ and Zheng JK. 2003. The Quanji Group on the northern margin of the Qaidam basin:Geological record of Neoproterozoic supercontinent breakup. Geological Survey and Research, 26(1): 27-37.
Li HK, Lu SN, Xiang ZQ, Zhou HY, Guo H, Song B, Zheng JK and Gu Y. 2006. SHRIMP U-Pb zircon age of the granulite from the Qingshuiquan area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321.
Li HK, Geng JZ, Hao S, Zhang YQ and Li HM. 2009. The study of zircon U-Pb dating by means LA-MC-ICPMS. Acta Mineralogica Sinica, (Suppl.1): 600-601.
Li XW, Huang XF, Luo MF, Dong GC and Mo XX. 2015b. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32-47. DOI:10.1016/j.jseaes.2015.03.009
Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J and Jiang HA. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica, 28(6): 1785-1807.
Liu B, Ma CQ, Guo P, Zhang JY, Xiong FH, Huang J and Jiang HA. 2013a. Discovery of the Middle Devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications. Earth Science (Journal of China University of Geosciences), 38(5): 947-962.
Liu B, Ma CQ, Jiang HA, Guo P, Zhang JY and Xiong FH. 2013b. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region:Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6): 2093-2106.
Liu CD, Mo XX, Luo ZH, Yu XH, Chen HW, Li SW and Zhao X. 2004. Mixing events between the crust-and mantle-derived magmas in Eastern Kunlun:Evidence from zircon SHRIMP Ⅱ chronology. Chinese Science Bulletin, 49(8): 828-834.
Liu L, Wang C, Chen DL, Zhang AD and Liou JG. 2009. Petrology and geochronology of HP-UHP rocks from the South Altyn Tagh, northwestern China. Journal of Asian Earth Sciences, 35(3-4): 232-244. DOI:10.1016/j.jseaes.2008.10.007
Liu YJ, Genser J, Neubauer F, Jin W, Ge XH, Handler R and Takasu A. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398(3-4): 199-224. DOI:10.1016/j.tecto.2005.02.007
Liu ZQ, Pei XZ, Li RB, Li ZC, Zhang XF, Liu ZG, Chen GC, Chen YX, Ding SP and Guo JF. 2011. LA-ICP-MS zircon U-Pb geochronology of the two suites of ophiolites at the Buqingshan area of the A'nyemaqen orogenic belt in the southern margin of East Kunlun and its tectonic implication. Acta Geologica Sinica, 85(2): 185-194.
Long XP, Jin W, Ge WC and Yu N. 2006. Zircon U-Pb geochronology and geological implications of the granitoids in Jinshuikou, East Kunlun, NW China. Geochimica, 35(4): 367-376.
Lu SN, Wang HC, Li HK, Yuan GB, Xin HT and Zheng JK. 2002. Redefinition of the "Dakendaban Group" on the northern margin of the Qaidam basin. Geological Bulletin of China, 21(1): 19-23.
Lu SN, Chen ZH, Li HK, Hao GJ and Xiang ZQ. 2005. Two magmatic belts of the Neoproterozoic in the Qinling orogenic belt. Acta Geologica Sinica, 79(2): 165-173.
Lu SN, Yu HF, Li HK, Guo KY, Wang HC, Jin W, Zhang CL and Liu YS. 2006. Research on Precambrian Major Problems in Chinese. Beijing: Geological Publishing House: 1-206.
Lu SN, Li HK, Wang HC, Chen ZH, Zheng JK and Xiang ZQ. 2009. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrologica Sinica, 25(9): 2195-2208.
Luo M, Mo XX, Yu XH, Li XW, Huang XF and Yu JC. 2015a. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun. Acta Petrologica Sinica, 30(11): 3229-3241.
Luo MF, Mo XX, Yu XH, Li XW and Huang XF. 2015b. Zircon U-Pb geochronology, petrogenesis and implication of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province. Earth Science Frontiers, 22(5): 182-195.
Ma CQ, Xiong FH, Yin S, Wang LX and Gao K. 2015. Intensity and cyclicity of orogenic magmatism:An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568.
Mattinson CG, Wooden JL, Liou JG, Bird DK and Wu CL. 2006. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, western China. Mineralogy and Petrology, 88(1-2): 227-241. DOI:10.1007/s00710-006-0149-1
Mattinson CG, Wooden JL, Zhang JX and Bird DK. 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. Journal of Asian Earth Sciences, 35(3-4): 298-309. DOI:10.1016/j.jseaes.2008.12.007
Meng FC, Zhang JX, Yang JS and Xu ZQ. 2003. Geochemical characteristics of eclogites in Xitieshan area, North Qaidam of northwestern China. Acta Petrologica Sinica, 19(3): 435-442.
Meng FC, Zhang JX and Cui MH. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Research, 23(2): 825-836. DOI:10.1016/j.gr.2012.06.007
Meng FC, Cui MH, Wu XK, Wu JF and Wang JH. 2013. Magmatic and metamorphic events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains, Northwest China. Acta Petrologica Sinica, 29(6): 2107-2121.
Meng FC, Cui MH, Wu XK and Ren YF. 2015. Heishan mafic-ultramafic rocks in the Qimantag area of Eastern Kunlun, China:Remnants of an Early Paleozoic incipient island arc. Gondwana Research, 27(2): 745-759. DOI:10.1016/j.gr.2013.09.023
Meng FC, Cui MH, Jia LH, Ren YF and Feng HB. 2015. Paleozoic continental collision of the East Kunlun orogen:Evidence from protoliths of the eclogites. Acta Petrologica Sinica, 31(12): 3581-3594.
Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 13(3): 403-414.
Pan YS, Zhou WM, Xu RH, Wang DA, Zhang YQ, Xie YW, Chen TE and Luo H. 1996. Geological characteristics and evolution of the Kunlun Mountains region during the Early Paleozoic. Science in China (Series D), 39(4): 337-347.
Qi SS, Song SG, Shi LC, Cai JH and Hu JC. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun. Acta Petrologica Sinica, 30(11): 3345-3356.
Qi XP, Fan XG, Yang J, Cui JT, Wang BY, Fan YZ, Yang GX, Li Z and Chao WD. 2016. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance. Geological Bulletin of China, 35(11): 1771-1783.
Ren JH, Zhang K, Liu YQ, Zhou DW and Feng Q. 2011. Geochemical characteristics and zircon dating of blasto-gabrro from the South Jinshuikou area, Eastern Kunlun. Journal of Northwest University (Natural Science Edition), 41(1): 100-106.
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI:10.1016/S0009-2541(01)00355-2
Song SG, Yang JS, Xu ZQ, Liou JG and Shi RD. 2003. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631-644. DOI:10.1046/j.1525-1314.2003.00469.x
Song SG, Zhang LF, Niu YL, Su L, Song B and Liu DY. 2006. Evolution from oceanic subduction to continental collision:A case study from the Northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology, 47(3): 435-455. DOI:10.1093/petrology/egi080
Song SG, Su L, Li XH, Niu YL and Zhang LF. 2012. Grenville-age orogenesis in the Qaidam-Qilian block:The link between South China and Tarim. Precambrian Research, 220-221: 9-22. DOI:10.1016/j.precamres.2012.07.007
Tan SX, Bai YS, Chang GH, Tong HK and Bao GP. 2004. Discovery and geological significance of metamorphic and intrusive rock (system) of Qimantage region in Jinning epoch. Northwestern Geology, 37(1): 69-73.
Wang BZ, Zhang SQ, Zhang ZY and Wang J. 2001. Proterozoic ophiolite in the Zhanahere area in the east section of the East Kunlun. Regional Geology of China, 20(1): 52-57.
Wang G, Sun FY, Li BL, Li SJ, Zhao JW, Ao C and Yang QA. 2014. Zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting. Earth Science Frontiers, 21(6): 381-401.
Wang GC, Zhang TP, Liang B, Chen NS, Zhu YH, Zhu J and Bai YS. 1999. Composite ophiolitic mélange zone in central part of Eastern Section of Eastern Kunlun orogenic zone and geological significance of "fault belt in central part of Eastern section of Eastern Kunlun orogenic zone". Earth Science (Journal of China University of Geosciences), 24(2): 129-133.
Wang GC, Wang QH, Jian P and Zhu YH. 2004. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481-490.
Wang GC, Wei QR, Jia CX, Zhang KX, Li DW, Zhu YH and Xiang SY. 2007. Some ideas of Precambrian geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929-937.
Wang XX, Hu NG, Wang T, Sun YG, Ju SC, Lu XX, Li S and Qi QJ. 2012. Late Ordovician Wanbaogou granitoid pluton from the southern margin of the Qaidam basin:Zircon SHRIMP U-Pb age, Hf isotope and geochemistry. Acta Petrologica Sinica, 28(9): 2950-2962.
Wang YS and Chen JN. 1987. Metamorphic Zone and Metamorphism in Qinghai Province and Its Adjacent Areas. Beijing: Geological Publishing House: 1-248.
Wu GJ, Xiao XC and Li TD. 1989. The Yadong-Golmud geoscience section on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 63(4): 285-296.
Xiao XC, Tang YQ and Gao YL. 1986. Reexposition on plate tectonics of the Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 14(3): 7-19.
Xie YY. 1998. Features of ophiolite with different period in the eastern sector of Middle Kunlun Fault and its original environment. Geology of Qinghai Province, (1): 27-35.
Xu YL, Ba J, Wang QY, Zhang L, Wang XY and Chen NS. 2011. LA-ICP-MS zircon U-Pb age of the Halihadeshan granite-gneiss in northeastern Dulan, Qinghai, and its tectonic implications. Geological Bulletin of China, 30(7): 1037-1042.
Xu ZQ, Yang JS, Li HB and Yao JX. 2006. The Early Palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806.
Yang JS, Robinson PT, Jiang CF and Xu ZQ. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258(1-4): 215-231. DOI:10.1016/0040-1951(95)00199-9
Yang JS, Wang XB, Shi RD, Xu ZQ and Wu CL. 2004. The Dur'ngoi ophiolite in East Kunlun, northern Qinghai-Tibet Plateau:A fragment of paleo-Tethyan oceanic crust. Geology in China, 31(3): 225-239.
Yang JS, Liu FL, Wu CL, Xu Z, Shi RD, Chen SY, Deloule E and Wooden JL. 2005. Two ultrahigh-pressure metamorphic events recognized in the Central Orogenic Belt of China:Evidence from the U-Pb dating of coesite-bearing zircons. International Geology Review, 47(4): 327-343. DOI:10.2747/0020-6814.47.4.327
Yang JS, Xu ZQ, Li HB and Shi RD. 2005. The Paleo-Tethyan volcanism and plate tectonic regime in the A'nyemaqen region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369-380.
Yang JS, Shi RD, Wu CL, Wang XB and Robinson PT. 2009. The Dur'ngoi ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for a Paleo-Tethyan suture in Northwest China. Journal of Earth Science, 20(2): 303-331. DOI:10.1007/s12583-009-0027-y
Yu SY, Zhang JX, Li HK, Hou KJ, Mattinson CG and Gong JH. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane:New evidence for deep continental subduction. Gondwana Research, 23(3): 901-919. DOI:10.1016/j.gr.2012.07.018
Zhang C, van Roermund H, Zhang LF and Spiers C. 2012. A polyphase metamorphic evolution for the Xitieshan paragneiss of the North Qaidam UHP metamorphic belt, western China:In-situ EMP monazite-and U-Pb zircon SHRIMP dating. Lithos, 136-139: 27-45. DOI:10.1016/j.lithos.2011.07.024
Zhang C, Bader T, Zhang LF and van Roermund H. 2017. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China:From Grenville-age orogeny to Early-Paleozoic ultrahigh-pressure metamorphism. Gondwana Research, 41: 290-300. DOI:10.1016/j.gr.2015.04.011
Zhang GB, Song SG, Zhang LF and Niu YL. 2008a. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China:Evidence from petrology, geochemistry and geochronology. Lithos, 104(1-4): 99-108. DOI:10.1016/j.lithos.2007.12.001
Zhang JM, Wang QY, Xu HQ and Yan YF. 2012. Discovery and geological significance of metamorphic and intrusive rock (system) of Kayakedengtage region intruded into Jinshuikou Paleo-Proterozic rock. Northwestern Geology, 45(3): 13-19.
Zhang JX, Meng FC, Wan YS, Yang JS and Dong GA. 2003. Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam:Zircon U-Pb SHRIMP age evidence. Geological Bulletin of China, 22(6): 397-404.
Zhang JX, Mattinson CG, Meng FC, Wan YS and Tung K. 2008b. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, western China:Evidence from zircon U-Pb geochronology. Geological Society of America Bulletin, 120(5-6): 732-749. DOI:10.1130/B26093.1
Zhang JX, Mattinson CG, Yu SY, Li JP and Meng FC. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:Spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 28(9): 955-978. DOI:10.1111/jmg.2010.28.issue-9
Zhang JX, Yu SY, Li YS, Yu XX, Lin YH and Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean:Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554.
Zhu YH, Zhang KX, Pan YM, Chen NS, Wang GC and Hou GJ. 1999. Determination of different ophiolitic belts in eastern Kunlun orogenic zone and their tectonic significance. Earth Science (Journal of China University of Geosciences), 24(2): 134-138.
Zhu YH, Zhang KX, Wang GC, Bai YS, Chen NS and Hou GJ. 2002. The Ophiolite, Magmatic Rocks and Tectonic Magmatic Evolution of Composite Orogenic Belt of East Kunlun. Wuhan: China University of Geosciences Press: 1-115.
Zhu YH, Lin QX, Jia CX and Wang GC. 2006. SHRIMP zircon U-Pb age and significance of Early Paleozoic volcanic rocks in East Kunlun orogenic belt, Qinghai Province, China. Science in China (Series D), 49(1): 88-96. DOI:10.1007/s11430-004-5317-8
陈亮, 孙勇, 柳小明, 裴先治. 2000. 青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义. 岩石学报, 16(1): 106-110.
陈亮, 孙勇, 裴先治, 高明, 冯涛, 张宗清, 陈文. 2001. 德尔尼蛇绿岩40Ar-39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据. 科学通报, 46(5): 424-426.
陈能松, 朱杰, 王国灿, 侯光久, 张克信, 朱云海, 拜永山. 1999. 东昆仑造山带东段清水泉高级变质岩片的变质岩石学研究. 地球科学, 24(2): 116-120.
陈能松, 李晓彦, 王新宇, 陈强, 王勤燕, 万渝生. 2006a. 柴达木地块南缘昆北单元变质新元古代花岗岩锆石SHRIMP U-Pb年龄. 地质通报, 25(11): 1311-1314.
陈能松, 李晓彦, 张克信, 王国灿, 朱云海, 侯光久, 拜永山. 2006b. 东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示. 地质科技情报, 25(6): 1-7.
陈能松, 孙敏, 王勤燕, 赵国春, 陈强, 舒桂明. 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录. 科学通报, 52(11): 1297-1306. DOI:10.3321/j.issn:0023-074X.2007.11.014
陈能松, 孙敏, 王勤燕, 张克信, 万渝生, 陈海红. 2008. 东昆仑造山带中带的锆石U-Pb定年与构造演化启示. 中国科学(D辑), 38(6): 657-666.
陈有炘, 裴先治, 李瑞保, 刘战庆, 李佐臣, 张晓飞, 陈国超, 刘智刚, 丁仨平, 郭俊锋. 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521.
陈有炘, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈国超, 刘成军, 杨杰. 2014. 东昆仑东段中元古代小庙岩组岩石组合、地球化学特征及构造环境分析. 地质学报, 88(6): 1038-1054.
陈有炘, 裴先治, 李佐臣, 李瑞保, 刘成军, 陈国超, 裴磊, 魏博. 2015. 东昆仑东段巴隆花岗质片麻岩年代学、地球化学特征及地质意义. 岩石学报, 31(8): 2230-2244.
崔美慧, 孟繁聪, 吴祥珂. 2011. 东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379.
冯建赟, 裴先治, 于书伦, 丁仨平, 李瑞保, 孙雨, 张亚峰, 李佐臣, 陈有炘, 张晓飞, 陈国超. 2010. 东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄. 中国地质, 37(1): 28-38.
高延林, 吴向农, 左国朝. 1988. 东昆仑山清水泉蛇绿岩特征及其大地构造意义. 中国地质科学院西安地质研究所所刊, 21: 17-28.
葛肖虹, 刘俊来. 2000. 被肢解的"西域克拉通". 岩石学报, 16(1): 59-66.
古凤宝. 1994. 东昆仑地质特征及晚古生代-中生代构造演化. 青海地质, (1): 4-13.
郭安林, 张国伟, 孙延贵, 郑健康, 刘晔, 王建其. 2006. 阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据. 中国科学(D辑), 36(7): 618-629.
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂清. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
贾丽辉, 孟繁聪, 冯惠彬. 2014. 榴辉岩相峰期流体活动:来自东昆仑榴辉岩石英脉的证据. 岩石学报, 30(8): 2339-2350.
姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景. 岩石学报, 31(4): 1117-1136.
姜春发, 杨经绥, 冯秉贵, 朱志直, 赵民, 柴耀楚, 施希德, 王怀达, 胡金庆. 1992. 昆仑开合构造. 北京: 地质出版社: 1-224.
李怀坤, 陆松年, 王惠初, 相振群, 郑建康. 2003. 青海柴北缘新元古代超大陆裂解的地质记录——全吉群. 地质调查与研究, 26(1): 27-37.
李怀坤, 陆松年, 相振群, 周红英, 郭虎, 宋彪, 郑健康, 顾瑛. 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321.
李怀坤, 耿建珍, 郝爽, 张永清李惠民. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究. 矿物学报, (增刊): 600-601.
刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807.
刘彬, 马昌前, 郭盼, 张金阳, 熊富浩, 黄坚, 蒋红安. 2013a. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学:中国地质大学学报, 38(5): 947-962.
刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013b. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2210.
刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004. 东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据. 科学通报, 49(6): 596-602.
刘战庆, 裴先治, 李瑞保, 李佐臣, 张晓飞, 刘智刚, 陈国超, 陈有忻, 丁仨平, 郭俊锋. 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194.
龙晓平, 金巍, 葛文春, 余能. 2006. 东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义. 地球化学, 35(4): 367-376.
陆松年, 王惠初, 李怀坤, 袁桂邦, 辛后田, 郑健康. 2002. 柴达木盆地北缘"达肯大坂群"的再厘定. 地质通报, 21(1): 19-23.
陆松年, 陈志宏, 李怀坤, 郝国杰, 相振群. 2005. 秦岭造山带中两条新元古代岩浆岩带. 地质学报, 79(2): 165-173.
陆松年, 于海峰, 李怀坤, 郭坤一, 王惠初, 金巍, 张传林, 刘永顺. 2006. 中国前寒武纪重大地质问题研究. 北京: 地质出版社: 1-206.
陆松年, 李怀坤, 王惠初, 陈志宏, 郑健康, 相振群. 2009. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究. 岩石学报, 25(9): 2195-2208.
罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞, 于峻川. 2015a. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义. 岩石学报, 30(11): 3229-3241.
罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞. 2015b. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义. 地学前缘, 22(5): 182-195.
马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568.
孟繁聪, 张建新, 杨经绥, 许志琴. 2003. 柴北缘锡铁山榴辉岩的地球化学特征. 岩石学报, 19(3): 435-442.
孟繁聪, 崔美慧, 吴祥珂, 吴久芳, 王建华. 2013. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件. 岩石学报, 29(6): 2107-2121.
孟繁聪, 崔美慧, 贾丽辉, 任玉峰, 冯惠彬. 2015. 东昆仑造山带早古生代的大陆碰撞:来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581-3594.
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
潘裕生, 周伟明, 许荣华, 王东安, 张玉泉, 谢应雯, 陈挺恩, 罗辉. 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑), 26(4): 302-307.
祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义. 岩石学报, 30(11): 3345-3356.
祁晓鹏, 范显刚, 杨杰, 崔建堂, 汪帮耀, 范亚洲, 杨高学, 李真, 晁文迪. 2016. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义. 地质通报, 35(11): 1771-1783. DOI:10.3969/j.issn.1671-2552.2016.11.002
青海省地质矿产局. 1997. 青海省岩石地层. 武汉: 中国地质大学出版社: 1-103.
任军虎, 张琨, 柳益群, 周鼎武, 冯乔. 2011. 东昆仑金水口南变余辉长岩地球化学及锆石定年. 西北大学学报(自然科学版), 41(1): 100-106.
谈生祥, 拜永山, 常革红, 童海奎, 保光普. 2004. 祁漫塔格地区晋宁期变质侵入岩(体)的发现及其地质意义. 西北地质, 37(1): 69-73.
王秉璋, 张森琦, 张智勇, 王瑾. 2001. 东昆仑东端扎那合惹地区元古宙蛇绿岩. 中国区域地质, 20(1): 52-57.
王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义. 地学前缘, 21(6): 381-401.
王国灿, 张天平, 梁斌, 陈能松, 朱云海, 朱杰, 拜永山. 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及"东昆中断裂带"地质涵义. 地球科学-中国地质大学学报, 24(2): 129-133.
王国灿, 王青海, 简平, 朱云海. 2004. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义. 地学前缘, 11(4): 481-490.
王国灿, 魏启荣, 贾春兴, 张克信, 李德威, 朱云海, 向树元. 2007. 关于东昆仑地区前寒武纪地质的几点认识. 地质通报, 26(8): 929-937.
王晓霞, 胡能高, 王涛, 孙延贵, 巨生成, 卢欣祥, 李舢, 齐秋菊. 2012. 柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学. 岩石学报, 28(9): 2950-2962.
王云山, 陈基娘. 1987. 青海省及毗邻地区变质地带与变质作用. 北京: 地质出版社: 1-248.
吴功建, 肖序常, 李廷栋. 1989. 青藏高原亚东-格尔木地学断面. 地质学报, 63(4): 285-296.
肖序常, 汤耀庆, 高延林. 1986. 再论青藏高原的板块构造. 中国地质科学院院报, (3): 7-19.
解玉月. 1998. 昆中断裂东段不同时代蛇绿岩特征及形成环境. 青海地质, (1): 27-35.
许娅玲, 巴金, 王勤燕, 张璐, 王新宇, 陈能松. 2011. 青海都兰东北部哈莉哈德山花岗片麻岩LA-ICP-MS锆石U-Pb年龄及构造意义. 地质通报, 30(7): 1037-1042.
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压-超高压变质带的形成. 地质学报, 80(12): 1793-1806. DOI:10.3321/j.issn:0001-5717.2006.12.002
杨经绥, 王希斌, 史仁灯, 许志琴, 吴才来. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239.
杨经绥, 许志琴, 李海兵, 史仁灯. 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系. 岩石矿物学杂志, 24(5): 369-380.
张金明, 王钦元, 许海全, 严玉峰. 2012. 喀雅克登塔格地区古元古代金水口变质侵入岩(体)的发现及其地质意义. 西北地质, 45(3): 13-19.
张建新, 孟繁聪, 万渝生, 杨经绥, 董国安. 2003. 柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397-404.
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛晓红. 2015. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554.
朱云海, 张克信, Pan YM, 陈能松, 王国灿, 侯光久. 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学-中国地质大学学报, 24(2): 134-138.
朱云海, 张克信, 王国灿, 拜永山, 陈能松, 侯光久. 2002. 东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化. 武汉: 中国地质大学出版社: 1-115.