岩石学报  2017, Vol. 33 Issue (11): 3471-3483   PDF    
宁芜和尚桥铁氧化物-磷灰石矿床(IOA)成矿过程研究:来自磁铁矿LA-ICP-MS原位分析的证据
段超1 , 李延河1 , 毛景文1 , 王丛林2 , 杨秉阳2 , 侯可军1 , 王倩1 , 李伟1,3     
1. 国土资源部成矿规律与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037;
2. 马钢(集团)控股有限公司, 南山矿业公司, 马鞍山 24303;
3. 中国地质大学地球科学学院, 武汉 430074
摘要:铁氧化物-磷灰石矿床(IOA)是全球铁矿资源重要的供给矿床类型之一,受到国内外科研和矿产开采工作者的广泛关注。对铁氧化物-磷灰石矿床研究的争议主要集中在矿床成因上,即岩浆成因或者热液成因。作为一类具有多阶段成矿作用的矿床,IOA型矿床很难用热液或者矿浆成因予以简单概括,需要动态地看待成矿作用。和尚桥铁矿床是一个大型的铁氧化物-磷灰石(IOA)矿床,位于中国东部长江中下游多金属成矿带宁芜矿集区中。和尚桥铁矿床成矿作用含有三个清晰的磁铁矿矿化阶段,分别形成浸染状(Mt1)、角砾状(Mt2)和脉状(Mt3)矿石。对各阶段磁铁矿矿石中磁铁矿进行激光剥蚀等离子质谱(LA-ICP-MS)微区成分测试。在成矿过程中,从早到晚,磁铁矿表现出了从具有岩浆成因特征向具有热液成因特征的方向演化。磁铁矿中Mg和Al含量升高,Cr含量先降低后略微升高,Mn、Co、Ni和V含量先降低后升高,Mo和Sn含量先升高后降低的趋势,表明成矿过程中各阶段围岩及大气水对成矿流体的贡献不一。结合前人研究成果,我们认为和尚桥铁矿床中磁铁矿铁质的来源与安山质侵入岩密切相关,可能来源于岩浆不混溶作用形成的铁质富集流体(熔体),磁铁矿在高温热液环境中结晶沉淀。成矿过程具有多阶段性,推测在各成矿阶段间隙,富铁流体得到富集,同时地层物质不断的加入并导致了磁铁矿成分显示出越来越多的热液成因信息,地层物质(特别是膏盐层)对成矿过程起到了重要的控制作用。
关键词: 铁氧化物-磷灰石矿床     磁铁矿成分     LA-ICP-MS微区分析     成矿过程     和尚桥铁矿床     宁芜矿集区    
Study on the ore-forming process of the Heshangqiao IOA deposit in the Ningwu ore district:Insight from magnetite LA-ICP-MS in-situ analysis data
DUAN Chao1, LI YanHe1, MAO JingWen1, WANG CongLin2, YANG BingYang2, HOU KeJun1, WANG Qian1, LI Wei1,3     
1. MLR Key Laboratory and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Nanshan Mine Company, Magang(Group) Holding Co. Ltd., Maanshan 24303;
3. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
Abstract: Iron Oxide-Apatite (IOA) deposits form an important type of iron deposits, and have attracted much attention of geologists for scientific researches and mining explorations. The genesis of IOA deposits has remained controversial worldwide, with the major divergences in interpretation of the magmatic or hydrothermal (metasomatic) nature of the magnetite ore. Actually, in most mineral deposits or deposit systems, the mineral precipitation processes are dynamic, including time gaps in ore-formation between two mineralization stages, which should not be classified into one simply genesis. The Heshangqiao iron deposit is one multi-stage iron oxide-apatite deposit on a large scale, located in the Ningwu ore district in the Middle-Lower Yangtze River metallogenic ore belt of East China. There are three magnetite mineralization stages, forming disseminated, breccia, and vein-type ores respectively. In-situ LA-ICP-MS trace elemental analyses of magnetite have been performed on three types of ores. In the ore-forming process of the Heshangqiao iron deposit, from early to late, magnetite showed evolution from magmatic characteristics to hydrothermal characteristics. In the magnetite, Mg and Al contents increased, Cr content decreased initially and then increased slightly, Mn, Co, Ni, and V contents decreased initially and then increased, whereas Mo and Sn increased initially and then decreased. These indicate that the contribution of surrounding rock (sedimentary rock, especially evaporate) to the ore-forming fluid is different in different stages. In combination with the results of previous studies, we infer that magnetite from the Heshangqiao IOA deposit originates from an iron-enriched fluid (melt) which might be formed by the magma immiscibility, and precipitated in the high-temperature hydrothermal environment. The metallogenic process has many stages; in the interval between two stages, the metal-bearing fluid becomes enriched, and involved different amount of sedimentary material which is a key controller in this ore-forming system.
Key words: Iron oxide-apatite deposit     Geochemistry of magnetite     In-situ LA-ICP-MS analysis     Ore-forming process     Heshangqiao iron deposit     Ningwu ore district    
1 引言

宁芜矿集区是中国东部长江中下游多金属成矿带中最为重要的矿集区之一(常印佛等, 1991; 翟裕生等, 1992; Mao et al., 2011; 周涛发等, 2012, 2016; Pirajno and Zhou, 2015),以磁铁矿-磷灰石矿床(iron-oxide apatite, IOA)的广泛发育而著称。宁芜研究项目编写小组(1978)根据宁芜矿集区中发育铁矿床的地质地球化学特征,将这样一类与陆相火山岩有关的铁矿床定义为“玢岩铁矿”,并建立了理想成矿模型。在此基础上,毛景文等(2012)将此模型丰富扩展,构建了陆相火山岩型铁多金属矿床模型。此类矿床也被称为“Kiruna type deposit”,得名于其在瑞典中部Kiruna地区的典型发育(Geijer, 1931)。他们均以铁氧化物-磷灰石的大量发育为特征,统称为IOA型矿床。在过去的几十年间对这类矿床进行大量的研究,但成因问题目前依然存在争议,主要集中于热液成因和矿浆成因两种认识。热液成因的观点认为铁矿床的形成与安山质次火山岩有着密切的联系(Rhodes and Oreskes, 1999; Sillitoe and Burrows, 2002; 段超等, 2012; Dare et al., 2015),此外也有研究学者认为,铁矿床的形成来自于热液对已固结岩浆岩的淋虑而使得铁质富集并在有利部位成矿(张荣华, 1980; 中国科学院地球化学研究所, 1987; 卢冰等, 1990);矿浆成因的观点认为,磁铁矿床的形成来自于岩浆的不混溶作用,由母岩浆的液态不混溶作用形成富铁流体(熔体)直接侵位沉淀成矿(Park, 1961; Velasco et al., 2016; Tornos et al., 2016)。Knipping et al.(2015a, b)通过对智利白垩纪铁矿带中Los Colorados矿床中磁铁矿的Fe-O同位素以及矿物微区微量元素的研究提出悬浮成因模式(suspension genesis model),认为铁矿床的形成来自磁铁矿在岩浆的结晶并附着富Cl热液上升,由断裂引发的突然减压使大量的热液磁铁矿结晶。然而这个模型却忽略了矿床中磁铁矿不同矿石结构类型的存在(例如:浸染状、角砾状和网脉状等)。此外,另有研究学者认为IOA型矿床属于铁氧化物-铜-金矿床(IOCG)这一大类,是其中的一个端元,形成于热液作用(Hitzman et al., 1992; Williams et al., 2005)。

和尚桥铁矿床位于宁芜矿集区凹山矿田,是玢岩型铁矿床的典型代表,其成矿过程具有显著的多阶段特征。和尚桥铁矿床的地质特征类似于凹山矿田中凹山、高村、东山等铁矿床,区别在于铁矿化之后发育有大量的黄铁矿和石膏脉。由于成矿作用的复杂性,矿石往往携带了多期不同的成矿信息,反映于不同阶段形成磁铁矿及其他共生矿物成分的变化中。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微区分析技术能较好的克服早期磁铁矿单矿物测试出现的矿物混合、包裹体和包体矿物混染以及测试检出限过高的缺陷。本文应用LA-ICP-MS测试技术对和尚桥铁矿床中各阶段磁铁矿进行了微区成分测试,初步揭示了铁矿床的成矿演化过程,为铁氧化物-磷灰石矿床成矿过程的理解注入新的内容。

2 矿集区及矿床地质特征

宁芜矿集区位于长江东侧,以方山-小丹阳断裂、长江断裂带、芜湖断裂和南京-湖熟断裂为边界断裂,从南京至芜湖呈NE-SW向展布(图 1)。矿集区内基底地层主要有三叠纪上青龙组海相碳酸盐建造、周冲村组白云质灰岩和膏盐层、黄马青组砂页岩;侏罗纪象山群陆相碎屑岩建造、西横山组类磨拉石建造;白垩纪早期相继发育龙王山组、大王山组、姑山组和娘娘山组四个火山喷发喷溢旋回,此后浦口组砂岩、砾岩,赤山组细砂岩、粉砂岩以及第三纪砂砾岩覆盖于火山岩之上。玢岩型铁矿床与大王山火山喷发喷溢旋回后期发育的(辉石)闪长玢岩有密切的成因关系(宁芜研究项目编写小组, 1978)。铁矿床在宁芜矿集区广泛发育,形成于130Ma左右(马芳等, 2010; 袁顺达等, 2010; 范裕等, 2011; Duan et al., 2012; Zhou et al., 2013; Zeng et al., 2016),从北至南可分为三个矿田:梅山矿田、凹山矿田和钟姑矿田。

图 1 宁芜矿集区矿产地质图(据宁芜研究项目编写小组, 1978) Fig. 1 Geological map with the distribution of deposits of Ningwu ore district (after Ningwu Research Group, 1978)

和尚桥铁矿床位于凹山矿田的西部(图 1),为一大型铁矿床床,已探明储量2.33亿吨(郝麟等, 2010),其地质特征与矿田内凹山、高村、东山等铁矿床相似,区别在于铁矿化之后发育有大量的黄铁矿化及破坏矿体发育的石膏脉。铁矿化后发育的硫化物-石膏脉,为凹山矿田及宁芜玢岩铁矿成矿作用研究的提供了一个良好的完整的范例。

矿体赋存在闪长玢岩中,矿石与围岩呈渐变关系。矿床的蚀变带、矿化带、矿体的形态、产状主要受闪长玢岩侵入体的原生层节理控制,大体平行闪长玢岩岩体顶面产出(图 2)。蚀变分为上中下三个蚀变带:上部浅色蚀变带(泥英岩化带),中部深色蚀变带(类青盘岩化带,铁矿体主要赋存在此带中)和下部浅色蚀变带(钠长石化带)。原生带磁铁矿矿石的自然类型主要为闪长玢岩浸染状磁铁矿矿石,其次为闪长玢岩网脉、角砾状磁铁矿矿石,少见粗粒-伟晶状磷灰石阳起石磁铁矿矿石。矿石矿物:主要为磁铁矿,次为假相赤铁矿、赤铁矿,少量褐铁矿、钛磁铁矿、镜铁矿。硫化物主要有黄铁矿和斑铜矿。脉石矿物主要为钠长石、绿泥石、阳起石、绿帘石、磷灰石、石膏等。和尚桥铁矿床的形成具有多阶段性,从早到晚形成浸染状(Mt1)、角砾状(Mt2)和脉状(Mt3)磁铁矿矿石(图 3)。磁铁矿矿化后发育黄铁矿脉,后期被大量石膏脉穿切。各阶段磁铁矿形成后,均不同程度地受到了来自自身残余热液的交代,沿磁铁矿晶格裂隙,或矿物间隙形成了赤铁矿(磁赤铁矿)(图 4b, e, f)。偶见黄铁矿星点发育。郝麟等(2010)通过对与成矿密切相关的闪长玢岩成岩年代学研究,推测铁矿床形成于130Ma左右。

图 2 和尚桥铁铁氧化-磷灰石矿床25线剖面图(据马钢集团南山矿业有限责任公司, 2009 Fig. 2 Cross-section of No.25 line in the Heshangqiao IOA deposit

① 马钢集团南山矿业有限责任公司. 2009.安徽省马鞍山市和尚桥东矿段铁矿详查.马鞍山:安徽省化工地质勘查总院, 1-105

图 3 和尚桥铁矿床典型矿石手标本照片 (a)浸染状矿石,后期发育绿泥石化,高岭土化;(b)角砾状矿石;(c)脉状矿石(磁铁矿-阳起石);(d)铁矿化后期发育石膏脉 Fig. 3 Photos of the Fe ore textures and hydrothermal alteration features at the Heshangqiao deposit (a) disseminated ore which overprinted chloritization and kaolinitization; (b) breccia ore; (c) vein type ore; (d) gypsum veins which cut iron ores

图 4 和尚桥铁矿床不同成矿阶段磁铁矿显微镜下照片 Mt-磁铁矿;Hem-赤铁矿;Py-黄铁矿 Fig. 4 Photomicrographs of the three Fe mineralization stages at Heshangqiao Mt-magnetite; Hem-hematite; Py-pyrite
3 样品采集

在详细的野外地质调查工作的基础上,我们采集了能够代表成矿作用过程的各阶段矿石作为测试对象,分别为:浸染状磁铁矿矿石(HSQ12-20、HSQ12-22、HSQ13-01和HSQ13-07)、角砾状磁铁矿矿石(HSQ12-08、HSQ12-09、HSQ12-12和HSQ12-15)和脉状磁铁矿矿石(HSQ13-02和HSQ13-03)。

浸染状矿石  浸染状矿石是和尚桥铁矿床的主要矿石类型,其类似高村铁矿床(陶村铁矿床)。磁铁矿浸染状发育于赋矿围岩闪长玢岩中。磁铁矿含量约15%,他形发育,粒径0.1~0.3mm。岩石阳起石化、绿泥石化、绢云母化发育(图 4a, b)。在磁铁矿形成后,沿磁铁矿晶格裂隙及局部边缘交代形成赤铁矿,赤铁矿未整体覆盖磁铁矿。样品HSQ12-20和HSQ12-22采自37ZT17钻孔103m和216m;HSQ13-01和HSQ13-07采自矿区-24m开采平台(坐标分别为N31°38′9.8″;E118°33′14.5″和N31°38′4.5″;E118°33′11.1″)。

角砾状矿石  角砾状矿石在和尚桥铁矿床中发育较少,在钻孔中可见,致密细粒磁铁矿胶结闪长玢岩角砾发育。角砾含量50%~70%,大小不一,磨圆度差,不规则,角砾中阳起石化、绿泥石化发育,少量角砾碱性长石化发育强烈。胶结物成分简单,主要为磁铁矿,见磷灰石、阳起石等矿物发育(图 4c, d)。磁铁矿结晶后,沿晶格裂隙或磁铁矿颗粒间隙交代发育赤铁矿,在同一成矿阶段晚期发育的黄铁矿亦交代产出。样品HSQ12-08、HSQ12-09、HSQ12-12和HSQ12-15分别采自38ZT16钻孔210m、230m、285m和264m。

脉状矿石  脉状矿石在采场及钻孔中均有发现。磁铁矿脉的主要成分为磁铁矿阳起石,部分磷灰石发育较多形成典型的磁铁矿-阳起石-磷灰石脉。磁铁矿含量30%~60%不等,他形-半自形发育。这一阶段磁铁矿沿晶格裂隙被同一阶段内残余流体交代形成赤铁矿,更晚黄铁矿交代产出(图 4e, f)。样品HSQ13-02和HSQ13-03采自矿区-24m开采平台(N31°38′9.8″;E118°33′14.5″)。

4 测试方法和测试结果 4.1 测试方法

对采集的10件典型矿石样品进行光薄片(0.1mm)磨制后,进行显微镜下观察,选择未经过蚀变作用的磁铁矿矿颗粒在中国科学院地球化学研究所矿床地球化学国家重点实验室进行LA-ICP-MS微区测试。LA-ICP-MS系统是由一台Coherent Geo Las Pro 193nm准分子激光剥蚀系统和Agilent 7700x电感耦合等离子体质谱仪组成。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入等离子体之前通过一个T型接头混合。每个样品分析数据持续约85s,包括大约15s的空白信号和70s的样品信号,每个样品间隔20s的吹扫时间。每隔5个样品测试点插入GOR-128G和BC-28作为监控样。使用USGS参考玻璃(BCR-2G、BIR-1G和GSE-1G)为校正标准。测试后采用无内标-多外标法对元素含量进行定量计算(孟郁苗等, 2016)。选择的元素的同位素为:23Na、25Mg、27Al、29Si、31P、34S、44Ca、45Sc、47Ti、51V、53Cr、55Mn、57Fe、59Co、60Ni、63Cu、66Zn、71Ga、74Ge、75As、85Rb、88Sr、89Y、91Zr、93Nb、95Mo、107Ag、111Cd、115In、118Sn、121Sb、137Ba、178Hf、181Ta、182W、197Au、208Pb、209Bi、232Th、238U等。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算等)采用软件ICPMSDataCal完成(Liu et al., 2008)。

4.2 测试结果

每个测试点获得元素含量值与检出限值,根据两者比值删除低于检出限(表 1)数据,共获得99个可信测试点的数据,具体数据详见电子版附表 1。和尚桥铁矿床中磁铁矿中从Mt1到Mt3:

表 1 和尚桥铁矿床磁铁矿LA-ICP-MS测试检出限平均值(×10-6) Table 1 Average data of determination limit of magnetite from the Heshangqiao iron deposit (×10-6)

附表 1 和尚桥铁矿床磁铁矿LA-ICP-MS测试结果(主量元素:wt%;微量元素:×10-6) AppendixTable1 In-situ LA-ICP-MS analysis data of magnetite from the Heshangqiao iron deposit (major elements: wt%; trace elements: ×10-6)

Ti含量略有升高(TiO2中位值:Mt1为0.27%,Mt2为0.348%,此阶段含量跨度较大,Mt3为0.736%)。

Mg和Al含量具有升高的趋势(Al2O3中位值:Mt1为0.414%,Mt2为0.672%,Mt3为1.190%;MgO中位值:Mt1为0.135%,Mt2为0.161%,Mt3为0.781%)。

Si和Ca含量具有降低的趋势(SiO2中位值:Mt1为0.418%,Mt2为0.365%,Mt3为0.183%;CaO中位值:Mt1为0.022%,Mt2为0.018%,Mt3为0.010%)。

Cr、Mn、Co、Ni和V含量先降低后升高(Cr中位值:Mt1为46.81×10-6,Mt2为5.84×10-6,Mt3为7.02×10-6;MnO中位值:Mt1为0.193%,Mt2为0.080%,Mt3为0.317%;Co中位值:Mt1为3.37×10-6,Mt2为1.98×10-6,Mt3为20.88×10-6;Ni中位值:Mt1为14.71×10-6,Mt2为3.66×10-6,Mt3为17.41×10-6;V中位值:Mt1为1612×10-6,Mt2为792×10-6,Mt3为2032×10-6)。

Mo和Sn含量先升高后降低(Mo中位值:Mt1为0.14×10-6,Mt2为0.31×10-6,Mt3为0.15×10-6;Sn中位值:Mt1为3.14×10-6,Mt2为4.14×10-6,Mt3为2.64×10-6)。

5 讨论 5.1 磁铁矿成因分析

磁铁矿能够形成于多种地质体中,伴随着形成环境的不同其赋含的二十多种元素的含量也存在着较大的差异。这种差异被国内外研究学者所捕捉,构建了不同的成因判别图解(陈光远等, 1987; 林师整, 1982; 徐国风和邵洁涟, 1979)。近年来伴随着激光剥蚀等离子质谱(LA-ICP-MS)测试技术的发展以及标准物质的更新(Müller et al., 2003; Nadoll and Koenig, 2011; 张德贤等, 2012),磁铁矿微区含量与成因联系得到了广泛的关注,并构建了不同的磁铁矿成因图解(Dupuis and Beaudoin, 2011; Nadoll et al., 2014; Dare et al., 2014; Knipping et al., 2015b),得到了广泛的应用与讨论(段超等, 2012; Hu et al., 2014; Huang et al., 2015, 2016; Nadoll et al., 2012, 2015; Chen et al., 2015a, b; Chung et al., 2015; Knipping et al., 2015a, b; 陈华勇和韩金生, 2015; 胡霞等, 2016; Canil et al., 2016; Zhou et al., 2017)。

在TiO2-Al2O3-(MgO+MnO)图解(图 5a)中,和尚桥铁矿床大部分分布于岩浆成因与接触交代成因磁铁矿区域,其中:浸染状磁铁矿分布于岩浆成因磁铁矿区域;角砾状磁铁矿分布范围较大,散落于副矿物、岩浆成因和接触交代成因磁铁矿区域中;而脉状磁铁矿则落于岩浆成因与接触交代成因磁铁矿之间。在图 5b中,磁铁矿落入热液成因区域,部分浸染状磁铁矿落入到岩浆岩副矿物区域。表明磁铁矿的形成具有岩浆作用的控制也存在沉淀过程中水岩反应(接触交代)的作用。Nadoll et al. (2014)根据磁铁矿LA-ICP-MS数据,在Dupuis and Beaudoin (2011)建立的磁铁矿成因图解基础上,采用了Al+Mn-Ti+V成因判别图解(图 5c)。在这一成因判别图解中,和尚桥铁矿床浸染状矿石中磁铁矿落入斑岩型矿床磁铁矿区域,角砾状矿石中磁铁矿分布于钒钛磁铁矿、斑岩型和矽卡岩型矿床成因区域,脉状矿石磁铁矿分布于斑岩型与矽卡岩型矿床成因区域边界的矽卡岩成因一侧。表明在成矿过程中,热液成矿作用发挥了更为重要的影响。与在Ti-Ni/Cr磁铁矿成因图解中(图 5d),磁铁矿表现出了较好的演化特征,伴随着成矿作用,磁铁矿表现出了从具有岩浆成因属性向具有热液成因属性的方向演化。这种磁铁矿成因演化特征与凹山铁矿床极为相似(段超等, 2012; Duan et al., in press),主要差别在于和尚桥铁矿床磁铁矿中Ti含量较低。

图 5 磁铁矿成因判别图解 (a) TiO2-Al2O3-(MgO+MnO)磁铁矿成因判别图解(林师整, 1982). Ⅰ:副矿物型;Ⅱ:岩浆型;Ⅲ:火山岩型;Ⅳ:接触交代型;Ⅴ:矽卡岩型;Ⅵ:沉积变质型;(b) Sn-Ga不同成因磁铁矿含量对比(Nadoll et al., 2014);(c) Al+Mn-Ti+V磁铁矿成因判别图解(Nadoll et al., 2014);(d)磁铁矿Ti-Ni/Cr(Knipping et al., 2015b) Fig. 5 Discrimination diagrams of magnetite (a) TiO2-Al2O3-(MgO+MnO) ternary magnetite discrimination diagram (Lin, 1982). I: accessory mineral type; Ⅱ: magmatic type; Ⅲ: volcanic type; Ⅳ : contact metasomatic type; V: skarn type; VI: metasedimentary type; (b) Ga vs. Sn diagram (Nadoll et al., 2014); (c) Ti+V vs. Al+Mn magnetite discrimination diagram (Nadoll et al., 2014); (d) Ti vs. Ni/Cr diagram (Knipping et al., 2015b)

Ti元素是对磁铁矿成因判别的一个关键性元素,其在磁铁矿中的含量受到多种因素的控制,以结晶时的温度、氧逸度和流体成分(富氟流体)为主要控制因素(Lindsley, 1991; Rapp et al., 2010; Hu et al., 2015)。在成因判别图解中,和尚桥铁矿床同一成矿阶段磁铁矿中Ti含量具有较大的差异,这可能是由于磁铁矿沉淀中流体局部不均一所导致。为了去除少量特征元素的变化对磁铁矿成因判别的干扰,根据Dare et al. (2014)的统计对磁铁矿的成因进行多种元素标准化的对比。在磁铁矿亲石元素和亲硫元素与大陆地壳含量标准化图中(图 6),和尚桥铁矿床磁铁矿大部分元素含量特征值落入高温热液成因区域,个别元素(例如:Ni、W、Sc等)落入岩浆成因矿床区域,表明磁铁矿结晶形成于高温热液环境,同时与岩浆作用具有某种亲缘关系。

图 6 和尚桥铁矿床磁铁矿中元素大陆地壳标准化图(大陆地壳值据Rudnick and Gao, 2003) 不同类型磁铁矿数据据Dare et al. (2014) Fig. 6 Bulk continental crust-normalized multi-element variation diagram of the Heshangqiao magnetite (values of bulk continental crust after Rudnick and Gao, 2003) Data of the magnetite from andesite, felsic plutonic rocks, Fe-Ti-V deposits and high temperature hydrothermal rocks are from Dare et al. (2014)

在对IOA型矿床铁质来源的研究中,岩浆不混溶作用导致富铁流体(溶体)形成的认识在模拟实验(Philpotts, 1967; 李九玲等, 1986; 袁家铮, 1990; Hou et al., 2017)和显微研究(Tornos et al., 2016; Velasco et al., 2016)中均得到了证实。这可能是IOA型矿床铁质富集的主要机制。此外,流体中P的加入则大大提高了铁在成矿流体中的溶解度,对富铁流体的形成具有重要的作用(Visser and Van Groos, 1979a, b; Watson, 1976; Ryerson and Hess, 1980; Bogaerts and Schmidt, 2006)。对宁芜矿集区中磷灰石来源的研究获得,成矿系统中的P来自于岩浆及成矿系统中地层物质的带入(宁芜研究项目编写小组, 1978; 中国科学院地球化学研究所, 1987; 余金杰和毛景文, 2002; Yu et al., 2008; 张乐骏等, 2011; Zeng et al., 2016)。因而,我们推测岩浆的不混溶作用可能同样也是和尚桥铁矿床中磁铁矿携带岩浆信息的重要原因,成矿热液与围岩的水岩反应(围岩物质的加入)则存在对成矿作用的影响。

5.2 成矿过程研究

铁氧化物-磷灰石矿床在全球广泛分布,是铁矿资源的重要供给矿床种类。在过去半个多世纪的成因研究中,对其形成主要有两种认识:1)铁的氧化物从硅酸盐熔体中直接演化形成矿浆充填围岩成矿(Park, 1961; Velasco et al., 2016; Tornos et al., 2016);2)安山质岩浆分异、演化后期形成富含铁质的高温气液交代充填围岩成矿(Rhodes and Oreskes, 1999; Rhodes et al., 1999; Sillitoe and Burrows, 2002; 段超等, 2012; Dare et al., 2015)。尽管目前我们可以初步判断铁质的来源,但对铁氧化物-磷灰石的成矿过程的研究目前仍未能有清晰明确的揭示。事实上成矿过程是一个成矿流体物理化学条件动态变化的过程,尤其是在多阶段矿床中不同的成矿阶段之间可能会存在成矿矿物结晶沉淀时间的间隔。因而很难用单一成因模式进行全部的解释。磁铁矿中微量元素的含量变化受到其形成温度、流体成分、氧逸度、共生矿物以及围岩特征等因素的影响(Buddington and Lindsley, 1964; Ilton and Eugster, 1989; Simon et al., 2004; Nadoll et al., 2014; Dare et al., 2014)。同一矿床不同阶段或同一阶段不同位置形成的磁铁矿在成因图解中会出现在不同的成因区域中。但是这种差异在一定程度上却可以清晰地揭示出成矿过程中流体成分的演化并指示出更多的成矿信息。

在野外地质特征的研究中,从Mt1到Mt3各阶段特征磁铁矿矿化作用存在明显的时间间隔,表现为晚期成矿阶段的磁铁矿对早期已固结的铁矿石的穿切,并同样发育一个类似的矿物沉淀过程。磁铁矿中Al、Mg、Cr、V、Co和Ni等元素含量之间呈现出一定的规律性的变化,暗示成矿过程中成矿流体体系的动态演化。控制这种变化的主要因素可能是围岩物质和流体的加入(或水岩反应)。和尚桥铁矿床的直接围岩为闪长玢岩也是铁矿床的成矿母岩,形成于白垩纪早期(毕仲其和丁保良, 1997);其潜在围岩是宁芜地区也广泛发育的三叠纪周冲村组含膏盐层沉积岩。

在上述磁铁矿成因判别中,和尚桥铁矿床从早到晚不同成矿阶段的磁铁矿具有从岩浆成因特征向热液成因特征演化的趋势。主要表现为Al和Mg在磁铁矿中的含量不断的增加(图 7)。成矿流体与围岩的水岩作用或围岩物质进入成矿系统可以改变磁铁矿中Mg和Al这两种元素的含量。此外,磁铁矿中Al和Ti的含量与形成温度具有正相关关系(Turnock and Eugster, 1962; O’Neil and Navrotsky, 1984),在大于700℃的实验模拟中获得磁铁矿中Ti含量大于1%,Al含量大于0.4%(Canil et al., 2016)。与Al含量特征相似,和尚桥铁矿床磁铁矿中Ti含量整体表现为从早到晚升高的变化特征,在角砾状磁铁矿中Ti元素含量具有较大的数值波动。成矿各阶段之间的温度联系不能用连续成矿过程中结晶矿物从高温到低温的顺序简单解释,成矿各阶段之间可能存在时间的间隔和成矿溶液的再富集(补给)。

图 7 和尚桥铁矿床各阶段磁铁矿元素含量特征 Fig. 7 Geochemistry of magnetite from three stages of the Heshangqiao iron deposit

Cr、Ni和Co在磁铁矿中属于强相容性元素。Cr含量从Mt1到Mt3快速降低后少量回升的变化可能说明各成矿赋矿流体中岩浆源区物质含量的差异,Mt2和Mt3阶段较低的含量表明热液作用在这两个阶段起到了主导作用。不同于Cr,磁铁矿中Ni和Co含量,从Mt1到Mt3表现为先降低后升高的特征。Mt1与Mt3相似,高于Mt2。Dare et al. (2014)研究认为磁铁矿在结晶过程中,成矿流体与岩浆岩发生水岩反应会有Co和Ni元素的带入。同时,各阶段较低的硫化物含量,不会使磁铁矿有Ni和Co含量的明显降低。因而,三个成矿阶段的赋矿流体可能存在着不连续或间断的演化过程。

Mn在磁铁矿中的含量与成矿流体中Cl的含量有关(Ilton and Eugster, 1989; Zajacz et al., 2008),相对应Mo和Sn的含量在低Cl热液中含量更高(Webster and Holloway, 1990)。在和尚桥铁床中,Mt2中的Mn含量变化较大,高值部分与Mt1相似,低于Mt3,整体先降低后升高;而Mo和Sn的含量散布范围较广,整体表现为Mt1与Mt3含量类似,低于Mt2的含量,以上暗示在浸染状-角砾状-脉状磁铁矿矿石形成过程中各阶段成矿流体中Cl的含量可能存在差异,体系中存在富集-消耗的过程,在成矿最后阶段达到高值。反映出在成矿流体体系中围岩物质的供给程度存在差异。

V是变价元素,具有V3+、V4+和V5+三个价态。磁铁矿中V的含量受氧逸度影响强烈。由于高价态V的不相容性,V的含量与磁铁矿结晶时的氧逸度成反相关关系(Toplis and Corgne, 2002)。和尚桥铁矿床中Mt1阶段V含量变化较大,表明其结晶过程中交代作用的强烈程度变化较大,进而影响氧逸度的变化。Mt1的均值与Mt3的均值相当(图 6),高于Mt2,说明在Mt1形成后,成矿流体体系中的氧逸度得到了补给和加强。这与大量磁铁矿结晶消耗氧的事实相违背,也暗示在成矿过程中有外界氧的补给。此外,Mt2阶段不同矿石中磁铁矿V含量变化较小,表明补给与消耗相当或磁铁矿结晶快速,后者与角砾状矿石快速隐爆成矿的地质现象相一致。

磁铁矿中微量元素的含量也受到共生矿物的影响(Dare et al., 2014)。在和尚桥铁矿床矿石中与磁铁矿共生的主要脉石矿物为阳起石(Ca2(Mg, Fe)5Si8O22(OH)2)和磷灰石(Ca5(PO4)3),因而磁铁矿中Si和Ca的含量从早到晚逐渐降低的特征可能与流体中这两种矿物逐渐增加的结晶有关。

综上,我们推测在整个成矿过程中成矿流体与围岩的反应在不断的加强,大量地层物质进入成矿流体体系。这种现象与毗邻的凹山铁矿床成矿过程中大气水不断加入的流体水源区演化的研究结果相一致(段超, 2012; 马芳等, 2006)。同时这也表征出,成矿各阶段赋矿流体的铁质富集与围岩加入程度不同。长江中下游多金属成矿带在三叠纪广泛发育膏盐层(蒸发岩层),对铁铜等成矿作用具有积极的控制或促进作用(草广金, 1977; 蔡本俊, 1980; 范洪源等, 1995)。宁芜矿集区中膏盐层的存在可能为成矿提供矿化剂(卢冰等, 1990; 修世荫, 1993; 周涛发等, 2011)。李延河等(2014)通过同位素对比研究,提出在长江中下游地区形成过程中三叠纪膏盐层具有重要的成矿控制作用,强调膏盐层作为氧化障不但为成矿热液提供Na+、Cl-、CO32-等矿化剂,还使得Fe2+氧化为Fe3+,从而形成赋矿热液,并建立了双层成矿模式。Li et al. (2015)对长江中下游罗河、泥河和梅山铁矿床中包裹体的研究也证实了这一点。相同于宁芜地区铁矿床特征矿物H-O、S、Pb等同位素研究获得的成矿过程中大气水逐渐加入,岩浆特征逐渐减弱的结果(段超, 2012)。和尚桥铁矿床中磁铁矿成分规律性的变化说明了围岩成分的加入对成矿作用的重要影响,也表明膏盐层的存在可能对成矿具有重要的控制意义。在各成矿阶段间,赋矿流体体系存在地层物质的加入,这种混入对成矿过程具有重要的控制作用。

6 结论

和尚桥铁矿床是宁芜矿集区中典型的铁氧化物-磷灰石矿床,具有清晰的多阶段成矿作用的特征。对先后形成的浸染状、角砾状和脉状矿石中磁铁矿进行的LA-ICP-MS微区成分分析。结合前人研究认为各阶段磁铁矿源区相似,Fe质来源于岩浆热液,可能与安山质岩浆不混溶作用有关,磁铁矿沉淀于高温热液环境。磁铁矿在从早到晚不同的成矿阶段中表现出具有岩浆成因特征到热液成因特征演化的规律。其中,磁铁矿Mg和Al含量具有升高趋势,Cr含量先降低后略微升高,Mn、Co、Ni和V含量具有先降低后升高的趋势,Mo和Sn含量先升高后降低的趋势,表明成矿流体在不同成矿阶段的间隙可能存在新的富集,同时围岩对成矿流体的影响不一。地层物质的逐渐加入,特别是膏盐层的存在,对成矿过程具有重要的控制作用。

致谢 在野外地质调查研究中得到了安徽省地质矿产勘查局、安徽马钢集团南山矿业有限责任公司地测科、安徽省地勘局322地质队和安徽省化工勘查总院的热情帮助,在此致以衷心的感谢。感谢审稿人提出的修改建议,使本文更加的严谨。
参考文献
Bi ZQ and Ding BL. 1997. Sedimentary environments of Triassic evaporite formations in the Lower Yangtze River Region. Volcanology & Mineral Resources, 18(2): 127-136.
Bogaerts M and Schmidt MW. 2006. Experiments on silicate melt immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas. Contributions to Mineralogy and Petrology, 152(3): 257-274. DOI:10.1007/s00410-006-0111-6
Buddington AF and Lindsley DH. 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2): 310-357. DOI:10.1093/petrology/5.2.310
Cai BJ. 1980. The relationship of gypsum salt beds with endogenic copper and iron ores in the Middle-Lower Yangtze Valley. Geochimica, 9(2): 193-199.
Canil D, Grondahl C, Lacourse T and Pisiak LK. 2016. Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada. Ore Geology Reviews, 72: 1116-1128. DOI:10.1016/j.oregeorev.2015.10.007
Cao GJ. 1977. Relationship between Fe-Cu deposit and gypsum layers in the Middle-Lower Yangtze River Belt and North China. Geology and Prospecting, 13(1): 26-33.
Chang YF, Liu XP and Wu CY. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House: 1-379.
Chen GY, Sun DS and Yin HA. 1987. Genesis Mineralogy and Prospecting Mineralogy. Chongqing: Chongqing Press: 1-874.
Chen HY and Han JS. 2015. Study of magnetite:Problems and future. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 724-730.
Chen WT, Zhou MF, Gao JF and Hu RZ. 2015a. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China. Mineralium Deposita, 50(7): 795-809. DOI:10.1007/s00126-014-0575-7
Chen WT, Zhou MF, Li XC, Gao JF and Hou KJ. 2015b. In-situ LA-ICP-MS trace elemental analyses of magnetite:Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geology Reviews, 65: 929-939. DOI:10.1016/j.oregeorev.2014.09.035
Chung D, Zhou MF, Gao JF and Chen WT. 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite:The Late Palaeoproterozoic Sokoman Iron Formation in the Labrador Trough, Canada. Ore Geology Reviews, 65: 917-928. DOI:10.1016/j.oregeorev.2014.09.030
Dare SAS, Barnes SJ, Beaudoin G, Méric J, Boutroy E and Potvin-Doucet C. 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7): 785-796. DOI:10.1007/s00126-014-0529-0
Dare SAS, Barnes SJ and Beaudoin G. 2015. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita, 50(5): 607-617. DOI:10.1007/s00126-014-0560-1
Duan C. 2012. Metallogeny study of Washan porphyry iron deposit in Ningwu ore district. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-133 (in Chinese with English summary) https://www.sciencedirect.com/science/article/pii/S0169136813001601
Duan C, Li YH, Hou KJ, Yuan SD, Liu JL and Zhang C. 2012. Late Mesozoic ore-forming events in the Ningwu ore district, Middle-Lower Yangtze River polymetallic ore belt, East China:Evidences from zircon U-Pb geochronology and Hf isotopic compositions of the granodioritic stocks. Acta Geologica Sinica, 86(3): 719-736. DOI:10.1111/acgs.2012.86.issue-3
Duan C, Li YH, Yuan SD, Hu MY, Zhao LH, Chen XD, Zhang C and Liu JL. 2012. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257.
Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4): 319-335. DOI:10.1007/s00126-011-0334-y
Fan HY, Li WD and Wang WB. 1995. On the relationship between the marine Triassic evaporite horizons and Cu(Au), Fe deposits in the Middle-Lower Yangtze area. Volcanology & Mineral Resources, 16(2): 32-41.
Fan Y, Zhou TF, Yuan F, Zhang LJ, Qian B, Ma L, Xie J and Yang XF. 2011. Geochronology of porphyry-like type iron deposits in Ning-Wu Basin:Evidence from 40Ar-39Ar phlogopite dating. Acta Geologica Sinica, 85(5): 810-820.
Geijer P. 1931. The iron ores of Kiruna type. Geographical distribution, geological characters and origin. Sveriges Geologiska Undersökning C, 367: 39.
Hao L, Fan Y, Zhou TF, Yuan F and Zhang LJ. 2010. Geological and geochronology of the Heshangqiao iron deposit in Ningwu basin. Mineral Deposits, 29(S1): 77-78.
Hitzman MW, Oreskes N and Einaudi MT. 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58(1-4): 241-287. DOI:10.1016/0301-9268(92)90121-4
Hou T, Charlier B, Namur O, Schütte P, Schwarz-Schampera U, Zhang ZC and Holtz F. 2017. Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron-fluorine deposit, South Africa. Geochimica et Cosmochimica Acta, 203: 303-322. DOI:10.1016/j.gca.2017.01.025
Hu H, Li JW, Lentz D, Ren Z, Zhao XF, Deng XD and Hall D. 2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geology Reviews, 57: 393-405. DOI:10.1016/j.oregeorev.2013.07.008
Hu H, Lentz D, Li JW, McCarron T, Zhao XF and Hall D. 2015. Reequilibration processes in magnetite from iron skarn deposits. Economic Geology, 110(1): 1-8. DOI:10.2113/econgeo.110.1.1
Hu X, Chen HY, Han JS and Zhao LD. 2016. Geochemical characteristics of magnetite from the Carmen iron deposit in Chile and its genetic significance. Geochimica, 45(4): 387-397.
Huang XW, Zhou MF, Qiu YZ and Qi L. 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite:The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geology Reviews, 65: 884-899. DOI:10.1016/j.oregeorev.2014.09.010
Huang XW, Gao JF, Qi L, Meng YM, Wang YC and Dai ZH. 2016. In-situ LA-ICP-MS trace elements analysis of magnetite:The Fenghuangshan Cu-Fe-Au deposit, Tongling, eastern China. Ore Geology Reviews, 72: 746-759. DOI:10.1016/j.oregeorev.2015.09.012
Ilton ES and Eugster HP. 1989. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid. Geochimica et Cosmochimica Acta, 53(2): 291-301. DOI:10.1016/0016-7037(89)90381-5
Institute of Geochemistry and China Academy of Sciences. 1987. Ore-forming Mechanism of Ningwu Type Iron Deposits. Beijing: Science Press: 1-152.
Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I and Munizaga R. 2015a. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 43(7): 591-594. DOI:10.1130/G36650.1
Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F and Munizaga R. 2015b. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171: 15-38. DOI:10.1016/j.gca.2015.08.010
Li JL, Zhang GL and Su LH. 1986. An experimental study on the iron ore deposits formed by "ore magma" related to FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6 system. In:Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences (18). Beijing:Geological Society of China, 198-204 (in Chinese)
Li WT, Audétat A and Zhang J. 2015. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China:Evidence from LA-ICP-MS analysis of fluid inclusions. Ore Geology Reviews, 67: 264-278. DOI:10.1016/j.oregeorev.2014.12.003
Li YH, Duan C, Han D, Chen XW, Wang CL, Yang BY, Zhang C and Liu F. 2014. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrologica Sinica, 30(5): 1355-1368.
Lin SZ. 1982. A contribution to the chemistry, origin and evolution of magnetite. Acta Mineralogica Sinica, 2(3): 166-174.
Lindsley DH. 1991. Experimental studies of oxide minerals. Reviews in Mineralogy and Geochemistry, 25(1): 69-106.
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004
Lu B, Hu SX, Lin YS and Ye SQ. 1990. A discussion on genesis and metallogenic model of Ningwu-type iron deposits. Mineral Deposits, 9(1): 13-25, 48.
Ma F, Jiang SY, Jiang YH, Ni P and Ling HF. 2006. Fluid inclusions and H-O isotopic compositions in the Washan and Dongshan iron deposits, Ningwu basin, China. Acta Petrologica Sinica, 22(10): 2581-2589.
Ma F, Jiang SY and Xue HM. 2010. Early Cretaceous mineralizations in Ningwu basin:Insight from actinolite 39Ar-40Ar laser dating results. Mineral Deposits, 29(2): 283-289.
Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314. DOI:10.1016/j.oregeorev.2011.07.010
Mao JW, Duan C, Liu JL and Zhang C. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1): 1-14.
Meng YM, Huang XW, Gao JF, Dai ZH and Qi L. 2016. Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration. Rock and Mineral Analysis, 35(6): 585-594.
Müller B and Axelsson MD and Öhlander B. 2003. Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. GFF, 125(1): 1-5. DOI:10.1080/11035890301251001
Nadoll P and Koenig AE. 2011. LA-ICP-MS of magnetite:Methods and reference materials. Journal of Analytical Atomic Spectrometry, 26(9): 1872-1877. DOI:10.1039/c1ja10105f
Nadoll P, Mauk JL, Hayes TS, Koenig AE and Box SE. 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic belt supergroup, United States. Economic Geology, 107(6): 1275-1292. DOI:10.2113/econgeo.107.6.1275
Nadoll P, Angerer T, Mauk JL, French D and Walshe J. 2014. The chemistry of hydrothermal magnetite:A review. Ore Geology Reviews, 61: 1-32. DOI:10.1016/j.oregeorev.2013.12.013
Nadoll P, Mauk JL, Leveille RA and Koenig AE. 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita, 50(4): 493-515. DOI:10.1007/s00126-014-0539-y
Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House: 1-196.
O'Neill HSC and Navrotsky A. 1984. Cation distributions and thermodynamic properties of binary spinel solid solutions. American Mineralogist, 69(7-8): 733-753.
Park CF. 1961. A magnetite "flow" in northern Chile. Economic Geology, 56(2): 431-436. DOI:10.2113/gsecongeo.56.2.431
Philpotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology, 62(3): 303-315. DOI:10.2113/gsecongeo.62.3.303
Pirajno F and Zhou TF. 2015. Intracontinental porphyry and porphyry-skarn mineral systems in eastern China:Scrutiny of a special case "Made-in-China". Economic Geology, 110(3): 603-629. DOI:10.2113/econgeo.110.3.603
Rapp JF, Klemme S, Butler IB and Harley SL. 2010. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids:An experimental investigation. Geology, 38(4): 323-326. DOI:10.1130/G30753.1
Rhodes AL and Oreskes N. 1999. Oxygen isotope composition of magnetite deposits at El Laco, Chile:Evidence of formation from isotopically heavy fluids. In:Skinner BJ (eds.). Geology and Ore Deposits of the Central Andes. Littleton, CO:Society of Economic Geologists, Special Publication, 333-351
Rhodes AL, Oreskes N and Sheets S. 1999. Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. In:Skinner BJ (ed.). Geology and Ore Deposits of the Central Andes. Society of Economic Geologists, Special Publication, 7:299-332
Rudnick RL and Gao S. 2003. Composition of the continental crust. In:Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford:Elsevier-Pergamon, 1-64
Ryerson FJ and Hess PC. 1980. The role of P2O5 in silicate melts. Geochimica et Cosmochimica Acta, 44(4): 611-624. DOI:10.1016/0016-7037(80)90253-7
Sillitoe RH and Burrows DR. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Economic Geology, 97(5): 1101-1109.
Simon AC, Pettke T, Candela PA, Piccoli PM and Heinrich CA. 2004. Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochimica et Cosmochimica Acta, 68(23): 4905-4914. DOI:10.1016/j.gca.2004.05.033
Toplis MJ and Corgne A. 2002. An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144(1): 22-37. DOI:10.1007/s00410-002-0382-5
Tornos F, Velasco F and Hanchar JM. 2016. Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems:The El Laco Deposit, Chile. Geology, 44(6): 427-430. DOI:10.1130/G37705.1
Turnock AC and Eugster HP. 1962. Fe-Al oxides:Phase relationships below 1, 000℃. Journal of Petrology, 3(3): 533-565. DOI:10.1093/petrology/3.3.533
Velasco F, Tornos F and Hanchar JM. 2016. Immiscible iron-and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile):Evidence for a magmatic origin for the magnetite deposits. Ore Geology Reviews, 79: 346-366. DOI:10.1016/j.oregeorev.2016.06.007
Visser W and Van Gross AFK. 1979a. Effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-P2O5. American Journal of Science, 279(10): 1160-1175. DOI:10.2475/ajs.279.10.1160
Visser W and Van Gross AFK. 1979b. Phase relations in the system K2O-FeO-Al2O3-SiO2 at 1 atmosphere with special emphasis on low temperature liquid immiscibility. American Journal of Science, 279(1): 70-91. DOI:10.2475/ajs.279.1.70
Watson EB. 1976. Two-liquid partition coefficients:Experimental data and geochemical implications. Contributions to Mineralogy and Petrology, 56(1): 119-134. DOI:10.1007/BF00375424
Webster JD and Holloway JR. 1990. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. In:Stein HJ and Hannah JL (eds.). Ore-bearing Granite Systems; Petrogenesis and Mineralizing Processes. Geological Society of America Special Papers, 21-34
Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NHS and Marschik R. 2005. Iron oxide copper-gold deposits:Geology, space-time distribution, and possible modes of origin. In:Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume. Littleton CO:Society of Economic Geologists, 371-406
Xiu SY. 1993. The sources of ore-forming material, metallogenetic subdivision and ore-prospecting targets of the pyrite deposits in Ningwu faulted volcanic basin. Geology of Chemical Minerals, 15(3): 178-185.
Xu GF and Shao JL. 1979. The typomorphic characteristics of magnetite and its significance. Coal Geology and Prospecting, 15(3): 30-37.
Yu JJ and Mao JW. 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu area. Mineral Deposits, 21(1): 65-73.
Yu JJ, Mao JW and Zhang CQ. 2008. The possible contribution of a mantle-derived fluid to the Ningwu porphyry iron deposits-evidence from carbon and strontium isotopes of apatites. Progress in Natural Science, 18(2): 167-172. DOI:10.1016/j.pnsc.2007.07.010
Yuan JZ. 1990. Iron ore types and genesis of Meishan iron ore deposit:The study of high temperature experiments. Geoscience, 4(4): 77-84.
Yuan SD, Hou KJ and Liu M. 2010. Timing of mineralization and geodynamic framework of iron-oxide-apatite deposits in Ningwu Cretaceous basin in the Middle-Lower Reaches of the Yangtze River, China:Constraints from Ar-Ar dating on phlogopites. Acta Petrologica Sinica, 26(3): 797-808.
Zajacz Z, Halter WE, Pettke T and Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions:Controls on element partitioning. Geochimica et Cosmochimica Acta, 72(8): 2169-2197. DOI:10.1016/j.gca.2008.01.034
Zeng LP, Zhao XF, Li XC, Hu H and McFarlane C. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, eastern China:Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468-2483. DOI:10.2138/am-2016-5743
Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Fe-Cu-Au Metallogeny of the Middle-Lower Changjiang Region. Beijing: Geological Publishing House: 1-235.
Zhang DX, Dai TG and Hu Y. 2012. Analysis of trace elements in magnetites using laser ablation-inductively coupled plasma-mass spectrometry. Rock and Mineral Analysis, 31(1): 120-126.
Zhang LJ, Zhou TF, Fan Y, Yuan F, Qian B and Ma L. 2011. A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit, Ningwu Basin. Acta Geologica Sinica, 85(5): 834-848.
Zhang RH. 1980. On the mechanism of geochemical zoning of the altered country rock of the porphyrite iron ore in the Middle-Lower Changjiang Valley. Acta Geologica Sinica, 54(1): 70-84.
Zhou TF, Fan Y, Yuan F, Zhang LJ, Ma L, Qian B and Xie J. 2011. Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze Metallogenic Belt. Acta Geologica Sinica, 85(5): 712-730.
Zhou TF, Fan Y, Yuan F and Zhong GX. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10): 3051-3066.
Zhou TF, Fan Y, Yuan F, Zhang LJ, Qian B, Ma L and Yang XF. 2013. Geology and geochronology of magnetite-apatite deposits in the Ning-Wu volcanic basin, eastern China. Journal of Asian Earth Sciences, 66: 90-107. DOI:10.1016/j.jseaes.2012.12.030
Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF and White NC. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 271-288.
Zhou ZJ, Tang HS, Chen YJ and Chen ZL. 2017. Trace elements of magnetite and iron isotopes of the Zankan iron deposit, westernmost Kunlun, China:A case study of seafloor hydrothermal iron deposits. Ore Geology Reviews, 80: 1191-1205. DOI:10.1016/j.oregeorev.2016.09.020
毕仲其, 丁保良. 1997. 下扬子区三叠系膏盐建造的沉积环境. 火山地质与矿产, 18(2): 127-136.
蔡本俊. 1980. 长江中下游地区内生铁铜矿床与膏盐的关系. 地球化学, 9(2): 193-199.
草广金. 1977. 长江中下游及华北地区内生铁铜矿床与膏盐的关系. 地质与勘探, 13(1): 26-33.
常印佛, 刘湘培, 吴昌言. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社: 1-379.
陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学. 重庆: 重庆出版社: 1-874.
陈华勇, 韩金生. 2015. 磁铁矿单矿物研究现状、存在问题和研究方向. 矿物岩石地球化学通报, 34(4): 724-730.
段超. 2012. 宁芜矿集区凹山玢岩型铁矿床成矿作用研究. 博士学位论文. 北京: 中国地质大学, 1-133 http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364393.htm
段超, 李延河, 袁顺达, 胡明月, 赵令浩, 陈小丹, 张成, 刘佳林. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257.
范洪源, 李文达, 王文斌. 1995. 长江中下游海相三叠系膏盐层与铜(金)、铁矿床. 火山地质与矿产, 16(2): 32-41.
范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, 谢杰, 杨西飞. 2011. 宁芜盆地玢岩型铁矿床的成矿时代:金云母40Ar-39Ar同位素年代学研究. 地质学报, 85(5): 810-820.
郝麟, 范裕, 周涛发, 袁峰, 张乐骏. 2010. 宁芜盆地和尚桥铁矿床地质特征及成矿时代. 矿床地质, 29(S1): 77-78.
胡霞, 陈华勇, 韩金生, 赵联党. 2016. 智利卡门铁矿床磁铁矿元素地球化学特征及矿床成因意义. 地球化学, 45(4): 387-397.
中国科学院地球化学研究所. 1987. 宁芜型铁矿床形成机理. 北京: 科学出版社: 1-152.
李九玲, 张桂兰, 苏良赫. 1986. 与矿浆成矿有关的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6四元体系模拟实验研究. 见: 中国地质科学院矿床地质研究所文集(18). 北京: 中国地质学会, 198-204
李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 2014. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用. 岩石学报, 30(5): 1355-1368.
林师整. 1982. 磁铁矿矿物化学、成因及演化的探讨. 矿物学报, 2(3): 166-174.
卢冰, 胡受奚, 蔺雨时, 叶水泉. 1990. 宁芜型铁矿床成因和成矿模式的探讨. 矿床地质, 9(1): 13-25, 48.
马芳, 蒋少涌, 姜耀辉, 倪培, 凌洪飞. 2006. 宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究. 岩石学报, 22(10): 2581-2589.
马芳, 蒋少湧, 薛怀民. 2010. 宁芜盆地凹山和东山铁矿床中阳起石的激光39Ar-40Ar年代学研究. 矿床地质, 29(2): 283-289.
毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例. 岩石学报, 28(1): 1-14.
孟郁苗, 黄小文, 高剑峰, 戴智慧, 漆亮. 2016. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成. 岩矿测试, 35(6): 585-594.
宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社: 1-196.
修世荫. 1993. 宁芜火山断陷盆地黄铁矿床成矿物质来源、成矿区划及找矿方向. 化工地质, 15(3): 178-185.
徐国风, 邵洁涟. 1979. 磁铁矿的标型特征及其实际意义. 地质与勘探, 15(3): 30-37.
余金杰, 毛景文. 2002. 宁芜玢岩铁矿磷灰石的稀土元素特征. 矿床地质, 21(1): 65-73.
袁家铮. 1990. 梅山铁矿矿石类型及成因——高温实验结果探讨. 现代地质, 4(4): 77-84.
袁顺达, 侯可军, 刘敏. 2010. 安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义. 岩石学报, 26(3): 797-808.
翟裕生, 姚书振, 林新多, 周珣若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社: 1-235.
张德贤, 戴塔根, 胡毅. 2012. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 31(1): 120-126.
张乐骏, 周涛发, 范裕, 袁峰, 钱兵, 马良. 2011. 宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究. 地质学报, 85(5): 834-848.
张荣华. 1980. 长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理. 地质学报, 54(1): 70-84.
周涛发, 范裕, 袁峰, 张乐骏, 马良, 钱兵, 谢杰. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730.
周涛发, 范裕, 袁峰, 钟国雄. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28(10): 3051-3066.
周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, White NC. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271-288.