岩石学报  2017, Vol. 33 Issue (10): 3239-3262   PDF    
流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用
蓝廷广1,2 , 胡瑞忠1,2 , 范宏瑞2,3 , 毕献武1,2 , 唐燕文1 , 周丽4 , 毛伟1 , 陈应华1,2     
1. 矿床地球化学国家重点实验室, 中国科学院地球化学研究所, 贵阳 550081;
2. 中国科学院大学地球科学学院, 北京 100049;
3. 中国科学院矿产资源研究重点实验室, 中国科学院地质与地球物理研究所, 北京 100029;
4. 中国科学院地球内部物质高温高压重点实验室, 中国科学院地球化学研究所, 贵阳 550081
摘要:流体包裹体LA-ICP-MS(激光剥蚀-电感耦合等离子体质谱仪)分析具有高精度、低检测限、多元素同时微区原位检测的特点,因此在精细刻画成矿过程、深入揭示成矿机理方面具有传统方法无可比拟的优势。通过人工合成石英NaCl-H2O-Rb-Cs和NaCl-KCl-CaCl2-H2O-Rb-Cs流体包裹体,使用NIST610为外标、显微测温NaCl等效盐度(电价平衡方法)为内标,建立了流体包裹体LA-ICP-MS分析方法。分析结果的相对误差在±16%以内,绝大部分在±10%以内,相对标准偏差(RSD)小于7%。同时结合国际上推荐的石英标样,使用NIST610为外标、无内标法,建立了石英微量元素LA-ICP-MS分析方法。分析结果表明,石英中主要元素Li、Al和Ti的相对误差在±10%以内,相对标准偏差小于5%。利用建立的方法对鲁西早白垩世王家庄Cu-Mo矿开展了应用研究,结果显示该矿富气相包裹体更富Cu,而含子矿物包裹体富Mo,暗示Cu和Mo可能具有不同的搬运机制,Cu更倾向于气相,Mo则倾向于进入液相,结合流体沸腾现象的存在,这可能是导致该矿上铜下钼分带沉淀的重要因素。此外,从早期岩浆成因石英到成矿期热液石英以及成矿期后石英,微量元素具有明显的Ti降低而Al升高的趋势,暗示成矿元素Cu、Mo的沉淀可能同时还受到温度和流体酸碱度变化的控制。
关键词: 流体包裹体     LA-ICP-MS     石英微量元素     Cu-Mo矿     王家庄    
In-situ analysis of major and trace elements in fluid inclusion and quartz:LA-ICP-MS method and applications to ore deposits
LAN TingGuang1,2, HU RuiZhong1,2, FAN HongRui2,3, BI XianWu1,2, TANG YanWen1, ZHOU Li4, MAO Wei1, CHEN YingHua1,2     
1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
4. Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Abstract: LA-ICP-MS (Laser ablation-inductively coupled plasma-mass spectrometry) analysis of fluid inclusion is characterized by high precision, low detection limit and simultaneous measurement of multiple elements, which has remarkable advantages in revealing the specific mineralization processes. Based on using synthetic NaCl-H2O-Rb-Cs and NaCl-KCl-CaCl2-H2O-Rb-Cs fluid inclusions in quartz, a reliable analytical method of quantitatively determing major and trace elements in single fluid inclusion by LA-ICP-MS was established. In this method, external standard NIST610 and internal standard Na were used. The Na content was obtained from microthermometric measurement and calculated using the charge-balancing method. Analytical results show that the accuracy is within 16% and the precision is better than 7% RSD. In addition, combined with using the external standard NIST610 and a natural quartz standard, an analytical method for determing trace elements in quartz was also established. The accuracy for Li, Al and Ti is within 10% and the precision is better than 5% RSD. The above methods were applied to study the Cu and Mo mineralization mechanisms in the Wangjiazhuang Cu-Mo deposit in Luxi Block, eastern North China Craton. The results show that Cu is enriched in vapor-rich fluid inclusions, whereas Mo is concentrated in daughter mineral-bearing fluid inclusions, indicating that Cu was prone to be carried by vapor while Mo was likely carried by brine. This property is thus likely responsible for the depositional separation of Cu and Mo in the deposit. In addition, from the magmatic quartz to the ore-forming and then to the post-ore-forming quartz, the Ti contents decrease while the Al contents increase, suggesting the precipitation of Cu and Mo was also affected by the temperature and pH changes of the fluid.
Key words: Fluid inclusion     LA-ICP-MS     Trace element in quartz     Cu-Mo deposit     Wangjiazhuang    
1 引言

自从二十世纪七十年代中后期尝试使用激光分析单个流体包裹体成分以来(Tsui, 1976; Tsui and Holland, 1979),流体包裹体激光微区原位分析已有长达四十年的研究历史。早期二十年由于仪器方面的原因,该技术发展缓慢,鲜有应用。但九十年代及之后随着激光与电感耦合等离子体质谱仪联用技术(Laser ablation-inductively coupled plasma-mass spectrometry, LA-ICP-MS)的发展,地质学家开始真正重视流体包裹体激光微区原位分析,特别是瑞士联邦理工学院(ETH, Zürich)的研究团队,从仪器设备的改进、分析流程的建立、计算方法的完善到典型矿床的应用,开展了系列研究(Günther et al., 1997, 1998; Audétat et al., 1998; Heinrich et al., 1999; Ulrich et al., 1999; Heinrich et al., 2003),使得流体包裹体LA-ICP-MS分析方法真正建立起来并得到广泛应用。该方法在分析单个流体包裹体的同时具有高精度、低检测限、多元素同时快速检测的特点,克服了传统群体包裹体分析多期次包裹体被同时检测的缺点,因此在精确示踪成矿物质来源、精细刻画成矿过程、深入揭示成矿机理等方面具有传统方法无可比拟的优势,成为当今分析流体包裹体成分的最佳手段之一(Pettke et al., 2012)。近二十年来,该项技术的应用极大地促进了成矿理论的发展,特别是在Cu、Au、Mo等成矿元素的搬运、沉淀机制方面,取得了许多里程碑式的进展。然而尽管国际上对该方法的研究和应用已较多,但目前国内在这方面的研究还非常薄弱,仅少数实验室进行了尝试性研究(胡圣虹等, 2001),在流体包裹体Sr同位素分析(袁洪林等, 2009)以及盐类矿物中的流体包裹体分析(孙小虹等, 2013, 2016)方面开展了初步工作,总体上远远落后于国际同行的研究,极大地制约了我国在成矿理论方面的创新和发展。国内尽管在熔融包裹体分析方面开展了一些工作(张春来等, 2011; Sun et al., 2013a, 2013b; Cai et al., 2015; Qian et al., 2015; 唐冬梅等, 2017; Zhang et al., 2017),但熔融包裹体在元素含量计算以及应用方面与流体包裹体差别较大,故不在本文的讨论范围内。

另外,作为流体包裹体最重要的寄主矿物之一,石英近年来也受到越来越多的重视,其微量元素被广泛应用于示踪岩浆的来源、演化及混合作用(Müller et al., 2003a, 2005; Larsen et al., 2004, 2009; Breiter and Müller, 2009; Jacamon and Larsen, 2009),沉积碎屑的来源、形成的物化条件以及后期改造过程(Dennen, 1967; Demars et al., 1996; Lehmann et al., 2011; Ramseyer et al., 2013),变质岩的重结晶机制(Monecke et al., 2002; Spear and Wark, 2009; Adachi et al., 2010)以及热液矿床成矿流体演化过程和成矿元素沉淀机制等(Monecke et al., 2002; Landtwing and Pettke, 2005; Rusk et al., 2006, 2008b; Rusk, 2012; Jourdan et al., 2009; Mercer and Reed, 2013)。特别是近十年来石英Ti温压计的提出和完善(Wark and Watson, 2006; Thomas et al., 2010, 2015; Huang and Audétat, 2012; Thomas and Watson, 2012),使石英微量元素研究,尤其是LA-ICP-MS微区原位研究,为从矿物学的角度研究成岩成矿过程开辟了新思路,为解释热液系统的演化历史提供了更直接的证据(Monecke et al., 2002; 陈小丹等, 2011)。因此,流体包裹体及石英微量元素LA-ICP-MS研究,是当今也是今后成矿流体研究的一个重要内容。

最近我们利用矿床地球化学国家重点实验室装备的GeoLasPro 193nm准分子激光剥蚀系统和Agilent 7900电感耦合等离子质谱仪对流体包裹体及石英微量元素开展了LA-ICP-MS研究,建立了相关分析方法,并初步应用于华北克拉通东部鲁西地区的Cu-Mo矿成矿机制研究。本文在总结国内外流体包裹体及石英LA-ICP-MS研究的基础之上,结合实验室的建立,对相关分析方法、注意事项及初步应用进行了详细介绍和讨论。

2 流体包裹体LA-ICP-MS研究历史及进展

Tsui (1976)最早使用红宝石调Q激光器(Q-switched ruby laser)与摄谱仪(Spectrograph)联用,通过对剥蚀产物的光谱分析,实现了对流体包裹体某些元素(如Na、Ca、Mn、Mg、Cu)的定性-半定量分析,并成功应用到Ag-Pb-Zn-Cu矿床的研究上,从而提出激光分析流体包裹体成分是一项非常具有潜力的方法(Tsui and Holland, 1979)。Bennett and Grant (1980)利用该方法发现流体包裹体非常富Cu的现象,提出斑岩型矿床流体可能具有很强的Cu搬运能力。Deloule and éloy (1982)随后对分析仪器作了重大改进,使用质谱仪与Nd:YAG激光器联用(Laser probe mass spectrography, LPMS),实现了对石英、萤石和白云石中流体包裹体的定量-半定量分析,质谱仪的使用标志着LA-ICP-MS分析方法雏形的建立,而Nd:YAG激光器后来也被广泛应用。另外,其也提出了使用飞行时间质谱仪(Time of flight mass spectrometer)来提高灵敏度的设想。随后几年流体包裹体激光分析基本上处于沉寂状态,但到二十世纪八十年代末至九十年代初,得益于ICP-MS技术的发展,开始大量使用ICP-MS与激光联用来研究流体包裹体,使得流体包裹体LA-ICP-MS分析在九十年代集中爆发并逐渐完善(Shepherd and Chenery, 1995; Ghazi et al., 1996; Moissette et al., 1996; Günther et al., 1997, 1998; McCandless et al., 1997; Audétat et al., 1998; Shepherd et al., 1998; Heinrich et al., 1999; Loucks and Mavrogenes, 1999; Schäfer et al., 1999; Ulrich et al., 1999),尽管该时期激光剥蚀-电感耦合等离子体原子发射光谱法(LA-ICP-AES, Boiron et al., 1991; Ramsey et al., 1992; Rankin et al., 1992; Wilkinson et al., 1994)也同样发展迅速。期间,Shepherd and Chenery (1995)对流体包裹体LA-ICP-MS分析方法做了重要改进,包括首次使用Nd:YAG四倍频紫外激光(波长266nm)替换以前常用的Nd:YAG近红外激光(波长1064nm)和红宝石可见光激光(波长694nm),使用可加热样品池及双进气系统,并结合人工合成石盐包裹体开展分析,最后分析精度可以优于30%,灵敏度可以高于LA-ICP-AES两个数量级以上,让真正实现单个流体包裹体成分的高精度分析成为可能。随后Günther et al.(1997, 1998)再次改进和完善了分析方法,首次使用波长更短的193nm ArF准分子激光器,采用逐步剥蚀法(stepwise ablation),利用人工合成石英流体包裹体以及NIST612为外标、显微测温NaCl等效盐度为内标,使包裹体元素含量检测限降至10-9到10-6级,准确度基本上优于20%。由于该方法无论在剥蚀效果还是在分析精度方面,较以前的方法都有很大的提高,自此之后,其所使用的193nm ArF准分子激光剥蚀系统成为流体包裹体乃至整个固体地球科学领域微区分析最为常用的激光系统,建立的分析流程及元素含量计算方法也成为流体包裹体分析的主流方法。Audétat et al. (1998)使用上述方法研究了澳大利亚Yankee Lode岩浆-热液锡多金属矿的流体包裹体,并将研究成果发表于《Science》上。这是首篇发表于《Science》上的流体包裹体LA-ICP-MS分析相关的文章,标志着流体包裹体LA-ICP-MS分析方法可靠性及重要性被国际权威认可。之后流体包裹体LA-ICP-MS分析方法的应用研究大量涌现,连续多篇关于Cu、Au等成矿元素搬运、沉淀机制的文章发表在《Science》和《Nature》上(Loucks and Mavrogenes, 1999; Ulrich et al., 1999; Halter et al., 2002),极大地促进了成矿理论的发展,特别是Cu、Au等成矿元素通过与HS-络合倾向进入气相搬运的认识(Heinrich et al., 1999),几乎是相关成矿理论的革命性认识。Heinrich et al. (2003)随后系统总结了流体包裹体LA-ICP-MS分析的基本原理和仪器要求、元素含量的计算方法、检测限和准确度的评估、典型应用及存在问题和发展前景等,为全面了解该方法提供了详尽的信息,同时也标志着流体包裹体LA-ICP-MS分析方法的完善和成熟。值得一提的是,同时期中国学者已经注意到流体包裹体LA-ICP-MS分析的重要性,如胡圣虹等(2001)向国内详细介绍了该方法的基本原理、分析过程和校正方法等,同时也邀请国外专家向国内介绍相关分析原理及应用(Ulrich, 2003)。

最近十余年来,随着仪器技术的发展以及对相关分析方法和应用的进一步研究,流体包裹体LA-ICP-MS研究取得一些新进展:

(1) 在仪器设备方面,使用波长更短的157nm激光替换目前最为广泛使用的193nm激光,可对石英获得完美的剥蚀效果(Tanner et al., 2013; Zhou et al., 2016),能够很好地解决193nm激光剥蚀石英样品时易碎的问题;使用飞秒激光(Krüger et al., 2007; Stoller et al., 2007; Volk et al., 2010; Borisova et al., 2012; Albrecht et al., 2014),能够降低热效应,最大可能消除193nm激光因热效应导致的元素分馏、成分变化等(Lambrecht et al., 2008);使用多接收等离子质谱仪(MC-ICP-MS)分析流体包裹体中的Sr-Pb同位素比值(Pettke, 2008; 袁洪林等, 2009; Pettke et al., 2010, 2011),能够精细示踪成矿物质来源;使用飞行时间质谱仪(TOF-ICP-MS),具有比四级杆质谱仪(Q-ICP-MS)更快的扫描速度、更好的离子传输效率,能实现所有元素的近同时检测(Olivo et al., 2006),是比目前使用最广泛的Q-ICP-MS更理想的流体包裹体分析仪器(Harlaux et al., 2015);使用高灵敏度扇形磁场等离子质谱仪(SF-ICP-MS),具有比Q-ICP-MS以及TOF-ICP-MS低一个数量级的检测限,在同等条件下能够对更小的流体包裹体进行测试(Wälle and Heinrich, 2014);使用红外显微镜与激光系统联用,分析不透明-半透明矿石矿物(如黄铁矿、闪锌矿等)中的流体包裹体成分(Kouzmanov et al., 2010),更能直接反映成矿物质来源及成矿机制;

(2) 在元素含量计算及校正方面,以电价平衡方法(Allan et al., 2005)取代经验的NaCl等效盐度方法(Heinrich et al., 2003),能够对多元NaCl-XnCl-H2O体系获得更准确的结果;根据最新的H2O-NaCl-CaCl2数字模型(Steele-MacInnis et al., 2011),通过显微测温获得固相最终融化温度(last melting temperature,冰点或石盐融化温度)以及倒数第二融化温度(second-to-last melting temperature,通常是水石盐融化温度),求得Na和Ca的含量及比值并以此为内标,对H2O-NaCl-CaCl2流体包裹体获得很好的结果,特别适用于富Ca体系(Schlegel et al., 2012);利用Pitzer热力学模型,通过显微测温获得冰融化温度(ice melting temperature)求得Na含量,并用Na为内标,可对H2O-NaCl-KCl-MgCl2-CaCl2复杂体系流体包裹体获得准确结果,适用于富二价离子(如Mg、Ca)的流体包裹体(Leisen et al., 2012b);通过全面分析总结不同体系的流体包裹体相变行为,建立了适用于H2O-NaCl-KCl-CaCl2-MgCl2-FeCl2-FeCl3复杂体系的利用显微测温获得Na含量及与其他阳离子比值的方法(Steele-MacInnis et al., 2016),可以很好地解决复杂体系流体包裹体LA-ICP-MS分析的内标问题;

(3) 在分析测试方法方面,除了前面提及的建立流体包裹体Sr-Pb同位素分析方法以及使用红外显微镜测试不透明矿物中流体包裹体成分外,主要建立了难测阴离子如S、Cl、Br的分析方法(Guillong et al., 2008a; Seo et al., 2009, 2011, 2012; Leisen et al., 2012a; Fusswinkel et al., 2013, 2014; Seo and Zajacz, 2016),并将其用于探讨成矿流体来源及成矿元素的搬运沉淀机制等;

(4) 在应用方面,通过合成各种流体包裹体,结合LA-ICP-MS分析,探讨Au、Cu、Mo、Pb、Zn、Sn、铂族元素、稀土元素等在熔体-流体-气体中的分馏和搬运-沉淀机制以及模拟不同地质过程中的元素地球化学行为(Hanley et al., 2005; Simon et al., 2005, 2007; Duc-Tin et al., 2007; Spandler et al., 2007; Ulrich and Mavrogenes, 2008; Zajacz et al., 2008, 2011; Simon and Pettke, 2009; Frank et al., 2011; Zhang et al., 2012; Zhou et al., 2016; Guo and Audétat, 2017),特别是探讨了气相搬运Cu、Au等成矿元素的现象及机理(Williams-Jones and Heinrich, 2005)以及流体包裹体被捕获后的元素扩散作用(Zajacz et al., 2009)等;通过对比含矿与不含矿岩浆-热液系统中熔融/流体包裹体成分,揭示岩浆-热液成矿的控制因素(Klemm et al., 2007; Audétat et al., 2008),特别认识到成矿岩体在初始出溶的岩浆流体中更富成矿元素的现象以及流体不混溶在形成不同矿种中的重要作用(Audétat et al., 2008);另外,除了继续对传统的斑岩型矿床进行研究(Klemm et al., 2007; Rusk et al., 2008a; Pettke et al., 2010; Li et al., 2012; Seo et al., 2012),对中低温或低盐度矿床也开展了研究,如对造山型金矿,认识到原岩预富集在高品位矿床形成中可能起决定性作用(Rauchenstein-Martinek et al., 2014)以及确定了成矿流体可以完全来自变质流体而没有任何岩浆-热液流体的加入(Fusswinkel et al., 2017);对赋存在沉积岩中的卡林型金矿,认识到水-岩相互作用对矿质沉淀的重要性(Su et al., 2009)以及成矿流体可能来源于岩浆-热液(Large et al., 2016);对U矿床,认识到大规模地表卤水(蒸发海水)的深循环对成矿的重要意义(Richard et al., 2016);对MVT型Pb-Zn矿,认识到流体混合作用(如富金属的卤水与天水混合)对矿质沉淀的重要促进作用(Stoffell et al., 2008; Fusswinkel et al., 2013; Pelch et al., 2015);对浅成低温Au-Ag矿,提出成矿物质可能由中偏碱性流体搬运并在绝热沸腾过程中沉淀(Simpson et al., 2015)。

3 石英微量元素研究及LA-ICP-MS分析

作为典型的Si-O四面体结构,很少有元素能够取代石英中的Si4+而使石英成为地球上最纯净的矿物之一(Götze, 2012)。虽然如此,一些元素仍然可以进入石英,尽管多数含量可能低于1×10-6(Götze, 2012)。Müller et al. (2012)统计了几千个LA-ICP-MS分析数据,发现石英中含量大于1×10-6的元素通常有Al、Ti、Na、Ca、K、Li、Fe、Cl、P、B和Ge,含量在1×10-9到1×10-6之间的有Pb、Br、Mn、Rb、Sr、Be、Ba、Zn、As、Ce、Cr、Cs、La、Ga、V、Nd、W、I、Co、Th、U、Ta、Ag、Sc、Sm、Dy、Yb、Eu和Hg,而少于1×10-9的有Hf、In、Tb、Lu和Au。微量元素进入石英晶格的方式主要有3种(Götze et al., 2004; Jacamon and Larsen, 2009):(1) 单离子替换,即具有相同电价的阳离子替换Si4+,如Ti4+、Ge4+和Ga4+等;(2) 离子团替换,如Al3+和相邻的P5+替换Si4+;(3) 电价补偿替换,如三价阳离子Al3+或Fe3+替代Si4+形成[A1O4/M+]0或[FeO4/M+]0结构中心,其中M+充当电价补偿离子,一般为碱金属离子如H+、Li+、Na+、K+。除了上述方式,Cl、Br、Ti、Al、Na、K、Ca、Mg、Mn、Sr、Ba、Cs、Rb、Fe、Cr、Co、Cu、Mn、Pb、Sc、W、U和REE同样可以以矿物/流体包裹体的方式存在于石英中(Götze, 2009)。一般而言,Al、Ti、Fe、Li、Na和K被认为是热液石英中最常见的替代硅的微量元素(陈小丹等, 2011)。石英晶格中的微量元素含量主要取决于石英的形成环境,即石英结晶时的温度、压力、结晶速度、熔体或流体组成、成矿流体的pH值以及石英形成以后所处的物理化学条件等(Götze et al., 2001, 2004; Landtwing and Pettke, 2005; Rusk et al., 2006, 2008b, 2011; Jourdan et al., 2009; 陈剑锋和张辉, 2011)。近年来发现石英中的Ti含量与温度、压力具有很好的相关性,从而提出了Ti温压计(Wark and Watson, 2006; Thomas et al., 2010; Huang and Audétat, 2012)。该温压计自提出后,已被广泛应用于计算岩浆岩、变质岩、伟晶岩甚至热液脉的温压条件等(Breiter et al., 2012, 2013; Haertel et al., 2013; Tanner et al., 2013; Müller et al., 2015; Maydagán et al., 2015)。

石英微量元素研究已有长达七十年以上的研究历史(Bray, 1942; Tatekawa, 1954)。早期的研究主要使用矿物颗粒光谱法(Bray, 1942; Tatekawa, 1954; Stavrov, 1961; Dennen, 1964, 1966, 1967; Dennen et al., 1970; Suttner and Leininger, 1972),该方法尽管能够实现某些元素的定量分析,但无论从分析精度还是分析元素种类方面都不是很理想。二十世纪八十年代末及之后,随着ICP-MS技术的发展,开始使用溶解石英颗粒并用质谱仪分析其微量元素的方法(Rossman et al., 1987; Rovetta et al., 1989; Larsen et al., 2000; Monecke et al., 2002; Götze et al., 2004),同时也有学者采用中子活化法(Götze et al., 1992; Götze and Lewis, 1994)、粒子诱导X射线发射法(PIXE, Bruhn et al., 1996)以及电子顺磁共振法(EPR, Götze and Plötze, 1997; Gurbanov et al., 1999)等。此外,离子探针也很早被用于石英微量元素研究(Hervig and Peacock, 1989; Rovetta et al., 1989; Perny et al., 1992)。最近二十年来,石英微量元素分析方法更加多样化,特别是具有高空间分辨率的微区原位分析方法,如电子探针(EPMA, Müller et al., 2003b; Donovan et al., 2011; Kronz et al., 2012; Tanner et al., 2013; Lambrecht and Diamond, 2014)、二次离子探针(SIMS, Demars et al., 1996; Watt et al., 1997; Müller et al., 2003b; Jourdan et al., 2009; Lehmann et al., 2009; Spear and Wark, 2009; Behr et al., 2011)和LA-ICP-MS (Flem et al., 2002; Müller et al., 2003b; Rusk et al., 2011; Jourdan et al., 2009; Tanner et al., 2013; Audétat et al., 2015; Maydagán et al., 2015; Cruz-Uribe et al., 2017),被大量用于石英微量元素研究。这些微区分析方法各有优劣,如EPMA具有最高的空间分辨率(几个μm),能够实现非破坏性的高准确度分析,其缺点是检测限较高,受运行条件、本底含量以及本底扣除方式影响较大,通常只能分析原子量相对较大(Na及以上的)且含量较高的Al、K、Ti、Fe和Na等元素(Müller et al., 2003b; Donovan et al., 2011; Kronz et al., 2012; Audétat et al., 2015);SIMS具有最高的灵敏度和分析精度,并能分析石英中重要元素H,但目前缺乏高质量的基体匹配外标(Müller et al., 2003b; Jourdan et al., 2009; Rusk, 2012; Audétat et al., 2015),并且分析成本较高;LA-ICP-MS能够同时分析几十种元素且具有较低的检测限(10-9至10-6)和足够高的精度(Flem et al., 2002; Müller et al., 2003b; Flem and Müller, 2012; Rusk, 2012),但其空间分辨率相对较低,且为破坏性分析,受不同元素的干扰、分馏效应以及记忆效应的影响较大(Audétat et al., 2015)。总体而言,LA-ICP-MS方法由于简单快捷、低成本、低检测限以及多元素检测的特点而受到更多的青睐,其应用也越来越广。结合阴极发光(SEM-CL)以及EPMA的分析效果更佳。

自从Flem et al. (2002)使用LA-ICP-MS分析石英微量元素以来,经过十多年的发展,石英微量元素LA-ICP-MS研究无论在分析方法还是在地质应用方面,都取得较多进展,主要包括:

(1) 在分析方法方面,建立准确测试石英微量元素含量的分析流程,特别是元素分馏、同位素或多原子干扰的扣除和校正方法,并与EPMA和SIMS分析结果对比,确定LA-ICP-MS分析的可靠性及其优劣特点(Flem et al., 2002; Müller et al., 2003b; Jourdan et al., 2009);建立了石英微量元素mapping方法,实现各种微量元素分布情况的可视化(Rusk et al., 2011);寻找适用于微区分析的天然石英标样,并给出推荐值(Audétat et al., 2015);使用碰撞反应池和天然石英标样,建立更准确的石英Ti测试方法(Cruz-Uribe et al., 2017)。

(2) 在应用方面,通过测试石英中Ti含量,结合石英Ti温压计,探讨成岩(Breiter et al., 2012, 2013; Huang and Audétat, 2012; Müller et al., 2015)、成矿(Tanner et al., 2013; Maydagán et al., 2015)和变质作用(Haertel et al., 2013)的温压条件;结合CL图像,探讨CL发光特征与微量元素的对应关系,揭示石英沉淀的流体化学条件,认识到石英生长速率、流体组份、pH及温度对石英微量元素含量和CL发光性的重要控制作用(Landtwing and Pettke, 2005; Rusk et al., 2006, 2008b, 2011; Götte et al., 2011; Jourdan et al., 2009),特别是发现流体包裹体与寄主矿物石英之间的元素再平衡与CL暗斑之间的内在关系(Lambrecht and Diamond, 2014);应用于岩浆石英,通过微量元素含量及比值变化,探讨岩浆的来源及演化过程(Larsen et al., 2004; Breiter and Müller, 2009; Jacamon and Larsen, 2009);应用于热液石英,探讨流体来源、演化及矿质沉淀机制等(Allan and Yardley, 2007; Tanner et al., 2013; Maydagán et al., 2015)。

4 仪器设备和实验条件 4.1 仪器设备

对流体包裹体和石英LA-ICP-MS分析而言,激光剥蚀系统的选择非常重要。石英性脆硬度高,对紫外激光吸收弱,容易在剥蚀过程中发生碎裂,因此对激光波长、能量及其稳定性要求很高。另外,热液矿床的流体包裹体通常10~20μm,在如此小的尺寸下要区分包裹体的不同相态(如气相、液相、子矿物相等),这对仪器观察系统的要求非常高,空间分辨率至少要达到几微米级。此外,由于流体包裹体通常赋存在寄主矿物的表面之下,并且不同期次的包裹体可能相互共存或穿插,要实现很好的观察识别,这要求激光系统同时配备具有反射光、透射光和偏光的岩相学级显微镜。目前流体包裹体分析最为常用的激光为193nm紫外激光,虽然最近使用的157nm激光比193nm激光更适合剥蚀石英,但目前基本上还未实现商业化。飞秒激光尽管能够消除热效应,但目前技术没有193nm激光成熟,且比193nm激光昂贵。作为设计初衷之一就是分析流体包裹体的仪器,GeoLas 193nm准分子激光剥蚀系统(Günther et al., 1997, 1998)是目前地学领域用到的同类型激光中具有最高能量密度的(最高达45J/cm2)激光系统,另外其配备了奥林巴斯偏光显微镜,能够实现与普通岩相学观察同步的研究,因此是开展流体包裹体LA-ICP-MS分析的较佳仪器。至于ICP-MS,目前最为常用的是Q-ICP-MS,其次为SF-ICP-MS、TOF-ICP-MS和MC-ICP-MS。前文述及,SF-ICP-MS具有很高的灵敏度和最低的检测限,可以分析更小的流体包裹体(Wälle and Heinrich, 2014),但较长的数据采集时间限制了其分析元素数量不如Q-ICP-MS和TOF-ICP-MS (Harlaux et al., 2015)。TOF-ICP-MS对所有元素具有快速的、近于同时的数据采集,因此在分析精度和降低检测限方面比Q-ICP-MS效果好,特别适合于瞬时信号分析的流体包裹体测试(Harlaux et al., 2015),但其商业化程度及技术成熟度目前不如Q-ICP-MS。MC-ICP-MS具有比Q-ICP-MS更高的灵敏度和更低检测限,特别是能分析同位素,但在分析元素数量方面不如Q-ICP-MS (Harlaux et al., 2015),并且其仪器成本远高于Q-ICP-MS。综合考虑分析精度、准确度、技术成熟度以及性价比等方面的因素,Q-ICP-MS是目前分析流体包裹体成分比较合适的仪器。

矿床地球化学国家重点实验室于2015年购置了GeoLasPro 193nm准分子激光剥蚀系统和Agilent 7900等离子体质谱仪用以开展流体包裹体成分分析。为尽可能降低本底,我们安装了气体过滤器对气体进行了净化处理。另外值得一提的是,样品池的形状、大小对流体包裹体分析成功与否至关重要。为了尽可能提高信噪比和降低检测限,小体积样品池(1~5cm3)对分析流体包裹体更合适(Heinrich et al., 2003)。GeoLas激光剥蚀系统的原配样品池为圆形大体积(~35cm3),直接使用,信号波动大、冲洗效率低,无法开展流体包裹体测试。在参考国内外同行实验室样品池设计的基础之上,并考虑到不同形状和大小样品放置的便利性,我们重新设计了体积约8cm3的样品池。新样品池无论在信号稳定性还是在消除位置效应和提高冲洗效率方面都较原配样品池有很大的提高。国内有实验室使用信号平滑器对信号稳定性进行优化,获得了很好的效果(涂湘林等, 2011; Hu et al., 2015),但使用平滑器通常会导致信号有几秒的延迟。对一般固体样品分析而言,只要将激光聚焦样品表面,在设定的剥蚀时间范围内,通常不太需要关注信号随剥蚀深度的变化,并且信号的延迟对分析结果的影响不大,但对包裹体这种赋存在寄主矿物表面之下的、具有深度依赖性的测试对象来说,需要即时观察信号随剥蚀时间和深度的变化,信号的延迟会导致无法准确判断剥蚀进度,因此其不适合使用信号平滑器,或者说不适合使用具有信号延迟效应的信号平滑器。

4.2 样品准备及实验条件

为了确定合适的外标样品、校正方法以及不同元素的检测限,实验室首先对国际上常用的玻璃质标样NIST610、NIST612、GSE-1G、GSD-1G、BCR-2G、BHVO-2G和BIR-1G进行测试,然后对人工合成流体包裹体进行分析,同时对国际上推荐的石英标样(Audétat et al., 2015)进行了对比测试。流体包裹体的合成以纯净人造石英柱为寄主矿物,采用先热淬火、再NaOH碱溶液侵蚀的方法使石英柱产生利于包裹体发育的裂纹,然后利用活塞圆筒使石英柱裂纹在800℃、0.5GPa条件下在XnCl-H2O溶液中愈合形成气液两相流体包裹体,相关实验方法和流程详见Zhou et al. (2016)。两种体系的流体包裹体被合成,一种为简单的NaCl-H2O体系,添加的组份为NaCl=10%,Rb=300×10-6,Cs=200×10-6。根据Bodnar (1993)针对NaCl-H2O体系提出的盐度-冰点公式(盐度=0.00+1.78T-0.0442T2 +0.000557T3T为冰点温度℃),该类包裹体的理论冰点为-6.6℃,使用冷热台显微测温实测获得的冰点为-6.7±0.2(n=10,1SD),对应盐度为10.1±0.2% NaCleqv。实测冰点变化较小并且与理论冰点在误差范围内一致,表明合成的包裹体成分是均匀的、准确的,可以作为标准样品开展LA-ICP-MS分析。另一类包裹体为NaCl-KCl-CaCl2-H2O体系,添加的组份为NaCl=5.21%,KCl=3.91%,CaCl2=5.67%,Rb=300×10-6,Cs=200×10-6。根据Heinrich et al. (2003)针对流体包裹体LA-ICP-MS分析提出的等效盐度经验计算公式(NaCleqv (%)=CNaCl+0.5×[CKCl+CFeCl2+CCaCl2+…]),该类包裹体的理论等效盐度为10% NaCleqv。然而通过冷热台显微测温实测获得的冰点为-10.4±0.3℃(n=16,1SD),根据Bodnar (1993)的公式,其等效盐度为14.4±0.3% NaCleqv。两种方法得出的等效盐度相差较大。由于等效盐度将作为内标计算流体包裹体的元素含量(Günther et al., 1998; Heinrich et al., 2003),到底哪种等效盐度更适合流体包裹体LA-ICP-MS分析,后文将进行详细讨论。将玻璃质标样、人工合成流体包裹体标样和石英标样分别制成适合样品池放置的环氧树脂靶,抛光并露出样品表面。实验过程中采用He气作为剥蚀物质的载气,并在进入ICP-MS前经T形三通接口与Ar气混合。在激光参数设置方面,通过对流体包裹体寄主矿物石英以及石英标样的反复试验,最佳剥蚀参数设置为激光能量100J,能量密度10J/cm2,脉冲10Hz。值得注意的是,在满足剥蚀要求的情况下,尽可能使用低能量密度,过高的能量密度会极大地缩短剥蚀物镜的寿命。为与流体包裹体和石英测试保持一致,对玻璃质标样也使用上述参数。关于激光束斑,根据合成包裹体大小的变化范围(多数10~60μm,集中在10~30μm),我们首先使用了16μm、24μm、32μm、44μm和60μm对玻璃质外标开展测试,确定激光束斑在≥24μm的情况下对分析结果准确度影响不大。最后考虑到无论是合成还是天然流体包裹体一般都小于30μm,并且地质样品激光分析最为常用的束斑也为30~40μm,因此在本次分析过程中我们选择32μm作为固定束斑对玻璃质及石英标样进行测试,而对流体包裹体,根据其大小调整束斑,总体上变化在16~60μm之间,尽可能使用32μm与外标保持一致。

在测试之前用NIST610对ICP-MS性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th≈1)、尽可能小的氧化物产率(ThO/Th < 0.3%)和低的背景值。仪器的详细参数见表 1。剥蚀过程中采用点剥蚀模式,对硅酸盐样品,每个点先采集约20秒的背景信号,然后50秒的样品信号,最后20秒等待信号下降至背景,总共90秒的采集时间。对流体包裹体,同样先采集20秒的背景,但由于寄主矿物石英的信号衰减较快,选择包裹体信号出现之前或者之后的石英信号都难以准确扣除寄主矿物的信息,因此我们采用两阶段剥蚀方法,第一阶段剥蚀石英至出现流体包裹体信号,待所有信号降至背景(包括寄主矿物的信号,一般会在50秒内完成,无论包裹体大小及赋存深度),选择包裹体附近的纯净石英进行第二阶段剥蚀,专门采集石英信号用以扣除寄主矿物的信息,总采集时间为150秒。该方法的优点是,除了能更准确地扣除寄主矿物信息,还可同时获得寄主矿物元素含量。所有元素的Dwell time统一设置为0.01秒,元素的选择见表 1。值得一提的是,由于石英在193nm准分子激光剥蚀过程中很容易发生碎裂,为了避免碎裂的发生,国际上有实验室采用逐步剥蚀方法(stepwise ablation, Günther et al., 1998; Heinrich et al., 2003),即先用小束斑激光初步打开流体包裹体,然后用大束斑激光包裹整个包裹体进行剥蚀。该方法极大地提高了流体包裹体剥蚀的可控性以及数据的重现性(Günther et al., 1998)。然而Pettke et al. (2012)认为逐步剥蚀方法存在一些缺点,如会导致更多的表面污染、降低信噪比、增大检测限以及在实际操作中难以实现激光束斑的快速切换等,从而主张使用直接剥蚀法(straight ablation),即用比包裹体略大的激光束斑剥蚀到底。综合考虑上述两种方法的优缺点以及本实验室的实际情况,我们采用直接剥蚀法。测试表明,采用直接剥蚀法,对人工合成流体包裹体的剥蚀成功率可达80%以上,但对天然样品,成功率相对较低且不同样品变化很大,大致在30%~70%之间。

表 1 分析仪器及相关参数 Table 1 Instruments and analytical conditions used for the LA-ICP-MS measurements
5 数据处理及结果 5.1 数据处理流程

玻璃质标样及石英标样的测试数据用ICPMSDataCal软件(Liu et al., 2008)处理,流体包裹体测试数据用SILLS (Guillong et al., 2008b)处理。关于硅酸盐样品分析的外标选择,国际上最为常用的外标为美国国家标准与技术局(NIST)合成的NIST610和NIST612(Jochum and Stoll, 2008; 刘勇胜等, 2013)。这两个标样的优点在于其微量元素种类齐全、含量高且均匀(>60个微量元素,NIST610微量元素含量主要集中在400×10-6~500×10-6,NIST612集中在30×10-6~40×10-6),缺点是其主量元素组成(主要为SiO2、Na2O、CaO和Al2O3)明显不同于天然样品,因此可能会因基体效应而导致严重的分析误差(Jochum and Stoll, 2008)。近年来越来越多的研究表明,用NIST61X做外标确实会因基体效应而导致元素分馏(Jochum et al., 2007; Liu et al., 2008; Hu et al., 2011),特别是对含Fe高的硅酸盐样品(Gaboardi and Humayun, 2009),因此NIST61X并不是分析天然硅酸盐样品的最佳标样(Liu et al., 2008)。为解决NIST61X因基体问题而导致的分析误差,美国地质调查局(USGS)合成了具有天然玄武岩主量元素组成但添加了其他微量元素的GS系列标准玻璃(Guillong et al., 2005; Jochum et al., 2005),其中的GSE-1G微量元素含量主要变化在400×10-6~600×10-6之间,大致与NIST610相当,GSD-1G主要在40×10-6~60×10-6之间,与NIST612相当。GS系列标准玻璃因其高微量元素含量以及弱的基体效应有望取代NIST61X成为理想的地质样品分析标样(Jochum and Stoll, 2008)。另外BCR-2G、BHVO-2G和BIR-1G具有天然玄武岩成分,也是较为常用的外标样品,但是这些标样的微量稀土元素,特别是稀土元素含量很低(小于1×10-6到小于10×10-6),并不是理想的普适性外标,但是可以作为已知样品进行对比分析,从而检验实验室对元素准确度以及检测限的控制能力。至于流体包裹体分析的外标样品,国际上使用的基本上都是NIST610或NIST612。

玻璃质标样和石英元素含量的计算,通过反复对比,我们采用Liu et al. (2008)推荐的多外标、无内标法(总量归一化法),同时选择Si作为归一化元素消除激光剥蚀量变化(如样品位置、聚焦程度不同)对灵敏度漂移的影响(Liu et al., 2008; 刘勇胜等, 2013)。相关原理及计算公式详见Liu et al. (2008)刘勇胜等(2013)。流体包裹体元素含量的计算,在使用NIST610或GSE-1G为外标的基础之上,采用国际上最为常用的NaCl等效盐度为内标的计算方法(Günther et al., 1998; Heinrich et al., 2003),其基本计算过程为:

(1)
(2)

公式中,i代表任意元素,is代表内标元素,I代表元素i的净信号强度(样品信号减去背景信号,对包裹体而言,背景信号包括气体背景以及寄主矿物背景),C代表元素含量,SAMP为待测样品,STD为外标样品,ξi为标样中任意元素相对于内标元素的分析灵敏度。公式(1) 中,外标样品的元素含量C已知,相应元素的信号强度I通过ICP-MS测得,因此可求得ξi。将ξi带入公式(2) 中,只要通过显微测温获得流体包裹体的等效盐度,将等效盐度转换为Na含量(CNa=CNaCl×23/58.45) 并将其作为内标元素is,就可以获得测试样品中任意元素i的含量。显微测温获得等效盐度的基本原理是根据流体包裹体的PVTX性质,前人对NaCl-H2O、KCl-H2O、CaCl2-H2O、NaCl-KCl-H2O和NaCl-CaCl2-H2O等二元到三元体系研究得较多,但对复杂的四元(NaCl-KCl-CaCl2-H2O)或者更多元体系研究得较少。在实际矿床研究中,很少存在纯的NaCl-H2O体系,更多的可能是NaCl±KCl±CaCl2-H2O多元体系,因此如何将显微测温结果转换为适合于LA-ICP-MS分析的等效盐度,获得最准确的内标元素含量,对测试结果的准确性至关重要。对XCln-H2O体系流体包裹体而言,NaCl等效盐度可以表达为(Allan et al., 2005):

(3)

式中,A为不同氯化物对等效盐度贡献的权重因子。Heinrich et al. (2003)根据XCln-H2O体系,特别是NaCl-KCl-H2O和NaCl-CaCl2-H2O体系溶解度-冰点变化关系,获得一个A为0.5的经验公式:

(4)

利用该公式可以简单快速地获得等效盐度,即不用考虑不同氯化物对等效盐度贡献的不同,除NaCl外其余氯化物的权重因子都设为0.5。由于其非常便利,自提出后受到广泛应用。Allan et al. (2005)将上述方法称之为质量平衡方法,但他通过人工合成流体包裹体发现,使用该方法获得的结果总体偏高,如Na高于理论值3%~27%,因此提出另一种计算方法,即电价平衡方法:

(5)
(6)

公式中m代表摩尔浓度(mol/kg),ni为Na以外的氯化物阳离子电价,Xi为氯化物阳离子。该方法的基本原理是Cl与阳离子之间的电价平衡(公式5)。首先通过显微测温获得等效盐度并求得Cl的含量,再通过ICP-MS获得其他阳离子与Na之间的比值(mXi/mNa),然后通过公式(6) 求得Na的含量并将其作为内标,最后获得所有待测元素的含量。Allan et al. (2005)通过合成NaCl-KCl-CaCl2-H2O、NaCl-KCl-CaCl2-MnCl2-MgCl2-H2O以及NaCl-KCl-CaCl2-MnCl2-FeCl2-H2O等流体包裹体证明电价平衡方法比Heinrich et al. (2003)的质量平衡方法更可靠,如Na的相对误差可以从27%降到±16%以内。以本次合成的NaCl-KCl-CaCl2-H2O包裹体为例,主要氯化物的理论值为NaCl=5.21%,KCl=3.91%,CaCl2=5.67%(忽略微量元素Rb=300×10-6和Cs=200×10-6),等效盐度按照Heinrich et al. (2003)的质量平衡方法计算为NaCleqv=5.21%+0.5×[3.91%+5.67%]=10%,但是实测的冰点为-10.4±0.3℃(n=16,1SD),根据Bodnar (1993)的冰点-盐度公式获得的等效盐度为14.4±0.3% NaCleqv,二者相差约30%。换句话说,如果我们使用实测冰点对应的等效盐度为内标,根据Heinrich et al. (2003)的方法计算,会高估盐度约30%。如果按照电价平衡方法计算,Cl的理论含量为8.65%(=5.21%×35.45/58.45+3.91%×35.45/74.45+5.67%×70.9/110.9),实测值以盐度14.4% NaCleqv计算则为8.73%(=14.4%×35.45/58.45),Cl的理论值比实测值仅低约1%,二者非常接近,因此电价平衡方法更适合于多元XCln-H2O体系流体包裹体分析。两种计算方法的结果对比详见后文。另外需要指出的是,天然流体包裹体中XCln-H2O-CO2包裹体普遍存在,但目前少有实验对这类含CO2包裹体进行人工合成并开展LA-ICP-MS分析,那么上述计算方法是否适合含CO2包裹体?考虑到元素含量的计算主要基于内标元素Na,因此只要通过其他方法能够准确获得内标元素的含量(对含CO2包裹体而言,可通过笼合物溶化温度获得等效盐度),就可以获得可靠的结果,而与是否含CO2无关。

5.2 分析结果

为了验证NIST610做外标的适用性以及GSE-1G是否具有更好的效果,我们分别用NIST610和GSE-1G做外标,对玻璃质标样NIST612、GSD-1G、BCR-2G、BHVO-2G、BIR-1G以及石英和人工合成包裹体标样进行了对比分析。

5.2.1 玻璃质标样

当使用NIST610为外标时,与其具有相似主量元素组成的NIST 612显示最好的测试结果。在激光束斑32μm、脉冲10Hz的条件下,9次测量58个元素的相对标准偏差(RSD),除了P (17%)、Fe (13%)和Se (11%)外,其余元素为1%~5%,90%以上的元素变化在1%~3%之间(图 1a),这表明仪器稳定性以及测试结果的重现性都很好。在准确度方面,除了P (相对误差30%~100%)、Fe和Se (相对误差20%~40%)、Mg、Ge以及Bi (相对误差±10%~20%)具有较大的相对误差外,其余元素基本上都在±10%以内(图 1a),在分析的58个元素中47个元素在9次测试过程中的相对误差均在±5%以内,这表明绝大部分元素的测试结果准确度较高,同时也表明NIST610适用于与其具有相似基体组成的硅酸盐分析。值得注意的是,在相对标准偏差和相对误差都较大的几个元素中,P是主量元素(环境本底很高)且在NIST612中含量极低( < 0.01%),测试过程中信噪比低,再加上其具有很高的电离能(>8eV),很难被ICP-MS电离,因此其测试结果误差通常较大。Fe同样是主量元素且含量低( < 0.01%),同时受ArO多原子干扰,其也很难测准。Se也具有很高的电离能(>8eV),这可能是其具有较大误差的主要原因。

图 1 玻璃质标样LA-ICP-MS测试值与标准值的相对误差 相对误差=100%×(测试值-标准值)/标准值,竖线代表多次测量的相对标准偏差 Fig. 1 Relative deviations of element concentrations in the reference glasses calibrated against the preferred values

对同时具有天然和人工组份的GSE-1G和GSD-1G,除P、Se、Au外,其余元素的9次测量的相对标准偏差均小于5%,90%以上小于3%(图 1b),同样表明测试结果的重现性很好。P、Se和Au都具有很高的电离能(>8eV),因此较难测准。在准确度方面,这两个样品的B、P、Ge、As、Se、Sn、Au的相对误差超过±20%,Be、Mg、Ti、Fe、Sb的相对误差在±10%~20%之间,其余元素基本上都在±10%以内,主要分布在±5%~10%之间(图 1b),GSD-1G的结果略好于GSE-1G,总体上GSE-1G和GSD-1G测试结果的准确度要明显低于NIST612,表明NIST610对GSE-1G和GSD-1G而言不是很理想的外标。

对具有玄武质成分的天然样品BCR-2G、BIR-1G和BHVO-2G,BCR-2G的Be、B、Ge、As、Se、Ag、Sn、Sb、Au、Tl和Bi的相对标准偏差大于5%,其余元素都小于5%,BHVO-2G的Be、Ge、Ag、Sn、Sb、Cs,Au、Lu、W、Tl、Bi、Pb、U相对标准偏差大于5%,其余小于5%,BIR-1G的Be、Ge、Rb、Nb、Mo、Ag、Sn、Sb、Cs、Ba、La、Pr、Nd、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu、Hf、Ta、Bi、Th和U相对标准偏差大于5%,其余小于5%(图 1c-e)。值得注意的是,所有这些相对标准偏差大于5%的元素含量小于10×10-6到小于1×10-6,这表明误差较大主要是由低含量导致的,同时也表明在对分析小于10×10-6的低含量-超低含量元素时需要谨慎。在准确度方面,绝大部分元素的相对误差变化在±5%~20%之间,较多超出±10%,特别是出现系统的负偏差(图 1c-e),表明NIST610不太适合于这些基性硅酸盐分析。

当使用GSE-1G为外标时,与其具有相似主量元素组成的GSD-1G显示最好的分析结果(图 1b)。9次测试,58个元素中除了P和Se外,其余元素的相对标准偏差均小于5%,90%以上小于3%。在准确度方面,除了P、Cr、As和Se外,其余元素的相对误差在±10%以内,绝大部分分布在±1%~5%之间。对NIST612,除了P、Fe、Se、Au外,其余元素的相对标准偏差均小于5%,但在准确度方面,70%以上的元素的相对误差在±5%~15%之间,特别是稀土元素和重质量元素,通常超出10%,多数出现系统的正偏差(图 1a)。对天然样品BCR-2G,除了Be、B、P、Ge、Ag、Sn、Sb、Tl、Bi外,其余元素的相对标准偏差小于5%,相对标准偏差较大的元素中,除P外,其余都是含量10-9到几个10-6的低含量元素;在准确度方面,除Be、B、P、Cu、Zn、Ga、Ge、Ag、Sn、Sb、Ta、Tl、Bi通常超出±10%外,其余在±10%内。BIR-1G和BHVO-2G的微量元素含量多数很低,通常在10-9到几个10-6之间,因此准确度较差,相对误差一般在±5%~20%之间。总体上,对具天然组份的基性样品GSD-1G、BCR-2G、BIR-1G和BHVO-2G,以GSE-1G为外标时绝大部分元素的准确度相对于以NIST610为外标有明显的提高,特别是主量元素Mg、Si、K、Ti、Fe,相对误差可以从±5%~15%改善到±5%以内(图 1c-e),对微量稀土元素,大致有5%~10%的改善。但对NIST612而言,多数元素的准确度变差,从相对误差在±5%以内变为±5%~20%,这表明GSE-1G比NIST610更适合做天然基性样品的外标。

5.2.2 石英标样

在石英标样分析方面,标样中7个元素具有推荐值,即Li=30±2×10-6、Al=154±15×10-6、Ti=57±4×10-6、Fe=2.2±0.3×10-6、Mn=0.34±0.04×10-6、Ge=1.7±0.2×10-6和Ga=0.020±0.002×10-6(Audétat et al., 2015)。在激光束斑32μm、脉冲10Hz、能量密度10J/cm2的条件下,NIST610为外标时,10次测试结果显示Li=28.0±0.8×10-6、Al=147.6±2.5×10-6、Ti=52.6±1.2×10-6和Ge=1.71±0.24×10-6(1SD)(表 2),测试值与推荐值在误差范围内一致。Fe和Mn为主量元素,且含量很低,导致信噪比低,测试结果误差很大(Fe=1.81±1.35×10-6,Mn=0.34±0.21×10-6)。Ga含量太低,测试结果(Ga=0.04±0.03×10-6)基本不具备参考意义。Li、Al、Ti和Ge的测试结果表明NIST610可以作为分析石英微量元素的外标。另外值得一提的是,本次分析使用的激光束斑为32μm,推荐值使用的束斑为80~90μm,可以预见,如果使用同样的大束斑,能够对低含量元素Fe、Mn、Ge和Ga获得更好的结果。

表 2 石英标样微量元素LA-ICP-MS测试结果(×10-6) Table 2 Trace element concentrations in reference quartz analyzed by LA-ICP-MS (×10-6)

GSE-1G为外标时,10次分析结果显示Li=28.6±0.8×10-6、Al=154.4±4.4×10-6、Ti=60.9±2.4×10-6,准确度较NIST610为外标略有提高,特别是Al。但是Ge准确度下降很多,其值(1.28±0.15×10-6)比推荐值低了约25%。Fe、Mn同样由于含量低,误差很大(Fe=2.11±1.89×10-6,Mn=0.36±0.27×10-6),但Fe测试结果更接近推荐值。总体而言,GSE-1G为外标时多数元素的测试值比NIST610为外标时升高,与推荐值的相对误差有好有坏,基本上也可以作为分析石英微量元素的外标。

5.2.3 人工合成流体包裹体

在人工合成包裹体方面,前文述及,等效盐度的不同计算方法将对分析结果产生巨大影响。对纯的NaCl-H2O体系而言,Bodnar (1993)Heinrich et al. (2003)公式的等效盐度完全一致,质量平衡和电价平衡计算结果也没有差别,因此上述方法均可使用。本次对NaCl-H2O流体包裹体的测试,以NIST610为外标、理论等效盐度10% NaCl为内标,20个包裹体测试结果显示Rb=303±14×10-6、Cs=197±11×10-6(1SD)(表 3),Rb和Cs相对标准偏差小于6%,相对误差在±13%以内。当使用GSE-1G为外标时,结果为Rb=291±15×10-6、Cs=201±12×10-6(1SD),Rb相对于NIST610为外标时略偏低,但与理论值在误差范围内一致。

表 3 NaCl-H2O流体包裹体LA-ICP-MS测试结果 Table 3 Element concentrations in synthetic NaCl-H2O fluid inclusions analyzed by LA-ICP-MS

对NaCl-KCl-CaCl2-H2O流体包裹体,以NIST610为外标、实测等效盐度14.4% NaCleqv为内标,按电价平衡方法计算,20个包裹体的测试结果为Na=2.18±0.13%、K=2.08±0.11%、Ca=1.96±0.12%、Rb=298±13×10-6、Cs=190±13×10-6(1SD)(表 4),相对标准偏差小于7%,相对误差在±16%以内,绝大部分在±10%以内。按质量平衡方法计算,Na=3.06±0.13%、K=2.91±0.16%、Ca=2.74±0.22%、Rb=418±20×10-6、Cs=266±19×10-6(1SD)。合成包裹体的元素理论值为Na=2.05%,K=2.05%,Ca=2.04%,Rb=300×10-6,Cs=200×10-6,电价平衡方法计算出来的结果与理论值在误差范围内一致,但质量平衡方法计算出来的结果总体上比理论值高30%~50%(表 4)。当以GSE-1G为外标时,按电价平衡方法计算,Na=2.15±0.12%、K=1.97±0.09%、Ca=2.05±0.14%、Rb=270±11×10-6、Cs=186±11×10-6(1SD),总体上与NIST610为外标时接近,但Rb偏低较多。

表 4 NaCl-KCl-CaCl2-H2O流体包裹体LA-ICP-MS测试结果 Table 4 Element concentrations in synthetic NaCl-KCl-CaCl2-H2O fluid inclusions analyzed by LA-ICP-MS

上述结果表明,以NIST610为外标、实测等效盐度为内标、电价平衡方法计算,能够对多元XnCl-H2O流体包裹体获得可靠的结果,相对误差总体上在±16%以内,绝大部分(90%左右)在±10%以内(图 2),相对标准偏差均小于7%。国际同行实验室对人工合成流体包裹体的LA-ICP-MS测试结果多数元素的误差在20%以内(Günther et al., 1998; Heinrich et al., 2003; Allan et al., 2005),上述测试结果与其相当或略优。另外,其同时表明Heinrich et al. (2003)的经验公式(质量平衡方法)不适合于非纯NaCl-H2O包裹体分析。GSE-1G为外标与NIST610为外标在校正方面各有优劣,在本次分析的流体包裹体中,它可以使Ca更接近理论值,但Rb明显偏低。考虑到GSE-1G更适合基性样品分析,其可能在分析辉石、橄榄石、石榴石等偏基性矿物里面的流体包裹体时比NIST610更合适。

图 2 NaCl-KCl-CaCl2-H2O包裹体LA-ICP-MS测试值与标准值的相对误差 Fig. 2 Relative deviations of element concentrations in the synthetic NaCl-KCl-CaCl2-H2O fluid inclusions calibrated against the theoretical values
6 应用研究

实验室对所建方法开展了初步的应用研究,研究对象为鲁西王家庄Cu-Mo矿。王家庄Cu-Mo矿位于邹平火山岩盆地(汤立成, 1990) (图 3a),处于华北克拉通东部岩石圈强烈减薄地带(Chen et al., 2008),形成于早白垩世(~128Ma)(Lan et al., 2017),与岩石圈减薄的峰期时间(早白垩世, 徐义刚等, 2009; 朱日祥等, 2011)一致,因此属于陆内岩石圈伸展作用产物(张军等, 2008)。其与碱性石英二长岩相关(Lan et al., 2017),并具有细脉浸染状-伟晶岩状矿体以及铜钼分带特征,在构造背景和成矿岩体方面明显不同于传统的产于弧环境、与钙碱性岩石有关的斑岩型Cu-Mo矿(Richards, 2003, 2011; Cooke et al., 2005; Sillitoe, 2010; Wilkinson, 2013),因此在揭示陆内Cu-Mo成矿作用方面具有重要的研究意义。

图 3 鲁西地块(a, 据张锡明等,2007修改)及王家庄岩体(b, 据袁叔容和黎秉符,1988)地质简图 Fig. 3 Geological maps of the Luxi Block (a, modified after Zhang et al., 2007) and the Wangjiazhuang intrusive complex (b, modified after Yuan and Li, 1988)

矿床总体上赋存于隐伏的复式杂岩体之中,杂岩体从外到内分别为闪长岩、二长岩和石英二长岩,矿体位于蚀变的石英二长岩中(孔庆友等, 2006) (图 3b)。矿区蚀变强烈,主要包括钾化、钾硅化、硅化、绢英岩化、绿泥石化和高岭土化等,其中钾硅化为主要的赋矿围岩(图 4图 5a-d)。矿区发现28个矿体,绝大多数为位于深部的细脉浸染状矿体,Cu的品位一般为0.51%~0.6%,但位于浅部的17号矿体为富铜钼含金的伟晶岩状富矿体(图 5e-h),其Cu品位一般为6.19%~9.05%,最高可达17%,Mo最高可达0.86%,Au最高可达13.67g/t (孔庆友等, 2006)。另外值得注意的是,17号矿体存在上铜下钼的现象,即富Cu矿体经石英核过渡为含Cu的富Mo矿体(汤立成, 1990) (图 4)。矿石矿物主要为黄铜矿、斑铜矿、砷黝铜矿、硫砷铜矿和辉钼矿等(图 5j-l),脉石矿物为长石、石英、黑云母、绢云母、绿泥石等。由于细脉浸染状矿石流体包裹体少且小,本次研究主要针对伟晶岩状矿石,同时也对成矿期后的石英脉进行了研究。

图 4 王家庄Cu-Mo矿15号勘探线剖面图(据汤立成, 1990修改) Fig. 4 Geological section along the No.15 Exploration Line from the Wangjiazhuang deposit (modified after Tang, 1990)

图 5 代表性岩石、矿石照片 (a)新鲜石英二长岩;(b)新鲜石英二长岩显微照片;(c)钾化石英二长岩;(d)绢英岩化石英二长岩;(e)伟晶状钾长石-石英-黑云母脉;(f)伟晶状石英脉;(g)伟晶状石英+钾长石+黄铜矿+斑铜矿矿石;(h)伟晶状石英+钾长石+黑云母+辉钼矿矿石;(i)浸染状辉钼矿+黄铁矿分布于蚀变石英二长岩中;(j)黄铜矿+斑铜矿+砷黝铜矿+辉钼矿共生共生;(k)黄铜矿+斑铜矿+砷黝铜矿+黑云母共生;(l)辉钼矿+黑云母共生. Pl-斜长石;Kf-钾长石;Bi-黑云母;Qz-石英;Cpy-黄铜矿;Py-黄铁矿;Bn-斑铜矿;Tn-砷黝铜矿;Mo-辉钼矿 Fig. 5 Photos and microphotographs of representative rock and ore samples from the Wangjiazhuang deposit (a) fresh quartz monzonite; (b) major minerals of the quartz monzonite; (c, d) potassic and sericitic alterations of the quartz monzonite, respectively; (e) potassic-silicic alteration, expressed as Kf+Qz+Bi vein; (f) silicic alteration, expressed as Qz vein; (g) vein-type ores showing coarse and well-crystallized Qz+Kf+Cpy+Bn assemblages; (h) pegmatitic vein-type ores showing Qz+Kf+Bi+Mo assemblages; (i) coarse Mo and Py disseminated in the altered quartz monzonite; (j) mineral assemblages of Mo+Cpy+Bn+Tn+Qz; (k) mineral assemblages of Cpy+Bn+Tn+Bi+Qz; (l) mineral assemblages of Mo+Bi+Qz. Abbreviations: Pl-plagioclase; Kf-K-feldspar; Bi-biotite; Qz-quartz; Cpy-chalcopyrite; Py-pyrite; Bn-bornite; Tn-tennantite; Mo-molybdenite

综合岩相学观察、拉曼分析及显微测温,伟晶岩状矿石的流体包裹体主要有三类(Lan et al., 2017):(1) 富液相H2O包裹体(图 6a),气液两相,气相H2O体积通常小于40%,负晶形、圆形到不规则状,一般10~20μm,孤立状或群体分布;(2) 富气相H2O包裹体(图 6b),同样气液两相,但气相H2O体积通常大于70%,一般为9~20μm。值得注意的是,该类包裹体在拉曼分析时有时会出现弱的CO2信号,但在岩相学观察及冷热台显微测温过程中无法观测到CO2特征。由于拉曼光谱对CO2的检测限可以低至1bar,而在显微测温时能观察到CO2的相变至少需要CO2压力达到10.4bar (可观察到CO2笼合物融化)或者45bar (可观察到固相CO2融化)(Rosso and Bodnar, 1995),这表明此类包裹体中的CO2含量很低,基本可以忽略不计;(3) 含子矿物包裹体(图 6c),由液相H2O、气相H2O和子矿物相组成,通常不规则状,6~32μm,气相H2O体积一般小于30%,子矿物相体积占比变化在5%~50%之间。子矿物包括石盐(立方体状)、钾盐(通常为圆形)以及赤铁矿(红色及拉曼分析)(图 6d)。上述三类包裹体发育较多且通常共生(图 6e)。另外在测试过程中发现了一个孤立状、负晶形的三相CO2-H2O包裹体(图 6f),尽管只发现了一个,但也表明成矿流体中确实含有一定的CO2。成矿期后石英脉中仅发现富液相H2O包裹体,通常定向群体分布。

图 6 流体包裹体显微照片 (a)富液相包裹体;(b)富气相包裹体;(c)含子矿物包裹体;(d)含赤铁矿包裹体;(e)富气相+富液相+含子矿物包裹体共生;(f) CO2+H2O三相包裹体. V-气相; L-液相; D-含子矿物 Fig. 6 Microphotographs of different types of fluid inclusions from the hydrothermal veins (a) shows the L-type fluid inclusions in pegmatitic vein; (b) shows the V-type fluid inclusion; (c) shows the multiple daughter minerals (sylvite+halite) in a D-type fluid inclusion; (d) illustrates hematite+halite daughter minerals in a D-type fluid inclusion; (e) indicates the coexistence of D-type, L-type and V-type fluid inclusions and (f) shows a typical C-type fluid inclusion. Abbreviations: V-vapor; L-liquid; D-daughter mineral

显微测温结果表明(Lan et al., 2017),成矿期富液相H2O包裹体的冰点为-10.3~-5.0℃,对应盐度7.9%~14.2% NaCleqv (峰值8%~10% NaCleqv),均一温度280~417℃(主要在340~390℃之间)。富气相H2O包裹体的冰点为-4.9~-1.1℃,对应盐度1.9%~7.7% NaCleqv (峰值5%~7% NaCleqv),均一温度306~415℃(主要在350~400℃之间)。值得注意的是,该类包裹体少数为临界均一,均一温度为384~388℃。对含子矿物包裹体,部分包裹体的子矿物在气泡消失之后融化,气泡消失温度为177~404℃,子矿物融化温度为287~466℃,另一部分子矿物在气泡消失之前融化,子矿物融化温度为198~324℃,气泡消失温度为289~352℃。根据子矿物先消失气泡后消失(Hall et al., 1988)以及气泡先消失子矿物后消失(Lecumberri-Sanchez et al., 2012)的盐度计算模型,利用Steele-MacInnis et al. (2012)编写的Excel程序计算,该类包裹体的盐度总体为33.8%~52.6% NaCleqv (峰值40%~45% NaCleqv)。根据气泡或子矿物的最终消失温度,均一温度为287~466℃(主要在340~390℃之间),均一温度与富液和富气相H2O包裹体相似。对唯一一个CO2-H2O三相包裹体,其三相点为-56.6℃,CO2笼合物融化温度为8.6℃,对应盐度为2.77% NaCleqv,均一温度为384℃,与富气相包裹体的临界均一温度非常一致。成矿期后富液相H2O包裹体冰点为-5.3~-4.4℃,对应盐度7.0%~8.3% NaCleqv,均一温度246~292℃,盐度与成矿期富液相包裹体相近,但均一温度明显下降。上述结果表明,成矿流体为中高温、中高盐度流体(图 7),成矿温度主要在300~400℃之间(伟晶状矿石,含晶洞,未经也无需压力校正),结合不同类型包裹体共生且具有相似均一温度的特征,在该温度区间很可能发生了流体沸腾作用,特别是富气相包裹体临界均一发生在384~388℃之间,并与含CO2包裹体的均一温度(384℃)具有一致性,暗示沸腾作用最有可能发生在380~390℃之间。本矿床流体特征与斑岩型矿床的流体特征相似,特别是沸腾作用/相分离,是众多斑岩型矿床成矿流体演化的重要特征之一(Sillitoe, 2010; Richards, 2011),在很大程度上控制了矿质的沉淀,这也可能是本矿Cu、Mo沉淀的重要机制。

图 7 流体包裹体盐度(a)和温度(b)直方图 Fig. 7 Histograms showing salinities (a) and homogenization temperatures (b) of different types of fluid inclusions

LA-ICP-MS分析结果显示(图 8),含子矿物包裹体中元素种类最多且含量高,主要有Na、K、Mn、Fe、Cu、Zn、Rb、Sr、Mo、Cs、Ba、W、Tl和Pb,富液相包裹体也含Na、K、Mn、Cu、Zn、Rb、Sr、Cs、Ba和Pb,但其含量远低于含子矿物包裹体,特别是基本不含Fe、Mo、W和Tl (Lan et al., 2017)。富气相包裹体含最低的Na、K、Mn、Fe、Zn、Rb、Sr和Pb,偶尔含Mo,但其Cu含量远高于富液相包裹体,有的甚至比含子矿物包裹体还高。成矿后流体包裹体中元素简单,主要为Na和K,偶尔含Rb、Sr、Cs和W。由于元素绝对含量的计算是以NaCl等效盐度为内标,而等效盐度受显微测温结果影响较大,因此元素比值比元素含量更稳定可靠。成矿期流体包裹体的K/Na比值(图 9a),在含子矿物包裹体中为0.22~0.64(平均0.38),到富液相包裹体略有降低(0.09~0.49,平均0.27),但在富气相包裹体中明显升高(0.16~0.90,平均0.46)。成矿期后富液相流体包裹体K/Na比值最低,为0.12~0.36(平均0.21),与成矿期富液相包裹体相似。另外,含子矿物包裹体具有最高的Mn/Na、Fe/Na和Pb/Na比值。最为显著的是,Cu/Na比值在富气相包裹体中最高(0.11~1.12,平均0.45),在含子矿物包裹体中最低(0.007~0.10,平均0.055),而富液相包裹体(0~0.66,平均0.12) 位于二者之间(图 9b)。另外,Mo含量在含子矿物包裹体中最高,而在其他类型包裹体仅偶尔含Mo (图 9c)。上述结果表明:(1) 含子矿物包裹体容纳元素的能力最强,暗示氯化物是众多元素的主要搬运介质,特别是成矿元素Mo,基本都在含子矿物包裹体中;(2) 富气相包裹体对Cu有特别的富集作用,暗示气相可能是Cu的重要搬运介质,尽管含子矿物包裹体同样含有一定的Cu;(3) K比较倾向于进入气相,并与Cu具有正相关关系,暗示Cu的搬运与碱金属钾具有一定的关系,这与斑岩型矿床中矿体与钾硅化密切相关的现象一致(Ulrich and Heinrich, 2001; Einaudi et al., 2003; Cathles and Shannon, 2007; Sillitoe, 2010)。Cu和Mo进入不同介质搬运的特征可以很好地解释伟晶岩状矿体上铜下钼的分带现象,即倾向于进入气相的Cu具有更高的活动性,成矿流体在浅部发生相分离的时候其向上运移在上部沉淀,而倾向于进入高盐度流体相的Mo活动性相对较弱,在下部沉淀成矿。

图 8 成矿期不同类型流体包裹体信号图 Fig. 8 LA-ICP-MS signals of different types of fluid inclusions from the ore-forming fluid

图 9 流体包裹体K/Na-Na (a)、Cu/Na-Na (b)以及Mo-Na (c)协变图 Fig. 9 Plots of (a) K/Na vs. Na, (b) Cu/Na vs. Na and (c) Mo vs. Na for the fluid inclusions

本次研究对成矿岩体石英二长岩、伟晶岩状矿体及成矿期后石英脉的石英同样进行了LA-ICP-MS微量元素分析。在分析之前对石英进行了CL照相,用以识别石英的生长环带、不同期次穿插交代关系等。CL拍照在矿床地球化学国家重点实验室扫描电镜实验室完成。CL图像显示,石英二长岩和热液脉中的石英不具有明显的环带,表明石英成分比较均匀。在进行LA-ICP-MS分析时避开了后期穿插或者交代部位,也避开了流体/矿物包裹。测试结果表明(Lan et al., 2017),岩浆和热液石英都含有Li、Na、Mg、Al、K、Ti、Sc、Cr和Ge,但Mg、Ti和Sc在岩浆石英中最高,而Li、Na、Al和Ge在成矿期后石英中最富。成矿期石英含有最低的Na和最高的K。Ti含量从石英二长岩(141×10-6~199×10-6)到伟晶状矿石(21.5×10-6~27.5×10-6)到成矿期后石英脉(3.3×10-6~10.8×10-6)依次降低,与前人提出的石英Ti含量与温度具有正相关关系的结果一致。由于本次研究未在热液脉中观察到金红石,难以确定热液脉中的Ti是否饱和,因此本次研究未利用石英Ti温压计对其进行温度、压力的计算。Rusk et al. (2008b)认为无论在什么情况下,矿床中石英Ti含量高于10×10-6反映了其形成温度大于350℃,低于10×10-6则反映了其形成温度小于350℃。根据该结论,成矿期伟晶状矿石形成温度大于350℃,而成矿期后石英脉小于350℃。该结论与流体包裹体显微测温结果相符。对石英二长岩利用石英Ti温压计(Huang and Audétat, 2012)进行侵位压力计算,结果显示压力为0.82~1.54kbar (平均1.1±0.2kbar,1SD,n=17) (Lan et al., 2017),按地壳平均密度2800kg/m3(Rudnick and Fountain, 1995)计算,其对应的深度为3.0~5.6km (平均4.0±0.7km,1SD,n=17),比一般的斑岩矿床成矿岩体侵位深度(~1km到6km, 平均1.9km, Kesler and Wilkinson, 2008)略深,这可以很好地解释石英二长岩为什么不具斑状结构。Al含量从岩浆石英(135×10-6~196×10-6)到成矿期石英(170×10-6~220×10-6)略有升高,但到成矿期后石英发生台阶式升高(>2000×10-6)(图 10a)。Rusk et al. (2008b)通过对热液矿床的研究认为石英中Al含量与温度关系不大,但强烈受控于流体的pH条件,如在200℃时,从pH值3.5降到1.5,Al溶解度可以提升6个数量级,因此石英中Al含量可能指示了流体的酸碱度变化。在本矿床中,从成矿期到成矿期后,石英Al含量的剧烈升高可能暗示矿质的沉淀在一定程度上受控于流体pH的下降。石英中K含量从成矿期到成矿期后的下降也可能反映了该过程(图 10b)。从成矿期到成矿后,石英中Al含量与Li和Ge具有明显的正相关关系(图 10c, d),而与Ti为负相关关系(图 10a),这种特征与世界上其他地区的岩浆-热液相关矿床的石英微量元素演化特征一致(Allan and Yardley, 2007; Maydagán et al., 2015),可能反映了岩浆-热液演化过程中普遍存在的温度下降、天水加入等过程(Allan and Yardley, 2007)。

图 10 石英中Al与Ti (a)、K (b)、Li (c)和Ge (d)协变图 Fig. 10 Plots of Al against Ti (a), K (b), Li (c) and Ge (d) for the quartz

综上所述,王家庄Cu-Mo矿成矿流体(伟晶岩状矿石)为氧化性(含赤铁矿)中高温、中高盐度流体,与斑岩型矿床具有很大相似性,流体在300~400℃之间发生沸腾作用,导致气、液相分离,Cu倾向于进入气相并向上运移,Mo倾向于进入液相,最后导致上铜下钼的分带沉淀现象,矿质的沉淀除了受控于相分离作用,还可能与水-岩相互作用或者天水加入等导致的流体pH变化有关。

7 结语

元素及同位素的微区原位分析已成为当今精细了解成矿过程、深入理解成矿机理不可或缺的手段。随着国际上LA-ICP-MS分析技术的发展及广泛应用,在国内建立流体包裹体及石英微量元素LA-ICP-MS分析方法势在必行。依托于矿床地球化学国家重点实验室的LA-ICP-MS设备,我们通过合成人工流体包裹体,并结合国际上常用的玻璃质标样以推荐的石英标样,建立了流体包裹体及石英LA-ICP-MS分析方法。流体包裹体分析结果表明,元素的相对误差在±16%以内,绝大部分在±10%以内,相对标准偏差(RSD)小于7%。该分析结果与国际同行实验室相当甚至更优,表明本分析方法和结果是可靠的。石英微量元素的分析结果表明,主要元素Li、Al和Ti的相对误差在±10%以内,相对标准偏差小于5%。利用建立的方法对鲁西早白垩世王家庄Cu-Mo矿开展了应用研究,结果表明Cu和Mo具有不同的搬运机制,Cu更倾向于气相,而Mo则倾向于进入液相,这可能是导致该矿上铜下钼分带沉淀的重要因素。此外,从早期岩浆成因石英到成矿期热液石英到成矿期后石英,微量元素具有明显的Ti降低而Al升高的趋势,暗示成矿元素的沉淀同时还受到温度和流体酸碱度变化的控制。

需要指出的是,尽管本次研究对人工合成流体包裹体获得了可靠的结果,但由于合成的包裹体体系相对简单,添加的元素也较少,而天然包裹体体系非常复杂,因此针对不同矿床类型、添加不同元素合成与矿床相匹配的流体包裹体,用以作为分析过程中的质控外标,是下一步的重要工作内容。另外,流体包裹体内标元素的选择及计算方式对分析结果的可靠性至关重要,而目前存在多种计算方法,到底哪一种更适合LA-ICP-MS分析或者更具普适性,也需要进一步验证。此外,本次分析所使用的石英标样,其可用元素太少,含量过低,并不是一个很好的石英标样,因此合成多元素石英标样,或者寻找元素多且含量高的岩浆石英标样,也是亟需开展的工作。

致谢 丹麦奥胡斯大学Thomas Ulrich副教授在分析方法方面提供了很好的建议;Andreas Audétat教授提供了石英标样;在测试过程中得到矿床地球化学国家重点实验室韩涛、戴智慧高级工程师的帮助;野外工作得到山东省地质科学院沈昆研究员、舒磊工程师以及邹平铜钼矿工作人员的帮助;审稿人提出了中肯意见和建议;在此一并表示衷心感谢。本项研究也受到矿床地球化学国家重点实验室领域前沿项目以及中国科学院“西部青年学者”A类支持。
参考文献
[] Adachi T, Hokada T, Osanai Y, Toyoshima T, Baba S, Nakano N. 2010. Titanium behavior in quartz during retrograde hydration:Occurrence of rutile exsolution and implications for metamorphic processes in the Sør Rondane Mountains, East Antarctica. Polar Science, 3(4): 222–234. DOI:10.1016/j.polar.2009.08.005
[] Albrecht M, Derrey IT, Horn I, Schuth S, Weyer S. 2014. Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, 29(6): 1034–1041. DOI:10.1039/C4JA00015C
[] Allan MM, Yardley BWD, Forbes LJ, Shmulovich KI, Banks DA, Shepherd TJ. 2005. Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. American Mineralogist, 90(11-12): 1767–1775. DOI:10.2138/am.2005.1822
[] Allan MM, Yardley BWD. 2007. Tracking meteoric infiltration into a magmatic-hydrothermal system:A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chemical Geology, 240(3-4): 343–360. DOI:10.1016/j.chemgeo.2007.03.004
[] Audétat A, Günther D, Heinrich CA. 1998. Formation of a magmatic-hydrothermal ore deposit:Insights with LA-ICP-MS analysis of fluid inclusions. Science, 279(5359): 2091–2094. DOI:10.1126/science.279.5359.2091
[] Audétat A, Pettke T, Heinrich CA, Bodnar RJ. 2008. Special paper:The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Economic Geology, 103(5): 877–908. DOI:10.2113/gsecongeo.103.5.877
[] Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan JJ, Lowers HA. 2015. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171–184. DOI:10.1111/ggr.2015.39.issue-2
[] Behr WM, Thomas JB, Hervig RL. 2011. Calibrating Ti concentrations in quartz for SIMS determinations using NIST silicate glasses and application to the TitaniQ geothermobarometer. American Mineralogist, 96(7): 1100–1106. DOI:10.2138/am.2011.3702
[] Bennett JN, Grant JN. 1980. Analysis of fluid inclusions using a pulsed laser microprobe. Mineralogical Magazine, 43(331): 945–947. DOI:10.1180/minmag
[] Bodnar RJ. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684. DOI:10.1016/0016-7037(93)90378-A
[] Boiron MC, Dubessy J, Andre N, Briand A, Lacour JL, Mauchien P, Mermet JM. 1991. Analysis of mono-atomic ions in individual fluid inclusions by laser-produced plasma emission spectroscopy. Geochimica et Cosmochimica Acta, 55(3): 917–923. DOI:10.1016/0016-7037(91)90352-6
[] Borisova AY, Thomas R, Salvi1 S, Candaudap F, Lanzanova A, Chmeleff J. 2012. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions:New evidence for melt-melt-fluid immiscibility. Mineralogical Magazine, 76(1): 91–113. DOI:10.1180/minmag.2012.076.1.91
[] Bray JM. 1942. Spectroscopic distribution of minor elements in igneous rocks from Jamestown, Colorado. Geological Society of America Bulletin, 53(5): 765–814. DOI:10.1130/GSAB-53-765
[] Breiter K, Müller A. 2009. Evolution of rare-metal granitic magmas documented by quartz chemistry. European Journal of Mineralogy, 21(2): 335–346. DOI:10.1127/0935-1221/2009/0021-1907
[] Breiter K, Svojtka M, Ackerman L, Švecová K. 2012. Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušné hory/Erzgebirge Mts, Czech Republic/Germany):Insights into the volcano-plutonic complex evolution. Chemical Geology, 326-327: 36–50. DOI:10.1016/j.chemgeo.2012.07.028
[] Breiter K, Ackerman L, Svojtka M, Müller A. 2013. Behavior of trace elements in quartz from plutons of different geochemical signature:A case study from the Bohemian Massif, Czech Republic. Lithos, 175-176: 54–67. DOI:10.1016/j.lithos.2013.04.023
[] Bruhn F, Bruckschen P, Meijer J, Stephan A, Richter DK, Veizer J. 1996. Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE:Implications for diagenetic and provenance studies in sandstone. The Canadian Mineralogist, 34(6): 1223–1232.
[] Cai YC, Fan HR, Santosh M, Hu FF, Yang KF, Liu X, Liu YS. 2015. Silicate melt inclusions in clinopyroxene phenocrysts from mafic dikes in the eastern North China Craton:Constraints on melt evolution. Journal of Asian Earth Sciences, 97: 150–168. DOI:10.1016/j.jseaes.2014.10.024
[] Cathles LM, Shannon R. 2007. How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water. Earth and Planetary Science Letters, 262(1-2): 92–108. DOI:10.1016/j.epsl.2007.07.029
[] Chen JF, Zhang H. 2011. Trace elements in quartz lattice and their implications for petrogenesis and mineralization. Geological Journal of China Universities, 17(1): 125–135.
[] Chen L, Tao W, Zhao L, Zheng TY. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth and Planetary Science Letters, 267(1-2): 56–68. DOI:10.1016/j.epsl.2007.11.024
[] Chen XD, Chen ZY, Cheng YB, Ye HS, Wang H. 2011. Distribution and application of trace elements in hydrothermal quartz:Understanding and prospecting. Geological Review, 57(5): 707–717.
[] Cooke DR, Hollings P, Walshe JL. 2005. Giant porphyry deposits:Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801–818. DOI:10.2113/gsecongeo.100.5.801
[] Cruz-Uribe AM, Mertz-Kraus R, Zack T, Feineman MD, Woods G, Jacob DE. 2017. A new LA-ICP-MS method for Ti in quartz:Implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge. Geostandards and Geoanalytical Research, 41(1): 29–40. DOI:10.1111/ggr.12132
[] Deloule E, éloy JF. 1982. Improvements of laser probe mass spectrometry for the chemical analysis of fluid inclusions in ores. Chemical Geology, 37(1-2): 191–202. DOI:10.1016/0009-2541(82)90077-8
[] Demars C, Pagel M, Deloule E, Blanc P. 1996. Cathodoluminescence of quartz from sandstones:Interpretation of the UV range by determination of trace element distributions and fluid-inclusion P-T-X properties in authigenic quartz. American Mineralogist, 81(7-8): 891–901. DOI:10.2138/am-1996-7-812
[] Dennen WH. 1964. Impurities in quartz. Geological Society of America Bulletin, 75(3): 241–246. DOI:10.1130/0016-7606(1964)75[241:IIQ]2.0.CO;2
[] Dennen WH. 1966. Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta, 30(12): 1235–1241. DOI:10.1016/0016-7037(66)90122-0
[] Dennen WH. 1967. Trace elements in quartz as indicators of provenance. Geological Society of America Bulletin, 78(1): 125–130. DOI:10.1130/0016-7606(1967)78[125:TEIQAI]2.0.CO;2
[] Dennen WH, Blackburn WH, Quesada A. 1970. Aluminum in quartz as a geothermometer. Contributions to Mineralogy and Petrology, 27(4): 332–342. DOI:10.1007/BF00389817
[] Donovan JJ, Lowers HA, Rusk BG. 2011. Improved electron probe microanalysis of trace elements in quartz. American Mineralogist, 96(2-3): 274–282. DOI:10.2138/am.2011.3631
[] Duc-Tin Q, Audétat A, Keppler H. 2007. Solubility of tin in (Cl, F)-bearing aqueous fluids at 700℃, 140MPa:A LA-ICP-MS study on synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 71(13): 3323–3335. DOI:10.1016/j.gca.2007.04.022
[] Einaudi MT, Hedenquist JW, Inan EE. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems:Transitions from porphyry to epithermal environments. Society of Economic Geologists Special Publication, 10: 285–313.
[] Flem B, Larsen RB, Grimstvedt A, Mansfeld J. 2002. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182(2-4): 237–247. DOI:10.1016/S0009-2541(01)00292-3
[] Flem B and Müller A. 2012. Analysis of low element concentrations in quartz byelectron microprobe. In:Götze J and Möckel R (eds). Quartz:Deposits, Mineralogy and Analytics. Berlin Heidelberg:Springer, 219-236
[] Frank MR, Simon AC, Pettke T, Candela PA, Piccoli PM. 2011. Gold and copper partitioning in magmatic-hydrothermal systems at 800℃ and 100MPa. Geochimica et Cosmochimica Acta, 75(9): 2470–2482. DOI:10.1016/j.gca.2011.02.012
[] Fusswinkel T, Wagner T, Wälle M, Wenzel T, Heinrich CA, Markl G. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits:Insight from metal and halogen geochemistry of individual fluid inclusions. Geology, 41(6): 679–682. DOI:10.1130/G34092.1
[] Fusswinkel T, Wagner T, Wenzel T, Wälle M, Lorenz J. 2014. Red bed and basement sourced fluids recorded in hydrothermal Mn-Fe-As veins, Sailauf (Germany):A LA-ICPMS fluid inclusion study. Chemical Geology, 363: 22–39. DOI:10.1016/j.chemgeo.2013.10.026
[] Fusswinkel T, Wagner T, Sakellaris G. 2017. Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland):Constraints from LA-ICPMS fluid inclusion microanalysis. Chemical Geology, 450: 96–121. DOI:10.1016/j.chemgeo.2016.12.022
[] Gaboardi M, Humayun M. 2009. Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization. Journal of Analytical Atomic Spectrometry, 24(9): 1188–1197. DOI:10.1039/b900876d
[] Ghazi AM, McCandless TE, Vanko DA, Ruiz J. 1996. New quantitative approach in trace elemental analysis of single fluid inclusions:Applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal of Analytical Atomic Spectrometry, 11(9): 667–674. DOI:10.1039/ja9961100667
[] Götte T, Pettke T, Ramseyer K, Koch-Müller M, Mullis J. 2011. Cathodoluminescence properties and trace element signature of hydrothermal quartz:A fingerprint of growth dynamics. American Mineralogist, 96(5-6): 802–813. DOI:10.2138/am.2011.3639
[] Götze J, Lewis R, Blankenburg HJ. 1992. Investigation of Hohenbocka quartz sands (Lausitz, Germany) by Instrumental Neutron Activation Analysis (I. N. A. A.). Chem. Erde, 52: 145–153.
[] Götze J, Lewis R. 1994. Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands. Chemical Geology, 114(1-2): 43–57. DOI:10.1016/0009-2541(94)90040-X
[] Götze J, Plötze M. 1997. Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR). European Journal of Mineralogy, 9(3): 529–538. DOI:10.1127/ejm/9/3/0529
[] Götze J, Plötze M, Habermann D. 2001. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz:A review. Mineralogy and Petrology, 71(3-4): 225–250. DOI:10.1007/s007100170040
[] Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ. 2004. Trace element incorporation into quartz:A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta, 68(18): 3741–3759. DOI:10.1016/j.gca.2004.01.003
[] Götze J. 2009. Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineralogical Magazine, 73(4): 645–671. DOI:10.1180/minmag.2009.073.4.645
[] Götze J. 2012. Classification, mineralogy and industrial potential of SiO2 minerals and rocks. In:Götze J and Möckel R (eds.). Quartz:Deposits, Mineralogy and Analytics. Berlin Heidelberg:Springer, 1-27
[] Guillong M, Hametner K, Reusser E, Wilson SA, Günther D. 2005. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193nm, 213nm and 266nm wavelengths. Geostandards and Geoanalytical Research, 29(3): 315–331. DOI:10.1111/ggr.2005.29.issue-3
[] Guillong M, Latkoczy C, Seo JH, Günther D, Heinrich CA. 2008a. Determination of sulfur in fluid inclusions by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 23(12): 1581–1589. DOI:10.1039/b807383j
[] Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD. 2008b. SILLS:A MATLAB-based program for the reduction of laser ablation ICP-MS data of homoge-neous materials and inclusions. In:Sylvester P (ed.). Laser Ablation ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues. Quebec:Mineralogical Association of Canada, 40: 328–333.
[] Günther D, Frischknecht R, Müschenborn HJ, Heinrich CA. 1997. Direct liquid ablation:A new calibration strategy for laser ablation-ICP-MS microanalysis of solids and liquids. Fresenius' Journal of Analytical Chemistry, 359(4-5): 390–393. DOI:10.1007/s002160050594
[] Günther D, Audétat A, Frischknecht R, Heinrich CA. 1998. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasmamass spectrometry. Journal of Analytical Atomic Spectrometry, 13(4): 263–270. DOI:10.1039/A707372K
[] Guo HH, Audétat A. 2017. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers:An experimental study. Geochimica et Cosmochimica Acta, 198: 360–378. DOI:10.1016/j.gca.2016.11.029
[] Gurbanov AG, Chernukha FP, Koshchug DG, Kurasova SP, Fedyushchenko SV. 1999. EPR spectroscopy and geochemistry of rock-forming quartz as an indicator of the superimposed processes in rocks of igneous associations of various ages in the Greater Caucasus. Geochemistry International, 37(6): 519–532.
[] Haertel M, Herwegh M, Pettke T. 2013. Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophysics, 608: 468–481. DOI:10.1016/j.tecto.2013.08.042
[] Hall DL, Sterner SM, Bodnar RJ. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197–202. DOI:10.2113/gsecongeo.83.1.197
[] Halter WE, Pettke T, Heinrich CA. 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 296(5574): 1844–1846. DOI:10.1126/science.1070139
[] Hanley JJ, Pettke T, Mungall JE, Spooner ETC. 2005. The solubility of platinum and gold in NaCl brines at 1.5kbar, 600 to 800℃:A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 69(10): 2593–2611. DOI:10.1016/j.gca.2004.11.005
[] Harlaux M, Borovinskaya O, Frick DA, Tabersky D, Gschwind S, Richard A, Günther D, Mercadier J. 2015. Capabilities of sequential and quasi-simultaneous LA-ICPMS for the multi-element analysis of small quantity of liquids (pl to nl):Insights from fluid inclusion analysis. Journal of Analytical Atomic Spectrometry, 30(9): 1945–1969. DOI:10.1039/C5JA00111K
[] Heinrich CA, Günther D, Audétat A, Ulrich T, Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of ffluid inclusions. Geology, 27(8): 755–758. DOI:10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
[] Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67(18): 3473–3497. DOI:10.1016/S0016-7037(03)00084-X
[] Hervig RL, Peacock SM. 1989. Implications of trace element zoning in deformed quartz from the Santa Catalina mylonite zone. The Journal of Geology, 97(3): 343–350. DOI:10.1086/629307
[] Hu SH, Hu ZC, Liu YS, Luo Y, Lin SL, Gao S. 2001. New techniques of major and minor elemental analysis in individual fluid inclusion-laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). Earth Science Frontiers, 8(4): 434–440.
[] Hu ZC, Liu YS, Chen L, Zhou L, Li M, Zong KQ, Zhu LY, Gao S. 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425–430. DOI:10.1039/C0JA00145G
[] Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH. 2015. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152–1157. DOI:10.1021/ac503749k
[] Huang RF, Audétat A. 2012. The titanium-in-quartz (TitaniQ) thermobarometer:A critical examination and re-calibration. Geochimica et Cosmochimica Acta, 84: 75–89. DOI:10.1016/j.gca.2012.01.009
[] Jacamon F, Larsen RB. 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway:The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3-4): 281–291. DOI:10.1016/j.lithos.2008.10.016
[] Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K. 2005. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research, 29(3): 285–302. DOI:10.1111/ggr.2005.29.issue-3
[] Jochum KP, Stoll B, Herwig K, Willbold M. 2007. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193nm Nd:YAG laser and matrix-matched calibration. Journal of Analytical Atomic Spectrometry, 22(2): 112–121. DOI:10.1039/B609547J
[] Jochum KP, Stoll B. 2008. Reference materials for elemental and isotopic analyses by LA-(MC)-ICP-MS:Successes and outstanding needs. In:Sylvester P (ed.). Laser Ablation ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues. Quebec:Mineralogical Association of Canada, 40: 147–168.
[] Jourdan AL, Vennemann TW, Mullis J, Ramseyer K, Spiers CJ. 2009. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21(1): 219–231. DOI:10.1127/0935-1221/2009/0021-1881
[] Kesler SE, Wilkinson BH. 2008. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits. Geology, 36(3): 255–258. DOI:10.1130/G24317A.1
[] Klemm LM, Pettke T, Heinrich CA, Campos E. 2007. Hydrothermal evolution of the El Teniente deposit, Chile:Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology, 102(6): 1021–1045. DOI:10.2113/gsecongeo.102.6.1021
[] Kong QY, Zhang TZ, Yu XF, Xu JX, Pan YL, Li XS. 2006. Deposits in Shandong Province. Jinan: Shandong Science and Technology Press: 1-902.
[] Kouzmanov K, Pettke T, Heinrich CA. 2010. Direct analysis of ore-precipitating fluids:Combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Economic Geology, 105(2): 351–373. DOI:10.2113/gsecongeo.105.2.351
[] Kronz A, Van den Kerkhof AM and Müller A. 2012. Analysis of low element concentrations in quartz by electron microprobe. In:Götze J and Möckel R (eds.). Quartz:Deposits, Mineralogy and Analytics. Berlin Heidelberg:Springer, 191-217
[] Krüger Y, Stoller P, Rička J, Frenz M. 2007. Femtosecond lasers in fluid-inclusion analysis:Overcoming metastable phase states. European Journal of Mineralogy, 19(5): 693–706. DOI:10.1127/0935-1221/2007/0019-1762
[] Lambrecht G, Diamond LW, Pettke T. 2008. Modification of gas speciation in quartz-hosted fluid inclusions by stray laser radiation during LA-ICPMS analysis. American Mineralogist, 93(7): 1187–1190. DOI:10.2138/am.2008.2960
[] Lambrecht G, Diamond LW. 2014. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging:Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry. Geochimica et Cosmochimica Acta, 141: 381–406. DOI:10.1016/j.gca.2014.06.036
[] Lan TG, Hu RZ, Bi XW, Mao GJ, Wen BJ, Liu L and Chen YH. 2017. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting:A case study of the~128Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2017.07.014
[] Landtwing MR, Pettke T. 2005. Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. American Mineralogist, 90(1): 122–131. DOI:10.2138/am.2005.1548
[] Large SJE, Bakker EYN, Weis P, Wälle M, Ressel M, Heinrich CA. 2016. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend. Geology, 44(12): 1015–1018. DOI:10.1130/G38351.1
[] Larsen RB, Polvé M, Juve G. 2000. Granite pegmatite quartz from Evje-Iveland:Trace element chemistry and implications for the formation of high-purity quartz. Norges Geologiske Undersøgelse Bulletin, 436: 57–65.
[] Larsen RB, Henderson I, Ihlen PM, Jacamon M. 2004. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147(5): 615–628. DOI:10.1007/s00410-004-0580-4
[] Larsen RB, Jacamon F, Kronz A. 2009. Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineralogical Magazine, 73(4): 691–707. DOI:10.1180/minmag.2009.073.4.691
[] Lecumberri-Sanchez P, Steele-MacInnis M, Bodnar RJ. 2012. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92: 14–22. DOI:10.1016/j.gca.2012.05.044
[] Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M. 2009. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL-and SEM-CC-imaging. Mineralogical Magazine, 73(4): 633–643. DOI:10.1180/minmag.2009.073.4.633
[] Lehmann K, Pettke T, Ramseyer K. 2011. Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chemical Geology, 280(1-2): 47–57. DOI:10.1016/j.chemgeo.2010.10.013
[] Leisen M, Boiron MC, Richard A, Dubessy J. 2012a. Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis:Implications for the origin of salinity in crustal fluids. Chemical Geology, 330-331: 197–206. DOI:10.1016/j.chemgeo.2012.09.003
[] Leisen M, Dubessy J, Boiron MC, Lach P. 2012b. Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature. Geochimica et Cosmochimica Acta, 90: 110–125. DOI:10.1016/j.gca.2012.04.040
[] Li N, Ulrich T, Chen YJ, Thomsen TB, Pease V, Pirajno F. 2012. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geology Reviews, 48: 442–459. DOI:10.1016/j.oregeorev.2012.06.002
[] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34–43. DOI:10.1016/j.chemgeo.2008.08.004
[] Liu YS, Hu ZC, Li M, Gao S. 2013. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin, 58(32): 3863–3878. DOI:10.1007/s11434-013-5901-4
[] Loucks RR, Mavrogenes JA. 1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science, 284(5423): 2159–2163. DOI:10.1126/science.284.5423.2159
[] Maydagán L, Franchini M, Rusk B, Lentz DR, McFarlane C, Impiccini A, Ríos FJ, Rey R. 2015. Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis. Economic Geology, 110(4): 889–923. DOI:10.2113/econgeo.110.4.889
[] McCandless TE, Lajack DJ, Ruiz J, Ghazi AM. 1997. Trace element determination of single fluid inclusions in quartz by laser ablation ICP-MS. Geostandards Newsletter, 21(2): 279–287. DOI:10.1111/ggr.1997.21.issue-2
[] Mercer CN, Reed MH. 2013. Porphyry Cu-Mo stockwork formation by dynamic, transient hydrothermal pulses:Mineralogic insights from the deposit at Butte, Montana. Economic Geology, 108(6): 1347–1377. DOI:10.2113/econgeo.108.6.1347
[] Moissette A, Shepherd TJ, Chenery SR. 1996. Calibration strategies for the elemental analysis of individual aqueous fluid inclusions by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 11(3): 177–185. DOI:10.1039/ja9961100177
[] Monecke T, Kempe U, Gotze J. 2002. Genetic significance of the trace element content in metamorphic and hydrothermal quartz:A reconnaissance study. Earth and Planetary Science Letters, 202(3-4): 709–724. DOI:10.1016/S0012-821X(02)00795-1
[] Müller A, René M, Behr HJ, Kronz A. 2003a. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky Les Mts. , Czech Republic). Mineralogy and Petrology, 79(3-4): 167–191. DOI:10.1007/s00710-003-0238-3
[] Müller A, Wiedenbeck M, Van den Kerkhof AM, Kronz A, Simon K. 2003b. Trace elements in quartz:A combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, 15(4): 747–763. DOI:10.1127/0935-1221/2003/0015-0747
[] Müller A, Breiter K, Seltmann R, Pécskay Z. 2005. Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic):evidence of multiple magma mixing. Lithos, 80(1-4): 201–227. DOI:10.1016/j.lithos.2004.05.011
[] Müller A, Wanvik JE and Ihlen PM. 2012. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In:Götze J and Möckel R (eds.). Quartz:Deposits, Mineralogy and Analytics. Berlin Heidelberg:Springer, 71-118
[] Müller A, Ihlen PM, Snook B, Larsen RB, Flem B, Bingen B, Williamson BJ. 2015. The chemistry of quartz in granitic pegmatites of Southern Norway:Petrogenetic and economic implications. Economic Geology, 110(7): 1737–1757. DOI:10.2113/econgeo.110.7.1737
[] Olivo GR, Chang F, Kyser TK. 2006. Formation of the auriferous and barren North Dipper Veins in the Sigma Mine, Val d'Or, Canada:Constraints from structural, mineralogical, fluid Inclusion, and isotopic data. Economic Geology, 101(3): 607–631. DOI:10.2113/gsecongeo.101.3.607
[] Pelch MA, Appold MS, Emsbo P, Bodnar RJ. 2015. Constraints from fluid inclusion compositions on the origin of Mississippi Valley-type mineralization in the Illinois-Kentucky District. Economic Geology, 110(3): 787–808. DOI:10.2113/econgeo.110.3.787
[] Perny B, Eberhardt P, Ramseyer K, Mullis J, Pankrath R. 1992. Microdistribution of Al, Li, and Na in α-quartz:Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77(5-6): 534–544.
[] Pettke T. 2008. Analytical protocols for element concentration and isotope ratio measurements in fluid inclusions by LA-(MC)-ICP-MS. In:Sylvester P (ed.). Laser Ablation ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues. Quebec:Mineralogical Association of Canada, 40: 189–217.
[] Pettke T, Oberli F, Heinrich CA. 2010. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters, 296(3-4): 267–277. DOI:10.1016/j.epsl.2010.05.007
[] Pettke T, Oberli F, Audétat A, Wiechert U, Harris CR, Heinrich CA. 2011. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry:Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions. Journal of Analytical Atomic Spectrometry, 26(3): 475–492. DOI:10.1039/C0JA00140F
[] Pettke T, Oberli F, Audétat A, Guillong M, Simon AC, Hanley JJ, Klemm LM. 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geology Reviews, 44: 10–38. DOI:10.1016/j.oregeorev.2011.11.001
[] Qian SP, Ren ZY, Zhang L, Hong LB, Liu JQ. 2015. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton:Implications for petrogenesis and mantle source. Chemical Geology, 401: 111–125. DOI:10.1016/j.chemgeo.2015.02.018
[] Ramsey MH, Coles BJ, Wilkinson JJ, Rankin AH. 1992. Single fluid inclusion analysis by laser ablation inductively coupled plasma atomic emission spectrometry:Quantification and validation. Journal of Analytical Atomic Spectrometry, 7(4): 587–593. DOI:10.1039/ja9920700587
[] Ramseyer K, Amthor JE, Mattera A, Pettke T, Wille M, Fallickd AE. 2013. Primary silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, Sultanate of Oman. Marine and Petroleum Geology, 39(1): 187–197. DOI:10.1016/j.marpetgeo.2012.08.006
[] Rankin AH, Ramsey MH, Coles B, Van Langevelde F, Thomas CR. 1992. The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and synchrotron-XRF microprobe analysis of individual fluid inclusions in topaz, Mole granite, eastern Australia. Geochimica et Cosmochimica Acta, 56(1): 67–79. DOI:10.1016/0016-7037(92)90117-2
[] Rauchenstein-Martinek K, Wagner T, Wälle M, Heinrich CA. 2014. Gold concentrations in metamorphic fluids:A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chemical Geology, 385: 70–83. DOI:10.1016/j.chemgeo.2014.07.018
[] Richard A, Cathelineau M, Boiron MC, Mercadier J, Banks DA, Cuney M. 2016. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada). Mineralium Deposita, 51(2): 249–270. DOI:10.1007/s00126-015-0601-4
[] Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515–1533. DOI:10.2113/gsecongeo.98.8.1515
[] Richards JP. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26. DOI:10.1016/j.oregeorev.2011.05.006
[] Rossman GR, Weis D, Wasserburg GJ. 1987. Rb, Sr, Nd and Sm concentrations in quartz. Geochimica et Cosmochimica Acta, 51(9): 2325–2329. DOI:10.1016/0016-7037(87)90286-9
[] Rosso KM, Bodnar RJ. 1995. Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochimica et Cosmochimica Acta, 59(19): 3961–3975. DOI:10.1016/0016-7037(95)94441-H
[] Rovetta MR, Blacic JD, Hervig RL, Holloway JR. 1989. An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques. Journal of Geophysical Research:Solid Earth, 94(B5): 5840–5850. DOI:10.1029/JB094iB05p05840
[] Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics, 33(3): 267–309. DOI:10.1029/95RG01302
[] Rusk B, Koenig A, Lowers H. 2011. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. American Mineralogist, 96(5-6): 703–708. DOI:10.2138/am.2011.3701
[] Rusk B. 2012. Cathodoluminescent textures and trace elements in hydrothermal quartz. In:Götze J and Möckel R (eds.). Quartz:Deposits, Mineralogy and Analytics. Berlin, Heidelberg:Springer, 307-329
[] Rusk BG, Reed MH, Dilles JH, Kent AJR. 2006. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91(8-9): 1300–1312. DOI:10.2138/am.2006.1984
[] Rusk BG, Reed MH, Dilles JH. 2008a. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103(2): 307–334. DOI:10.2113/gsecongeo.103.2.307
[] Rusk BG, Lowers HA, Reed MH. 2008b. Trace elements in hydrothermal quartz:Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36(7): 547–550. DOI:10.1130/G24580A.1
[] Schäfer B, Frischknecht R, Günther D, Dingwell DB. 1999. Determination of trace-element partitioning between fluid and melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass. European Journal of Mineralogy, 11(3): 415–426. DOI:10.1127/ejm/11/3/0415
[] Schlegel TU, Wälle M, Steele-MacInnis M, Heinrich CA. 2012. Accurate and precise quantification of major and trace element compositions of calcic-sodic fluid inclusions by combined microthermometry and LA-ICPMS analysis. Chemical Geology, 334: 144–153. DOI:10.1016/j.chemgeo.2012.10.001
[] Seo JH, Guillong M, Heinrich CA. 2009. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits. Earth and Planetary Science Letters, 282(1-4): 323–328. DOI:10.1016/j.epsl.2009.03.036
[] Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CH. 2011. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chemical Geology, 284(1-2): 35–44.
[] Seo JH, Guillong M, Heinrich CA. 2012. Separation of molybdenum and copper in porphyry deposits:The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Economic Geology, 107(2): 333–356. DOI:10.2113/econgeo.107.2.333
[] Seo JH, Zajacz Z. 2016. Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids. Geochimica et Cosmochimica Acta, 183: 125–137. DOI:10.1016/j.gca.2016.04.009
[] Shepherd TJ, Chenery SR. 1995. Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study. Geochimica et Cosmochimica Acta, 59(19): 3997–4007. DOI:10.1016/0016-7037(95)00294-A
[] Shepherd TJ, Ayora C, Cendón DI, Chenery SR, Moissette A. 1998. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS:Complementary microbeam techniques. European Journal of Mineralogy, 10(6): 1097–1108. DOI:10.1127/ejm/10/6/1097
[] Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. DOI:10.2113/gsecongeo.105.1.3
[] Simon AC, Frank MR, Pettke T, Candela PA, Piccoli PM, Heinrich CA. 2005. Gold partitioning in melt-vapor-brine systems. Geochimica et Cosmochimica Acta, 69(13): 3321–3335. DOI:10.1016/j.gca.2005.01.028
[] Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA. 2007. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica et Cosmochimica Acta, 71(7): 1764–1782. DOI:10.1016/j.gca.2007.01.005
[] Simon AC, Pettke T. 2009. Platinum solubility and partitioning in a felsic melt-vapor-brine assemblage. Geochimica et Cosmochimica Acta, 73(2): 438–454. DOI:10.1016/j.gca.2008.10.020
[] Simpson MP, Palinkas SS, Mauk JL, Bodnar RJ. 2015. Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the Southern Hauraki Goldfield, New Zealand. Economic Geology, 110(3): 763–786. DOI:10.2113/econgeo.110.3.763
[] Spandler C, Mavrogenes J, Hermann J. 2007. Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chemical Geology, 239(3-4): 228–249. DOI:10.1016/j.chemgeo.2006.10.005
[] Spear FS, Wark DA. 2009. Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. Journal of Metamorphic Geology, 27(3): 187–205. DOI:10.1111/jmg.2009.27.issue-3
[] Stavrov OD. 1961. On the content of rare elements in quartz. Geochemistry, 6: 542–549.
[] Steele-MacInnis M, Bodnar RJ, Naden J. 2011. Numerical model to determine the composition of H2O-NaCl-CaCl2 ffluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica Acta, 75(1): 21–40. DOI:10.1016/j.gca.2010.10.002
[] Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ. 2012. HokieFlincs_H2O-NaCl:A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers & Geosciences, 49: 334–337.
[] Steele-MacInnis M, Ridley J, Lecumberri-Sanchez P, Schlegel TU, Heinrich CA. 2016. Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions. Earth-Science Reviews, 159: 14–35. DOI:10.1016/j.earscirev.2016.04.011
[] Stoffell B, Appold MS, Wilkinson JJ, McClean NA, Jeffries TE. 2008. Geochemistry and evolution of Mississippi Valley-type mineralizing brines from the Tri-State and Northern Arkansas Districts determined by LA-ICP-MS microanalysis of fluid inclusions. Economic Geology, 103(7): 1411–1435. DOI:10.2113/gsecongeo.103.7.1411
[] Stoller P, Krüger Y, Ričk J, Frenz M. 2007. Femtosecond lasers in fluid inclusion analysis:Three-dimensional imaging and determination of inclusion volume in quartz using second harmonic generation microscopy. Earth and Planetary Science Letters, 253(3-4): 359–368. DOI:10.1016/j.epsl.2006.10.037
[] Su W, Heinrich CA, Pettke T, Zhang X, Hu R, Xia B. 2009. Sediment-hosted gold deposits in Guizhou, China:Products of wall-rock sulfidation by deep crustal fluids. Economic Geology, 104(1): 73–93. DOI:10.2113/gsecongeo.104.1.73
[] Sun H, Xiao YL, Gao YJ, Lai JQ, Hou ZH, Wang YY. 2013a. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton:Implications for magma evolution and fluid/melt-peridotite reaction. Contributions to Mineralogy and Petrology, 165(5): 885–901. DOI:10.1007/s00410-012-0840-7
[] Sun XH, Hu MY, Liu CL, Jiao PC, Ma LC, Wang X, Zhan XC. 2013. Composition determination of single fluid inclusions in salt minerals by Laser Ablation ICP-MS. Chinese Journal of Analytical Chemistry, 41(2): 235–241. DOI:10.1016/S1872-2040(13)60631-3
[] Sun XH, Hu YF, Liu CL, Ding T, Hu MY, Zhao YJ, Wang MQ. 2016. Argument that brine of salty lake in Sichuan Basin had reached crystallizing point of potash minerals during Triassic:Evidence from chemical composition of fluid inclusions in halite. Mineral Deposits, 35(6): 1157–1168.
[] Sun Y, Lai Y, Chen J, Shu QH, Yan C. 2013b. Rare earth and rare metal elements mobility and mineralization during magmatic and fluid evolution in alkaline granite system:Evidence from fluid and melt inclusions in Baerzhe granite, China. Resource Geology, 63(3): 239–261. DOI:10.1111/rge.12007
[] Suttner LJ, Leininger RK. 1972. Comparison of the trace element content of plutonic, volcanic, and metamorphic quartz from Southwestern Montana. Geological Society of America Bulletin, 83(6): 1855–1862. DOI:10.1130/0016-7606(1972)83[1855:COTTEC]2.0.CO;2
[] Tang DM, Qin KZ, Xue SC, Mao YJ, Tian Y, Liu YS, Mao Q. 2017. Nature of primitive magmas of Early Permian basalts in Tuha basin, Xinjiang:Constraints from melt inclusions. Acta Petrologica Sinica, 33(2): 339–353.
[] Tang LC. 1990. Geological characteristics of the pegmatitic Cu-Au deposit in the Zouping volcanic basin, Shandong Province. Geological Review, 36(1): 85–87.
[] Tanner D, Henley RW, Mavrogenes JA, Holden P. 2013. Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits. Contributions to Mineralogy and Petrology, 166(4): 1119–1142. DOI:10.1007/s00410-013-0912-3
[] Tatekawa M. 1954. Spectrographic distribution of minor elements in the quartzs and feldspars contained in granites and pegmatites of the Oku-Tango district, Kyoto Prefecture. Memoirs of the Faculty of Engineering, Kyoto University, 21: 183–192.
[] Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A. 2010. TitaniQ under pressure:The effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160(5): 743–759. DOI:10.1007/s00410-010-0505-3
[] Thomas JB, Watson EB. 2012. Application of the Ti-in-quartz thermobarometer to rutile-free systems. Reply to:A comment on:'TitaniQ under pressure:The effect of pressure and temperature on the solubility of Ti in quartz' by Thomas et al. Contributions to Mineralogy and Petrology, 164(2): 369–374.
[] Thomas JB, Watson EB, Spear FS, Wark DA. 2015. TitaniQ recrystallized:Experimental confirmation of the original Ti-in-quartz calibrations. Contributions to Mineralogy and Petrology, 169: 27. DOI:10.1007/s00410-015-1120-0
[] Tsui TF. 1976. Laser microprobe analysis of fluid inclusions in quartz. Ph. D. Thesis. Massachusetts:Harvard University, 1-156
[] Tsui TF, Holland HD. 1979. The analysis of fluid inclusions by laser microprobe. Economic Geology, 74(7): 1647–1653. DOI:10.2113/gsecongeo.74.7.1647
[] Tu XL, Zhang H, Deng WF, Ling MX, Liang HY, Liu Y, Sun WD. 2011. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses. Geochimica, 40(1): 83–98.
[] Ulrich T, Günther D, Heinrich CA. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399(6737): 676–679. DOI:10.1038/21406
[] Ulrich T, Heinrich CA. 2001. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina. Economic Geology, 96(8): 1719–1742. DOI:10.2113/gsecongeo.96.8.1719
[] Ulrich T. 2003. Applications of quantitative single fluid inclusion analysis using laser ablation ICPMS. Earth Science Frontiers, 10(2): 379–392.
[] Ulrich T, Mavrogenes J. 2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500℃ to 800℃, and 150 to 300 MPa. Geochimica et Cosmochimica Acta, 72(9): 2316–2330. DOI:10.1016/j.gca.2008.02.014
[] Volk H, Fuentes D, Fuerbach A, Miese C, Koehler W, Barsch N, Barcikowski S. 2010. First on-line analysis of petroleum from single inclusion using ultrafast laser ablation. Organic Geochemistry, 41(2): 74–77. DOI:10.1016/j.orggeochem.2009.05.006
[] Wälle M, Heinrich CA. 2014. Fluid inclusion measurements by laser ablation sector-field ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6): 1052–1057. DOI:10.1039/C4JA00010B
[] Wark DA, Watson EB. 2006. TitaniQ:A titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743–754. DOI:10.1007/s00410-006-0132-1
[] Watt GR, Wright P, Galloway S, McLean C. 1997. Cathodoluminescense and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta, 61(20): 4337–4348. DOI:10.1016/S0016-7037(97)00248-2
[] Wilkinson JJ, Rankin AH, Mulshaw SC, Nolan J, Ramsey MH. 1994. Laser ablation-ICP-AES for the determination of metals in fluid inclusions:An application to the study of magmatic ore fluids. Geochimica et Cosmochimica Acta, 58(3): 1133–1146. DOI:10.1016/0016-7037(94)90577-0
[] Wilkinson JJ. 2013. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geoscience, 6(11): 917–925. DOI:10.1038/ngeo1940
[] Williams-Jones AE, Heinrich CA. 2005. 100th anniversary special paper:Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100(7): 1287–1312. DOI:10.2113/gsecongeo.100.7.1287
[] Xu YG, Li HY, Pang CJ, He B. 2009. On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3379–3396.
[] Yuan HL, Gao L, Dai ML, Zong CL, Li RX. 2009. In situ strontium isotope analysis of fluid inclusion using LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28(4): 313–317.
[] Yuan SR, Li BF. 1988. The characteristics of alteration of the Wangjiazhuang porphyry copper, Zouping, Shandong Province. Geological Review, 34(1): 36–44.
[] Zajacz Z, Halter WE, Pettke T, Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions:Controls on element partitioning. Geochimica et Cosmochimica Acta, 72(8): 2169–2197. DOI:10.1016/j.gca.2008.01.034
[] Zajacz Z, Hanley JJ, Heinrich CA, Halter WE, Guillong M. 2009. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions:Are all metal concentrations unmodified?. Geochimica et Cosmochimica Acta, 73(10): 3013–3027. DOI:10.1016/j.gca.2009.02.023
[] Zajacz Z, Seo JH, Candela PA, Piccoli PM, Tossell JA. 2011. The solubility of copper in high-temperature magmatic vapors:A quest for the significance of various chloride and sulfide complexes. Geochimica et Cosmochimica Acta, 75(10): 2811–2827. DOI:10.1016/j.gca.2011.02.029
[] Zhang CL, Liu YS, Gao S, Zajacz Z, Hu ZC, Gao CG. 2011. Chemical compositions of phenocryst-hosted melt inclusions from the Sihetun basalt:Implications for the magma evolution. Geochimica, 40(2): 109–125.
[] Zhang J, Xu ZW, Li HY, Liu SM, Yang XN, Zhu BB, Li HC. 2008. Geochemistry and genesis of the ore-bearing intrusions in the Wangjiazhuang copper deposit, Zouping, Shandong Province. Journal of Nanjing University (Natural Sciences), 44(6): 632–641.
[] Zhang L, Audétat A, Dolejšb D. 2012. Solubility of molybdenite (MoS2) in aqueous fluids at 600~800℃, 200MPa:A synthetic fluid inclusion study. Geochimica et Cosmochimica Acta, 77: 175–185. DOI:10.1016/j.gca.2011.11.015
[] Zhang L, Ren ZY, Wang CY. 2017. Melt inclusions in the olivine from the Nantianwan intrusion:Implications for the parental magma of Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions of the~260Ma Emeishan large igneous province (SW China). Journal of Asian Earth Sciences, 134: 72–85. DOI:10.1016/j.jseaes.2016.11.014
[] Zhang XM, Zhang YQ, Ji W. 2007. Fault distribution patterns of the Luxi Block, Shandong, and Mesozoic sedimentary-magmatic-structural evolution sequence. Journal of Geomechanics, 13(2): 163–172.
[] Zhou L, Mavrogenes J, Spandler C, Li HP. 2016. A synthetic fluid inclusion study of the solubility of monazite-(La) and xenotime-(Y) in H2O-Na-K-Cl-F-CO2 fluids at 800℃ and 0. 5GPa. Chemical Geology, 442: 121–129. DOI:10.1016/j.chemgeo.2016.09.010
[] Zhu RX, Chen L, Wu FY, Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789–797. DOI:10.1007/s11430-011-4203-4
[] 陈剑锋, 张辉. 2011. 石英晶格中微量元素组成对成岩成矿作用的示踪意义. 高校地质学报, 17(1): 125–135.
[] 陈小丹, 陈振宇, 程彦博, 叶会寿, 汪欢. 2011. 热液石英中微量元素特征及应用:认识与进展. 地质论评, 57(5): 707–717.
[] 胡圣虹, 胡兆初, 刘勇胜, 罗彦, 林守麟, 高山. 2001. 单个流体包裹体元素化学组成分析新技术——激光剥蚀电感耦合等离子体质谱(LA-ICP-MS). 地学前缘, 8(4): 434–440.
[] 孔庆友, 张天祯, 于学峰, 徐军祥, 潘元林, 李献水. 2006. 山东矿床. 济南: 山东科学技术出版社: 1-902.
[] 刘勇胜, 胡兆初, 李明, 高山. 2013. LA-ICP-MS在地质样品元素分析中的应用. 科学通报, 58(36): 3753–3769.
[] 孙小虹, 胡明月, 刘成林, 焦鹏程, 马黎春, 王鑫, 詹秀春. 2013. 激光剥蚀ICP-MS法测定盐类矿物单个流体包裹体的成分. 分析化学, 41(2): 235–241.
[] 孙小虹, 胡宇飞, 刘成林, 丁婷, 胡明月, 赵艳军, 汪明泉. 2016. 四川盆地三叠纪古盐湖已达钾石盐析出阶段——来自石盐流体包裹体化学组成的约束. 矿床地质, 35(6): 1157–1168.
[] 唐冬梅, 秦克章, 薛胜超, 毛亚晶, 田野, 刘勇胜, 毛骞. 2017. 吐哈盆地早二叠世玄武岩原始岩浆性质:来自熔融包裹体成分的制约. 岩石学报, 33(2): 339–353.
[] 汤立成. 1990. 山东邹平火山岩盆地伟晶状含金铜矿地质简介. 地质论评, 36(1): 85–87.
[] 涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83–98.
[] 徐义刚, 李洪颜, 庞崇进, 何斌. 2009. 论华北克拉通破坏的时限. 科学通报, 54(14): 1974–1989.
[] 袁洪林, 高山, 戴梦宁, 宗春蕾, 李荣西. 2009. 流体包裹体中Sr同位素的激光剥蚀多接收等离子体质谱原位微区分析. 矿物岩石地球化学通报, 28(4): 313–317.
[] 袁叔容, 黎秉符. 1988. 山东邹平王家庄斑岩铜矿的蚀变特征. 地质论评, 34(1): 36–44.
[] 张春来, 刘勇胜, 高山, ZajaczZ, 胡兆初, 高长贵. 2011. 四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示. 地球化学, 40(2): 109–125.
[] 张军, 徐兆文, 李海勇, 刘苏明, 杨小男, 朱蓓蓓, 李红超. 2008. 山东邹平王家庄铜矿含矿岩体地球化学及成因探讨. 南京大学学报(自然科学), 44(6): 632–641.
[] 张锡明, 张岳桥, 季玮. 2007. 山东鲁西地块断裂构造分布型式与中生代沉积-岩浆-构造演化序列. 地质力学学报, 13(2): 163–172.
[] 朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学(地球科学), 41(5): 583–592.