岩石学报  2017, Vol. 33 Issue (9): 2867-2880   PDF    
五河杂岩凤阳群白云山组的源区特征及沉积时代:来自锆石U-Pb年龄和Lu-Hf同位素的证据
刘超辉, 蔡佳     
中国地质科学院地质研究所, 北京 100037
摘要: 华北克拉通东部陆块内的胶-辽-吉带是一条古元古代构造活动带,其是否向南西穿越郯庐断裂带延伸至徐州-蚌埠一带还存在着争议。蚌埠地区早前寒武纪变质基底主要包括晚太古代早期的霍邱群、古元古代五河群、凤阳群以及少量的古元古代花岗(片麻)岩。其中低绿片岩相变质的凤阳群自下而上被分为白云山组、青石山组和宋集组,原始沉积物分别为石英砂岩-砂、粉砂泥质及富镁碳酸盐岩交替-粉砂泥质、泥质和少量泥灰质。本次研究对采自凤阳群底部白云山组的2个石英岩和1个长石石英岩样品的碎屑锆石U-Pb年龄及Lu-Hf同位素研究表明,3个样品的碎屑锆石年龄图谱十分相似,最重要的年龄区间为2.57~2.46Ga,峰值年龄约为2.52Ga,εHft)值在-7.39到+7.37之间,其中有大约90%具有正值,来源于蚌埠地区的晚太古代末期的花岗质岩石。另一个重要的年龄区间是2.98~2.66Ga,峰值为2.94Ga和2.69Ga,εHft)值在-11.8到+7.24之间,其中超过90%为正值,来源于蚌埠地区的霍邱群以及晚太古代早期花岗质岩体。此外,还有少量具有负εHft)值的3.61~3.34Ga的古太古代碎屑锆石被发现。这些古太古代碎屑锆石的εHft)值(-6.34~-1.05)以及两阶段模式年龄(3.75~4.07Ga)与华北克拉通南缘邻近地区(登封、焦作、信阳以及胶东)发现的古太古代锆石特征相似,说明华北克拉通南缘可能存在过古太古代,甚至冥古宙古老陆壳。5颗最年轻的锆石可以将凤阳群白云山组的最大沉积年龄限定在2.37Ga左右,而前人报到的白云母K-Ar年龄1878Ma与蚌埠地区1.88~1.80Ga的主期变质时代为其形成时代的上限做出了限制。结合胶-辽-吉带老岭群和北辽河群大石桥组中具有相似碎屑锆石年龄图谱的变质沉积岩,我们认为在2.3~2.1Ga裂谷发育早期活动带内沉积了海相碳酸盐岩及新太古代陆壳来源的碎屑岩。
关键词: 华北克拉通     五河杂岩     凤阳群     锆石U-Pb年龄     锆石Lu-Hf同位素     源区    
Provenance and depositional age of the Baiyunshan Formation of the Fengyang Group in the Wuhe Complex:Constraints from zircon U-Pb age and Lu-Hf isotopic studies
LIU ChaoHui, CAI Jia     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Jiao-Liao-Ji belt in the Eastern Block of the North China Craton is a Paleoproterozoic mobile/orogenic belt. Whether the belt extends across the Tan-Lu fault to the Xuzhou-Bengbu area is still in a hot debate and needs further research. Precambrian metamorphic basements in the Bengbu area include the Early Neoarchean Huoqiu Group, the Paleoproterozoic Wuhe and Fengyang groups, and a small quantity of Paleoproterozoic (gneissic) granites. The low-greenschist-facies metamorphosed Fengyang Group is subdivide into the Baiyunshan, Qingshishan and Songji formations from the bottom to up. The protoliths of the Baiyunshan Formation are sandstones, and the Qingshishan Formation is composed of metamorphosed sandstones, siltstones and Mg-rich carbonates. The Songji Formation consists of metamorphosed siltstones, mudstones and marlaceous rocks. In this study, we analyzed two quartzite and one feldspar quartzite samples from the Baiyunshan Formation for detrital zircon U-Pb age and Lu-Hf isotope. Detrital zircon age patterns from the three samples are similar and are characterized by the major range of 2.57~2.46Ga with the peak of~2.52Ga. εHf(t) values of these zircons range from -7.39 to +7.37 and 90% of them are positive, which possibly sourced from the Late Neoarchean granitic rocks in the Bengbu area. Another important age range is between 2.98 and 2.66Ga and the peaks are at~2.94Ga and~2.69Ga. εHf(t) values of these zircons range from -11.8 to +7.24 and more than 90% of them are positive, which likely sourced from the Huoqiu Group and the Early Neoarchean granitic rocks. Additionally, a dozen of Paleoarchean detrital zircons with ages of 3.61~3.34Ga and negative εHf(t) values are also found. These Paleoarchean detrital zircons have similar εHf(t) values (-6.34 to -1.05) and two-stage Hf model ages (3.75~4.04Ga) with the similar-aged zircons found in the southern margin of the North China Craton (including the Dengfeng, Jiaozuo, Xinyang and Jiaodong areas), which imply the existence of a Paleoarchean, even Eoarchean, continental crust in the southern North China Craton. The five youngest detrital zircons place constraint on the maximum depositional age of the Baiyunshan Formation of the Fengyang Group at~2.37Ga. On the other way, the muscovite K-Ar age of 1878Ma from the group and the 1.88~1.80Ga metamorphic age in the Bengbu area constrain its minimum depositional age. In consideration of the meta-sedimentary rocks with similar detrital zircon age patterns from the Laoling Group and the Dashiqiao Formation of the North Liaohe Group in the Jiao-Liao-Ji belt, we suggest that marine-facies carbonates and the Neoarchean continental crust-derived clastic rocks deposited in a nascent rift at 2.3~2.1Ga.
Key words: North China Craton     Wuhe Complex     Fengyang Group     Zircon U-Pb dating     Zircon Lu-Hf isotope     Provenance    
1 引言

华北克拉通是中国境内出露规模最大、记录构造-岩浆-变质热事件最为齐全的古老克拉通之一。自从~3.8Ga古老岩石记录在该克拉通发现以来(Liu et al., 1992),其逐渐成为地质学家关注的焦点,在区域构造、变质地质、岩浆作用、地球化学以及同位素年代学等方面积累了大量的资料,并取得了一系列重要的科学进展(Zhao et al., 2001, 2005, 2012; Faure et al., 2004; Wan et al., 2006; Jahn et al., 2008; Santosh, 2010; Li et al., 2012; Trap et al., 2011; Zhai and Santosh, 2011)。近二十多年来,随着华北克拉通内部退变榴辉岩和高压麻粒岩的发现以及三条古元古代活动带的初步确认(翟明国等,1992; Zhao et al., 2001, 2005; Guo et al., 2002, 2012, 2013; Liu et al., 2006, 2012; 翟明国和彭澎,2007; Santosh, 2010; Zhai and Santosh, 2011; Wang et al., 2015),对其形成演化和微陆块聚合-拼贴动力学过程的研究开始了新一轮的热潮。这三条古元古代活动带由西向东依次为孔兹岩带、中部造山带和胶-辽-吉带(Zhao et al., 2005)。近十几年,有关这三条活动带内变质基底的物质组成、变质演化P-T-t轨迹、岩浆-变质热事件年代格架、岩浆岩成因及其构造背景的研究取得了显著的进展,有关其碰撞期次及时代,俯冲方向等不同的构造演化模型也相继被提出(Guo et al., 2002, 2012; Li et al., 2005, 2006, 2012; Li and Zhao, 2007; Wan et al., 2006; Zhou et al., 2008; Lu et al., 2006; Luo et al., 2004, 2008; Liu et al., 2006; Tam et al., 2011, 2012)。

胶-辽-吉带被渤海分割为北部的辽吉地区以及南部的胶北地区,带内变质基底主要经历了2.2~2.0Ga双峰式火山岩以及花岗质岩浆事件(图 1陆孝平等,2004; Lu et al., 2006; Li and Zhao, 2007; 刘建辉等,2011; Liu et al., 2013a, 2014; Meng et al., 2013)、约1.9Ga变质和变形事件(Luo et al., 2004, 2008; Lu et al., 2006; Li et al., 2005; Li and Zhao, 2007; Zhou et al., 2008; Tam et al., 2011)以及1.87~1.84Ga斑状或环斑花岗岩以及少量花岗伟晶岩的侵位(Li and Zhao, 2007; 王惠初等,2011)。类似的,2.1Ga钾质花岗岩以及1.9Ga左右的变质事件在华北克拉通东南缘的五河杂岩及相关中生代岩体的捕掳体中也已经被发现(Guo and Li, 2009; Liu et al., 2009, 2013c; 杨德斌等,2009; Wang et al., 2013),这暗示着胶-辽-吉带可能穿越郯庐断裂,向西南延伸至徐州-蚌埠一带(刘福来等,2015)。然而,该地区的五河群和凤阳群是否能与胶-辽-吉带其它地区的古元古代地层对比,它们的物质源区以及沉积时代是否一致还缺乏强有力的证据来支持。因此,本文对出露于华北克拉通东南缘蚌埠地区凤阳群中的石英岩和长石石英岩进行了锆石U-Pb定年以及Lu-Hf同位素分析,以期确定其沉积时代和物质源区,为五河杂岩和胶-辽-吉带的对比提供更进一步的证据。

图 1 东部陆块胶-辽-吉活动带的地质简图(据Zhao et al., 2005修改) Fig. 1 Simplified geological map of the Paleoproterozoic Jiao-Liao-Ji mobile belt in the Eastern Block, North China Craton (modified after Zhao et al., 2005)
2 地质背景

胶-辽-吉带被渤海分隔为南北两段,其中北段以断层接触与北部的龙岗地块和南部的狼林地块相邻,总体呈北东向展布,延伸规模长约1000km、宽约50~300km (图 1)。根据古元古代表壳岩岩石组合的空间分布以及变质作用特征不同,胶-辽-吉带又被分为以剪切带或断层接触分隔的南北两个带,其中北带包括老岭群、北辽河群和粉子山群,南带包括集安群、南辽河群和荆山群(图 1Zhao et al., 2005)。不同地区古元古代地层的物质组成以及变质演化上虽然存在差异,但大量的锆石年代学研究表明,其变质碎屑岩的源岩的形成时代集中在为2.2~2.1Ga和2.5~2.4Ga,物质来源为带内古元古代花岗岩及活动带两侧的太古宙变质基底,而变质时代在1.95~1.85Ga (Luo et al., 2004, 2008; Lu et al., 2006; Zhao et al., 2012; 谢士稳等,2014刘福来等,2015)。

本文研究区位于华北克拉通东南缘,郯庐断裂以西大约50km,苏鲁-大别造山带以北大约200km (图 1)。该地区早前寒武纪变质基底主要包括霍邱地区的霍邱杂岩(群)以及蚌埠地区的五河杂岩(五河群和凤阳群)以及少量的古元古代花岗(片麻)岩(图 2)。霍邱群分布于霍邱-寿县地区,基本被前寒武纪中晚期以及第四纪沉积物所覆盖。通过钻孔资料揭示,霍邱群为一套混合岩化的火山-沉积岩系,自下而上被分为花园组、吴集组和周集组(刘磊和杨晓勇,2013Wang et al., 2014; Liu et al., 2015)。花园组主要由混合岩化黑云角闪斜长片麻岩、斜长角闪岩和角闪黑云混合岩组成,原岩为中基性岩浆岩。吴集组下部由条带状混合岩、混合岩化黑云斜长变粒岩和角闪黑云斜长片麻岩组成,局部有斜长角闪岩,原岩为中酸性岩浆岩和杂砂岩。上部为黑云斜长变粒岩、石榴斜长黑云片岩、磁铁石英岩,局部有白云质大理岩和斜长角闪岩。周集组下部为混合岩化黑云斜长变粒岩、混合岩、黑云斜长片麻岩,局部含斜长角闪岩,上部为白云质大理岩、磁铁石英岩和局部的石英片岩(Liu et al., 2015)。近几年大量的锆石年代学研究表明,其中斜长角闪岩和变质碎屑沉积岩的锆石具有3.02~2.95Ga和2.77~2.74Ga两组年龄,花岗质片麻岩的侵位时间为2.76~2.71Ga和2.56Ga (Wan et al., 2010; 杨晓勇等,2012Wang et al., 2014; Liu et al., 2015, 2016a; Liu and Yang, 2015)。此外,2.44Ga和1.84Ga的变质时代以及1.92~1.82Ga花岗岩也有报道(Wan et al., 2010; Liu et al., 2015)。

图 2 五河杂岩地质简图(据刘贻灿等, 2015修改) Fig. 2 Geological sketch map of the Wuhe Complex (modified after Liu et al., 2015)

五河群的原岩属火山-沉积岩系,是一套复理石-火山建造,主要由酸性、中基性-超基性火山岩、凝灰岩和杂砂岩、泥灰质岩石及少量铁质碧玉岩组成。其自下而上分为下亚群西堌堆组、庄子里组、峰山李组和上亚群小张庄组、殷涧组。西堌堆组下部为黑云(角闪)片麻岩夹浅粒岩、黑云变粒岩及蛇纹石化大理岩,上部为黑云斜长片麻岩夹浅粒岩、斜长角闪岩、角闪岩等,并见碳酸盐化变辉橄岩和变辉绿岩、辉石岩、蛇纹岩等。庄子里组下段主要为角闪钾长变粒岩、角闪变粒岩及少量浅粒岩,夹大理岩、石英岩和黑云片岩,上段为较单一的厚层大理岩,夹变粒岩及斜长角闪岩。峰山李组主要岩性为条带状角闪钾长片麻岩,夹浅粒岩、大理岩和斜长角闪岩,有时还夹磁铁角闪岩。小张庄组以发育电气变粒岩为特征,岩性比较单一,主要由黑云钾长(或二长)片麻岩、电气变粒岩、浅粒岩相间组成,中下部夹较多的白云石大理岩。本组与下亚群的接触关系不清,在峰山李一带本组底部岩石颗粒表现粗大,局部还含砾,有存在剥蚀面的可能。殷涧组下部为白云石英片岩夹变流纹岩,上部为黄绿色绿帘角闪片岩,局部具变余安山结构,气孔及杏仁构造,属于中性火山岩(安徽省地质矿产局,1987)。然而,也有学者认为殷涧组为一套陆相喷发的火山岩建造,代表大陆裂谷早期拉张环境的产物,并结合白云母K-Ar年龄1650Ma认为殷涧组不属于五河群(涂荫玖等,1992)。锆石年代学研究表明五河群经历了2.5~2.4Ga岩浆事件以及1.9~1.8Ga多阶段变质和深熔作用,前人对于其中变基性岩的研究表明这些岩石经历了1.9~1.8Ga高压麻粒岩相变质作用(许文良等,2006Guo and Li, 2009; Liu et al., 2009; Wang et al., 2013),而最早的变质时代在1.91Ga左右(Liu et al., 2016b)。

研究区内古元古代花岗岩体为庄子里岩体和石门山(或称磨盘山)岩体,二者分别出露于蚌埠市以东约50km处的庄子里村南部和石门山镇北部,均位于郯庐断裂带内(图 2杨德斌等,2009)。二者岩性相似,均由钾长花岗岩祖成,显示中细粒花岗结构,块状构造。其中庄子里岩体中含有少量细粒闪长质包体,而石门山岩体岩石变形较强,石英颗粒具有定向拉长现象(杨德斌等,2009)。锆石年代学研究表明,继承锆石的年龄在2.48Ga,侵位年龄在2.10~2.06Ga (杨德斌等,2009Guo and Li, 2009),而石门山岩体的韧性变形时间则由白云母Ar-Ar年龄1740Ma限定(徐翔等,2005)。结合其A型花岗岩地球化学特征,较高的全岩εNd(t)和锆石εHf(t)值以及继承锆石的存在,杨德斌等(2009)认为其母岩浆形成于伸展环境下新太古代到古元古代新生下地壳的部分熔融,并混有少量古老地壳物质。

除了出露于地表的早前寒武纪变质基底,下地壳捕掳体也在夹沟、班井和利国等中生代闪长斑岩中被发现,岩石类型主要包括石榴斜长角闪岩、榴闪岩、石榴角闪石岩、石榴麻粒岩、含石榴角闪斜长片麻岩和花岗片麻岩等(刘贻灿等,2015)。前人研究表明,这些基性和中性捕掳体记录了2.55~2.48Ga和2.12Ga两期岩浆事件以及1.90~1.80Ga的麻粒岩相变质事件(Xu et al., 2006; Liu et al., 2009, 2013c)。此外,晚太古代末期(2.64~2.55Ga)的岩浆事件以及稍晚的变质事件(2.49~2.47Ga)也有报道(Wang et al., 2012)。

凤阳群是一套低绿片岩相变质沉积岩系,原始沉积物自下而上分别为石英砂岩-砂、粉砂泥质及富镁碳酸盐岩交替-粉砂泥质、泥质和少量泥灰质,普遍含铁质条带,是一套滨海相陆源碎屑和浅海相富镁碳酸岩及泥质沉积,韵律性较明显,可能属于冒地槽复理石建造(安徽省地质矿产局,1987)。其自下而上被分为白云山组、青石山组和宋集组。白云山组下部为绢云石英片岩夹石英岩,底部含粗砂粒,上部为细粒石英岩夹绢云石英片岩及石英绢云片岩。青石山组岩性稳定,由薄-中厚层条带状含硅白云石大理岩或中厚层铁质条带状石英岩组成。宋集组主要由千枚岩及含砂千枚岩组成,夹石英岩、铁质条带石英岩及少量大理岩凸镜体(安徽省地质矿产局,1987)。前人对于凤阳群的沉积时代主要有两种看法:基于白云母K-Ar年龄1878Ma以及其主体岩性序列与北辽河群、滹沱群、嵩山群以及粉子山群的相似性将其归为古元古代(安徽省地质矿产局,1987)以及根据青石山组中微古植物化石与蓟县系的相似性而将其划为中元古代早期(涂荫玖等,1992)。

本次研究我们从最适合进行碎屑锆石测试的白云山组不同位置选取了3个样品进行分析(图 2)。其中,样品14BB13-1取自凤阳县曹店乡以东8km牛牧岭附近,岩性为白色长石石英岩,石英含量90%左右,绢云母化斜长石10%。岩石为细粒变晶结构,块状构造,粒度一般在0.2~0.6mm,推测原岩为长石石英砂岩(图 3)。另外2个样品14BB27-1和14BB28-1则取自凤阳县殷涧镇以东4km王家大山附近,岩石呈肉红色,粒状变晶结构,块状构造。粒径一般在0.1~0.3mm,石英含量大于90%,其中14BB27-1含有少量白云母,两者原岩应为石英砂岩(图 3)。

图 3 凤阳群白云山组长石石英岩(14BB13-1) 和石英岩(14BB27-1和14BB28-1) 样品的镜下特征 Fig. 3 Microscopic features of the feldspar quartzite (14BB13-1) and quartzites (14BB27-1 and 14BB28-1) from the Baiyunshan Formation of the Fengyang Group
3 分析方法

锆石分选工作在河北省区域地质调查研究院实验室完成,样品碎样到50目后通过标准的重液及电磁分选,随后单颗粒锆石被从重矿物中手工挑选出来,并在双目镜下固定在透明胶带上。再通过灌入环氧树脂使锆石颗粒固定并根据锆石大小抛光到三分之一到二分之一,最后在透射光和反射光下进行显微照相,获得关于锆石表面和内部结构的初步信息。锆石的阴极发光显微照相是在南京宏创地质勘查技术服务有限公司通过场发射扫描电镜MIRA3 TESCAN搭配CL探头完成的。结合锆石透射光、反射光和阴极发光图像选取无明显裂隙和包体,具有较清楚结构的位置进行之后的U-Pb以及Lu-Hf同位素测试。

锆石的U-Pb同位素测定是在南京聚谱检测科技有限公司通过Agilent 7700x ICP-MS以及配套的Analyte Excite 193nm激光剥蚀系统完成的。实验中采用的束斑直径为35μm,频率为8Hz,能量密度为6.0J/cm2。每个测试包括大约30s的背景值采集以及40s的样品数据采集。测试过程中以标准锆石91500为外标,校正仪器质量歧视与元素分馏,以标准锆石GJ-1为盲样,检验U-Pb定年数据质量,以NIST 610为外标,以Si为内标标定锆石中的Pb元素含量,以Zr为内标标定锆石中其余微量元素含量。原始的测试数据经过ICPMSDataCal 8.0软件离线处理完成(Liu et al., 2010)。年龄计算及谐和图的绘制使用ISOPLOT (version 3.0; Ludwig,2003)软件完成。

锆石原位Lu-Hf同位素分析是通过南京聚谱检测科技有限公司的Nu Plasma Ⅱ MC-ICP-MS以及相配套的Analyte Excite 193nm激光剥蚀系统完成的。测试中选取与U-Pb测试点具有相同阴极发光图像特征的区域作为测试点,采用的束斑直径为50μm,频率为8Hz,能量密度为6.0J/cm2。标准的剥蚀时间为40s,剥蚀出的气溶胶以氦气为载体通过输送到MC-ICP-MS中。测试过程中每隔10颗样品锆石,交替测试2颗标准锆石(包括GJ-1、91500、Plešovice、Mud Tank和Penglai),以检验锆石Hf同位素数据质量。本次测试中20个GJ-1测定的176Hf/177Hf比值的加权平均值为0.282013±6 (MSWD=0.44),与推荐值在误差范围内一致(Yuan et al., 2008)。测定的176Lu/177Hf比值和176Lu的衰变常数1.865×10-11/y (Scherer et al., 2001)被用来计算初始176Hf/177Hf比值。Blichert-Toft and Albarède (1997)报道的球粒陨石176Hf/177Hf和176Lu/177Hf比值被用来计算εHf值。亏损地幔模式年龄(tDM)的计算采用的是锆石样品的初始176Hf/177Hf比值和上地壳的176Lu/177Hf比值0.008(Amelin et al., 2000)。假设每颗锆石的母岩浆均来自平均大陆地壳,采用176Lu/177Hf比值0.015(Griffin et al., 2002)计算地壳模式年龄(tDMC)。

4 分析结果 4.1 锆石U-Pb年龄

长石石英岩14BB13-1采自凤阳群白云山组中,位置为牛牧岭附近(32°43′50″N、117°28′29″E;图 2)。锆石磨圆度较高、分选性较好,粒径在150~100μm左右,长宽比在2:1到1.5:1之间。阴极发光图像中,绝大多数锆石具有清晰或较清晰的振荡环带,个别锆石存在窄的变质增生边或完全重结晶域,但是由于其宽度在10μm左右,无法进行测试(图 4)。在这个样品中一共测试了79个点,其中7个点由于获得的年龄不谐和度大于10%,因此被认为是不可信的数据,结果列在电子版附表 1图 5图 6中。具有可信年龄的数据点都在具有振荡环带的区域内,其Th、U含量和Th/U比值分别为10.7×10-6~228×10-6、24.7×10-6~222×10-6和0.17~1.50之间(绝大部分大于0.40),为典型的岩浆成因锆石。72个数据点的207Pb/206Pb年龄在3389~2373Ma之间,主峰为2.54Ga,次峰为2.69Ga,再次峰为2.93Ga (图 6)。此外,还有2颗年龄分别为3339±22Ma和3389±20Ma的古太古代碎屑锆石被发现。

图 4 蚌埠地区凤阳群白云山组碎屑锆石的阴极发光图像 测试点号、年龄(Ma)和εHf(t)值已标出 Fig. 4 Cathodoluminescence images of detrital zircons from the Baiyunshan Formation of the Fengyang Group in the Bengbu area The analytical number, 207Pb/206Pb age (Ma) and εHf(t) values are also displayed

图 5 蚌埠地区凤阳群白云山组碎屑锆石的U-Pb年龄谐和线图 灰色代表不谐和度大于10%的测试结果,207Pb/206Pb年龄小于2400Ma的测试点已标出 Fig. 5 Concordia diagram for all the analyzed zircon spots from the Baiyunshan Formation of the Fengyang Group in the Bengbu area Grey spots representing analytical results with unconcordance >10%, analytical spots with 207Pb/206Pb ages < 2400Ma also pointed

图 6 蚌埠地区凤阳群白云山组碎屑锆石的年龄分布直方图 Fig. 6 Age histograms of detrital zircons from the Baiyunshan Formation of the Fengyang Group in the Bengbu area

附表 1 凤阳群白云山组碎屑锆石的U-Pb同位素数据 Appendix1 U-Pb isotopic compositions of detrital zircons from the Baiyunshan Formation of the Fengyang Group

石英岩14BB27-1采自凤阳群白云山组中,位置为王家大山附近(32°41′55″N、117°39′21″E;图 2)。类似于样品14BB13-1,该样品中挑选出的锆石磨圆度较高、分选性较好,绝大部分颗粒的粒径在170~80μm之间,长宽比在2:1到1:1之间。阴极发光图像中,绝大多数锆石具有清晰或较清晰的振荡环带,个别锆石则显示较亮的扇形分区(图 4)。在80颗锆石上一共测试了81个点,其中6个点由于获得的年龄不谐和度大于10%,因此被认为是不可信的数据(图 5)。位于振荡环带和扇形分区的测试点,其Th、U含量和Th/U比值没有明显区别,分别在17.9×10-6~236×10-6、22.5×10-6~408×10-6和0.16~1.96之间(绝大部分大于0.42),为典型的岩浆成因锆石,说明扇形区域的锆石应该是不完全重结晶的产物。75个数据点的207Pb/206Pb年龄在3614~2323Ma之间,主峰为2.51Ga,次峰为2.72Ga (图 6)。此外,还有5颗年龄在3614~3229Ma的始太古代末期到古太古代的碎屑锆石被发现。

石英岩14BB28-1采自凤阳群白云山组中,位置为王家大山附近,在样品14BB27-1以北约600m (32°42′14″N、117°39′22″E;图 2)。该样品中挑选出的锆石磨圆度较高、分选性较好,粒径160~80μm左右,长宽比在2:1到1:1之间。类似于样品14BB27-1,绝大多数锆石的阴极发光图像具有清晰或较清晰的振荡环带,而个别锆石则显示较亮的扇形分区(图 4),但是二者在Th/U比值及年龄上均不可分。在这个样品中一共测试了72个点,其中5个点由于获得的年龄不谐和度大于10%,因此被认为是不可信的数据,而另外1个点获得的207Pb/206Pb误差大于100Ma,因此也被舍去(图 5)。具有可信年龄的测试点,其Th、U含量和Th/U比值分别在15.0×10-6~279×10-6、17.5×10-6~217×10-6和0.32~1.96之间(绝大部分在0.41~1.17之间),为典型的岩浆成因锆石。66个数据点的207Pb/206Pb年龄在3461~2373Ma之间,主峰为2.53Ga,次峰为2.69Ga,再次峰为2.93Ga (图 6),与样品14BB13-1几乎完全一致。此外,还有5颗年龄分别在3461~3353Ma的古太古代碎屑锆石被发现。

4.2 锆石Hf同位素

本次研究还对样品14BB13-1和14BB27-1中所有具有可信年龄的锆石以及样品14BB28-1中可信年龄大于2670Ma的锆石进行了Lu-Hf同位素分析,结果列在电子版附表 2图 7中。凤阳群白云山组中3个变质沉积岩碎屑锆石的年龄图谱极为相似,都具有晚太古代末的主峰(2.54~2.51Ga)、晚太古代早期的次峰(2.72~2.69Ga)以及少量中太古代到古太古代的碎屑锆石(图 6),因此我们可以把3个样品的年龄放在一起考虑。总共213个具有可信年龄的碎屑锆石U-Pb测试点根据其207Pb/206Pb年龄可以分为5组。其中,第一组年龄在2.43~2.32Ga之间,共包括7个测试点,约占总数的3%。其176Hf/177Hf (t)比值在0.281323到0.281044之间,εHf(t)值在-9.18到+2.32之间(图 7)。第二组包括了122个测试点,约占总数的一半,它们的年龄分布在2.57~2.46Ga,176Hf/177Hf (t)比值在0.280981到0.281374之间,εHf(t)值在-7.39到+7.37之间(图 7)。第三组包括了59个测试点(占总数24%),它们的年龄在2.89~2.65Ga之间,176Hf/177Hf (t)比值分布在0.280918和0.281280之间,εHf(t)值在-4.49和+7.24之间(图 7)。第四组包括了12个测试点(占总数5%),它们的年龄在2.98~2.91Ga之间,176Hf/177Hf (t)比值和εHf(t)值相对集中,分别在0.280935到0.281084和+0.76和+6.66之间(图 7)。第五组包括了11个测试点(占总数5%),它们的年龄在3.61~3.34Ga之间,176Hf/177Hf (t)比值和εHf(t)值也相对集中,分别在0.280360到0.280577和-6.34和-3.46之间(图 7)。

图 7 凤阳群白云山组碎屑锆石的εHf(t)对年龄图 夹沟捕掳体数据来自Liu et al. (2013b)Wang et al. (2013),霍邱群数据来自Wang et al. (2014)Liu and Yang (2015) Fig. 7 εHf(t) vs. U-Pb age diagram for detrital zircons from the Baiyunshan Formation of the Fengyang Group Data source: Jiagou xenoliths from Liu et al. (2013b) and Wang et al. (2013), Huoqiu Group from Wang et al. (2014) and Liu and Yang (2015)

附表 2 凤阳群白云山组碎屑锆石的Lu-Hf同位素数据 Appendix2 Lu-Hf isotopic compositions of detrital zircons from the Baiyunshan Formation of the Fengyang Group
5 讨论 5.1 凤阳群的形成时代

长期以来,由于缺乏合适的定年对象,如火山岩或凝灰岩夹层,不同学者对凤阳群的形成时代一直存在着争议。根据主体岩石序列与胶-辽-吉带中胶北地区的粉子山群以及辽东南地区的北辽河群的相似性以及代表了变质时代的白云母K-Ar年龄1878Ma,通常认为凤阳群形成于古元古代(安徽省地质矿产局,1987)。然而,涂荫玖等(1992)根据青石山组与燕辽裂谷带内蓟县系微古植物化石的相似性认为其形成于中元古代早期。

本次研究中我们从凤阳群最下部白云山组中3个变质(长石)石英砂岩总共获得了213个可靠的碎屑锆石年龄数据,结合它们的阴极发光图像特征以及Th/U比值,我们可以对凤阳群的形成年龄做出更加精确的限定。样品14BB28-1中两颗最年轻碎屑锆石的年龄分别为2373±23Ma和2374±17Ma (谐和度都为100%),误差范围内一致的年龄也在样品14BB27-1(2323±53Ma和2392±52Ma)以及样品14BB23-1(2373±87Ma;附表 1)中被发现。这些锆石都具有振荡环带的阴极发光图像特征以及大于0.37的Th/U比值,因此我们可以判断这些锆石为岩浆成因的碎屑锆石而不是凤阳群在后期低绿片岩相变质过程中形成的变质锆石(边)。具有类似年龄的锆石在研究区北部的宿州夹沟中生代闪长斑岩的下地壳捕掳体也有报道(Liu et al., 2009, 2013b; Wang et al., 2013),并且它们具有非常相似的εHf(t)值(图 7)。因此这5颗锆石的加权平均年龄2372±25Ma (MSWD=0.25) 可以将凤阳群白云山组的最大沉积年龄限定在2.37Ga左右。

虽然本次研究新获得的数据无法准确的对凤阳群形成时代的上限进行限制,但是我们依然可以根据现有资料做出一些推断。取自凤阳群的白云母K-Ar年龄为1878Ma,安徽省地质矿产局(1987)由此判断凤阳群经历了古元古代晚期的变质作用。此外,Wan et al. (2010)在霍邱群片麻状角闪黑云英云闪长岩中获得了1842Ma的变质锆石年龄。五河群中角闪岩相退变榴闪岩、石榴斜长角闪岩和麻粒岩中的变质锆石(边)年龄为1833~1876Ma (许文良等,2006; Guo et al., 2009; Liu et al., 2009; Wang et al., 2013),结合其峰期变质矿物组合,刘贻灿等(2015)认为五河群经历了古元古代高压麻粒岩相变质作用。类似的,邻近地区中生代闪长斑岩中下地壳捕掳体,如石榴斜长辉石岩、石榴角闪石岩和含石榴石斜长角闪片麻岩也获得了相似的变质锆石年龄1.80Ga (Liu et al., 2009, 2013c)。因此,我们可以推断凤阳群遭受的主期变质作用的时代也在1.88~1.80Ga左右,这为其形成时代提供了上限。此外,华北克拉通南缘的蓟县系地层如豫西地区的兵马沟组、汝阳群和官道口群都含有大量~2.10Ga、~1.86Ga以及1.80~1.75Ga的碎屑锆石,它们分别来自华北克拉通古元古代俯冲-增生-碰撞的产物以及古元古代末与拉张事件相关的熊耳群火山岩、富钾花岗岩以及基性岩墙群(Hu et al., 2014)。在蚌埠地区,我们也在不整合于凤阳群之上的八公山群中发现了大量的2.18~1.82Ga的碎屑锆石(未发表数据),然而这些古元古代中晚期的构造热事件在凤阳群的碎屑锆石中都没有记录。因此,我们认为凤阳群不应该与燕辽裂谷带中的蓟县系地层对比,其沉积时代应该在2.37~1.88Ga之间。

5.2 凤阳群的物质源区

凤阳群变质沉积岩碎屑锆石的U-Pb年龄以及Hf同位素数据为其物质源区提供了丰富的信息。本次研究的数据获得了213个可靠碎屑锆石U-Pb年龄以及其中165个配套的Lu-Hf同位素数据。本次分析的碎屑锆石绝大多数具有岩浆锆石的结构和组成特征,主要来自岩浆岩物源区或其再循环。碎屑锆石最重要的年龄区间为2.57~2.46Ga,峰值年龄约为2.52Ga (图 8),其εHf(t)值在-7.39到+7.37之间,其中大约90%具有正值,分布在亏损地幔和球粒陨石演化线之间(图 7),这些锆石的母岩浆应来自于中太古代地壳与晚太古代末期亏损地幔来源岩浆不同程度混合的产物。具有相似年龄的岩体仅在侵入霍邱群中的条带状英云闪长岩中有过报道(2564Ma;Wan et al., 2010),但是相似的年龄在庄子里岩体的捕获锆石(2485Ma;杨德斌等,2009)以及中生代闪长斑岩中下地壳捕掳体也有报道(Xu et al., 2006; Liu et al., 2009, 2013c; Wang et al., 2012)。前人报道的具有类似年龄的锆石其εHf (t)值也几乎都为正值,与凤阳群中碎屑锆石的εHf(t)值范围一致(图 7)。以上锆石U-Pb年龄和Lu-Hf同位素上的相似性说明凤阳群一个重要的碎屑物质来源是蚌埠地区的晚太古代末期的花岗质岩石。

图 8 老岭群变质粗粒石英砂岩、北辽河群大石桥组十字石云母片岩和凤阳群白云山组碎屑锆石年龄图谱的对比 老岭群数据来自Lu et al. (2006),北辽河群大石桥组数据来自Lu et al. (2004),仅包括谐和度在90%到110%的碎屑锆石数据 Fig. 8 Comparison of detrital zircon age histograms of the metamorphosed coarse-grained quartz sandstone from the Laoling Group, the staurolite mica schist from the Dashiqiao Formation of the North Liaohe Group and the Baiyunshan Formation of the Fengyang Group Date source: the Laoling Group from Lu et al. (2006), the Dashiqiao Formation of the North Liaohe Group from Luo et al. (2004), only the detrital zircon ages with concordance of 90%~110% are included

凤阳群碎屑锆石中另一个重要的年龄区间是2.98~2.66Ga,其峰值为2.94Ga和2.69Ga (图 8),其εHf(t)值在-11.8到+7.24之间,其中超过90%为正值,分布在亏损地幔和球粒陨石演化线之间(图 7)。这些锆石的母岩浆绝大部分来自于中太古代初期地壳物质与中太古代末期到新太古代早期亏损地幔来源岩浆不同程度混合的产物。具有相似年龄的岩体在侵入霍邱群的花岗质岩体(2.76~2.71Ga; Wan et al., 2010; Wang et al., 2014),霍邱群中的斜长角闪岩(3.01~2.95Ga; 杨晓勇等,2012Liu et al., 2015)以及夹沟岩体中的花岗质片麻岩捕虏体(2.64Ga; Wang et al., 2012)已有报道。其外,霍邱群中变质沉积岩的碎屑锆石(3.02~2.95Ga和2.77~2.74Ga; Wan et al., 2010; Liu and Yang, 2015; Liu et al., 2016a)也是可能的物质源区。前人报到的这些锆石的εHf(t)值也全部分布在亏损地幔和球粒陨石演化线之间,因此它们是凤阳群另一个重要的碎屑物质源区。

5.3 古太古代锆石年龄记录

作为华北克拉通早前寒武纪基底重要出露区,蚌埠地区已有古太古代古老锆石的年龄报道,如早白垩世淮光岩体中的继承锆石(3.44Ga和3.35Ga;靳克等;2003)和侵入霍邱群的晚太古代早期钾质花岗岩中的继承锆石(8颗锆石上交点年龄3.26Ga,谐和度均小于83%;Wang et al., 2014)。在华北克拉通南缘的邻近地区也发现了大量的古太古代陆壳存在的证据,如登封地区古元古代嵩山群中3.45~3.26Ga的碎屑锆石(Diwu et al., 2008万渝生等,2009)、焦作地区晚太古代花岗岩中3.40Ga的继承锆石(高林志等,2005)、信阳地区中生代火山岩麻粒岩包体中3.69~3.45Ga的锆石(Zheng et al., 2004, 2008)以及胶东地区不同时代地层和岩体中发现的3.68~3.36Ga的碎屑或继承锆石(谢士稳等,2014; Wang et al., 1998; Liu et al., 2013b)。相关的锆石Lu-Hf同位素研究表明,这些古太古代锆石都具有负的εHf(t)值,两阶段模式年龄高达4.1Ga (Zheng et al., 2004, 2008; Liu et al., 2013b),这与本次研究中获得的古太古代碎屑锆石的εHf(t)值-6.34到-1.05以及两阶段模式年龄3.75~4.07Ga是一致的。这种相似性是否说明华北克拉通南缘曾经存在古太古代,甚至冥古宙古老陆壳,需要进一步深入研究。

5.4 五河杂岩是否为胶辽吉带的西南延伸

胶-辽-吉活动带记录了古元古代多期岩浆事件、碰撞造山相关的高级变质作用和深熔作用以及碰撞后岩浆事件(刘福来等,2015)。其中,2.1Ga左右岩浆事件的产物在活动带内发育最为广泛,包括了具有A型花岗岩特征的辽吉花岗岩(绝大部分在2.18~2.16Ga;陆孝平等, 2004; Li and Zhao, 2007)、基性火山岩和岩浆岩(2.2~2.1Ga;Li and Chen, 2014; Meng et al., 2014; Yuan et al., 2015; Wang et al., 2016)以及胶北、辽东南和吉南地区古元古代变质沉积岩中大量2.2~2.0Ga碎屑锆石的记录(谢士稳等,2014刘福来等,2015Luo et al., 2004, 2008; Lu et al., 2006; Wan et al., 2006)。此外,详细的变质岩石学研究表明活动带内荆山群变质程度可达中-低压麻粒岩相,粉子山群则达到高角闪岩相,而南、北辽河群以及集安群和老岭群则经历了绿片岩相到低角闪岩相变质,局部达到高角闪岩相(Zhao et al., 2012; 刘福来等,2015)。变质锆石普遍记录的1.95~1.90Ga的年龄时限应是胶-辽-吉带的主要变质阶段,而变质锆石记录的另一个峰值1.85Ga则与泥质麻粒岩中深融脉体中深融锆石的结晶年龄一致,可能代表了构造折返的年龄时限(Liu et al., 2014刘福来等,2015)。然而,有关胶-辽-吉带是否向西南穿越郯庐断裂,延伸至徐州-蚌埠一带还存在争议(翟明国和彭澎,2007Zhao et al., 2005, 2012; Zhai and Santosh, 2011)。

近年来在蚌埠地区中生代火山岩中发现了大量的深源捕掳体,其岩性包括石榴斜长角闪岩、石榴辉石闪长岩、石榴麻粒岩等,岩相学和同位素年代学研究表明它们普遍经历了1.90~1.80Ga的麻粒岩相变质作用(Guo et al., 2009; Liu et al., 2009, 2013c)。出露于地表的五河群中石榴斜长辉石岩、石榴斜长角闪岩和退变榴闪岩等变基性岩以及侵入霍邱群的英云闪长岩也经历了1.88~1.83Ga麻粒岩相变质作用(许文良等,2006; Guo et al., 2009; Liu et al., 2009; Wan et al., 2010; Wang et al., 2013)。分布在蚌埠地区最东端的庄子里和石门山钾长花岗岩体侵位年龄为2.10~2.06Ga,并且具有铝质A型花岗岩特征(杨德斌等,2009Guo et al., 2009)。以上资料似乎说明五河杂岩和胶-辽-吉带的其他地区经历了类似的古元古代构造演化过程。然而,蚌埠地区的凤阳群是否能与活动带中低级变质的古元古代沉积岩系(粉子山群、北辽河群和老岭群)对比,以往的研究还缺乏强有力的证据来支持。

根据凤阳群碎屑锆石年龄和Lu-Hf同位素特征以及与蚌埠地区已经获得的早前寒武纪岩石的信息进行对比,我们认为其沉积时代应该在2.37~1.88Ga之间,主要物源区为邻近的晚太古代的花岗质岩石以及霍邱群。根据前人的研究,胶东地区粉子山群碎屑锆石的主峰年龄在2.19~2.18Ga,次峰在2.49~2.48Ga,原岩的沉积时代在2.1~1.9Ga (谢士稳等,2014Wan et al., 2006)。北辽河群和老岭群中取自不同层位的不同变质沉积岩,其碎屑锆石年龄图谱则差别较大,其中大部分具有2.10~2.02Ga的单峰(Luo et al., 2004, 2008; Lu et al., 2006),与本次研究获得的凤阳群白云山组的变质沉积岩明显不同。但是,值得注意的是,前人也报道了只具有2.57~2.46Ga单峰,而缺少2.1Ga左右峰值的2个样品(图 8),包括老岭群的变质粗粒石英砂岩(TPⅧ-19;Lu et al., 2006)和北辽河群大石桥组中段的的十字石云母片岩(02L102-2; Luo et al., 2004)。此外,这两个样品中最年轻的一组碎屑锆石的年龄也集中在2.35Ga左右(图 8),与凤阳群白云山组的2.37Ga相似。根据老岭群不同变质沉积岩截然不同的碎屑锆石年龄记录,Lu et al. (2006)认为老岭群可能经历了2.5~2.2Ga以及2.0~1.9Ga两个阶段的沉积。

老岭群以大理岩、片岩、石英岩和千枚岩为主,为海相碎屑-碳酸盐沉积(吉林省地质矿产局,1988),而北辽河群大石桥组的主体岩性也是变质碎屑岩和碳酸盐,包括大理岩、片岩、千枚岩、变粒岩等(辽宁省地质矿产局,1989)。近年来,对于辽河群详细的填图工作也发现,原本认为的大石桥组与之下的高家峪组和之上的盖县组的整合接触关系,很可能是断层或大型剪切带的构造接触关系,原有的地层层序可能已经被完全重置(刘福来等,2015),因此在高家峪组和盖县组中获得的2.10~2.02Ga的碎屑锆石主峰(Luo et al., 2008)并不能说明大石桥组也沉积于2.0Ga以后。凤阳群的原始沉积物自下而上为石英砂质-砂、粉砂泥质及富镁碳酸盐交替-粉砂泥质、泥质及少量泥灰质,显示由滨海相陆源碎屑向浅海相富镁碳酸岩及泥质沉积变化的特征(安徽省地质矿产局,1987),与拉张环境相关。如果再考虑到中生代以来郯庐断裂带400km左右的左行走滑量的话(Zhao et al., 2016),那么古元古代时期蚌埠地区与胶东以及辽东地区的距离可能非常接近。以上这些证据是否暗示着,北辽河群和老岭群的一部分以及凤阳群其沉积时代是在2.3~2.1Ga,构造环境可能是在裂谷带发育早期,由于地幔来源的基性岩浆以及由此提供的热量导致陆壳部分熔融形成的A型花岗岩还没有形成,因此胶-辽-吉活动带内只沉积了海相碳酸盐岩及新太古代陆壳来源的碎屑岩,这一假设还需要更多证据的支持。

6 结论

(1) 凤阳群自下而上主要由低绿片岩相变质的石英砂质-砂、粉砂泥质及富镁碳酸盐交替-粉砂泥质、泥质及少量泥灰质沉积岩组成。本次研究获得的其下部白云山组中变质沉积岩的碎屑锆石最小年龄在2.37Ga左右,这为凤阳群群形成时代的下限做出了限制,而白云母K-Ar年龄1878Ma则与蚌埠地区1.88~1.80Ga的主期变质作用特征一致,这为其形成时代的上限做出了限制。

(2) 凤阳群碎屑锆石的U-Pb年龄以及Lu-Hf同位素特征与蚌埠地区的晚太古代末期的花岗质岩石、侵入霍邱群的晚太古代早期花岗质岩体以及霍邱群中斜长角闪岩和变质沉积岩的锆石具有相似性,因此我们推断它们为凤阳群的源岩。

参考文献
[] Amelin Y, Lee DC, Halliday AN. 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205–4225. DOI:10.1016/S0016-7037(00)00493-2
[] Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243–258. DOI:10.1016/S0012-821X(97)00040-X
[] Bureau of Geology, Mineral Resources of Anhui Province. 1987. Regional Geology of Anhui Province. Beijing: Geological Publishing House: 548-558.
[] Bureau of Geology, Mineral Resource of Jilin Province. 1988. Regional Geology of Jilin Province. Beijing: Geological Publishing House: 13-37.
[] Bureau of Geology, Mineral Resource of Liaoning Province. 1989. Regional Geology of Liaoning Province. Beijing: Geological Publishing House: 33-55.
[] Diwu CR, Sun Y, Yuan HL, Wang HL, Zhong XP, Liu XM. 2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chinese Science Bulletin, 53(18): 2828–2839.
[] Faure M, Lin W, Monie P, Bruguier O. 2004. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova, 16(2): 75–80. DOI:10.1111/ter.2004.16.issue-2
[] Gao LZ, Zhao T, Wan YS, Zhao X, Ma YS, Yang SZ. 2005. Zircon SHRIMP U-Pb age of the Yuntaishan Precambrian metamorphic basement, Jiaozuo, Henan, China. Geological Bulletin of China, 24(12): 1089–1093.
[] Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237–269. DOI:10.1016/S0024-4937(02)00082-8
[] Guo JH, O'Brien PJ, Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China Craton:Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741–756. DOI:10.1046/j.1525-1314.2002.00401.x
[] Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124–142. DOI:10.1016/j.precamres.2011.07.020
[] Guo RR, Liu SW, Santosh M, Li QG, Bai X, Wang W. 2013. Geochemistry, Zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Research, 24(2): 664–686. DOI:10.1016/j.gr.2012.12.025
[] Guo SS, Li SG. 2009. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Science in China (Series D), 52(8): 1039–1045. DOI:10.1007/s11430-009-0099-7
[] Hu GH, Zhao TP, Zhou YY. 2014. Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton. Precambrian Research, 246: 296–318. DOI:10.1016/j.precamres.2014.03.013
[] Jahn BM, Liu DY, Wan YS, Song B, Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232–269. DOI:10.2475/03.2008.03
[] Jin K, Xu WL, Wang QH, Gao S, Liu XC. 2003. Formation time and source of the Huaiguang "migmatitic granodiorite" in Bengbu, Anhui Province:Evidence from SHRIMP zircon U-Pb geochronology. Acta Geoscientia Sinica, 24(4): 331–335.
[] Li SZ, Zhao GC, Sun M, Han ZZ, Luo Y, Hao DF, Xia XP. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659–674. DOI:10.1016/j.jseaes.2003.11.008
[] Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT, Hao DF. 2006. Are the South and North Liaohe groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 9(1-2): 198–208. DOI:10.1016/j.gr.2005.06.011
[] Li SZ, Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1–16. DOI:10.1016/j.precamres.2007.04.001
[] Li SZ, Zhao GC, Santosh M, Liu X, Dai LM, Suo YH, Tam PY, Song MC, Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59–73. DOI:10.1016/j.precamres.2012.01.007
[] Li Z, Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoic metabasalts from the Jiao-Liao-Ji Belt, North China Craton:Implications for petrogenesis and tectonic setting. Precambrian Research, 255: 653–667. DOI:10.1016/j.precamres.2014.07.003
[] Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339–342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[] Liu FL, Liu PH, Wang F, Liu JH, Meng E, Cai J, Shi JR. 2014. U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton:Constraints on the timing and nature of partial melting. Precambrian Research, 245: 80–99. DOI:10.1016/j.precamres.2014.01.001
[] Liu FL, Liu PH, Wang F, Liu CH, Cai J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica, 31(10): 2816–2846.
[] Liu JH, Liu FL, Liu PH, Wang F, Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area:Evidences from the zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4): 943–960.
[] Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F, Meng E. 2013a. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton:Constraints from U-Th-Pb, Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287–303. DOI:10.1016/j.precamres.2012.10.003
[] Liu JH, Liu FL, Yang H, Liu CH, Liu PH, Xiao LL, Zhao L, Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton:Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research, 235: 230–250. DOI:10.1016/j.precamres.2013.06.014
[] Liu JH, Liu FL, Ding ZJ, Liu PH, Guo CL, Wang F. 2014. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255: 685–698. DOI:10.1016/j.precamres.2013.12.004
[] Liu L, Yang XY. 2013. Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance:Taking the Bantaizi and Zhouyoufang deposits as examples. Acta Petrologica Sinica, 29(7): 2551–2566.
[] Liu L, Yang XY. 2015. Temporal, environmental and tectonic significance of the Huoqiu BIF, southeastern North China Craton:Geochemical and geochronological constraints. Precambrian Research, 261: 217–233. DOI:10.1016/j.precamres.2015.02.017
[] Liu L, Yang XY, Santosh M, Aulbach S. 2015. Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton:Geochemical, zircon UPb and Hf isotope evidence from the Huoqiu complex. Gondwana Research, 28(3): 1002–1018. DOI:10.1016/j.gr.2014.08.011
[] Liu L, Yang XY, Santosh M, Zhao GC, Aulbach S. 2016a. U-Pb age and Hf isotopes of detrital zircons from the Southeastern North China Craton:Meso-to Neoarchean episodic crustal growth in a shifting tectonic regime. Gondwana Research, 35: 1–14. DOI:10.1016/j.gr.2016.03.017
[] Liu SW, Zhao GC, Wilde SA, Shu GM, Sun M, Li QG, Tian W, Zhang J. 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes:Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research, 148(3-4): 205–225. DOI:10.1016/j.precamres.2006.04.003
[] Liu SW, Zhang J, Li QG, Zhang LF, Wang W, Yang PT. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173–190. DOI:10.1016/j.precamres.2011.07.006
[] Liu YC, Wang AD, Rolfo F, Groppo C, Gu XF, Song B. 2009. Geochronological and petrological constraints on Palaeoproterozoic granulite facies metamorphism in southeastern margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125–138. DOI:10.1111/jmg.2009.27.issue-2
[] Liu YC, Wang AD, Li SG, Rolfo F, Li Y, Groppo C, Gu XF, Hou ZH. 2013c. Composition and geochronology of the deep-seated xenoliths from the southeastern margin of the North China Craton. Gondwana Research, 23(3): 1021–1039. DOI:10.1016/j.gr.2012.06.009
[] Liu YC, Wang CC, Zhang PG, Nie JZ. 2015. Growth and metamorphic evolution of the Precambrian lower crust at the southeastern margin of the North China Block. Acta Petrologica Sinica, 31(10): 2847–2862.
[] Liu YC, Zhang PG, Wang CC, Nie JZ. 2016b. Paleoproterozoic multistage metamorphic ages registered in the precambrian basement rocks at the southeastern margin of the North China craton and their geological implications. Acta Geologica Sinica, 90(6): 2265–2266. DOI:10.1111/acgs.2016.90.issue-6
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Lu XP, Wu FY, Lin JQ, Sun DY, Zhang YB, Guo CL. 2004. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the North China Craton. Chinese Journal of Geology, 39(1): 123–138.
[] Lu XP, Wu FY, Guo JH, Wilde SA, Yang JH, Liu XM, Zhang XO. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern Block in the North China Craton. Precambrian Research, 146(3-4): 138–164. DOI:10.1016/j.precamres.2006.01.009
[] Luo Y, Sun M, Zhao GC, Li SZ, Xu P, Ye K, Xia XP. 2004. LAICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3-4): 349–371. DOI:10.1016/j.precamres.2004.07.002
[] Luo Y, Sun M, Zhao GC, Li SZ, Ayers JC, Xia XP, Zhang JH. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe groups:Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163(3-4): 279–306. DOI:10.1016/j.precamres.2008.01.002
[] Ludwig KR. 2003. Isoplot v. 3.0:A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center. Special Publication, 4: 1–70.
[] Meng E, Liu FL, Cui Y, Cai J. 2013. Zircon U-Pb and Lu-Hf isotopic and whole-rock geochemical constraints on the protolith and tectonic history of the Changhai metamorphic supracrustal sequence in the Jiao-Liao-Ji Belt, southeast Liaoning Province, northeastern China. Precambrian Research, 233: 297–315. DOI:10.1016/j.precamres.2013.05.004
[] Meng E, Liu FL, Liu PH, Liu CH, Yang H, Wang F, Shi JR, Cai J. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China:Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry. Precambrian Research, 247: 92–109. DOI:10.1016/j.precamres.2014.03.017
[] Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent:The role of double-sided subduction. Precambrian Research, 178(1-4): 149–167. DOI:10.1016/j.precamres.2010.02.003
[] Scherer E, Münker C, Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683–687. DOI:10.1126/science.1061372
[] Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M, Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19(1): 150–162. DOI:10.1016/j.gr.2010.05.007
[] Tam PY, Zhao GC, Sun M, Li SZ, Wu ML, Yin CQ. 2012. Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94–105. DOI:10.1016/j.lithos.2012.08.018
[] Trap P, Faure M, Lin W, Augier R, Fouassier A. 2011. Syn-collisional channel flow and exhumation of Paleoproterozoic high pressure rocks in the Trans-North China Orogen:The critical role of partial-melting and orogenic bending. Gondwana Research, 20(2-3): 498–515. DOI:10.1016/j.gr.2011.02.013
[] Tu YJ, Chen CT, Tang LG. 1992. The classification and structural features of the Precambrian metamorphic rock series in the northern part of the Jianghuai region. Regional Geology of China, (3):248-256 (in Chinese with English abstract), 3: 248–256.
[] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249–271. DOI:10.1016/j.precamres.2006.06.006
[] Wan YS, Liu DY, Wang SY, Zhao X, Dong CY, Zhou HY, Yin XY, Yang CX, Gao LZ. 2009. Early precambrian crustal evolution in the Dengfeng Area, Henan Province (eastern China):Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geologica Sinica, 83(7): 982–999.
[] Wan YS, Dong CY, Wang W, Xie HQ, Liu DY. 2010. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China Craton:Evidence from Sensitive High Resolution Ion Micro-Probe U-Pb zircon geochronology. Acta Geologica Sinica, 84(1): 91–104. DOI:10.1111/j.1755-6724.2010.00173.x
[] Wang AD, Liu YC, Gu XF, Hou ZH, Song B. 2012. Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications. Precambrian Research, 220-221: 65–79. DOI:10.1016/j.precamres.2012.07.011
[] Wang AD, Liu YC, Santosh M, Gu XF. 2013. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotopes from the metamorphic basement in the Wuhe Complex:Implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids. Geoscience Frontiers, 4(1): 57–71. DOI:10.1016/j.gsf.2012.05.001
[] Wang HC, Lu SN, Chu H, Xiang ZQ, Zhang CJ, Liu H. 2011. Zircon U-Pb age and tectonic setting of meta-basalts of Liaohe Group in Helan area, Liaoyang, Liaoning Province. Journal of Jilin University (Earth Science Edition), 41(5): 1322–1334, 1361.
[] Wang QY, Zheng JP, P an, Y M, Do ng, Y J, Liao FX, Zhang Y, Zhang L, Zhao G, Tu ZB. 2014. Archean crustal evolution in the southeastern North China Craton:New data from the Huoqiu Complex. Precambrian Research, 255: 294–315. DOI:10.1016/j.precamres.2014.10.005
[] Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC, Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13(1-5): 275–291. DOI:10.1016/S0169-1368(97)00022-X
[] Wang W, Liu SW, Santosh M, Wang G, Bai X, Guo RR. 2015. Neoarchean intra-oceanic arc system in the western Liaoning Province:Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 150: 329–364. DOI:10.1016/j.earscirev.2015.08.002
[] Wang XP, Peng P, Wang C, Yang SY. 2016. Petrogenesis of the 2115Ma Haicheng mafic sills from the Eastern North China Craton:Implications for an intra-continental rifting. Gondwana Research, 39: 347–364. DOI:10.1016/j.gr.2016.01.009
[] Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Liu DY, Wan YS. 2014. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in eastern Shandong, North China craton. Acta Petrplogica Sinica, 30(10): 2989–2998.
[] Xu WL, Gao S, Wang QH, Wang DY, Liu YS. 2006. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geology, 34(9): 721–724. DOI:10.1130/G22551.1
[] Xu WL, Yang DB, Pei FP, Yang CH, Liu XM, Hu ZC. 2006. Age of the Wuhe complex in the Bengbu uplift:Evidence from LA-ICP-MS zircon U-Pb dating. Geology in China, 33(1): 132–137.
[] Xu X, Hou MJ, Qiu RL, Wu LB, Li JS. 2005. 40Ar-39Ar dating of granites and related dikes in the Bengbu area on the southeastern margin of the North China block. Geology in China, 32(4): 588–595.
[] Yang DB, Xu WL, Pei FP, Wang QH. 2009. Petrogenesis of the Paleoproterozoic K-Feldspar granites in Bengbu Uplift:Constraints from petro-geochemistry, zircon U-Pb dating and Hf isotope. Earth Science-Journal of China University of Geosciences, 34(1): 148–164. DOI:10.3799/dqkx.2009.014
[] Yang XY, Wang BH, Du ZB, Wang QC, Tu ZB, Zhang WL, Sun WD. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China craton. Acta Petrologica Sinica, 28(11): 3476–3496.
[] Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM, Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100–118. DOI:10.1016/j.chemgeo.2007.10.003
[] Yuan LL, Zhang XH, Xue FH, Han CM, Chen HH, Zhai MG. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning province, North China Craton:Petrogenesis and tectonic implications. Precambrian Research, 264: 119–139. DOI:10.1016/j.precamres.2015.04.017
[] Zhai MG, Guo JH, Yan YH, Han XL, Li YG. 1993. Discovery high-pressure basic granulite terrain in North China Archaean craton and preliminary study. Science in China (Series B), 36(11): 1402–1408.
[] Zhai MG, Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665–2682.
[] Zhai MG, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20(1): 6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhao GC, Wilde SA, Cawood PA, Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45–73. DOI:10.1016/S0301-9268(00)00154-6
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55–76. DOI:10.1016/j.precamres.2012.09.016
[] Zhao T, Zhu G, Lin SZ, Wang HQ. 2016. Indentation-induced tearing of a subducting continent:Evidence from the Tan-Lu fault zone, East China. Earth-Science Reviews, 152: 14–36. DOI:10.1016/j.earscirev.2015.11.003
[] Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ, Li HM. 2004. 3.6Ga lower crust in central China:New evidence on the assembly of the North China craton. Geology, 32(3): 229–232. DOI:10.1130/G20133.1
[] Zheng JP, Griffin WL, O'Reilly SY, Hu BQ, Zhang M, Tang HY, Su YP, Zhang ZH, Pearson N, Wang FZ, Lu FX. 2008. Continental collision and accretion recorded in the deep lithosphere of central China. Earth and Planetary Science Letters, 269(3-4): 497–507. DOI:10.1016/j.epsl.2008.03.003
[] Zhou XW, Zhao GC, Wei CJ, Geng YS, Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high pressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science, 308(3): 328–350. DOI:10.2475/03.2008.06
[] 安徽省地质矿产局. 1987. 安徽省区域地质志. 北京: 地质出版社, 548-558
[] 高林志, 赵汀, 万渝生, 赵逊, 马寅生, 杨守政. 2005. 河南焦作云台山早前寒武纪变质基底锆石SHRIMP U-Pb年龄. 地质通报, 24(12): 1089–1093. DOI:10.3969/j.issn.1671-2552.2005.12.002
[] 吉林省地质矿产局. 1988. 吉林省区域地质志. 北京: 地质出版社: 13-37.
[] 靳克, 许文良, 王清海, 高山, 刘晓春. 2003. 蚌埠淮光"混合花岗闪长岩"的形成时代及源区:锆石SHRIMP U-Pb地质年代学证据. 地球学报, 24(4): 331–335.
[] 辽宁省地质矿产局. 1989. 辽宁省区域地质志. 北京: 地质出版社: 33-55.
[] 刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816–2846.
[] 刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件:来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据. 岩石学报, 27(4): 943–960.
[] 刘磊, 杨晓勇. 2013. 安徽霍邱BIF铁矿地球化学特征及其成矿意义:以班台子和周油坊矿床为例. 岩石学报, 29(7): 2551–2566.
[] 刘贻灿, 王程程, 张品刚, 聂佳珍. 2015. 华北东南缘前寒武纪下地壳的生长和变质演化. 岩石学报, 31(10): 2847–2862.
[] 陆孝平, 吴福元, 林景仟, 孙德有, 张艳斌, 郭春丽. 2004. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架. 地质科学, 39(1): 123–138.
[] 涂荫玖, 陈成涛, 唐良贵. 1992. 江淮北部前寒武纪变质岩系划分及构造特征. 中国区域地质(3): 248–256.
[] 万渝生, 刘敦一, 王世炎, 赵逊, 董春艳, 周红英, 殷小艳, 杨长秀, 高林志. 2009. 登封地区早前寒武纪地壳演化-地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982–999.
[] 王惠初, 陆松年, 初航, 相振群, 张长捷, 刘欢. 2011. 辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景. 吉林大学学报(地球科学版), 41(5): 1322–1334, 1361.
[] 谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 刘敦一, 万渝生. 2014. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年. 岩石学报, 30(10): 2989–2998.
[] 许文良, 杨德斌, 裴福萍, 杨承海, 柳小明, 胡兆初. 2006. 蚌埠隆起区五河杂岩的形成时代:锆石LA-ICP-MS U-Pb定年证据. 中国地质, 33(1): 132–137.
[] 徐翔, 侯明金, 邱瑞龙, 吴礼彬, 李建设. 2005. 华北陆块东南缘蚌埠地区花岗岩与相关脉岩40Ar-39Ar定年. 中国地质, 32(4): 588–595.
[] 杨德斌, 许文良, 裴福萍, 王清海. 2009. 蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约. 地球科学-中国地质大学学报, 34(1): 148–164.
[] 杨晓勇, 王波华, 杜贞保, 王启才, 王玉贤, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476–3496.
[] 翟明国, 郭敬辉, 阎月华, 韩秀伶, 李永刚. 1992. 中国华北太古宙高压基性麻粒岩的发现及初步研究. 中国科学(B辑)(12): 1325–1330.
[] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665–2682. DOI:10.3969/j.issn.1000-0569.2007.11.001