岩石学报  2017, Vol. 33 Issue (9): 2811-2826   PDF    
冀西北怀安地体高级变质表壳岩的锆石年代学研究
蔡佳1, 刘平华1, 冀磊1, 施建荣2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 天津地质矿产研究所, 天津 300170
摘要: 位于华北克拉通中部造山带中北段的怀安地体与内蒙孔兹岩带相接,出露高压麻粒岩和退变榴辉岩等多种高级变质岩,是洞悉华北克拉通古元古代构造演化历史的重要窗口。研究区变质表壳岩包括夕线石榴长英质片麻岩、石榴长英质粒状岩石以及紫苏黑云二长片麻岩。阴极发光图像特征显示研究区样品的锆石主要包括碎屑锆石和变质锆石,其中碎屑锆石具有岩浆结晶环带,而变质锆石为单颗粒或围绕着继承性碎屑锆石边部生长,内部结构均匀,Th/U比值较低。锆石LA-ICP-MS U-Pb定年结果与前人研究结果综合表明该区变质表壳岩石的碎屑锆石的207Pb/206Pb年龄主要集中在~2040Ma,其原岩形成时代与孔兹岩带变泥质岩石相近,均为~2.0Ga。变质锆石记录其变质时代为1957~1804Ma,结合前人对怀安地区变泥质岩和变基性岩变质作用和年代学研究结果,推测得出1.95~1.92Ga代表了峰期(高压)麻粒岩相变质时代,1.90~1.85Ga代表峰后减压阶段变质时代,而1.85~1.80Ga代表退变质晚期的时代。怀安地区变质岩石可能卷入了阴山陆块、鄂尔多斯陆块以及东部陆块间的先后碰撞造山过程,并持续较长时间(1.95~1.80Ga),最终拼贴为统一的整体。
关键词: 变质表壳岩     古元古代     LA-ICP-MS U-Pb定年     怀安地体     中部造山带    
Zircon geochronology of the Paleoproterozoic high-grade supracrustal rocks from the Huai'an terrane, northwestern Hebei
CAI Jia1, LIU PingHua1, JI Lei1, SHI JianRong2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China
Abstract: The Huai'an terrane with the occurrences of high-grade metamorphic rocks including high-pressure granulites and retrograded eclogites is located in the north-central segment of the Trans-North China Orogen adjacent to the Khondalite Belt in North China Craton, which is particularly important to investigating its Paleoproterozoic crustal evolution history. The studied supracrustal rocks consist of sillimanite-garnet gneiss, garnet-bearing quartzofeldspathic rock, and orthopyroxene-bearing quartzofeldspathic gneiss. Cathodoluminescent images show that zircons in the studied Huai'an metamorphic rocks are predominantly detrital and metamorphic zircons. Detrital zircons with oscillatory zoning have igneous origin, and metamorphic zircons occur either as single grains or overgrowth rimming detrital zircon cores which are homogeneous with relatively low Th/U ratio. LA-ICP-MS U-Pb analyses on magmatic-type detrital zircons combined with other published zircon dating results yielded a concentrated 207Pb/206Pb age population of~2040Ma, indicating that the sedimentary protolith age of the Huai'an supracrustal rocks is~2.0Ga, which is similar to other metapelitic rocks within the Khondalite Belt. Based on previous published results of U-Pb dating and P-T evolution in the Huai'an metapelitic and metabasic rocks, metamorphic ages of 1957~1804Ma for the studied samples is presumed to be subdivided into three age groups at 1.95~1.92Ga, 1.90~1.85Ga, and 1.85~1.80Ga representing peak (high-pressure) granulite-facies metamorphic stage, post-peak decompressional stage, and late cooling stage. These new zircon ages in combination with metamorphic and tectonic considerations indicate that basement rocks of the Huai'an terrane might involved in the continuous subduction and collision followed by post-collisional extension and subsequent exhumation processes of the Yinshan, Ordos, and Eastern blocks during 1.95~1.80Ga and eventually amalgamated as a uniform basement.
Key words: Supracrustal rocks     Paleoproterozoic     LA-ICP-MS U-Pb dating     Huai'an terrane     The Trans-North China Orogen    
1 引言

位于华北中北部的怀安高级片麻岩地体(怀安杂岩)位于晋、冀、内蒙三省交界处,其主体为2.55~2.45Ga的怀安TTG片麻岩,并含少量长英质麻粒岩、透镜状和似层状的变基性岩和变质表壳岩石等,遭受了古元古代变质事件的改造,可为华北克拉通古元古代陆壳演化过程提供重要制约(Zhai et al., 1993; Zhao et al., 1999, 2005, 2008; 郭敬辉等,2001Guo et al., 2005; Liu et al., 2009, 2012b; Zhang et al., 2012)。近年来研究者对怀安地体出露的变质杂岩开展了成因矿物学、变质演化、地球化学、同位素年代学和构造演化等方面的深入研究,并取得一系列重要进展(刘福来, 1997a, b1998Liu et al., 1998, 2009, 2012b; 刘福来和沈其韩,1999Guo et al., 2002, 2005; Zhao et al., 2005, 2008, 2010; 张华锋等,2006Wang et al., 2010; Zhang et al., 2011, 2012, 2014, 2016; 罗志波等,2012魏颖等,2013Wu et al., 2016)。其中,沿恒山-怀安-宣化-承德一带出露的高压基性麻粒岩和退变榴辉岩的发现是华北克拉通早前寒武纪最重要的进展之一(Zhai et al., 1993, 1996; 郭敬辉等, 1993, 2001Zhao et al., 2001; Guo et al., 2002, 2005)。

目前对华北克拉通古元古代的构造演化过程存在较大争议(见Zhao and Zhai, 2013评述)。其中Zhao et al. (2005)认为华北克拉通西部的阴山陆块和鄂尔多斯陆块于1.95~1.92Ga碰撞拼合形成孔兹岩带,统一的西部陆块与东部陆块随后于1.85Ga碰撞拼合形成了中部造山带。部分年代学研究显示中部造山带的变质基底岩石记录了~1845Ma变质年龄,佐证了中部造山带形成于1.85Ga (Zhao et al., 2002, 2008; Guo et al., 2005; Zhang et al., 2009; Wang et al., 2010; Liu et al., 2012b)。然而,位于中部造山带的怀安地体中的变质基底岩石还记录了1.95~1.90Ga的变质年龄(张华锋等,2009Zhao et al., 2010)。由于怀安地体同时位于西部孔兹岩带和中部造山带的交接部位,Zhao et al.(2008, 2010)通过对怀安变质表壳岩石进行锆石年代学研究,提出怀安地体的变质表壳岩石是西部孔兹岩带东段的集宁变质杂岩在西部陆块与东部陆块的碰撞拼贴过程中卷入中部造山带中,因此同时记录~1.95Ga和~1.85Ga两个变质时代,分别反映了西部孔兹岩带和中部造山带的碰撞拼合时限。

值得指出的是,有研究者还报道了怀安高压基性麻粒岩的变质锆石同时记录了1.95~1.90Ga和1.85~1.80Ga两组变质年龄,分别代表高压麻粒岩相变质和退变质的时代(罗志波等,2012Zhang et al., 2014, 2016)。另外,位于中部造山带并远离西部孔兹岩带的其它变质基底岩石同样也记录了1.95~1.90Ga的变质年龄(张华锋等,2009Zhao et al., 2010; Lu et al., 2013, 2014; Wang et al., 2014a; Li et al., 2015)。针对此,Zhang et al. (2016)提出三个陆块(阴山陆块、鄂尔多斯陆块和东部陆块)在古元古代发生双向俯冲碰撞的模式,局部位置较早发生碰撞拼合(~1.95Ga),最终焊接为统一的整体。

综上所述,怀安杂岩记录了复杂的年代学信息,所指示的地质意义尚存在较大争议,是华北克拉通古元古代基底构造划分和形成演化机制研究的重要窗口之一。因此,本文选择怀安地体出露的典型高级变质表壳岩石,包括夕线石榴长英质片麻岩、石榴长英质粒状岩石和紫苏黑云二长片麻岩,开展详细的野外地质观察和室内岩相学观察,利用LA-ICP-MS锆石U-Pb年代学研究分别获得其原岩形成时代和变质时代,并结合前人的研究结果,为进一步揭示怀安地体高级变质表壳岩的变质时代、动力学演化过程、并与相邻地区变质表壳岩石的对比研究等提供科学依据。

2 地质背景

位于我国北部的华北克拉通覆盖面积约1, 500, 000km2,其形成演化机制一直以来备受关注,研究者们先后通过在华北克拉通识别出古老洋壳、高压麻粒岩、退变榴辉岩以及地体增生等的证据,提出不同碰撞模型。大量研究证实华北克拉通是由多个微陆块拼合形成统一的整体,然而目前对于基底构造单元的划分和演化,如微陆块的数量,陆块边界,拼合的构造过程、俯冲极性以及拼合的时限均存在不同的认识(翟明国和彭澎,2007; Zhao and Cawood, 2012; Zhao and Zhai, 2013)。Zhao et al.(1999, 2005)提出华北克拉通是由西部陆块(包括阴山陆块和鄂尔多斯陆块)、东部陆块以及三条构造活动带(孔兹岩带、胶-辽-吉活动带和中部造山带)构成。其中西部陆块由北部的阴山陆块(主要出露晚太古代基底)和南部的鄂尔多斯陆块沿东-西向孔兹岩带于1.95~1.92Ga碰撞拼合而成(图 1a, bZhao et al., 2005, 2010; Wan et al., 2006, 2009, 2013; Dong et al., 2007, 2013; Yin et al., 2009, 2011; 周喜文和耿元生,2009Li et al., 2011; Guo et al., 2012; Jiao et al., 2013; 刘平华等,2013Santosh et al., 2013; Cai et al., 2014; Liu et al., 2014f; Wang et al., 2015; Qiao et al., 2016)。东部陆块在2.2~1.95Ga发生一期陆内裂谷作用,并形成初始洋盆,随后于~1.90Ga沿胶-辽-吉带发生陆-陆俯冲碰撞导致洋盆闭合(Zhou et al., 2008; Tam et al., 2011; Liu et al., 2012c, 2013a, b, c, 2014c, d, e; Wang et al., 2014b, 2016; 刘福来等,2015)。西部陆块和东部陆块于~1.85Ga沿南-北向的中部造山带最终碰撞拼合成统一的华北克拉通基底(Zhao et al., 2002, 2008, 2010; Xiao et al., 2011, 2014; Liu et al., 2012a, 2014a, b)。中部造山带的基底组成岩石包括晚太古代-古元古代TTG片麻岩、变质表壳岩系岩石、基性岩墙和S型花岗岩等。

图 1 孔兹岩带在华北克拉通的分布和构造位置图(a,b,据Zhao et al., 2005)和集宁-怀安地区地质简图及采样位置(c,据Guo et al., 2002) Fig. 1 Distribution of Khondalite Belt in the North China Craton (a, b, after Zhao et al., 2005) and geological map of Jining-Huai'an area (c, after Guo et al., 2002)

研究区怀安地体位于中部造山带中北部,以南出露恒山、五台、阜平地体,以北与宣化地体相邻,以西与孔兹岩带东段的集宁地体相接。区域出露的岩石类型十分复杂,出露晚太古代至古元古代的角闪岩相-麻粒岩相高级变质岩,包括变质表壳岩石(孔兹岩系岩石),晚太古代TTG片麻岩、闪长质片麻岩,以及(高压)镁铁质麻粒岩、片麻状花岗岩、紫苏花岗岩和S型花岗岩等。其中变质表壳岩石包括(含墨)夕线石榴长英质片麻岩、石榴长英质粒状岩石、石榴石英岩、黑云长英质片麻岩、钙硅酸盐和大理岩等,与孔兹岩带东段集宁地体出露的孔兹岩系岩石相似(卢良兆等,1996)。怀安地区的变质表壳岩石与TTG片麻岩,基性麻粒岩和紫苏花岗岩等多为构造接触关系,而怀安地体和集宁地体间的拆离断层可能是地壳增厚作用后的伸展过程所形成的(Guo et al., 2002)。

前人对怀安地体出露的高级变质岩石进行了变质作用研究,其中黄土窑-四方墩一带出露的富铝片麻岩经历了近等温减压的顺时针P-T轨迹,峰期温度可达750~850℃(刘福来和沈其韩,1999)。分布于怀安蔓菁沟一带的高压基性麻粒岩以包体形式产出于TTG片麻岩中或以变形岩墙产出于条带状片麻岩中,经历了近等温减压型的顺时针P-T轨迹,其中进变质、峰期、峰后减压以及晚期降温四个变质阶段的P-T条件分别为700℃和10kbar,750~870℃和11~14.5kbar,770~830℃和8.5~10.5kbar以及500~650℃和5.5~8kbar,指示了由碰撞产生的陆壳增厚以及随后的伸展过程(Guo et al., 2002)。另外,蔓菁沟高压泥质麻粒岩也经历了近等温减压型的顺时针P-T轨迹,峰期和峰后退变质阶段的P-T条件分别为810~860℃和11.5~15kbar,~850℃和~9.5kbar (Wu et al., 2016)。

近年来,对怀安地体出露的变质杂岩开展了一系列的年代学研究显示,其中高压基性麻粒岩的岩浆锆石记录了2.05~2.0Ga的岩浆结晶年龄,代表基性岩浆侵位的时代,而变质锆石记录了1.95~1.90Ga和~1.85~1.80Ga两组变质年龄(Zhang et al., 2016)。

3 样品野外产状和岩相学特征

采样点位于怀安地区天镇县薛三墩村、四方墩村,兴和县黄土窑村和道头边村一带(图 1c),出露多处变质表壳岩石,如夕线石榴长英质片麻岩(BH78-1、BH79-5和BH84-1)、石榴长英质粒状岩石(BH75-4和BH78-2) 和紫苏黑云二长片麻岩(BH81-3)。上述岩石的野外产出特征见图 2,其中夕线石榴长英质片麻岩呈似层状产出;石榴长英质粒状岩石与石榴长英质片麻岩呈互层状产出,两者呈渐变过渡关系,局部可见含石榴石的长英质浅色体聚集;紫苏黑云二长片麻岩被晚期花岗质脉体侵入。其室内岩相学特征描述如下(图 3),本文所有矿物代号均采用Whitney and Evans (2010)的资料。

图 2 怀安地体变质表壳岩石野外露头照片 (a-c)夕线石榴长英质片麻岩呈似层状产出;(d、e)石榴长英质粒状岩石与石榴长英质片麻岩呈互层状产出;(f)紫苏黑云二长片麻岩被花岗质脉体侵入 Fig. 2 Outcrops of the supracrustal rocks in the Huai'an terrain (a) Sil-Grt gneiss occurred in layers; (d, e) garret-bearing quartzofeldspathic rock interlayered with Grt-bearing quartzofeldspathic gneiss; (f) Opx-bearing quartzofeldspathic gneiss is intruded by granitic rocks

图 3 怀安地体变质表壳岩石代表性矿物组合及显微结构特征(单偏光照片) (a-c)夕线石榴长英质片麻岩中的石榴石,夕线石、黑云母、石英、钾长石、斜长石和金红石矿物组合;(d、e)石榴长英质粒状岩石中的细粒石榴石、石英、长石和磁铁矿矿物组合;(f)紫苏黑云二长片麻岩中的紫苏辉石、钾长石、斜长石、石英和黑云母矿物组合 Fig. 3 Representative photomicrographs showing mineral assemblages of the supracrustal rocks in the Huai'an terrane (plane-polarized light photos) (a-c) mineral assemblage of porphyroblastic garnet, coarse-grained sillimanite, biotite, quartz, K-feldspar, plagioclase and rutile in the Sil-Grt gneiss; (d, e) mineral assemblage of fine-grained garnet, quartz, feldspar and magnetite in the garret-bearing quartzofeldspathic rock; (f) mineral assemblage of orthopyroxene, K-feldspar, plagioclase, quartz and biotite in the Opx-bearing quartzofeldspathic gneiss
3.1 夕线石榴长英质片麻岩(BH78-1、BH79-5和BH84-1)

夕线石榴长英质片麻岩样品的主要组成矿物为石榴石、夕线石、长石、石英等,少量黑云母,副矿物为金红石、磁铁矿和钛铁矿等(图 3a-c)。石榴石变斑晶呈浑圆状或拉长状,粒径变化为0.1~0.8cm。石榴石可包裹细粒石英、长石等矿物。石榴石边部可被大量粗粒夕线石围绕(图 3a-c)。粗粒夕线石近定向排列,形成片麻理。

3.2 石榴长英质粒状岩石(BH75-4和BH78-2)

石榴长英质粒状岩石样品的主要组成矿物有石英、长石、石榴石和黑云母等(图 3d, e),副矿物有褐红色金红石和磁铁矿等。石榴石多呈浑圆粒状、港湾状等,粒径0.1~0.7cm,含量5%~8%,其核-幔部包裹细粒石英等(图 3e)。

3.3 紫苏黑云二长片麻岩(BH81-3)

紫苏黑云二长片麻岩样品的主要组成矿物为紫苏辉石、斜长石、黑云母等,并含少量钾长石和石英等(图 3f),副矿物有磁铁矿和锆石等。紫苏辉石呈不规则粒状,粒径约0.5~1.5mm。

4 分析方法

岩石样品的破碎与锆石分选在河北省区域地质调查所矿物分选实验室进行。将样品(约5kg)破碎,经清洗、烘干和筛选后,采用磁选和重液分选出不同粒级的锆石晶体,然后在双目镜下挑选出颗粒相对完整的锆石晶体约200粒,制成符合阴极发光测试和LA-ICP-MS U-Pb定年的标准锆石靶。锆石LA-ICP-MS U-Pb定年测试在天津地质矿产研究所同位素实验室Neptune型LA-ICP-MS上进行,该实验测试条件详见耿建珍等(2012)的论述。锆石样品的U-Pb年龄谐和图的绘制采用Isoplot /Ex_ver3完成(Ludwig, 2003)。由于该定年方法对锆石产生的较大的剥蚀深度,对于内部结构不均一或具环带的锆石,可能获得混合年龄。对于变质锆石,尽量选择结构均匀或变质边较宽的位置进行测试,对于继承性碎屑锆石,尽量选择颗粒较大且岩浆结晶环带清晰的位置,并在此基础上,尽量多选择测试点,使获得的年龄数据更具统计意义,以减少少数混合年龄对最终年龄结果的影响。

5 U-Pb定年结果 5.1 夕线石榴长英质片麻岩(BH78-1)

样品BH78-1中的锆石粒径为40~200μm,以短柱状或浑圆状为主。阴极发光(CL)图像显示两种类型(图 4a):其一具强-弱发光效应(灰白-灰黑色)的继承性锆石,多发育岩浆结晶环带,部分继承性锆石由于受到麻粒岩相变质作用的影响导致早期韵律环带被强烈改造而产生较模糊的岩浆结晶环带,Th含量(20×10-6~1900×10-6)、U含量(92×10-6~4034×10-6)和Th/U比值(0.04~1.15) 变化较大;其二为浑圆状变质锆石,具有相对均匀的中等-弱发光效应(多呈灰-灰黑色),内部无分带,Th含量(16×10-6~137×10-6)、U含量(193×10-6~677×10-6)和Th/U比值(0.07~0.28) 均较低(见电子版附表 1)。

图 4 夕线石榴长英质片麻岩(BH78-1、BH79-5和BH84-1),石榴长英质粒状岩石(BH75-4和BH78-2) 和紫苏黑云二长片麻岩(BH81-3) 的锆石阴极发光图像和LA-ICP-MS U-Pb定年结果 (a、c、d)继承性锆石呈短柱状,中等-弱发光效应(灰-灰黑色),具岩浆结晶环带特征,变质锆石呈浑圆状,内部结构均匀,具弱发光效应(灰黑色);(b)变质锆石具弱发光效应(灰黑色),内部结构均匀;(e)继承性锆石呈短柱状,中等发光效应(灰白-灰色),具岩浆结晶环带特征,变质锆石呈浑圆状或短柱状,具有相对均匀的弱发光效应(灰黑色);(f)继承性锆石呈短柱状或浑圆状,中等-弱发光效应(灰-灰黑色),变质锆石呈浑圆状,内部结构均匀,具弱发光效应(灰黑色) Fig. 4 Cathodoluminescent (CL) images and LA-ICP-MS U-Pb ages of zircons from the Sil-Grt gneiss (BH78-1, BH79-5 and BH84-1), garret-bearing quartzofeldspathic rock (BH75-4 and BH78-2) and Opx-bearing quartzofeldspathic gneiss (BH81-3) (a, c, d) detrital zircons are columnar in shape, medium-low luminescent (grey-greyish black) with oscillatory zoning, and metamorphic zircons are rounded without internal structure, showing low luminescence (greyish black); (b) metamorphic zircon grains show low-luminescence (greyish black) with homogeneous internal structure; (e) detrital zircons are columnar, medium luminescent (greyish white-grey) with oscillatory zoning. Metamorphic zircons are rounded or columnar, homogeneous low-luminescence (greyish black); (f) detrital zircons are columnar or rounded, medium-low luminescent (grey-greyish black). Metamorphic zircons are rounded and internally homogeneous with low-luminescence (greyish black)

附表1 夕线石榴黑云长英质片麻岩(BH78-1) 锆石LA-ICP-MS定年结果 Appendix1 LA-ICP-MS analyses of zircon from the Sil-Grt gneiss (Sample BH78-1)

207Pb/235U-206Pb/238U关系图解(图 5a)显示继承性锆石的207Pb/206Pb年龄为2519~1985Ma;变质锆石年龄分为三组:(1) 207Pb/206Pb年龄为1935~1921Ma,加权平均年龄为1931±22Ma (MSWD=0.17,n=3);(2) 207Pb/206Pb年龄为1903~1824Ma,加权平均年龄为1862±14Ma (MSWD=1.6,n=14);(3) 207Pb/206Pb年龄相对偏新,为1818~1809Ma,加权平均年龄为1814±19Ma (MSWD=0.04,n=4)。

图 5 怀安地体变质表壳岩石样品的锆石207Pb/235U-206Pb/238U年龄关系图 (a-c)夕线石榴长英质片麻岩(BH78-1、BH79-5和BH84-1);(d、e)石榴长英质粒状岩石(BH75-4和BH78-2);(f)紫苏黑云二长片麻岩(BH81-3) Fig. 5 207Pb/235U-206Pb/238U diagrams showing U-Pb analyses for zircons of the supracrustal rocks in the Huai'an terrane (a-c) Sil-Grt gneiss (BH78-1, BH79-5, BH84-1); (d, e) garret-bearing quartzofeldspathic rock (BH75-4, BH78-2); (c) Opx-bearing quartzofeldspathic gneiss (BH81-3)
5.2 夕线石榴长英质片麻岩(BH79-5)

样品BH79-5中的锆石粒径为50~250μm,主要为浑圆状或不规则粒状,CL图像均显示变质锆石特征,具有相对均匀的中等-弱发光效应(灰黑色),内部无分带(图 4b)。锆石的Th含量(5×10-6~265×10-6)和U含量(157×10-6~765×10-6)以及Th/U比值(0.01~0.45) 均较低(见电子版附表 2)。

附表 2 夕线石榴黑云长英质片麻岩(BH79-5) 锆石LA-ICP-MS定年结果 Appendix2 LA-ICP-MS analyses of zircon from the Sil-Grt gneiss (Sample BH79-5)

207Pb/235U-206Pb/238U关系图解(图 5b)显示三组变质锆石年龄:(1) 一个变质锆石207Pb/206Pb年龄为1933±18Ma;(2) 207Pb/206Pb年龄为1898~1844Ma,加权平均年龄为1869±8Ma (MSWD=0.98,n=19);(3) 207Pb/206Pb年龄为1830~1787Ma,加权平均年龄为1809±8Ma (MSWD=0.66,n=19)。

5.3 夕线石榴长英质片麻岩(BH84-1)

样品BH84-1中的锆石的粒径变化于20~150μm,以短柱状为主,少数为浑圆状。锆石CL显示可划分出两种类型(图 4c):其一为继承性锆石,短柱状,多发育岩浆结晶环带,具中等-弱发光效应(灰-灰黑色),其Th (17×10-6~2459×10-6)和U含量(67×10-6~1604×10-6) Th/U比值(0.03~4.43) 均变化较大;其二为变质锆石,多呈浑圆状或短柱状,具有相对均匀的弱发光效应(多呈灰-黑色),内部无分带,U含量(270×10-6~1120×10-6)变化较大,Th含量(12×10-6~304×10-6)和Th/U比值(0.02~0.66) 较低(见电子版附表 3)。

附表 3 夕线石榴黑云长英质片麻岩(BH84-1) 锆石LA-ICP-MS定年结果 Appendix3 LA-ICP-MS analyses of zircon from the Sil-Grt gneiss (Sample BH84-1)

207Pb/235U-206Pb/238U关系图解(图 5c)表明继承性锆石的207Pb/206Pb年龄为2697~1974Ma;变质锆石可划分出两组年龄:(1) 207Pb/206Pb年龄为1908~1861Ma,加权平均年龄为1879±11Ma (MSWD=0.66,n=11);(2) 207Pb/206Pb年龄在1833~1802Ma之间,加权平均年龄为1814±17Ma (MSWD=0.55,n=4)。

5.4 石榴长英质粒状岩石(BH75-4)

样品BH75-4中的锆石主要呈短柱状、浑圆状或不规则状,粒径为40~150μm。CL图像显示两种锆石:其一为继承性锆石,多发育岩浆结晶环带,具中等-弱发光效应(灰-灰黑色),Th和U的含量分别为29×10-6~408×10-6和86×10-6~691×10-6,Th/U比值为0.12~1.77变化较大;其二为变质锆石,多呈浑圆状,具均匀的弱发光效应(灰-灰黑色),其中Th含量(9×10-6~102×10-6)、U含量(91×10-6~405×10-6)和Th/U比值(0.71~0.07) 均较低(见电子版附表 4)。

附表 4 石榴长英质粒状岩石(BH75-4) 锆石LA-ICP-MS定年结果 Appendix4 LA-ICP-MS analyses of zircon from the Grt-bearing quartzofeldspathic rock (Sample BH75-4)

207Pb/235U-206Pb/238U关系图解(图 5d)表明继承性锆石的207Pb/206Pb年龄为2452~1980Ma;变质锆石可划分出三组年龄:(1) 207Pb/206Pb年龄在1950~1947Ma之间,加权平均年龄为1948±28Ma (MSWD=0.01,n=2);(2) 207Pb/206Pb年龄在1921~1847Ma之间,加权平均年龄为1883±12Ma (MSWD=1.9,n=19);(3) 207Pb/206Pb年龄为1832~1797Ma,加权平均年龄为1813±22Ma (MSWD=1.2,n=5)。

5.5 石榴长英质粒状岩石(BH78-2)

样品BH78-2中的锆石粒径为40~140μm,以短柱状或浑圆状为主。CL图像同样显示两种类型:第一种为继承性锆石,多发育岩浆结晶环带,具中等-弱发光效应(灰-灰黑色),Th含量(25×10-6~1145×10-6)、U含量(67×10-6~945×10-6)和Th/U比值为0.07~3.78均变化较大;第二种为变质锆石,呈短柱状或浑圆状,具均匀的弱发光效应(灰-灰黑色),Th (31×10-6~223×10-6)和U含量(131×10-6~602×10-6)以及Th/U比值(0.09~0.73) 均较低(见电子版附表 5)。

附表 5 石榴长英质粒状岩石(BH78-2) 锆石LA-ICP-MS定年结果 Appendix5 LA-ICP-MS analyses of zircon from the Grt-bearing quartzofeldspathic rock (Sample BH78-2)

207Pb/235U-206Pb/238U关系图解(图 5e)表明继承性锆石的207Pb/206Pb年龄为2536~1982Ma;变质锆石可划分出两组年龄:(1) 207Pb/206Pb年龄在1954~1934Ma之间,加权平均年龄为1947±12Ma (MSWD=0.24,n=7);(2) 207Pb/206Pb年龄在1901~1861Ma之间,加权平均年龄为1887±12Ma (MSWD=1.07,n=7)。

5.6 紫苏黑云二长片麻岩(BH81-3)

样品BH81-3中的锆石粒径为30~120μm,以短柱状或浑圆状为主。CL图像显示两种类型:第一种为继承性锆石,短柱状或浑圆状,可发育岩浆结晶环带,具中等-弱发光效应(灰-灰黑色),Th (15×10-6~594×10-6)和U含量(166×10-6~1666×10-6)变化较大,Th/U比值为0.01~0.75;第二种为变质锆石,浑圆状,具均匀的弱发光效应(灰黑色),U含量(377×10-6~1292×10-6)变化较大,而Th含量(10×10-6~65×10-6)和Th/U比值(0.01~0.1) 均较低(见电子版附表 6)。

附表 6 紫苏黑云二长片麻岩(BH81-3) 锆石LA-ICP-MS定年结果 Appendix6 LA-ICP-MS analyses of zircon from the Opx-bearing gneiss (Sample BH81-3)

207Pb/235U-206Pb/238U关系图解(图 5f)表明继承性锆石的207Pb/206Pb年龄为2452~2040Ma;变质锆石可划分出三组年龄:(1) 两个变质锆石207Pb/206Pb年龄均为1957Ma,加权平均年龄为1957±46Ma (MSWD=0.00,n=2);(2) 207Pb/206Pb年龄在1843~1833Ma之间,加权平均年龄为1837±40Ma (MSWD=0.01,n=4);(3) 207Pb/206Pb年龄为1816~1786Ma,加权平均年龄为1804±17Ma (MSWD=0.07,n=15)。

6 讨论 6.1 怀安地区高级变质表壳岩石的原岩形成时代

怀安地区变质表壳岩石的碎屑锆石多显示振荡环带,少数无明显环带特征,其年龄变化较大,总体分布于2500~1980Ma之间,且不同样品的年龄分布略有差异(表 1)。

表 1 怀安地区变泥质岩和变基性岩锆石定年结果总结 Table 1 Summary of zircon ages of metapelitic rocks and metabasic rocks in the Huai'an area

本文获得的碎屑锆石年龄数据与前人对怀安地区变泥质岩石碎屑锆石年龄结果(Wang et al., 2010; Zhao et al., 2010)统计的207Pb/206Pb年龄直方图(图 6a)显示主要峰值年龄为~2020Ma以及~2240Ma和2480Ma两个次峰年龄。Wang et al. (2010)获得了2683~1964Ma的碎屑锆石年龄,并认为2683Ma的碎屑锆石可能来自于华北克拉通的陆壳岩石(Kröner et al., 2005),而2521Ma和2497Ma的晚太古代的碎屑锆石可能来自于中部造山带晚太古代-古元古代的弧岩浆体系(Zhao et al., 2008)。此外,前人报道了中部造山带出露2360~2000Ma的花岗质侵入体(Zhao et al., 2002, 2008; Kröner et al., 2005),因此,2205~2046Ma的碎屑锆石可能来自于上述花岗质侵入体(Wang et al., 2010)。Wang et al. (2010)认为怀安地区变质表壳岩石的原岩主要来自于中部造山带,少数来自华北克拉通太古代陆壳岩石。

图 6 怀安、集宁、乌拉山-大青山和千里山-贺兰山地区变泥质岩石的碎屑锆石207Pb/206Pb年龄直方图对比 Fig. 6 Histograms of the 207Pb/206Pb ages of detrital zircons from the metapelitic rocks in the Huai'an, Jining, Wulashan-Daqingshan and Qianlishan-Helanshan areas

孔兹岩带东段的集宁、乌拉山-大青山以及千里山-贺兰山地区变泥质岩石的碎屑锆石直方图(图 6b-d)分别显示主峰年龄为~2030Ma以及~2280Ma和2440Ma两个次峰年龄(集宁;Jiao et al., 2013; Santosh et al., 2013; Su et al., 2014; Wang et al., 2015)、主峰年龄为~2040Ma,~2320Ma和~2400Ma两个次峰年龄(乌拉山-大青山;吴昌华等,2006Xia et al., 2006; 董春艳等,2009Dong et al., 2013; 蔡佳等,2015Jiao et al., 2015)、主峰年龄为~2020Ma,~2180Ma和~2400Ma两个次峰年龄(千里山-贺兰山;周喜文和耿元生,2009Qiao et al., 2016)。结果表明,怀安地区变质表壳岩石的碎屑锆石与孔兹岩带其它地区变泥质岩中的碎屑锆石年龄分布相似,均显示~2040Ma的主峰,表明怀安地区变质表壳岩石的原岩形成时代为~2.0Ga。

6.2 怀安地区高级变质表壳岩石的变质时代

本文对怀安地区变质表壳岩石的锆石U-Pb年代学研究结果表明其变质时代为1957~1804Ma (图 5),本文与前人对怀安地区变泥质岩石内变质锆石的207Pb/206Pb年龄(Wang et al., 2010; Zhao et al., 2010)直方图(图 7a)显示主要峰值年龄分别为~1950Ma、~1850Ma、~1800Ma。其中,Wang et al. (2010)提出怀安地区变泥质岩石的变质锆石年龄集中在~1845Ma,长英质浅色体的变质时代为1819Ma,并认为代表了碰撞后折返过程产生的深熔作用的时代。切穿基性麻粒岩的伟晶岩脉的形成时代为1806±15Ma,标志着东、西部陆块碰撞过程的终结(Wang et al., 2010)。此外,Wang et al. (2010)总结了中部造山带变质锆石年龄集中在1880~1800Ma,年龄直方图显示三个主峰年龄,分别为~1876Ma、~1849Ma和~1814Ma,可能分别代表了进变质、峰期变质以及退变质的时代。

图 7 怀安、集宁、乌拉山-大青山和千里山-贺兰山地区变泥质岩石和怀安地区变基性岩的变质锆石207Pb/206Pb年龄直方图对比 Fig. 7 Histograms of the 207Pb/206Pb ages of metamorphic zircons from the metapelitic rocks in the Huai'an, Jining, Wulashan-Daqingshan and Qianlishan-Helanshan areas and metabasic rocks in the Huai'an area

由于怀安地区与西部孔兹岩带相邻,将怀安地区与孔兹岩带东段集宁、乌拉山-大青山以及千里山-贺兰山地区变泥质岩石的变质锆石以及怀安地区变基性岩的变质锆石的207Pb/206Pb年龄直方图进行对比(图 7)。

集宁地区变泥质岩石的变质锆石显示为~1890Ma和1800Ma两个主峰年龄和一个次峰年龄~1950Ma (图 7cWan et al., 2006; Jiao et al., 2013; Santosh et al., 2013; 蔡佳等,2014Su et al., 2014; Wang et al., 2015)。Santosh et al. (2013)总结出孔兹岩带自西向东分别出露~1.95Ga、1.92~1.91Ga和1.85Ga的变泥质岩石,并提出两种可能的构造背景导致该年龄分布,其一为阴山陆块和鄂尔多斯陆块间发生俯冲-碰撞后的拼合边界呈楔形,因此孔兹岩带西部较东部更早发生碰撞;其二为孔兹岩带中-东部变泥质岩石受到碰撞后热事件的影响而改造。孔兹岩带东段集宁地区~1.85Ga的变质时代是孔兹岩带(尤其孔兹岩带东部)的变质岩石受到后期东、西部陆块碰撞拼合事件叠加的响应(Santosh et al., 2013)。然而,这并不能很好的解释集宁地区变质岩石记录了1.95Ga变质时代的成因。其中Su et al. (2014)认为集宁地区夕线榴片麻岩的变质时代1952Ma和1901Ma分别代表了变质峰期以及峰后折返的时代。Wang et al. (2015)将孤山含榴长英质片麻岩以及夕线榴钾长片麻岩划分出1.95~1.93Ga,1.86~1.83Ga和1.80Ga三组变质年龄,分别代表了近峰期麻粒岩相变质时代、碰撞后开始折返的峰后减压阶段的变质时代、陆壳进一步快速折返抬升的时代。

孔兹岩带中段乌拉山-大青山地区变泥质岩石的变质锆石207Pb/206Pb年龄直方图(图 7b)显示主峰年龄为~1950Ma和~1850Ma (吴昌华等,2006Xia et al., 2006; 董春艳等,2009Dong et al., 2013; 蔡佳等,2015Jiao et al., 2015)。其中,~1860Ma代表了北部阴山陆块和南部鄂尔多斯陆块碰撞后构造折返阶段的时代(蔡佳等,2015)。此外,有研究者也报道了乌拉山-大青山变基性岩存在2500~2450Ma和1950~1850Ma两期变质事件,其中古元古代变质事件又进一步划分出~1950Ma、~1900Ma和~1850Ma三个年龄阶段(刘平华等,2013Wan et al., 2013; Liu et al., 2014f),分别代表碰撞造山(峰期高压)、碰撞后折返初期(峰后减压)以及折返后期(晚期降温阶段)的时代。然而最近Huang et al. (2016)提出大青山红山口村二道洼群变泥质岩的变质时代为1896Ma,代表了陆壳增厚而非折返抬升的时代。

孔兹岩带西段的千里山-贺兰山地区变泥质岩石的变质锆石207Pb/206Pb年龄直方图(图 7d)显示主峰年龄为~1950Ma,两个次峰年龄分别为~1880Ma和~1850Ma (Yin et al., 2009, 2011; 周喜文和耿元生,2009Qiao et al., 2016)。Qiao et al. (2016)报道了该区高压泥质麻粒岩的峰期和峰后变质时代分别为1953~1948Ma和1923Ma,代表了阴山陆块和鄂尔多斯陆块间碰撞以及随后的折返抬升阶段。贺兰山S型花岗岩的形成时代为~1880Ma,是陆-陆碰撞造山后的折返过程中高级变泥质岩减压熔融的产物(Yin et al., 2009)。

怀安地区变基性岩石的变质锆石207Pb/206Pb年龄直方图(图 7e)显示主峰年龄为~1850Ma,次峰年龄为~1950Ma (Guo et al., 2005; Wang et al., 2010; 罗志波等,2012Zhang et al., 2014, 2016)。其中怀安地区高压基性麻粒岩记录了1.95~1.90Ga和1.85~1.80Ga两组变质锆石年龄,分别代表了高压麻粒岩相变质时代和退变质时代,古元古代的楔形双向俯冲导致华北克拉通最终焊接为统一的整体(Zhang et al., 2016)。Wu et al. (2016)认为怀安地区高压基性麻粒岩与高压泥质麻粒岩经历了相似的变质-变形过程,其变质时代分别为1.96~1.90Ga (高压麻粒岩相变质阶段)和1.88~1.80Ga (峰后退变质阶段)。此外,Wu et al. (2016)认为集宁变质杂岩与怀安变质杂岩可能均经历了高压麻粒岩相变质作用,而大量中压麻粒岩的出露可能是受到长时间的矿物再平衡过程的影响。

综上所述,结合本文与前人对怀安地区变泥质岩和变基性岩变质作用和年代学综合研究,推测1.95~1.92Ga、1.90~1.85Ga和1.85~1.80Ga分别代表了峰期(高压)麻粒岩相变质、峰后减压阶段变质、退变质晚期的时代。然而,需结合变质演化、单矿物原位微区定年、单矿物包体性质等研究工作来进一步证实所划分出的不同变质阶段的时代。

6.3 大地构造意义

前人对于华北克拉通新太古代-古元古代时期的演化机制和构造模式一直存在较大的争议(Zhao and Zhai, 2013)。Zhao et al.(2002, 2005)提出华北克拉通西部陆块由北部的阴山陆块和南部的鄂尔多斯陆块于1.95~1.92Ga沿东-西向孔兹岩带碰撞拼合而成,西部陆块和东部陆块于~1.85Ga沿南-北向的中部造山带碰撞拼合成统一的华北克拉通基底。

然而,近年来有研究者陆续报道了中部造山带中、南部变质岩石具有1.96~1.80Ga的变质时代(Lu et al., 2013, 2014; Wang et al., 2014a; Li et al., 2015),表明其碰撞时代可追溯至~1.96Ga。中部造山带内的怀安地体与孔兹岩带相接,越来越多的年代学数据显示怀安地体内的高压麻粒岩和变质表壳岩石具有1.95~1.90Ga和1.85~1.80Ga两组变质年龄。Zhao et al.(2008, 2010)认为怀安地体的变质表壳岩石是孔兹岩带东段的集宁变质杂岩在西部陆块与东部陆块的碰撞拼贴过程中卷入了中部造山带,却不能很好地解释怀安地体以及中部造山带其他地区的变质岩石记录了~1.95Ga的变质年龄。最近Zhang et al. (2016)提出将华北克拉通分为阴山陆块、鄂尔多斯陆块和东部陆块三部分,在2.2~2.1Ga拉伸形成陆内裂谷,随后在2.05~2.0Ga阴山陆块和东部陆块向鄂尔多斯陆块发生双向俯冲,2.0~1.90Ga阴山陆块先与鄂尔多斯陆块碰撞拼贴,1.90~1.85Ga东部陆块与鄂尔多斯陆块碰撞拼合导致华北克拉通最终焊接为统一的整体,三个陆块间的俯冲碰撞带呈剪刀状,可以较好地解释中部造山带普遍记录的~1.95Ga的变质事件。根据前人研究结果,综合认为华北克拉通西部的阴山陆块与鄂尔多斯陆块在1.95~1.92Ga拼贴过程中,在局部与东部陆块已发生碰撞,并在~1.85Ga西部陆块整体与东部陆块发生大规模碰撞作用。由于不同陆块的形态及相对位置的不同,导致部分部位早于其他部位发生碰撞拼合,因此,西部孔兹岩带和中部造山带内不同部位的拼合时代存在差异,表明两条造山带可能是在较长时限的拼合过程中近同时形成的。

7 结论

对华北克拉通怀安地体变质表壳岩石的岩相学特征、锆石阴极发光图像和锆石U-Pb年代学的综合研究,得出以下几点认识:

(1) 怀安地体变质表壳岩石的碎屑锆石年龄变化于2697~1974Ma之间,其主要峰值年龄为2020Ma,表明其原岩形成时代为~2.0Ga。

(2) 怀安地体变质表壳岩石的变质时代为1957~1804Ma,结合前人对怀安地区变泥质岩和变基性岩变质作用和年代学综合研究,推测得出1.95~1.92Ga、1.90~1.85Ga和1.85~1.80Ga分别代表了峰期(高压)麻粒岩相变质、峰后减压阶段、晚期退变质的变质时代。

(3) 怀安地区变质岩石可能卷入了阴山陆块、鄂尔多斯陆块以及东部陆块间的先后碰撞造山过程,并持续较长时间(1.95~1.80Ga),最终拼贴为统一的整体。

致谢 天津地质矿产研究所同位素实验室耿建珍老师在锆石的LA-ICP-MS U-Pb定年测试过程中给予了指导和帮助;大陆动力学国家重点实验室扫描电镜和能谱实验室陈方远老师在实验中给予了建议和指导;中国地质科学院地质研究所刘超辉副研究员和北京科技大学的肖玲玲老师在野外提供了很大的帮助;周喜文研究员和另一位审稿老师为本文提出了宝贵的修改意见;在此一并表示衷心感谢。
参考文献
[] Cai J, Liu FL, Liu PH, Liu CH, Wang F, Shi JR. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 241: 161–184. DOI:10.1016/j.precamres.2013.11.012
[] Cai J, Liu FL, Liu PH, Shi JR. 2014. Metamorphic P-T conditions and U-Pb dating of the sillimanite-cordierite-garnet paragneisses in Sanchakou, Jining area, Inner Mongolia. Acta Petrologica Sinica, 30(2): 472–490.
[] Cai J, Liu FL, Liu PH, Wang F, Shi JR. 2015. Geochronology of the Paleoproterozoic khondalite rocks from the Wulashan-Daqingshan area, the Khondalite Belt. Acta Petrologica Sinica, 31(10): 3081–3106.
[] Cai J, Liu FL, Liu PH. 2017. Paleoproterozoic multistage metamorphic events in Jining metapelitic rocks from the Khondalite Belt in the North China Craton:Evidence from petrology, phase equilibria modelling and U-Pb geochronology. Journal of Asian Earth Sciences, 138: 515–534. DOI:10.1016/j.jseaes.2017.02.034
[] Dong CY, Liu DY, Li JJ, Wan YS, Zhou HY, Li CD, Yang YH, Xie LW. 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton:New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(21): 2984–2994. DOI:10.1007/s11434-007-0404-9
[] Dong CY, Liu DY, Wan YS, Xu ZY, Liu ZH, Yang ZS. 2009. Crustally derived carbonatite from the Daqinshan area:Zircon features and SHRIMP dating. Acta Geologica Sinica, 83(3): 388–398.
[] Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ, Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115–125. DOI:10.1007/s11430-012-4459-3
[] Geng JZ, Zhang J, Li HK, Li HM, Zhang YQ, Hao S. 2012. Ten-micron-sized zircon U-Pb dating using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6): 877–884.
[] Guo JH, Zhai MG, Zhang YG, Li YG, Yan YH, Zhang WH. 1993. Early Precambrian Manjinggou high-pressure granulite mélange belt on the south edge of the Huai'an Complex, North China Craton:Geological features, petrology and isotopic geochronology. Acta Petrologica Sinica, 9(4): 329–341.
[] Guo JH, Wang SS, Sang HQ, Zhai MG. 2001. 40Ar-39Ar age spectra of garnet porphyroblast:Implications for metamorphic age of high-pressure granulite in the North China Craton. Acta Petrologica Sinica, 17(3): 436–442.
[] Guo JH, O'Brien PJ, Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China craton:Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741–756. DOI:10.1046/j.1525-1314.2002.00401.x
[] Guo JH, Sun M, Chen FK, Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton:Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629–642. DOI:10.1016/j.jseaes.2004.01.017
[] Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124–142. DOI:10.1016/j.precamres.2011.07.020
[] Huang GY, Jiao SJ, Guo JH, Peng P, Wang D, Liu P. 2016. P-T-t constraints of the Barrovian-type metamorphic series in the Khondalite Belt of the North China Craton:Evidence from phase equilibria modeling and zircon U-Pb geochronology. Precambrian Research, 283: 125–143. DOI:10.1016/j.precamres.2016.07.011
[] Jiao SJ, Guo JH, Harley SL, Peng P. 2013. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks:Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237: 78–100. DOI:10.1016/j.precamres.2013.09.008
[] Jiao SJ, Guo JH, Wang LJ, Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269: 31–57. DOI:10.1016/j.precamres.2015.08.002
[] Kröner A, Wilde SA, Li JH, Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577–595. DOI:10.1016/j.jseaes.2004.01.001
[] Li N, Chen YJ, McNaughton NJ, Ling XX, Deng XH, Yao JM, Wu YS. 2015. Formation and tectonic evolution of the khondalite series at the southern margin of the North China Craton:Geochronological constraints from a 1.85Ga Mo deposit in the Xiong'er Shan area. Precambrian Research, 269: 1–17. DOI:10.1016/j.precamres.2015.07.016
[] Li XP, Yang ZY, Zhao GC, Grapes R, Guo JH. 2011. Geochronology of khondalite-series rocks of the Jining Complex:Confirmation of depositional age and tectonometamorphic evolution of the North China craton. International Geology Review, 53(10): 1194–1211. DOI:10.1080/00206810903548984
[] Liu CH, Zhao GC, Liu FL, Sun M, Zhang J, Yin CQ. 2012a. Zircons U-Pb and Lu-Hf isotopic and whole-rock geochemical constraints on the Gantaohe Group in the Zanhuang Complex:Implications for the tectonic evolution of the Trans-North China Orogen. Lithos, 146-147: 80–92. DOI:10.1016/j.lithos.2012.04.033
[] Liu CH, Zhao GC, Liu FL, Han YG. 2014a. Nd isotopic and geochemical constraints on the provenance and tectonic setting of the low-grade meta-sedimentary rocks from the Trans-North China Orogen, North China Craton. Journal of Asian Earth Sciences, 94: 173–189. DOI:10.1016/j.jseaes.2013.11.007
[] Liu CH, Zhao GC, Liu FL, Shi JR. 2014b. Geochronological and geochemical constraints on the Lüliang Group in the Lüliang Complex:Implications for the tectonic evolution of the Trans-North China Orogen. Lithos, 198-199: 298–315. DOI:10.1016/j.lithos.2014.04.003
[] Liu F, Guo JH, Lu XP, Diwu CR. 2009. Crustal growth at~2.5Ga in the North China Craton:Evidence from whole-rock Nd and zircon Hf isotopes in the Huai'an gneiss terrane. Chinese Science Bulletin, 54(24): 4704–4713.
[] Liu F, Guo JH, Peng P, Qian Q. 2012b. Zircon U-Pb ages and geochemistry of the Huai'an TTG gneisses terrane:Petrogenesis and implications for~2.5Ga crustal growth in the North China Craton. Precambrian Research, 212-213: 225–244. DOI:10.1016/j.precamres.2012.06.006
[] Liu FL. 1997a. The metamorphic reaction and water activity of basic granulite in the Datong-Huaian region. Acta Petrologica Sinica, 13(1): 27–43.
[] Liu FL. 1997b. The mineral evolution and geodynamic significance of excess-Alumino gneiss on the bordering area of Jin-Inner Mongolia. Journal of Geology & Mineral Resources of North China, 12(4): 337–346.
[] Liu FL. 1998. Textural characteristics and dynamic significance of metamorphic reaction involving melt in khondalite series on the border of Shanxi and Inner Mongolia. Acta Petrologica Sinica, 14(2): 129–139.
[] Liu FL, Shen QH, Geng YS, Xu XC, Ma R. 1998. Genetic relationship of metamorphic reaction and dehydration-melting:Example from Al-rich gneiss of khondalite series on the border of Jin (Shanxi Province)-Inner Mongolia. Science in China (Series D), 41(1): 49–56. DOI:10.1007/BF02932420
[] Liu FL, Shen QH. 1999. Retrogressive textures and metamorphic reaction features of Al-rich gneisses in the granulite facies belt from northwestern Hebei Province. Acta Petrologica Sinica, 15(4): 505–517.
[] Liu FL, Liu PH, Wang F, Liu JH, Meng E, Cai J, Shi JR. 2014c. U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton:Constraints on the timing and nature of partial melting. Precambrian Research, 245: 80–99. DOI:10.1016/j.precamres.2014.01.001
[] Liu FL, Wang F, Liou JG, Meng E, Liu JH, Yang H, Xiao LL, Cai J, Shi JR. 2014d. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton:Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205–225. DOI:10.1016/j.jseaes.2014.05.001
[] Liu FL, Liu PH, Wang F, Liu CH, Cai J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica, 31(10): 2816–2846.
[] Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F, Meng E. 2013a. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton:Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287–303. DOI:10.1016/j.precamres.2012.10.003
[] Liu JH, Liu FL, Ding ZJ, Yang H, Liu CH, Liu PH, Xiao LL, Zhao L, Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton:Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research, 235: 230–250. DOI:10.1016/j.precamres.2013.06.014
[] Liu JH, Liu FL, Ding ZJ, Liu PH, Guo CL, Wang F. 2014e. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255: 685–698. DOI:10.1016/j.precamres.2013.12.004
[] Liu PH, Liu FL, Yang H, Wang F, Liu JH. 2012c. Protolith ages and timing of peak and retrograde metamorphism of the high-pressure granulites in the Shandong Peninsula, eastern North China Craton. Geoscience Frontiers, 3(6): 923–943. DOI:10.1016/j.gsf.2012.04.001
[] Liu PH, Liu FL, Cai J, Liu JH, Shi JR, Wang F. 2013. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462–484.
[] Liu PH, Liu FL, Liu CH, Wang F, Liu JH, Yang H, Cai J, Shi JR. 2013c. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237–258. DOI:10.1016/j.precamres.2013.05.003
[] Liu PH, Liu FL, Liu CH, Liu JH, Wang F, Xiao LL, Cai J, Shi JR. 2014f. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246: 334–357. DOI:10.1016/j.precamres.2014.02.015
[] Lu JS, Wang GD, Wang H, Chen HX, Wu CM. 2013. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen. Precambrian Research, 238: 61–77. DOI:10.1016/j.precamres.2013.09.019
[] Lu JS, Wang GD, Wang H, Chen HX, Wu CM. 2014. Palaeoproterozoic metamorphic evolution and geochronology of the Wugang block, southeastern terminal of the Trans-North China Orogen. Precambrian Research, 251: 197–211. DOI:10.1016/j.precamres.2014.06.015
[] Lu LZ, Xu XC, Liu FL. 1996. The Early Precambrian Khondalite Series in the North China. Changchun: Changchun Publishing House: 16-118.
[] Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center
[] Luo ZB, Zhang HF, Diwu CR, Zhang H. 2012. Zircon U-Pb, Lu-Hf isotope and trace element compositions of intermediate pyroxene granulite in the Huai'an area, Northwest Hebei Province:Constraints on the timing of retrograde metamorphism. Acta Petrologica Sinica, 28(11): 3721–3738.
[] Qiao HZ, Yin CQ, Li QL, He XL, Qian JH, Li WJ. 2016. Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 276: 1–13. DOI:10.1016/j.precamres.2016.01.020
[] Santosh M, Liu DY, Shi YL, Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton:A SHRIMP zircon study. Precambrian Research, 227: 29–54. DOI:10.1016/j.precamres.2011.11.004
[] Su YP, Zheng JP, Griffin WL, Zhao JH, Li YL, Wei Y, Huang Y. 2014. Zircon U-Pb ages and Hf isotope of gneissic rocks from the Huai'an Complex:Implications for crustal accretion and tectonic evolution in the northern margin of the North China Craton. Precambrian Research, 255: 335–354. DOI:10.1016/j.precamres.2014.10.007
[] Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M, Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19(1): 150–162. DOI:10.1016/j.gr.2010.05.007
[] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249–271. DOI:10.1016/j.precamres.2006.06.006
[] Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton:Evidence for multiple metamorphic events in the Palaeoproterozoic era. In:Cawood PA and Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 323(1):73-97
[] Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC, Cu H. 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton:SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71–93. DOI:10.1016/j.precamres.2012.09.014
[] Wang GD, Wa ng, H, Chen HX, Lu JS, Wu CM. 2014a. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites:Insights into the Palaeoproterozoic amalgamation of the North China Craton. Precambrian Research, 245: 100–114. DOI:10.1016/j.precamres.2014.02.004
[] Wang J, Wu YB, Gao S, Peng M, Liu XC, Zhao LS, Zhou L, Hu ZC, Gong HJ, Liu YS. 2010. Zircon U-Pb and trace element data from rocks of the Huai'an Complex:New insights into the Late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton. Precambrian Research, 178(1-4): 59–71. DOI:10.1016/j.precamres.2010.01.007
[] Wang LJ, Guo JH, Peng P, Liu F, Windley BF. 2015. Lithological units at the boundary zone between the Jining and Huai'an Complexes (central-northern margin of the North China Craton):A Paleoproterozoic tectonic mélange?. Lithos, 227: 205–224. DOI:10.1016/j.lithos.2015.04.006
[] Wang W, Zhai MG, Tao YB, Santosh M, Lü B, Zhao L, Wang SJ. 2014b. Late Neoarchean crustal evolution of the eastern North China Craton:A study on the provenance and metamorphism of paragneiss from the Western Shandong Province. Precambrian Research, 255: 583–602. DOI:10.1016/j.precamres.2014.08.020
[] Wang W, Zhai MG, Wang SJ, Santosh M. 2016. Neoarchean crustal evolution in western Shandong Province of the North China Craton:The role of 2.7~2.6Ga magmatism. Precambrian Research, 285: 170–185. DOI:10.1016/j.precamres.2016.09.010
[] Wei Y, Zheng JP, Su YP, Ma Q. 2013. Zircon U-Pb ages and Hf isotopes of granulites from the Huai'an Complex:Implications for the accretion and reworking of the lower crust beneath the north margin of the North China Craton. Acta Petrologica Sinica, 29(7): 2281–2294.
[] Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. DOI:10.2138/am.2010.3371
[] Wu CH, Sun M, Li HM, Zhao GC, Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton:Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica, 22(11): 2639–2654.
[] Wu JL, Zhang HF, Zhai MG, Guo JH, Liu L, Yang WQ, Wang HZ, Zhao L, Jia XL, Wang W. 2016. Discovery of pelitic high-pressure granulite from Manjinggou of the Huai'an Complex, North China Craton:Metamorphic P-T evolution and geological implications. Precambrian Research, 278: 323–336. DOI:10.1016/j.precamres.2016.03.001
[] Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JP, Luo Y. 2006. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581–593. DOI:10.1016/j.epsl.2005.11.024
[] Xiao LL, Wu CM, Zhao GC, Guo JH, Ren LD. 2011. Metamorphic P-T paths of the Zanhuang amphibolites and metapelites:Constraints on the tectonic evolution of the Paleoproterozoic Trans-North China Orogen. International Journal of Earth Sciences, 100(4): 717–739. DOI:10.1007/s00531-010-0522-5
[] Xiao LL, Liu FL, Chen Y. 2014. Metamorphic P-T-t paths of the Zanhuang metamorphic complex:Implications for the Paleoproterozoic evolution of the Trans-North China Orogen. Precambrian Research, 255: 216–235. DOI:10.1016/j.precamres.2014.09.027
[] Yin CQ, Zhao GC, Sun M, Xia XP, Wei CJ, Zhou XW, Leung WH. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78–94. DOI:10.1016/j.precamres.2009.06.008
[] Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW, Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25–38. DOI:10.1016/j.lithos.2010.11.010
[] Zhai MG, Guo JH, Yan YH, Li YG, Han XL. 1993. Discovery of high-pressure basic granulite terrain in North China Archaean Craton and preliminary study. Science in China (Series B), 36(11): 1402–1408.
[] Zhai MG, Guo JH, Li JH, Li YG, Yan YH, Zhang WH. 1996. Retrograded eclogites in the Archaean North China Craton and their geological implication. Chinese Science Bulletin, 41(4): 315–320.
[] Zhai MG, Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665–2682.
[] Zhang HF, Zhai MG, Peng P. 2006. Zircon SHRIMP U-Pb age of the Paleoproterozoic high pressure granulites from the Sanggan area, the North China Craton and its geologic implications. Earth Science Frontiers, 13(3): 190–199.
[] Zhang HF, Luo ZB, Zhou ZG, Liu CF. 2009. Palaeoproterozoic collisional time in the Sanggan area of the North China Craton:Constraints from age of regional ductile shearing and post-collisional super peraluminous granites. Journal of Mineralogy and Petrology, 29(1): 60–67.
[] Zhang HF, Zhai MG, Santosh M, Diwu CR, Li SR. 2011. Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai'an Complex:Implications for the evolution of the North China Craton. Gondwana Research, 20(1): 82–105. DOI:10.1016/j.gr.2011.01.009
[] Zhang HF, Zhai MG, Santosh M, Li SR. 2012. Low-Al and high-Al trondhjemites in the Huai'an Complex, North China Craton:Geochemistry, zircon U-Pb and Hf isotopes, and implications for Neoarchean crustal growth and remelting. Journal of Asian Earth Sciences, 49: 203–213. DOI:10.1016/j.jseaes.2011.11.004
[] Zhang HF, Zhai MG, Santosh M, Wang HZ, Zhao L, Ni ZY. 2014. Paleoproterozoic granulites from the Xinghe graphite mine, North China Craton:Geology, zircon U-Pb geochronology and implications for the timing of deformation, mineralization and metamorphism. Ore Geology Reviews, 63: 478–497. DOI:10.1016/j.oregeorev.2014.03.014
[] Zhang HF, Wang HZ, Santosh M, Zhai MG. 2016. Zircon U-Pb ages of Paleoproterozoic mafic granulites from the Huai'an terrane, North China Craton (NCC):Implications for timing of cratonization and crustal evolution history. Precambrian Research, 272: 244–263. DOI:10.1016/j.precamres.2015.11.004
[] Zhang J, Zhao GC, Li SZ, Sun M, Wilde SA, Liu SW, Yin CQ. 2009. Polyphase deformation of the Fuping Complex, Trans-North China Orogen:Structures, SHRIMP U-Pb zircon ages and tectonic implications. Journal of Structural Geology, 31(2): 177–193. DOI:10.1016/j.jsg.2008.11.008
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37–53. DOI:10.1016/S0040-1951(99)00152-3
[] Zhao GC, Cawood PA, Wilde SA, Lu LZ. 2001. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton:Petrology and tectonic implications. Journal of Petrology, 42(6): 1141–1170. DOI:10.1093/petrology/42.6.1141
[] Zhao GC, Sun M, Wilde SA. 2002. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23–38.
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC, Wilde SA, Sun M, Guo JH, Kröner A, Li SZ, Li XP, Zhang J. 2008. SHRIMP U-Pb zircon geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. American Journal of Science, 308(3): 270–303. DOI:10.2475/03.2008.04
[] Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M, Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266–276. DOI:10.1016/j.precamres.2009.12.007
[] Zhao GC, Cawood PA. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13–54. DOI:10.1016/j.precamres.2012.09.017
[] Zhao GC, Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research, 23(4): 1207–1240. DOI:10.1016/j.gr.2012.08.016
[] Zhou XW, Zhao GC, Wei CJ, Geng YS, Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science, 308(3): 328–350. DOI:10.2475/03.2008.06
[] Zhou XW, Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region:Constraints on the evolution of the western block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843–1852.
[] 蔡佳, 刘福来, 刘平华, 施建荣. 2014. 内蒙古集宁三岔口地区夕线堇青石榴二长片麻岩变质作用及年代学研究. 岩石学报, 30(2): 472–490.
[] 蔡佳, 刘福来, 刘平华, 王舫, 施建荣. 2015. 内蒙古孔兹岩带乌拉山-大青山地区古元古代孔兹岩系年代学研究. 岩石学报, 31(10): 3081–3106.
[] 董春艳, 刘敦一, 万渝生, 徐仲元, 刘正宏, 杨振升. 2009. 大青山地区古元古代壳源碳酸岩:锆石特征及SHRIMP定年. 地质学报, 83(3): 388–398.
[] 耿建珍, 张健, 李怀坤, 李惠民, 张永清, 郝爽. 2012. 10μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定. 地球学报, 33(6): 877–884. DOI:10.3975/cagsb.2012.06.05
[] 郭敬辉, 翟明国, 张毅刚, 李永刚, 阎月华, 张雯华. 1993. 怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学. 岩石学报, 9(4): 329–341.
[] 郭敬辉, 王松山, 桑海清, 翟明国. 2001. 变斑晶石榴石40Ar-39Ar年龄谱的含义与华北高压麻粒岩变质时代. 岩石学报, 17(3): 436–442.
[] 刘福来. 1997a. 怀安-大同一带基性麻粒岩变质反应序列与水活度. 岩石学报, 13(1): 27–43.
[] 刘福来. 1997b. 晋蒙边界富铝片麻岩的矿物演化序列及动力学意义. 华北地质矿产杂志, 12(4): 337–346.
[] 刘福来. 1998. 晋蒙交界孔兹岩系熔体参与变质反应的结构特征及其动力学意义. 岩石学报, 14(2): 129–139.
[] 刘福来, 沈其韩. 1999. 冀西北麻粒岩相带富铝片麻岩的退变结构及其变质反应性质. 岩石学报, 15(4): 505–517.
[] 刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816–2846.
[] 刘平华, 刘福来, 蔡佳, 刘建辉, 施建荣, 王舫. 2013. 华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究. 岩石学报, 29(2): 462–484.
[] 卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社: 16-118.
[] 罗志波, 张华锋, 第五春荣, 张红. 2012. 冀西北怀安地区中性辉石麻粒岩的锆石U-Pb、Lu-Hf及微量元素组成对区域退变质时代的制约. 岩石学报, 28(11): 3721–3738.
[] 魏颖, 郑建平, 苏玉平, 马强. 2013. 怀安麻粒岩锆石U-Pb年代学及Hf同位素:华北北缘下地壳增生再造过程研究. 岩石学报, 29(7): 2281–2294.
[] 吴昌华, 孙敏, 李惠民, 赵国春, 夏小平. 2006. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究. 岩石学报, 22(11): 2639–2654. DOI:10.3969/j.issn.1000-0569.2006.11.003
[] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665–2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
[] 张华锋, 翟明国, 彭澎. 2006. 华北克拉通桑干地区高压麻粒岩的锆石SHRIMP U-Pb年龄及其地质含义. 地学前缘, 13(3): 190–199.
[] 张华锋, 罗志波, 周志广, 柳长峰. 2009. 华北克拉通中北部古元古代碰撞造山时限:来自强过铝花岗岩和韧性剪切时代的制约. 矿物岩石, 29(1): 60–67.
[] 周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843–1852.