岩石学报  2017, Vol. 33 Issue (9): 2689-2707   PDF    
胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因
王祥俭1,2, 刘建辉1, 冀磊1     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国地质大学, 北京 100083
摘要: 古元古代二长(正长)花岗质片麻岩在胶-辽-吉构造带广泛出露,是构成胶-辽-吉带的最主要物质组成。2件中细粒二长花岗质片麻岩样品及1件正长花岗质片麻岩样品的LA-ICP-MS锆石U-Pb年代学分析表明,它们分别形成于2.17Ga和2.33Ga,代表两期花岗质岩浆事件,并经历了约1.89Ga的变质作用。这些花岗质岩石具高硅(SiO2=71.68%~76.38%),富铁(Fe2O3+FeO=1.61%~4.35%)及全碱(K2O+Na2O=7.57%~9.3%),K2O/Na2O比值大于1,贫钙(CaO=0.2%~1.6%)、镁(MgO=0.05%~0.24%,Mg#=3.82~13.0)、磷(P2O5=0.01%~0.06%)及钛(TiO2=0.12%~0.4%)的特征;它们具有较高的稀土元素总量(∑REE=104×10-6~440×10-6),具有轻微的轻重稀土分异,(La/Yb)N比值在2~11之间,具明显的铕负异常(Eu/Eu*=0.30~1.18,平均值为0.56),具有低Sr(大部分 < 100×10-6)、Rb(62.8×10-6~187×10-6)、Cr及Ni含量,高的Zr(>250×10-6)及Yb(>2×10-6)含量,Zr+Nb+Ce+Y平均值为506×10-6,10000×Ga/Al值大于2.7;微量元素原始地幔标准化蛛网模式图显示,富集Rb、U、K、Zr、Hf等元素,亏损Nb、Ta、Sr及Ti等元素;它们属铁质、准铝质至弱过铝质、碱钙-钙碱性系列,全岩锆饱和温度大于800℃,属A2型花岗岩;结合胶-辽-吉带内古元古代花岗质片麻岩的全岩Nd及锆石Hf同位素研究结果,指示这些古元古代A型花岗岩可能形成于高温低压的伸展构造背景下,大陆物质(TTG岩石)的部分熔融。暗示胶-辽-吉带可能经历了古元古代早期多阶段的陆壳伸展拉张,并形成初始洋盆,然后再到洋-陆俯冲、陆(弧)-陆碰撞的演化过程。
关键词: 胶-辽-吉构造带     华北克拉通     A型花岗岩     地球化学     锆石U-Pb测年    
Zircon U-Pb chronology, geochemistry and their petrogenesis of Paleoproterozoic monzogranitic gneisses in Kuandian area, eastern Liaoning Province, Jiao-Liao-Ji Belt, North China Craton
WANG XiangJian1,2, LIU JianHui1, JI Lei1     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. China University of Geosciences, Beijing 100083, China
Abstract: Paleoproterozoic monzogranitic, syenogranitic gneisses are widely distributed in Jiao-Liao-Ji tectonic belt (JLJB), and are the main component of the JLJB. The LA-ICP-MS zircons U-Pb isotopic analyses from two monzogranitic gneisses and one syenogranitic gneiss samples collected from the study area unraveled that they formed at~2.17Ga and~2.33Ga, respectively, and experienced metamorphism at~1.89Ga. They have high SiO2 (71.68%~76.38%), Fe2O3+FeO (1.61%~4.35%) and total alkali (K2O+Na2O=7.57%~9.3%) with K2O/Na2O>1, and low CaO (0.2%~1.6%), MgO (0.05%~0.24%, Mg#=3.82~13.0), P2O5 (0.01%~0.06%) and TiO2 (0.12%~0.4%) contents; They have relatively high REEs contents (∑REE=104×10-6~440×10-6), enrichment in light REE and depletion in heavy REE with (La/Yb)N ratios of 2~11, and strongly negative Eu anomalies (Eu/Eu*=0.30~1.18, average of 0.56). These samples show low Sr content (mostly < 100×10-6), Rb(62.8×10-6~187×10-6), Cr and Ni contents, but high Zr (>250×10-6), Yb (>2×10-6) and Zr+Nb+Ce+Y (average=506×10-6) contents, and 10000×Ga/Al values of larger than 2.7. In primitive mantle normalized trace element spider diagrams, they exhibit strong enrichments in Rb, U, K, Zr and Hf, but depletion in Nb, Ta, Sr and Ti. They are ferroan, alkali-calcic to calc-alkalic and metaluminous-weakly peraluminous, belong to A2-type granite with the zircon saturation temperature >800℃. Combined with Nd and Hf isotope features of Paleoproterozoic granitoids in the JLJB, we proposed that magmatic precursors of the Paleoproterozoic monzogranitic and syenogranitic gneisses may originated from partial melting of continental crust (TTG rocks) under high temperature and low pressure extension setting, which further suggests that the JLJB might experience tectonic evolutionary history of multi-stage extensions, formation of initial ocean basin, ocean-continent subduction to continent-continent collision in Paleoproterozoic.
Key words: Jiao-Liao-Ji tectonic Belt     North China Craton     A-type granite     Geochemistry     Zircon U-Pb dating    
1 引言

华北克拉通是全球早前寒武纪地学研究的热点地区, 通过最近二十年的深入研究, 在区域构造、变质地质、岩浆作用、地球化学、同位素年代学及地球物理等方面积累了大量的资料, 并取得了一系列重要的科学进展(翟明国等, 1992, 1995; 翟明国和卞爱国, 2000; 金巍等, 1992; Liu et al., 1993; 白瑾, 1993; 伍家善等, 1998; Zhao et al., 1998, 2000, 2001, 2005; Liu et al., 2000, 2002a, b, 2004, 2006, 2012, 2017; Guo et al., 2002, 2005, 2012; Zhai and Liu, 2003; Zhai, 2004; Zhai et al., 2010; Zhai and Santosh, 2011, 2013; Zhao and Zhai, 2013及其参考文献), 其中一个重要进展是在华北克拉通厘定出三条古元古代构造带, 即东部陆块内部的胶-辽-吉带、西部陆块内部的孔兹岩带以及两个陆块之间的中部造山带(图 1a, Zhao et al., 2005), 或称胶辽(辽吉)造山/活动带、晋豫造山/活动带和丰镇造山/活动带(翟明国和彭澎, 2007; Zhai and Santosh, 2011, 2013)。其中, 胶-辽-吉带是华北克拉通最具代表性、最复杂的一条古元古代造山/活动带, 它不仅接受了古元古代巨量的陆壳物质沉积, 而且经历了十分复杂的构造演化过程, 并经受了多期岩浆-变质及构造变形事件的改造(Liu et al., 2014a; 刘福来等, 2015)。对其构造属性及演化过程的正确认识, 对揭示华北克拉通的形成演化、陆块聚-散的动力学过程及构造背景具有重要的科学意义。然而, 直到目前, 关于胶-辽-吉带形成的构造背景及演化过程还存在多种不同的认识, 主要包括:(1) 陆内裂谷开启-闭合模式(张秋生, 1988; 李三忠等, 2003; 郝德峰等, 2004; Li et al., 2005, 2006, 2012; Luo et al., 2004, 2008; Li and Zhao, 2007; Wang et al., 2016); (2) 弧-陆碰撞模式(白瑾, 1993; Bai and Dai, 1996; Faure et al., 2004; Yuan et al., 2015; 杨明春等, 2015; Li et al., 2017), 或陆-陆碰撞模式(贺高品和叶慧文, 1998a, b); (3) 古元古代先裂谷-后碰撞造山演化模式(翟明国和彭澎, 2007; Zhao et al., 2012)。

值得注意的是, 胶-辽-吉古元古代构造带经历了长期而复杂的构造演化历史, 特别是在古元古代记录了多期重要的岩浆事件。带内除了大量的变质基性火山岩和变质英安岩-流纹岩组成的双峰式火山岩外, 还发育有大量的古元古代多期花岗质岩石和基性侵入岩体。以往的研究显示, 带内古元古代花岗质岩石主要有2.2~2.1Ga期间侵位的条纹、条痕状“A型”花岗岩和1.88~1.85Ga期间侵位的造山后或非造山斑状二长花岗岩和碱性正长岩(郝德峰等, 2004; 路孝平等, 2004a, b, 2005;李三忠等, 2003; Li and Zhao, 2007; Liu et al., 2014b)。最近, 杨明春等(2015)Li et al. (2017)在辽东地区报道了具有弧岩浆性质的高分异“I型”花岗岩; 此外, 王鹏森等(2017)发现了辽东黄花甸地区约2000Ma侵位, 具有埃达克性质的花岗闪长岩。这些研究表明, 胶-辽-吉带内古元古代花岗岩可能由多期不同成因类型、形成于不同构造背景的花岗质岩石组成。因此, 带内古元古代花岗质岩石主要岩石组成、形成期次、源区性质及成因的厘定, 将为正确认识胶-辽-吉带的构造属性及演化过程提供重要的约束。本文在前人研究工作基础上, 对辽东宽甸地区的古元古代花岗质岩石开展了初步的锆石U-Pb年代学、地球化学及成因研究, 为正确理解胶-辽-吉古元古代构造带的构造属性提供重要的依据。

2 地质背景

胶-辽-吉古元古构造带位于华北克拉通东部陆块东南缘, 呈北东-南西向展布(图 1a), 主要由大量的古元古代花岗质岩石、变质基性侵入岩和绿片岩相至麻粒岩相变质的火山-沉积岩系组成(张秋生, 1988; 贺高品和叶慧文, 1998a, b; 李三忠等, 2003; Li et al., 2005, 2006; 路孝平等, 2004a, b, 2005; Lu et al., 2006; Li and Zhao, 2007; Zhou et al., 2008; 李旭平等, 2011; Tam et al., 2011, 2012a, b, c; Liu et al., 2013a, b, 2014a, b; 刘福来等, 2015; 王惠初等, 2015)。变质火山-沉积岩系包括胶北地区的荆山群和粉子山群, 辽东地区的南、北辽河群, 吉南地区的吉安群和老岭群。大量碎屑锆石U-Pb年龄显示, 其物源主要来自于太古宙变质基底和古元古代辽吉花岗岩, 其沉积时代为2.15~1.95Ga, 而变质时代为1.95~1.85Ga(Luo et al., 2004, 2008; Li et al., 2005; Lu et al., 2006; Wan et al., 2006; 郭素淑和李曙光, 2009; 孟恩等, 2013; 谢士稳等, 2014; 李壮等, 2015; 刘福来等, 2015)。带内出露的变质基性岩墙及变质枕状熔岩的年代学结果显示, 它们主要形成于2.2~2.1Ga及1.9~1.8Ga(王惠初等, 2011; Meng et al., 2014; Yuan et al., 2015; Wang et al., 2016), 然而, 有关早期变质基性岩墙的性质则存在陆内裂谷(Wang et al., 2016)或弧岩浆两种不同的认识(王惠初等, 2011, 2015; Meng et al., 2014; Yuan et al., 2015)。以往的变质作用研究认为, 位于该带南部的荆山群、南辽河群及集安群具有逆时针变质演化P-T轨迹, 而北部的北辽河群、粉子群和老岭群则表现为顺时针的变质演化P-T轨迹, 并且认为胶北地区的荆山群和粉子山变质作用较强, 可达高角闪岩相到中-低压麻粒岩相, 而南、北辽河群, 集安群和老岭群变质作用相对较弱, 为绿片岩相-低角闪岩相, 局部可达高压角闪岩相(卢良兆等, 1996; 贺高品和叶慧文, 1998a, b)。而新的研究表明, 不仅胶北地区存在具顺时针变质演化P-T轨迹的高压泥质麻粒岩和基性麻粒岩(刘文军等, 1998; Zhou et al., 2008; 王舫等, 2010; Tam et al., 2012a, b; Liu et al., 2013b), 而且在南辽河群和集安群中也发现了具有顺时针变质演化P-T轨迹的泥质麻粒岩和基性麻粒岩(刘福来等, 2015), 进一步确定了胶-辽-吉带的碰撞造山作用。最近的研究显示, 胶-辽-吉带不仅经历了古元古代的碰撞造山作用, 而且也卷入了苏鲁-大别三叠世的碰撞造山事件(Liu et al., 2014a), 并经历了中生代以来多期花岗质岩浆侵位和构造变形改造(Li et al., 2004; 杨进辉等, 2004; Wu et al., 2005; Liu et al., 2005, 2013c; 林伟等, 2011), 使得带内不同地层及岩体之间的相互关系, 以及该带的主要边界、空间展布、规模及延伸方向存在不同的认识(Zhao et al., 2005, 2012; 翟明国和彭澎, 2007; Zhai and Santosh, 2011, 2013)。

图 1 华北克拉通构造单元划分(a, 据Zhao et al., 2005修改)和宽甸地区地质简图及采样位置(b, 据辽宁省地质矿产调查院, 2013修改) Fig. 1 Tectonic subdivisions of the North China Craton (a, modified after Zhao et al., 2005) and simplified geological map of Kuandian area and sampling locations (b)

① 辽宁省地质矿产调查院. 2013. 1:25万宽甸县幅地质图

本文研究的宽甸地区位于胶-辽-吉带中段的辽东地区(图 1b), 该区主要由古元古代花岗岩、古元古代斜长角闪岩、辽河群、青白口系及中生代岩体组成。古元古代花岗质岩石在研究区内大面积出露, 主要有条痕状二长花岗片麻岩、碱长花岗岩及巨斑状、球斑状环斑二长花岗岩(辽宁省地质矿产调查院, 2013), 出露最多是中细粒条痕状含磁铁矿角闪石黑云母二长花岗片麻岩, 其中磁铁矿、角闪石及黑云母等构成暗色条痕(图 2a), 岩体局部暗色矿物均匀分布, 条痕不明显(图 2b); 岩体内部分布有变质基性岩墙或透镜体(图 2c)。另外局部出露有浅肉红色的正长(二长)花岗岩, 暗色矿物分布不均匀, 主要为角闪石及黑云母(图 2d), 具体分布面积、规模、侵位时代及其与条痕状花岗岩的关系不详。前人对该区古元古代花岗质岩石的研究主要揭示了2.1~2.2Ga侵位的条痕状花岗岩及1.88~1.85Ga期间侵位的造山后或非造山斑状二长花岗岩和碱性正长岩(郝德峰等, 2004; Li and Zhao, 2007)。然而, 目前有关该区古元古代花岗质岩石主要组成、形成期次, 规模及时空分布仍有待进一步深入研究。辽河群与古元古代花岗质岩石在空间上紧密伴生, 但是由于研究区在地质历史时期经历了多期次的构造变形改造, 使得其与古元古代花岗质岩石之间的原始地质关系被强烈改造, 在野外有限的露头尺度上主要以断裂带或韧性剪切带相接, 这给确定它们相互之间原始的地质关系带来了难度。导致存在沉积接触, 花岗岩“重就位”(张秋生, 1988), 同构造就位(李三忠等, 1997; 陈树良等, 2001)或构造接触(贺高品和叶慧文, 1998a)多种不同的认识。碎屑锆石U-Pb定年显示存在1878~1903Ma、2011~2043Ma、2100~2200Ma及2300~3200Ma等多个组份年龄, 除了1878~1903Ma为变质年龄外, 其余均为岩浆锆石年龄, 暗示研究区辽河群沉积时代应晚于2050Ma(孟恩等, 2013), 以及源区存在多期次的古元古代花岗质岩浆作用。最近, 刘福来等(2015)在宽甸地区南辽河群中发现了具有顺时针变质演化P-T轨迹的泥质麻粒岩, 表明其经历了碰撞造山作用。

图 2 宽甸地区古元古代二长(正长)花岗质片麻岩野外照片及显微照片 (a、e)中细粒条痕状二长花岗片麻岩(16LN13-1);(b、f、g)中细粒二长花岗片麻岩(16LN23-1);(c)中细粒条痕状二长花岗片麻岩及变质基性岩墙(脉); (d、h)正长花岗片麻岩(16LN18-1).Qtz-石英; Hbl-角闪石; Pl-斜长石; Mc-微斜长石; Perthite-条纹长石 Fig. 2 Photographs of outcrops of the Paleoproterozoic monzogranitic and syenogranitic gneisses in Kuandian area (a, e) medium to fine-grain banded monzogranitic gneiss (16LN13-1); (b, f, g) medium to fine-grain monzogranitic gneiss; (c) medium to fine-grain banded monzogranitic gneiss and meta-mafic wall; (d, h) syenogranitic gneiss (16LN18-1). Qtz-quartz; Hbl-hornblende; Pl-plagioclase; Mc-microcline
3 分析方法

LA-ICP-MS锆石U-Pb原位定年在中国地质大学(北京)地学实验中心元素地球化学实验室进行。分析仪器采用由美国New Wave Research公司生产的激光剥蚀进样系统(UP193SS)和美国AGLENT科技有限公司生产的Agilent 7500型四级杆等离子体质谱仪联合构成的激光等离子质谱仪。分析时采用10Hz的激光频率, 193nm的激光波长, 36μm的激光束斑直径, 激光预剥蚀时间和剥蚀时间分别为5s和45s, U、Th、Pb元素积分时间为20ms, 其它元素积分时间为15ms。年龄计算时以标准锆石91500为外标进行同位素比值校正, 以TEM为监控盲样; 元素含量以国际标样NIST612为外标, Si为内标计算; 普通铅校正与Andersen (2002)方法相同, 数据采用Glitter 4程序进行处理。

样品全岩化学成分分析在中国地质科学院国家地质实验测试中心进行, 其中常量元素采用XRF(X荧光光谱仪2100) 方法分析, 分析精度5%。微量元素和稀土元素采用等离子质谱仪X系列分析, 分析误差小于5%。

4 分析结果 4.1 锆石U-Pb定年 4.1.1 中细粒条痕状二长花岗质片麻岩(16LN13-1)

样品16LN13-1采自宽甸永甸镇磙子沟, 样品新鲜, 具有典型的条痕状构造(2a); 主要矿物成分有条纹长石(40%)、石英(35%)、微斜长石(15%)及斜长石(10%), 含有少量角闪石及黑云母(图 2e)。在显微镜下, 矿物呈他形, 无明显定向变形及分布(图 2e)。该样品锆石以柱状、自形晶至半自形为主, 部分锆石机械破碎或发育有裂隙, 少量锆石呈不规则状; 锆石短轴方向粒径在100~200μm之间, 锆石长短轴之比在1~3之间。阴极发光图像显示大部分锆石呈暗色, 内部振荡环带可见, 并发育有暗色的变质增生边, 部分锆石内核呈亮色, 振荡环较清晰, 向外变暗, 并发育有暗色变质增生边(图 3a), 本次测试选取30颗具有振荡环带的锆石开展了锆石U-Pb分析, 给出的锆石207Pb/206Pb年龄在2248~1958Ma之间(表 1), 其中27个分析点给出的加权平均年龄为2177±15Ma(MSWD=10.2, 图 4a), 代表该样品岩石岩浆结晶的年龄。

图 3 古元古代二长(正长)花岗质片麻岩样品16LN13-1 (a)、16LN23-1 (b)和16LN18-1 (c)不同类型锆石微区阴极发光图像及U-Pb年龄 Fig. 3 The cathodoluminescence (CL) images and U-Pb ages of different zircon domains from Paleoproterozoic monzogranitic and syenogranitic gneiss samples 16LN13-1 (a), 16LN23-1 (b) and 16LN18-1 (c)

表 1 胶-辽-吉带宽甸地区古元古代二长(正长)花岗质片麻岩类LA-ICP-MS锆石U-Pb数据表 Table 1 The LA-ICP-MS zircon U-Pb isotopic data for Paleoproterozoic monzogranitic and syenogranitic gneisses in Kuandian area, Jiao-Liao-Ji Belt

图 4 古元古代二长(正长)花岗质片麻岩样品16LN13-1 (a)、16LN23-1 (b)和16LN18-1 (c)锆石LA-ICP-MS U-Pb年龄谐和图 Fig. 4 LA-ICP-MS U-Pb concordia diagram for analyses of different zircon domains from Paleoproterozoic monzogranitic and syenogranitic gneiss samples 16LN13-1 (a), 16LN23-1 (b) and 16LN18-1 (c)
4.1.2 中细粒二长花岗质片麻岩(16LN23-1)

该样品采自宽甸县大西岔镇明安村路边, 该样品为中细粒含磁铁矿黑云母角闪二长花岗质片麻岩, 该样品暗色矿物分布较均匀(图 2b), 无明显由暗色矿物组成的条痕; 主要矿物成分有微斜长石(25%)、条纹长石(25%)、石英(30%)、斜长石(15%)及角闪石(5%), 以及少量黑云母。主要矿物呈他形、变晶结构, 无明显定向变形及分布(图 2f, g)。该样品锆石晶形较好, 以长柱状自形晶为主, 锆石短轴方向粒径在150~50μm之间为主, 长短轴之比在1.5~4之间。阴极发光图像显示大部分锆石呈灰色, 并具有典型的岩浆振荡环带, 同时可见窄的暗色变质增生边(图 3b)。22个具有典型振荡环带岩浆锆石分析点给出的207Pb/206Pb年龄在2121~2203Ma之间(表 1), 其加权平均年龄为2177±9Ma (MSWD=1.5, 图 4b), 可以代表该样品岩石岩浆侵位的年龄。

4.1.3 正长花岗岩(16LN18-1)

该样品采自宽甸县红石镇哈沟西公路边, 样品呈浅肉红色, 块状构造至弱片麻状构造(图 2d); 主要矿物成分有条纹长石(55%)、石英(35%)、斜长石(10%)、少量角闪石及黑云母, 主要矿物呈他形、变晶结构, 无明显定向变形及分布(图 2h)该样品锆石主要呈短柱状至椭圆状, 晶形较差, 锆石短轴方向粒径在150~50μm之间, 长短轴之比在1~2之间。阴极发光图像显示锆石呈暗色, 主要可以分为两类, 一类为振荡环带可见, 但大部分显示被溶蚀改造, 甚至被完全改造, 仅可见模糊或无振荡环带, 应为被改造的岩浆锆石; 另一类锆石主要为暗色的变质增生边, 或整个为无环带的暗色变质锆石(图 3c)。这些锆石均具有较高的U、Th、Pb含量, 但变质锆石相对被改造的岩浆锆石U、Th、Pb含量低(表 1)。该样品锆石U-Pb分析结果显示, 除了变质锆石外, 其它分析点大部分显示明显的铅丢失, 谐和性较差, 因此, 本文取该样品的上交年龄2332±100Ma, 作为该样品的岩浆侵位年龄(图 4c)。6个变质成因锆石微区分析点的谐和性较好(图 4c), 207Pb/206Pb年龄在1868~1987Ma之间(表 1), 其中5个分析点的加权平均年龄为1890±27Ma(MSWD=2.4), 代表该样品的变质年龄。

4.2 地球化学

本文选取研究区25个二长(正长)花岗质片麻岩样品开展了常量、微量及稀土元素地球化学分析。表 2列出了所分析的25个样品的常量、微量及稀土元素测试结果及计算所得的相关参数。

表 2 胶-辽-吉带宽甸地区古元古代二长(正长)花岗质片麻岩类地球化学数据表(主量元素:wt%; 稀土和微量元素:×10-6) Table 2 The geochemical compositions for Paleoproterozoic monzogranitic and syenogranitic gneisses in Kuandian area, Jiao-Liao-Ji Belt (major elements: wt%; trace elements: ×10-6)
4.2.1 常量元素

常量元素分析结果(表 2图 5)显示, 研究区二长(正长)花岗质片麻岩具有高的SiO2 (71.68%~76.38%), Fe2O3+FeO (1.61%~4.35%), K2O+Na2O (7.57%~9.3%), 除了2个样品外, 它们的K2O/Na2O比值均大于1(表 2), 较低的Al2O3 (11.4%~13.18%)含量; 它们具有极低的CaO(0.2%~1.6%), MgO (0.05%~0.24%), Mg#值在3.82~13.0之间(表 2), MnO (0.01%~0.07%), P2O5 (0.01%~0.06%)及TiO2 (0.12%~0.4%)含量, 它们均与SiO2含量具有很好的负相关性(图 5), 表明岩浆可能经历了分异结晶作用。在R1-R2岩石分类图解上(De la Roche et al., 1980), 它们落在花岗岩至碱性花岗岩区域(图 6); 此外, 它们具有较高的FeO/(FeO+MgO)比值, 属铁质花岗岩系列(图 7a), 在SiO2-Na2O+K2O-CaO分类图上, 它们落在碱钙-钙碱性系列区域(图 7b), 铝饱和指数ASI主要集中在0.9~1.1之间, A/NK主要在1~1.4之间, 为准铝质到弱过铝质系列(图 7c, 据Frost et al., 2001)。

图 5 古元古代二长(正长)花岗质片麻岩选择的主量元素Harker变量图 Fig. 5 Harker compositional variation diagrams showing selected major elements variations for Paleoproterozoic monzogranitic and syenogranitic gneisses

图 6 古元古代二长(正长)花岗质片麻岩R1-R2岩石分类图解(据De la Roche et al., 1980) Fig. 6 R1-R2 classification of Paleoproterozoic monzogranitic and syenogranitic gneisses(after De la Roche et al., 1980)

图 7 古元古代二长(正长)花岗质片麻岩地球化学分类图 (a)FeO/(FeO+MgO)-SiO2图; (b) (Na2O+K2O-CaO)-SiO2图; (c)花岗岩铝饱和指数化学成分图(Frost et al., 2001) Fig. 7 Geochemical classification diagrams of Paleoproterozoic monzogranitic and syenogranitic gneisses (a) plot of FeO/(FeO+MgO) vs. SiO2; (b) plot of (Na2O+K2O-CaO) vs. SiO2; (c) chemical compositions of the granitoid rocks in terms of alumina saturation (Frost et al., 2001)
4.2.2 稀土及其它微量元素

稀土和微量元素分析结果(表 2图 8)显示, 研究区古元古代二长(正长)花岗质片麻岩具有低的Sr含量(大部分 < 100×10-6), 低的Rb含量(62.8×10-6~187×10-6), 极低的Cr及Ni含量(表 2图 8f, h), 它们显示了高的Y (>20×10-6)、Yb (>2×10-6)、Zr (>250×10-6)及Ba(>500×10-6)含量。它们具有较高的稀土元素总量(ΣREE), 在104×10-6~440×10-6之间, 平均含量为232×10-6(表 2)。在稀土元素球粒陨石标准化配分曲线模式图上(图 9a), 轻稀土相对重稀土轻微富集, 轻稀土配分曲线向右倾斜, 重稀土配分曲线平坦, (La/Yb)N比值在2~11范围内变化。显示出明显的负铕异常(Eu/Eu*=0.30~1.18, 平均值为0.56)(表 2)。在原始地幔标准化微量元素蛛网图上(图 9b), 富集Rb、K、Zr、Hf、Y及Yb等元素, 亏损Nb、Ta、Sr及Ti等元素。此外, 它们具有较低的Sr/Y比值, 在0.62~5.85之间, 平均值为2.07(表 2)

图 8 古元古代二长(正长)花岗质片麻岩选择的微量元素Harker变量图解 Fig. 8 Harker compositional variation diagrams showing selected trace elements variations for Paleoproterozoic monzogranitic and syenogranitic gneisses

图 9 古元古代二长(正长)花岗质片麻岩球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 9 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for Paleoproterozoic monzogranitic and syenogranitic gneisses (normalization values after Sun and McDonough, 1989)
5 讨论与结论 5.1 胶-辽-吉带古元古代多期花岗质岩浆事件

本次研究选取宽甸地区广泛出露的2个中细粒(条痕状)二长花岗质片麻岩及1个正长花岗质片麻岩样品, 在锆石阴极发光图像分析的基础上, 利用LA-ICP-MS锆石U-Pb定年方法对它们开展了锆石U-Pb年代学分析, 其中2个中细粒(条痕状)二长花岗质片麻岩的岩浆锆石的分别给出了2177±15Ma(n=27, MSWD=10.2, 图 4a)和2177±9Ma(n=22, MSWD=1.5, 图 4b)的207Pb/206Pb加权平均年龄; 它们与胶北、辽东及吉南地区的广泛出露的条痕状花岗岩的侵位岩一致(郝德峰等, 2004; 路孝平等, 2004a; Li and Zhao, 2007; Lan et al., 2015; 杨明春等, 2015; Li et al., 2017; 李超等, 2017; 王鹏森等, 2017), 代表胶-辽-吉在古元古代2.2~2.1Ga时期一期最广泛的岩浆事件。另1个正长花岗岩样品给出了2332±100Ma的上交点年龄及1890±27Ma(n=5, MSWD=2.4) 变质年龄, 前者代表正长花岗岩的岩浆侵位年龄, 代表一期比条痕状花岗岩更早的岩浆事件; 而给出的1890±27Ma(n=5, MSWD=2.4) 变质年龄与该带变质火山-沉积岩及变质基性岩记录的主要变质作用时间一致(刘福来等, 2015; 及其参考文献), 代表该区古元古代花岗质岩石的变质作用时间。这些研究表明, 研究区不仅存在2.2~2.1Ga的花岗质岩浆事件, 同时也存在更早期的发生于约2.3Ga的花岗质岩浆作用, 但其空间分布及规模仍有待进一步的深入研究; 此外, 结合前人报道的1.88~1.80Ga期间侵位的造山后或非造山斑状二长花岗岩和碱性正长岩(路孝平等, 2004b, 2005; Li and Zhao, 2007; Liu et al., 2014b), 最近在辽东地区发现的具有埃达克质的2.0Ga花岗闪长岩(王鹏森等, 2017), 以及带内碎屑锆石U-Pb定年揭示的2011~2043Ma、2100~2200Ma及2300~3200Ma等多个组份年龄(Luo et al., 2004; 刘福来等, 2015; 孟恩等, 2013), 表明胶-辽-吉带在古元古代时期存在古元古代碰撞构造前~2.33Ga、2.2~2.1Ga、2.0Ga及碰撞构造后1.88~1.80Ga多期花岗质岩浆事件。

5.2 岩石成因

宽甸地区古元古代花岗质片麻岩的岩石地球化学分析结果显示, 它们具有高的SiO2、FeOT及全碱(K2O+Na2O)含量, K2O/Na2O比值大于1, 极低的CaO、MgO、MnO、P2O5和TiO2含量, 富REEs (Eu除外)、Zr、Hf、K、Ga和Y, 以及低的Rb和Sr含量, 它们属铁质、准铝质至弱过铝质、碱钙-钙碱性系列, 显示出A型花岗岩的地球化学特征(Collins et al., 1982; Whalen et al., 1987; Eby, 1990; Patiño Douce, 1997; Frost et al., 2001)。在A型花岗岩判别图解上(Whalen et al., 1987), 它们显示高的Zr+Nb+Ce+Y含量(在370×10-6~656×10-6之间, 平均值为507×10-6, 图 10a, b)及10000×Ga/Al值(绝大部分大于2.7, 图 10c, d), 均落在A型花岗岩区域(图 10)。在Eby (1992)的A型花岗岩A1-A2图解上, 显示它们属A2型花岗岩(图 11), 代表后造山或造山后A型花岗岩。

图 10 古元古代二长(正长)花岗质片麻岩A型花岗岩判别图(据Whalen et al., 1987) Fig. 10 Discrimination diagrams of A-type granite for Paleoproterozoic monzogranitic and syenogranitic gneisses (after Whalen et al., 1987)

图 11 A1-A2型花岗岩的Y/Nb-Rb/Nb (a)及Nb-Y-Ce(b)分类图(据Eby, 1992) Fig. 11 Plots of Y/Nb vs. Rb/Nb (a) and Nb-Y-Ce(b)for distinguishing between A1-A2 granites (after Eby, 1992)

这些古元古代花岗岩具有低的Sr含量及负的Eu异常, 表明它们源区有斜长石的残留, 或源区岩浆经历了斜长石的分离结晶, 然而, 这些花岗岩具有高的FeOT及Zr含量, 低的Rb含量而与高分异的I型花岗岩相区分。这种低Sr高Yb的地球化学特征可能指示它们形成于低压的环境(张旗等, 2006); 另外, 根据全岩锆石饱和温度计(Watson and Harrison, 1983), 获得的锆石结晶温度高于800℃(表 2), 指示这些花岗岩具有高的岩浆结晶温度。表明这些花岗岩可能形成于低压高温的伸展构造环境。根据胶北及辽东地区同类型花岗岩的全岩Nd同位素及锆石Hf同位素研究显示, 它们的全岩εNd(t)值在-3.3~-0.9之间, 对应的Nd模式年龄在2860~2669Ma之间(李超等, 2017), 锆石εHf(t)值在-2.13~+6.18之间, 对应的Hf模式年龄在2313~2780Ma之间(Liu et al., 2014b), 全岩Nd及锆石Hf同位素成分变化范围大, 既有正的εNd(t)和εHf(t)值, 也有负的εNd(t)和εHf(t)值, 反映源区岩浆的混合作用, 结合它们高温低压的形成温压条件, 暗示它们可能形成于与地幔岩浆底侵有关的、大陆地壳伸展过程中陆壳物质(TTG)的部分熔融。

5.3 构造意义

胶-辽-吉古元古代构造带的构造属性及演化过程一直存在争议(Zhao et al., 2012; 刘福来等, 2015)。古元古代花岗岩作为胶-辽-吉古元古构造带最主要的物质组成, 其形成时代、形成的构造环境、成因及其可能经历的构造-变质热事件能为我们正确理解胶-辽-吉构造带的构造属性及演化过程提供重要的证据和信息。本次研究通过对胶-辽-吉带辽东宽甸地区古元古代花岗质岩石的锆石U-Pb年代学及全岩地球化学的研究, 测定了古元古代2.17Ga和2.33Ga两期花岗质岩浆作用。地球化学分析表明, 它们形成于高温低压的伸展构造背景下, 地幔物质底侵导致的大陆物质部分熔融。同样, 在胶-辽-吉带的胶北地区(Liu et al., 2014b; Lan et al., 2015), 辽东地区(郝德峰等, 2004; Li and Zhao, 2007)以及吉南地区(路孝平等, 2004a)存在大量2.2~2.1Ga具有类似岩性及地球化学特征、形成于伸展构造环境的A型花岗岩; 结合本次在宽甸地区揭示的2.33Ga A型花岗岩, 暗示胶-辽-吉带在古元古代时期可能存在2.1~2.2Ga及2.33Ga多期陆壳伸展作用。另外, 根据最近在辽东地区发现的具有埃达克质性质的2.0Ga花岗闪长岩, 其成因可能与洋壳的俯冲作用有关(王鹏森等, 2017), 暗示在2.0Ga可能存在洋-陆俯冲作用。结合胶-辽-吉构造带古元古代巨量变质火山-沉积岩系, 以及具有顺时针P-T演化轨迹的高压麻粒岩相变质作用(刘福来等, 2015), 指示胶-辽-吉古元古代构造带可能经历了古元古代早期的多期陆壳伸展拉张, 并形成初始洋盆, 然后再到洋-陆俯冲、陆(弧)-陆碰撞的演化过程。然而对于古元古代早期多期伸展作用的规模及时空演化仍有待进一步的深入研究。

致谢 在野外考察中, 与吉林大学的葛文春教授、董永胜教授及于介江教授开展了交流讨论, 使作者受益匪浅, 在此表示衷心的感谢!感谢辽宁省第七地质大队张贺鹏队长及孔庆波高工在野外考察及样品采集过程中给予的帮助!感谢中国地质大学(北京)苏犁教授、张红雨工程师在锆石U-Pb测年中提供的帮助; 感谢周喜文研究员在成文过程中提供的帮助及交流探讨!感谢作者所在研究团队的其他成员在野外及室内工作期间给予的帮助。感谢两位审稿人对本文提出的建设性建议。
参考文献
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Bai J. 1993. The Precambrian Geology and Pb-Zn Mineralization in the NorthernMargin of North China Plateform. Beijing: Geological Publishing House: 47-89.
[] Bai J, Dai FY. 1996. The Early Precambrian crustal evolution of China. Journal of Southeast Asian Earth Sciences, 13(3-5): 205–214. DOI:10.1016/0743-9547(96)00027-X
[] Chen SL, Huan YQ, Bing ZB. 2001. Characteristics of Paleo-proterozoic intrusive rocks and continental dynamic evolution pattern of tectonomagma in the East Liaoning. Liaoning Geology, 18(1): 43–51.
[] Collins WJ, Beams SD, White AJR, Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. DOI:10.1007/BF00374895
[] De la Roche H, Leterrier J, Grandclaude P, Marchal M. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses: Its relationships with current nomenclature. Chemical Geology, 29(1-4): 183–210. DOI:10.1016/0009-2541(80)90020-0
[] Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115–134. DOI:10.1016/0024-4937(90)90043-Z
[] Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641–644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[] Faure M, Lin W, Monié P, Bruguier O. 2004. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova, 16(2): 75–80. DOI:10.1111/ter.2004.16.issue-2
[] Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033–2048. DOI:10.1093/petrology/42.11.2033
[] Guo JH, O'Brien PJ, Zhai M. 2002. High-Pressure granulites in the Sanggan area, North China Craton: Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741–756. DOI:10.1046/j.1525-1314.2002.00401.x
[] Guo JH, Sun M, Chen FK, Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629–642. DOI:10.1016/j.jseaes.2004.01.017
[] Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124–142. DOI:10.1016/j.precamres.2011.07.020
[] Guo SS, Li SG. 2009. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Science in China (Series D), 52(8): 1039–1045. DOI:10.1007/s11430-009-0099-7
[] Hao DF, Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT. 2004. Origin and its constraint to tectonic evolution of Paleoproterozoic granitoids in the eastern Liaoning and Jilin provinces, North China. Acta Petrologica Sinica, 20(6): 1409–1416.
[] He GP, Ye HW. 1998a. Composition and main characteristics of Early Proterozoic metamorphic terranes in eastern Liaoning and southern Jilin areas. Journal of Changchun University of Science and Technology, 28(2): 121–126.
[] He GP, Ye HW. 1998b. Two types of Early Proterozoic metamorphism and its tectonic significance in eastern Liaoning and southern Jilin areas. Acta Petrologica Sinica, 14(2): 152–162.
[] Jin W, Li SX, Liu XS. 1992. Early Precambrian metamorphic rocks and early earth crust evolution in Daqingshan, Inner Mongolia. Journal of Changchun University of Earth Sciences, 22(3): 281–289.
[] Lan TG, Fan HR, Yang KF, Cai YC, Wen BJ, Zhang W. 2015. Geochronology, mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt: Implications for Paleoproterozoic rifting of eastern North China Craton. Precambrian Research, 266: 86–107. DOI:10.1016/j.precamres.2015.04.021
[] Li C, Chen B, Li Z, Yang C. 2017. Petrologic and geochemical characteristics of Paleoproterozoic monzogranitic gneisses from Xiuyan-Kuandian area in Liaodong Peninsula and their tectonic implications. Acta Petrologica Sinica, 33(3): 963–977.
[] Li SZ, Yang ZS, Liu YJ, Liu JL. 1997. Emplacement model of Paleoproterozoic early-granite in Jiao-Liao-Ji area and its relation to the uplift bedding-delamination structural series. Acta Petrologica Sinica, 13(2): 189–202.
[] Li SZ, Hao DF, Han ZZ, Zhao GC, Sun M. 2003. Paleoproterozoic deep processes and tectono-thermal evolution in Jiao-Liao Massif. Acta Geologica Sinica, 77(3): 328–340.
[] Li SZ, Zhao GC, Sun M, Wu FY, Liu JZ, Hao DF, Han ZZ, Luo Y. 2004. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zircon ages of two Liaoji granites, Eastern Block, North China Craton. International Geology Review, 46(2): 162–176. DOI:10.2747/0020-6814.46.2.162
[] Li SZ, Zhao GC, Sun M, Han ZZ, Luo Y, Hao DF, Xia XP. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659–674. DOI:10.1016/j.jseaes.2003.11.008
[] Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT, Hao DF. 2006. Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 9(1-2): 198–208. DOI:10.1016/j.gr.2005.06.011
[] Li SZ, Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1–16. DOI:10.1016/j.precamres.2007.04.001
[] Li SZ, Zhao GC, Santosh M, Liu X, Dai LM, Suo YH, Tam PY, Song MC, Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59–73. DOI:10.1016/j.precamres.2012.01.007
[] Li XP, Guo JH, Zhao GC, Li HK, Song ZJ. 2011. Formation of the Paleoproterozoic calc-silicate and high-pressure mafic granulite in the Jiaobei terrane, eastern Shandong, China. Acta Petrologica Sinica, 27(4): 961–968.
[] Li Z, Chen B, Liu JW, Zhang L, Yang C. 2015. Zircon U-Pb ages and their implications for the South Liaohe Group in the Liaodong Peninsula, Northeast China. Acta Petrologica Sinica, 31(6): 1589–1605.
[] Li Z, Chen B, Wei CJ. 2017. Is the Paleoproterozoic Jiao-Liao-Ji Belt (North China Craton) a rift?. International Journal of Earth Sciences, 106(1): 355–375. DOI:10.1007/s00531-016-1323-2
[] Lin W, Wang QC, Wang J, Wang F, Chu Y, Chen K. 2011. Late Mesozoic extensional tectonics of the Liaodong Peninsula Massif: Response of crust to continental lithosphere destruction of the North China Craton. Science China (Earth Sciences), 54(6): 843–857. DOI:10.1007/s11430-011-4190-5
[] Liu FL, Wang F, Liou JG, Meng E, Liu JH, Yang H, Xiao LL, Cai J, Shi JR. 2014a. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205–225. DOI:10.1016/j.jseaes.2014.05.001
[] Liu FL, Liu PH, Wang F, Liu CH, Cai J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica, 31(10): 2816–2846.
[] Liu JH, Liu FL, Ding ZJ, Yang H, Liu CH, Liu PH, Xiao LL, Zhao L, Geng JZ. 2013a. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton: Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research, 235: 230–250. DOI:10.1016/j.precamres.2013.06.014
[] Liu JH, Liu FL, Ding ZJ, Liu PH, Guo CL, Wang F. 2014b. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255: 685–698. DOI:10.1016/j.precamres.2013.12.004
[] Liu JL, Davis GA, Lin ZY, Wu FY. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2): 65–80. DOI:10.1016/j.tecto.2005.07.001
[] Liu JL, Shen L, Ji M, Guan HM, Zhang ZC, Zhao ZD. 2013c. The Liaonan/Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China Craton. Tectonics, 32(5): 1121–1141. DOI:10.1002/tect.20064
[] Liu PH, Liu FL, Liu CH, Wang F, Liu JH, Yang H, Cai J, Shi JR. 2013b. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237–258. DOI:10.1016/j.precamres.2013.05.003
[] Liu SW, Liang HH, Zhao GC, Hua YG, Jian AH. 2000. Isotopic chronology and geological events of Precambrian complex in Taihangshan region. Science in China (Series D), 43(4): 386–393. DOI:10.1007/BF02959449
[] Liu SW, Pan YM, Li JH, Li QG, Zhang J. 2002a. Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1-2): 41–56. DOI:10.1016/S0301-9268(02)00063-3
[] Liu SW, Li JH, Pan YM, Zhang J, Li QG. 2002b. An Archean continental block in the Taihangshan and Hengshan regions: Constraints from geochronology and geochemistry. Progress in Natural Science, 12(8): 568–576.
[] Liu SW, Pan YM, Xie QL, Zhang J, Li QG. 2004. Archean geodynamics in the Central Zone, North China Craton: Constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes. Precambrian Research, 130(1-4): 229–249. DOI:10.1016/j.precamres.2003.12.001
[] Liu SW, Zhao GC, Wilde SA, Shu GM, Sun M, Li QG, Tian W, Zhang J. 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research, 148(3-4): 205–224. DOI:10.1016/j.precamres.2006.04.003
[] Liu SW, Zhang J, Li QG, Zhang LF, Wang W, Yang PT. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173–190. DOI:10.1016/j.precamres.2011.07.006
[] Liu SW, Wang MJ, Wan YS, Guo RR, Wang W, Wang K, Guo BR, Fu JH, Hu FY. 2017. A reworked ~3.45Ga continental microblock of the North China Craton: Constraints from zircon U-Pb-Lu-Hf isotopic systematics of the Archean Beitai-Waitoushan migmatite-syenogranite complex. Precambrian Research. DOI:10.1016/j.precamres.2017.04.003
[] Liu WJ, Zhai MG, Li YG. 1998. Metamorphism of the high-pressure basic granulites in Laixi, eastern Shandong, China. Acta Petrologica Sinica, 14(4): 449–459.
[] Liu XS, Jin W, Li SX, Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499–510. DOI:10.1111/jmg.1993.11.issue-4
[] Lu LZ, Xu XC, Liu FL. 1996. Early Precambrian Khondalite Series in North China. Changchun: Changchun Publishing House.
[] Lu XP, Wu FY, Zhang YB, Zhao CB, Guo CL. 2004a. Emplacement age and tectonic setting of the Paleoproterozoic Liaoji granites in Tonghua area, southern Jilin Province. Acta Petrologica Sinica, 20(3): 381–392.
[] Lu XP, Wu FY, Lin JQ, Sun DY, Zhang YB, Guo CL. 2004b. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the North China Craton. Chinese Journal of Geology, 39(1): 123–138.
[] Lu XP, Wu FY, Guo JH, Yin CJ. 2005. Late Paleoproterozoic granitic magmatism and crustal evolution in the Tonghua region, Northeast China. Acta Petrologica Sinica, 21(3): 721–736.
[] Lu XP, Wu FY, Guo JH, Wilde SA, Yang JH, Liu XM, Zhang XO. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 146(3-4): 138–164. DOI:10.1016/j.precamres.2006.01.009
[] Luo Y, Sun M, Zhao GC, Li SZ, Xu P, Ye K, Xia XP. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3-4): 349–371. DOI:10.1016/j.precamres.2004.07.002
[] Luo Y, Sun M, Zhao GC, Li SZ, Ayers JC, Xia XP, Zhang JH. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163(3-4): 279–306. DOI:10.1016/j.precamres.2008.01.002
[] Meng E, Liu FL, Liu PH, Liu CH, Shi JR, Kong QB, Lian T. 2013. Depositional ages and tectonic implications for South Liaohe Group from Kuandian area in northeastern Liaodong Peninsula, Northeast China. Acta Petrologica Sinica, 29(7): 2465–2480.
[] Meng E, Liu FL, Liu PH, Liu CH, Yang H, Wang F, Shi JR, Cai J. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, Northeast China: Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry. Precambrian Research, 247: 92–109. DOI:10.1016/j.precamres.2014.03.017
[] Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743. DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
[] Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M, Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei Massif in the North China Craton. Gondwana Research, 19(1): 150–162. DOI:10.1016/j.gr.2010.05.007
[] Tam PY, Zhao GC, Zhou XW, Sun M, Guo JH, Li SZ, Yin CQ, Wu ML, He YH. 2012a. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 22(1): 104–117. DOI:10.1016/j.gr.2011.09.006
[] Tam PY, Zhao GC, Sun M, Li SZ, Iizuka Y, Ma GSK, Yin CQ, He YH, Wu ML. 2012b. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 220-221: 177–191. DOI:10.1016/j.precamres.2012.08.008
[] Tam PY, Zhao GC, Sun M, Li SZ, Wu ML, Yin CQ. 2012c. Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94–109. DOI:10.1016/j.lithos.2012.08.018
[] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249–271. DOI:10.1016/j.precamres.2006.06.006
[] Wang F, Liu FL, Liu PH, Liu JH. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sinica, 26(7): 2057–2072.
[] Wang HC, Lu SN, Chu H, Xiang ZQ, Zhang CJ, Liu H. 2011. Zircon U-Pb age and tectonic setting of meta-basalts of Liaohe Group in Helan area, Liaoyang, Liaoning Province. Journal of Jilin University (Earth Science Edition), 41(5): 1322–1344, 1361.
[] Wang HC, Ren YW, Lu SN, Kang JL, Chu H, Yu HB, Zhang CJ. 2015. Stratigraphic units and tectonic setting of the Paleoproterozoic Liao-Ji Orogen. Acta Geoscientica Sinica, 36(5): 583–598.
[] Wang PS, Dong YS, Li FQ, Gao BS, Gan YC. 2017. Paleoproterozoic granitic magmatism and geological significance in Huanghuadian area, eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2708–2724.
[] Wang XP, Peng P, Wang C, Yang SY. 2016. Petrogenesis of the 2115Ma Haicheng mafic sills from the eastern North China Craton: Implications for an intra-continental rifting. Gondwana Research, 39: 347–364. DOI:10.1016/j.gr.2016.01.009
[] Watson EB, Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. DOI:10.1016/0012-821X(83)90211-X
[] Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202
[] Wu FY, Yang JH, Wilde SA, Zhang XO. 2005. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127–156. DOI:10.1016/j.chemgeo.2005.04.010
[] Wu JS, Geng YS, Shen QH, Wan YS, Liu DY, Song B. 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Beijing: Geological Publishing House: 1-212.
[] Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Liu DY, Wan YS. 2014. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in eastern Shandong, North China craton. Acta Petrologica Sinica, 30(10): 2989–2998.
[] Yang JH, Wu FY, Lo CH, Chung SL, Zhang YB, Wilde SA. 2004. Deformation age of Jurassic granites in the Dandong area, eastern China: 40Ar/39Ar geochronological constraints. Acta Petrologica Sinica, 20(5): 1205–1214.
[] Yang MC, Chen B, Yan C. 2015. Petrogenesis of Paleoproterozoic gneissic granites from Jiao-Liao-Ji Belt of North China Craton and their tectonic implications. Journal of Earth Sciences and Environment, 37(5): 31–51.
[] Yuan LL, Zhang XH, Xue FH, Han CM, Chen HH, Zhai MG. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning Province, North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 264: 119–139. DOI:10.1016/j.precamres.2015.04.017
[] Zhai MG, Guo JH, Yan YH, Li YG, Han XL. 1993. Discovery of high-pressure basic granulite terrain in North China Archaean craton and preliminary study. Science in China (Series B), 36(11): 1402–1408.
[] Zhai MG, Guo JH, Li HH, Yan YH, Li YG. 1995. Discovery of retrograded eclogites in the Archaean North China Craton. Chinese Science Bulletin, 40: 1590–1594.
[] Zhai MG, Bian AG, Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.1): 219–232.
[] Zhai MG, Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China Craton: A review. Precambrian Research, 122(1-4): 183–199. DOI:10.1016/S0301-9268(02)00211-5
[] Zhai MG. 2004. Precambrian geological events in the North China Craton. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds.). Tectonic Evolution of China. Geological Society, London, Special Publication, 226: 57-72
[] Zhai MG, Peng P. 2007. Paleoproterozoic events in North China Craton. Acta Petrologica Sinica, 23(11): 2665–2682.
[] Zhai MG, Li TS, Peng P, Hu B, Liu F and Zhang YB. 2010. Precambrian key tectonic events and evolution of the North China Craton. In: Kusky TM, Zhai MG and Xiao WJ (eds.). The Evolving Continents. Geological Society, London, Special Publication, 338: 235-262
[] Zhai MG, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhai MG, Santosh M. 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24(1): 275–297. DOI:10.1016/j.gr.2013.02.007
[] Zhang Q, Wang Y, Li CD, Wang YL, Jin WJ, Jia XQ. 2006. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica, 22(9): 2249–2269.
[] Zhang QS. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula. Beijing: Geological Publishing House: 218-450.
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 40(8): 706–721. DOI:10.1080/00206819809465233
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 2000. Petrology and P-T path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China Craton. Journal of Metamorphic Geology, 18(4): 375–391.
[] Zhao GC, Wilde SA, Cawood PA, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45–73. DOI:10.1016/S0301-9268(00)00154-6
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55–76. DOI:10.1016/j.precamres.2012.09.016
[] Zhao GC, Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23: 1207–1240. DOI:10.1016/j.gr.2012.08.016
[] Zhou XW, Zhao GC, Wei CJ, Geng YS, Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei Massif of the north China craton. American Journal of Science, 308(3): 328–350. DOI:10.2475/03.2008.06
[] 白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京: 地质出版社: 47-89.
[] 陈树良, 郇彦清, 邴志波. 2001. 辽东地区古元古代侵入岩特征及构造岩浆大陆动力学演化. 辽宁地质, 18(1): 43–51.
[] 郭素淑, 李曙光. 2009. 华北克拉通东南缘古元古代变质和岩浆事件的锆石SHRIMP U-Pb年龄. 中国科学(D辑), 39(6): 694–699.
[] 郝德峰, 李三忠, 赵国春, 孙敏, 韩宗珠, 赵广涛. 2004. 辽吉地区古元古代花岗岩成因及对构造演化的制约. 岩石学报, 20(6): 1409–1416.
[] 贺高品, 叶慧文. 1998a. 辽东-吉南地区早元古代变质地体的组成及主要特征. 长春科技大学学报, 28(2): 121–126.
[] 贺高品, 叶慧文. 1998b. 辽东-吉南地区早元古代两种类型变质作用及其构造意义. 岩石学报, 14(2): 152–162.
[] 金巍, 李树勋, 刘喜山. 1992. 内蒙大青山早前寒武纪变质岩和早期陆壳的演化. 长春地质学院学报, 22(3): 281–289.
[] 李超, 陈斌, 李壮, 杨川. 2017. 辽东岫岩-宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义. 岩石学报, 33(3): 963–977.
[] 李三忠, 杨振升, 刘永江, 刘俊来. 1997. 胶辽吉地区古元古代早期花岗岩的侵位模式及其与隆滑构造的关系. 岩石学报, 13(2): 189–202.
[] 李三忠, 郝德峰, 韩宗珠, 赵国春, 孙敏. 2003. 胶辽地块古元古代构造-热演化与深部过程. 地质学报, 77(3): 328–340.
[] 李旭平, 郭敬辉, 赵国春, 李洪奎, 宋召军. 2011. 胶北地块早元古代钙硅酸盐岩与高压基性麻粒岩成因及地质意义. 岩石学报, 27(4): 961–968.
[] 李壮, 陈斌, 刘经纬, 张璐, 杨川. 2015. 辽东半岛南辽河群锆石U-Pb年代学及其地质意义. 岩石学报, 31(6): 1589–1605.
[] 林伟, 王清晨, 王军, 王非, 褚杨, 陈科. 2011. 辽东半岛晚中生代伸展构造——华北克拉通破坏的地壳响应. 中国科学(地球科学), 41(5): 638–653.
[] 刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816–2846.
[] 刘文军, 翟明国, 李永刚. 1998. 胶东莱西地区高压基性麻粒岩的变质作用. 岩石学报, 14(4): 449–459.
[] 卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社.
[] 路孝平, 吴福元, 张艳斌, 赵成弼, 郭春丽. 2004a. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景. 岩石学报, 20(3): 381–392.
[] 路孝平, 吴福元, 林景仟, 孙德有, 张艳斌, 郭春丽. 2004b. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架. 地质科学, 39(1): 123–138.
[] 路孝平, 吴福元, 郭敬辉, 殷长建. 2005. 通化地区古元古代晚期花岗质岩浆作用与地壳演化. 岩石学报, 21(3): 721–736.
[] 孟恩, 刘福来, 刘平华, 刘超辉, 施建荣, 孔庆波, 廉涛. 2013. 辽东半岛东北部宽甸地区南辽河群沉积时限的确定及其构造意义. 岩石学报, 29(7): 2465–2480.
[] 王舫, 刘福来, 刘平华, 刘建辉. 2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报, 26(7): 2057–2072.
[] 王惠初, 陆松年, 初航, 相振群, 张长捷, 刘欢. 2011. 辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景. 吉林大学学报(地球科学版), 41(5): 1322–1334, 1361.
[] 王惠初, 任云伟, 陆松年, 康健丽, 初航, 于宏斌, 张长捷. 2015. 辽吉古元古代造山带的地层单元划分与构造属性. 地球学报, 36(5): 583–598. DOI:10.3975/cagsb.2015.05.08
[] 王鹏森, 董永胜, 李富强, 高铂森, 甘宜成. 2017. 辽东黄花甸地区古元古代花岗质岩浆作用及其地质意义. 岩石学报, 33(9): 2708–2724.
[] 伍家善, 耿元生, 沈其韩, 万渝生, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社: 1-212.
[] 谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 刘敦一, 万渝生. 2014. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年. 岩石学报, 30(10): 2989–2998.
[] 杨进辉, 吴福元, 罗清华, 钟孙霖, 张艳斌, WildeSA. 2004. 辽宁丹东地区侏罗纪花岗岩的变形时代: 40Ar/39Ar年代学制约. 岩石学报, 20(5): 1205–1214.
[] 杨明春, 陈斌, 闫聪. 2015. 华北克拉通-辽-吉带古元古代条痕状花岗岩成因及其构造意义. 地球科学与环境学报, 37(5): 31–51.
[] 翟明国, 郭敬辉, 阎月华, 韩秀伶, 李永刚. 1992. 中国华北太古宙高压基性麻粒岩的发现及初步研究. 中国科学(B辑), 22(12): 1325–1330.
[] 翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增1): 129–137.
[] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665–2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
[] 张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249–2269.
[] 张秋生. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社: 218-450.