岩石学报  2017, Vol. 33 Issue (8): 2563-2574   PDF    
秦岭造山带武关杂岩石榴黑云片岩的变质作用P-T轨迹与构造意义
江媛媛1, 向华2, 张泽明2     
1. 地质过程与矿产资源国家重点实验室, 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质科学院地质研究所, 北京 100037
摘要: 秦岭造山带是华北板块与华南板块长期汇聚的产物。该造山带以商南-丹凤缝合带为界分为早古生代的北秦岭造山带和晚古生代-中生代的南秦岭造山带。武关杂岩位于南秦岭造山带的北缘,被认为是一套形成于弧前盆地的杂岩,原岩沉积时代为泥盆纪-早石炭纪,经历了晚石炭纪变质作用。本文对武关杂岩的石榴黑云片岩进行了岩石学研究。该岩石主要由斜长石、石榴石、黑云母和石英组成,含少量白云母、金红石和钛铁矿。变斑晶石榴石具有明显的生长成分环带,其核部以MgO含量增加和MnO降低为特征,幔部FeO含量逐渐增加,MgO、CaO和MnO逐渐减少,而在边部CaO明显升高,MgO、FeO和MnO含量不同程度降低。相平衡模拟和温压计计算结果表明,石榴黑云片岩具有复杂的顺时针P-T轨迹,早期进变质阶段(M1)为升温升压过程,峰期条件为~695℃和~8.3kbar,变质矿物组合为石榴石(核)和所含的黑云母、斜长石、石英及钛铁矿包裹体;中期退变质阶段(M2)是降温降压过程,达到~615℃和~6.2kbar变质条件,变质矿物组合是石榴石(幔)和包含的黑云母、斜长石、石英、白云母和钛铁矿包裹体;晚期是以近等温升压为特征的进变质过程(M3),达到~620℃和~9.1kbar条件,变质矿物组合为石榴石(边)和基质矿物黑云母、斜长石、石英、白云母和金红石。M1和M2阶段的构造了一个"发夹状"的顺时针P-T轨迹,为俯冲带变质作用典型特征,表明岩石经历了早期俯冲和后来的折返过程。而以显著增压为特征的晚期进变质作用(M3)很可能表明岩石经历了又一期俯冲作用。因此,本研究表明武关杂岩中的石榴黑云片岩很可能处于俯冲通道之中,经历了多旋回俯冲与折返过程。
关键词: 石榴石成分环带     相平衡模拟     P-T轨迹     武关杂岩     秦岭造山带    
Metamorphic P-T path and tectonic implication of garnet-biotite schist of the Wuguan complex, Qinling orogen
JIANG YuanYuan1, XIANG Hua2, ZHANG ZeMing2     
1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Qinling orogenic belt, formed by a long term of convergence between the North China and South China plates, consists of the Early Paleozoic North Qinling and Late Paleozoic-Mesozoic South Qinling orogenic belts, which are divided by the Shang-Dan (Shangnan-Danfeng) suture zone. The Wuguan complex, located in the north of the South Qinling orogen, is a Devonian-Early Carboniferous complex and experienced Late Carboniferous metamorphism. This paper reports a petrological study of garnet-biotite schist from the Wuguan complex. The rock is composed of plagioclase, garnet, biotite and quartz with minor muscovite, rutile and ilmenite. The porphyroblastic garnet shows significant growth zoning. The core of garnet has an increasing MgO and decreasing CaO content. Toward to the mantle, FeO increases while MgO, CaO and MnO decrease gradually. At the rim, CaO increases abruptly but MgO, FeO and MnO decrease. Phase equilibria modelling and geothermobarometer calculation show that the schist has experienced complex P-T path with three stages of metamorphic processes. An early stage of prograde process (M1) was characterized by heating and burial. The peak P-T condition of~695℃ and~8.3kbar was recorded by the peak assemblage of garnet (core), biotite, plagioclase, quartz and ilmenite. A medium stage of retrograde process (M2), characterized by cooling and decompression to condition of~615℃ and~6.2kbar was recorded by the mineral assemblage garnet (mantle), biotite, plagioclase, quartz, muscovite and ilmenite. A late prograde process (M3) was characterized by near-isothermal burial to condition of~620℃ and~9.1kbar. The related mineral assemblage is garnet (rim), biotite, plagioclase, quartz, muscovite and rutile. The M1 and M2 stages of metamorphism constitute a "hairpin" clockwise P-T path, typical of subduction zone metamorphism, suggesting an early subduction and subsequently exhumation process. By comparison, the M3 stage of metamorphism probably shows that the schist has experienced another stage of subduction. This study suggests that the Wuguan complex witnessed a poly-cycle subduction and exhumation process in the subduction channel.
Key words: Garnet compositional zoning     Phase equilibrium modeling     P-T path     Wuguan complex     Qinling orogen    
1 引言

秦岭-大别造山带是华南与华北板块碰撞作用的产物,是世界上最著名的高压-超高压变质带,记录了华南-华北板块之间的长期汇聚历史(张国伟等, 1996; Meng and Zhang, 1999; 张国伟等, 2001; Ratschbacher et al., 2003; Zheng et al., 2006; Wu et al., 2009; Liu et al., 2011, 2013; Wang et al., 2011)。秦岭-大别造山带至少记录了两期超高压变质事件,分别对应于早古生代秦岭微陆块与华北板块之间的碰撞,中生代华南与华北板块之间的碰撞(Dong et al., 2011a; Wu and Zheng, 2013)。然而对秦岭-大别造山带两期碰撞造山事件之间的晚古生代构造演化还存在争议。

最近的研究表明,南秦岭造山带北缘的武关杂岩为一套变质火山-沉积岩系,原岩形成于泥盆纪-早石炭纪,并经历了晚石炭纪的变质作用,是研究秦岭造山带晚古生代构造演化的关键之一(牛宏建, 1995; 陈能松等, 2009; 李加好等, 2011; Chen et al., 2014)。目前,对武关杂岩的研究主要集中在原岩形成时代、性质和沉积环境以及变质年龄(Mattauer et al., 1985; 曹宣铎和胡云绪, 2001; 陈能松等, 2009; Dong et al., 2013; Chen et al., 2014),但对其变质作用条件、P-T轨迹和构造意义的研究还相对缺乏,而这些是揭示南秦岭造山带构造演化的重要信息(Powell and Holland, 2010)。本文对武关杂岩中的石榴黑云片岩进行了岩石学研究,特别是通过相平衡模拟,确定了岩石的变质作用P-T轨迹,揭示出武关杂岩中的较高级变质岩很可能记录了多期俯冲与折返过程,为南秦岭造山带的晚古生代构造演化提供了重要信息。

2 地质背景

秦岭造山带位于华北板块与扬子板块之间(图 1a),其向西连接着昆仑-祁连造山带,向东连接着桐柏-大别造山带,东西向长约1500km。以商丹断裂带为界,秦岭造山带分为北秦岭和南秦岭造山带(张国伟等, 1996)。

图 1 秦岭-大别-苏鲁造山带(a, 据Zheng et al., 2003)和武关杂岩地质简图(b, 据Chen et al., 2014修改) Fig. 1 Sketch geological map of the Qinling-Tongbai-Dabie orogen (a, after Zheng et al., 2003) and the Wuguan complex (b, modified after Chen et al., 2014)

北秦岭构造带从北到南主要由宽坪群、二郎坪群、秦岭岩群及丹凤岩群组成。各岩群之间均以断裂或剪切带接触。宽坪群为一套形成于新元古代晚期被动大陆边缘的基性火山岩夹碳酸盐岩,经历了角闪岩相变质(Ratschbacher et al., 2003; Hacker et al., 2004; Zhu et al., 2011; Liu et al., 2013)。二郎坪群是一套早古生代的混杂细碎屑岩,形成于洋内岛弧,经历了绿片岩相-角闪岩相变质(Ratschbacher et al., 2003, 2006; Hacker et al., 2004; Bader et al., 2013; Wu and Zheng, 2013)。秦岭群是古老结晶基底变质岩系的主要组成部分,很可能是从扬子克拉通分离出来的前寒武纪微大陆(陆松年等, 2003; Ratschbacher et al., 2003, 2006; Hacker et al., 2004)。丹凤岩群是新元古代至早古生代形成的基性火山岩带,经历了绿片岩-低角闪岩相变质作用(Ratschbacher et al., 2003; Dong et al., 2011b)。

秦岭构造带位于商丹断裂带以南,勉略缝合带以北。除零星出露的晚太古代-早古元古代基底外,如形成于约2.5Ga的陡岭群基底(胡娟等, 2013),主要是中-新元古代裂谷火山沉积岩系组成的武当群和耀岭河群(李怀坤等, 2003; 张永清等, 2013),以及晚元古代-晚古生代的浅变质沉积盖层(Meng and Zhang, 2000)。在南部的耀岭河群中报道有印支期的蓝片岩。而南秦岭北侧的武关杂岩和刘岭群为一套泥盆纪火山-沉积岩系,经历了石炭纪的绿片岩-角闪岩相变质(陈龙耀等, 2014; Chen et al., 2014; Liao et al., 2017)。

在研究区,武关杂岩位于商丹缝合带和鮸鱼咀韧性剪切带之间(图 1b; 裴先治等, 1997, 1998),为一套变质-火山沉积岩系,含多种岩性:变质碎屑岩、泥质片岩、石榴角闪岩和大理岩等,普遍遭受了强烈变形和绿片岩相-角闪岩相变质作用改造。自北向南划分为六个单元:试马寨大理岩、吊庄云母片岩、毛坪变粒岩、八里坡大理岩、鮸鱼咀斜长角闪岩及花岭长英质糜棱岩(Yan et al., 2016)。裴先治等(1998)对本区南缘韧性剪切带中透辉角闪长英质糜棱岩的角闪石进行K-Ar定年,获得了323Ma的变质年龄。Dong et al. (2013)基于武关杂岩变质砂岩中碎屑锆石最年轻年龄组(455Ma)和镁铁质岩脉的侵入年龄(435Ma),把该杂岩的沉积年龄约束在晚奥陶至早志留纪。Chen et al. (2014)测得杂岩内石榴斜长角闪岩的原岩年龄为446Ma,变质安山岩和花岗岩脉的侵入年龄分别为368Ma和351Ma,同时利用角闪岩中低Th/U比值的变质锆石定年,获得了318~321Ma的变质年龄。最近,产于武关杂岩中变质沉积岩的变质锆石也给出了相似的314~344Ma年龄(Yan et al., 2016)。大量研究表明该杂岩形成于弧前盆地环境(张国伟等, 1996; 李平等, 2011; Chen et al., 2014; Yan et al., 2016)。

3 分析方法

本文的矿物化学成分分析在中国地质科学院地质研究所完成,所用仪器为日本电子JEOL公司生产的电子探针显微分析仪(Electron Probe MicroAnaylyzer),仪器型号:JXA-8100。实验条件为加速电压15kV,电子束电流为20nA,束斑直径5μm,ZAF校正。

4 岩相学与矿物化学

本文所研究的石榴黑云片岩(11QL47-b)采于鮸鱼咀桥西头段家湾附近(图 1a)。岩石呈透镜体产于斜长角闪岩或含榴斜长角闪岩中(图 2a),强烈褶皱变形(图 2b)。石榴黑云片岩呈片状构造,斑状变晶结构,局部发育有石英细脉。岩石主要矿物为黑云母(25%)、石榴石(10%)、石英(40%)、斜长石(25%),含少量白云母,副矿物为钛铁矿、磷灰石、锆石和金红石。石榴石为变斑晶,粒径多在1mm以上。石榴石核部和幔部均含少量石英、钛铁矿、黑云母和斜长石包裹体(图 3a-c, f),幔部也含白云母包体。较窄的石榴石边部含大量细小的石英、黑云母、钛铁矿和金红石包裹体(图 3a, e)。基质中的黑云母、白云母和石英定向分布构成变形面理(图 3c, d),部分白云母被剪切呈云母鱼(图 3f),石榴黑云片岩中的石榴石具有较高的FeO、MgO和CaO含量,较低的MnO含量,具有明显的生长成分环带(图 4表 1)。基于成分环带的变化特征,可将石榴石分成核、幔、边三个部分。石榴石核部从内向外以镁铝榴石组分逐渐增加和锰铝榴石组分减少为特征,幔部镁铝榴石和钙铝榴石组分明显降低,边部铁铝榴石和镁铝榴石组分明显减少,而钙铝榴石组分明显增加。

图 2 产于角闪岩内的透镜体状石榴黑云片岩(a)和强烈褶皱变形的武关杂岩(b) Fig. 2 Garnet-biotite schist lens within amphibolite (a) and folded deformation in the Wuguan complex (b)

图 3 石榴黑云片岩显微照片 (a、b)石榴石变斑晶边部含大量细小颗粒的钛铁矿、石英、黑云母和斜长石包裹体.红色实线为探针成分分析剖面线;(c)石榴石核部含有较大颗粒的石英包裹体;(d)动态重结晶的石英集合体呈条带状分布;(e)石榴石核部含黑云母、钛铁矿和石英包体,边部有金红石包体;(f)石榴石核部富含矿物包体,基质矿物围绕石榴石定向分布.本文所采用矿物代号为:Grt-石榴石;Bt-黑云母;Pl-斜长石;Qz-石英;Ms-白云母;Ky-蓝晶石;Sil-夕线石;And-红柱石;Rt-金红石;Ilm-钛铁矿;Chl-绿泥石;Crd-堇青石;Sph-尖晶石;Ab-钠长石;Zr-锆石;M-熔体;Prp-镁铝榴石;Grs-钙铝榴石;Alm-铁铝榴石;Spe-锰铝榴石 Fig. 3 Photomicrographs of the garnet-biotite schist from the Wuguan complex

图 4 石榴石背散射电子图像(a、b)及成分剖面图(c、d) Fig. 4 BSE images (a, b) and compositional profiles of the garnet (c, d)

表 1 石榴黑云片岩中代表性的石榴石电子探针分析结果(wt%) Table 1 Representative microprobe analyses of garnet of the garnet-biotite schist (wt%)

岩石中的黑云母成分相近,在FeO/(FeO+MgO)与MgO分类图中,投入到高铁镁云母区(图 5a)。相比之下,在石榴石中呈包体的黑云母具有较高的MgO含量(11.76%~14.20%)和低的TiO2含量(1.42%~2.38%)(表 2)。斜长石的钙长石组分(An)在38~44之间(表 3),均为中长石(图 5b)。石榴石内的斜长石包体An组分(43~44) 比基质中斜长石的An组分(38~42) 略高。

图 5 石榴黑云片岩中黑云母(a)和斜长石(b)成分分类图 Fig. 5 Compositional classification diagrams of the biotite (a) and plagioclase (b)

表 2 石榴黑云片岩代表性的黑云母电子探针分析结果(wt%) Table 2 Representative microprobe analyses of biotite of the garnet-biotite schist (wt%)

表 3 石榴黑云片岩代表性的斜长石电子探针分析结果(wt%) Table 3 Representative microprobe analyses of plagioclase of the garnet-biotite schist (wt%)

基于石榴石成分分带以及包裹体的差异分布,可划分出三期矿物组合:早期矿物组合(M1) 为石榴石核部和所包含的黑云母、斜长石、石英和钛铁矿包裹体,中期矿物(M2) 为石榴石幔部及包含的黑云母、斜长石、石英、白云母和钛铁矿包裹体,晚期矿物组合(M3) 为由石榴石边缘和基质矿物黑云母、斜长石、石英、白云母和金红石。

5 变质作用P-T条件 5.1 地质温压计

本文利用广泛使用的石榴石-黑云母(GB)温度计(Holdway, 2000)和石榴石-黑云母-斜长石-石英(GBPQ)压力计(Wu et al., 2004),对石榴黑云片岩的变质条件进行了估算。

由于石榴黑云片岩记录了多期矿物组合,它们应具有不同的变质条件,本文分别对中期和晚期矿物组合进行了计算。利用石榴石幔部和相应的黑云母和斜长石包体成分得到的温压计结果为~590℃,~6.5kbar,应代表中期(M2) 变质条件。利用最富Ca的石榴石边部和基质中黑云母、斜长石成分,计算得到的温压条件为~610℃,~8.9kbar,应代表晚期(M3) 阶段的变质条件。

5.2 相平衡模拟

通过相平衡模拟进一步限定了石榴黑云片岩的变质条件和P-T轨迹。相平衡模拟使用Perple_X软件(Connolly, 2005, 2016年9月升级的6.7.3版)和配套的热力学数据库(Holland and Powell, 1998, 2003年升级版)。相关矿物相的

活度-成分关系模型为:石榴子石-Gt(WPH)、黑云母-Bio(TCC)、绿泥石-Chl(HP)、长石-Fsp(C1)、白云母-Mica(CHA)、十字石-St(HP)、斜方辉石-Opx(HP)、单斜辉石-Cpx(HP)、钛铁矿-Ilm(WPH)、堇青石-Crd。相平衡模拟采用MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O (MnNCKFMASHTO)体系,假设流体相为纯水,并设为饱和。

由于石榴黑云片岩中矿物分布不均,采用基于薄片中矿物含量和化学成分计算的全岩成分进行模拟。考虑到石榴石具明显的成分环带,其生长可能导致岩石成分发生分异,本文计算了两组P-T视剖面图。第一组视剖面用整个薄片的矿物含量及其成分计算的全岩成分模拟(其中石榴石采用平均成分),适用于模拟石榴石核部和幔部生长条件,即早期进变质和中期退变质过程;第二组视剖面是扣除石榴石核部+幔部成分后计算的有效全岩成分,适用于模拟石榴石边部生长过程,即晚期进变质过程(表 4)。

表 4 相平衡模拟采用的有效全岩成分(wt%) Table 4 Effective compositions for phase equilibria modeling (wt%)

第一组P-T视剖面图在550~750℃和3~11kbar区域模拟。由图 6a可见,石榴石、黑云母存在于整个区域,绿泥石稳定存在于<600℃的低温区域,金红石仅稳定在>8kbar的高压区域,堇青石出现在视剖面图的下方(<5kbar)。矿物组合在视剖面图中的稳定域代表其变质条件范围,而且矿物成分等值线,如石榴石的XMg[=Mg/(Mg+Fe+Ca+Mn)]和XCa[=Ca/(Mg+Fe+Ca+Mn)]等值线,可作为两个独立的变量来进一步确定岩石的变质条件(Burenjargal et al., 2012)。观察到的早期变质矿物组合(M1) Grt+Bt+Pl+Qz+Ilm稳定在610~720℃和4.6~8.5kbar的较大的温压范围内。石榴石的XMg等值线在计算的温压范围内斜率较陡,并随温度的升高而增加,可以限定变质温度(图 6b),而石榴石的XCa等值线相对平缓,可以较好地限定压力。如前所述,石榴石核部具有XMg增加及XCa逐渐减少的特征,两颗石榴石核部XMg与XCa等值线的相交点(图 6b黄色和蓝色圆圈)显示出由里往外的升温升压趋势(图 6粉红色实线)。温度较高的成分点主要位于M1期矿物组合Grt+Bt+Pl+Qz+Ilm的稳定范围内,其中XMg值较高的点(~0.19) 与相应的XCa值等值线(~0.08) 相交于~695℃和~8.3kbar条件下,很可能代表了M1期的峰期温压条件。石榴石幔部成分表现为XMg和XCa值逐渐降低的特征(表 1),幔部的XMg与XCa等值线相交点(图 6b白色圆圈)显示出降温降压趋势(图 6红色实线)。压力较低的点主体位于中期矿物组合Grt+Bt+Pl+Ms+Qz+Ilm的稳定域,与岩相学观察相吻合。石榴石幔部XCa值最低的点(XCa=~0.06,XMg=0.17~0.18) 给出了~615℃和~6.2kbar条件,相比于地质温压计计算的压力(~6.5kbar)更低,因此该温压应为M2期最低压的变质条件。

图 6 石榴黑云片岩第一组P-T视剖面图 (a)用石榴石平均成分和其他矿物成分估算的全岩成分计算出的P-T视剖面图,粉红色和红色实线分别代表石榴石核部和幔部的P-T轨迹;(b)石榴石XMg(红色虚线)和XCa(绿色虚线)成分等值线图,黄色和蓝色圆圈分别代表两颗石榴石核部的成分等值线交点,白色和灰色圆圈分别代表第一颗石榴石幔部和边部的成分等值线交点 Fig. 6 The first set of P-T pseudosection for the garnet-biotite schist (a) P-T pseudosection for the effective whole-rock composition calculated by the average composition of garnet and others mineral compositions. The pink and red solid lines represent the P-T path for the core and mantle of the garnet, respectively; (b) XMg (red dash lines) and XCa (green dash lines) of the garnet compositional isopleths. The yellow and blue rounds represent intersects of the core composition of the two grains of garnet. The white and gray rounds refer to intersects of the mantle and rim composition of the first garnet, respectively

第二组P-T视剖面在500~700℃和3~11kbar温压条件范围内计算(图 7a)。相比于第一组视剖面图,石榴石的稳定范围减小,低温低压下消失(<550℃,<6kbar)。黑云母稳定存在于整个剖面图中,绿泥石在高温下消失(>600℃),白云母稳定在图中的左部。被观察到晚期矿物组合Grt+Bt+Pl+Qz+Ilm稳定在550~650℃和8.5~10.5kbar下。如前所述,石榴石边部XCa显著升高,而XMg降低。两颗石榴石边部的XMg与XCa等值线的交点(图 7b黄色、蓝色圆圈)均显示出近等温升压的特征(图 7红色实线)。压力较高的点位于M3期矿物组合Grt+Bt+Pl+Ms+Qz+Rt稳定范围内。XCa最高的点(XCa=~0.24,XMg=~0.11) 相交于~620℃和~9.1kbar条件下,处于M3矿物组合稳定域内,并与温压计计算结果(~610℃,~8.9kbar)相一致,应代表M3进变质阶段峰期变质条件。

图 7 石榴黑云片岩第二组P-T视剖面图 (a)用扣除石榴石核部和幔部成分计算出的有效全岩成分模拟的P-T视剖面,红色实线代表石榴石边部的P-T轨迹;(b)石榴石XMg(红色虚线)和XCa(绿色虚线)成分等值线图,黄色和蓝色圆圈分别为两颗石榴石边部成分等值线的交点 Fig. 7 The second set of P-T pseudosection for the garnet-biotite schist (a) P-T pseudosection for the effective whole-rock composition obtained by the garnet rim and others mineral compositions. The red solid line represents the P-T path of the garnet rim; (b) XMg (red dash lines) and XCa (green dash lines) isopleths of the garnet. The yellow and blue circles refer to intersects of the compositions of the two grains of garnet rim
6 讨论 6.1 变质作用过程及构造机制

岩相学及矿物化学表明武关杂岩的石榴黑云片岩主要由石英、斜长石、黑云母、石榴石组成。变斑晶石榴石中的矿物包体具有规律性分布,其核部包裹体较大,幔部含有钛铁矿和白云母包裹体,边部含有大量细小的矿物包体,并出现金红石。石榴石具有明显的生长成分环带(图 4),从核到边,MnO含量逐渐降低,CaO含量在核部和幔部降低,但在边部明显升高,MgO含量在核部表现为逐渐升高而在幔部和边部明显降低。结合矿物包体的分布和石榴石成分环带特征,可以区别出三期矿物组合。通过对石榴黑云片岩的相平衡模拟,同时结合地质温压计,给出了由变斑晶石榴石核部及其所包含的Bt、Pl、Qz、Ilm包裹体所记录的早期变质阶段(M1) 是一个升温、升压的进变质过程;石榴石幔部及其包含的Bt、Pl、Qz、Ms和Ilm包裹体代表的中期阶段(M2) 为降温、降压退变质阶段;晚期阶段(M3) 是以升压为主的进变质过程,矿物组合为石榴石边部及基质矿物(Bt、Pl、Qz、Ms和Rt)。M1和M2期变质P-T轨迹为顺时针型,并呈“发夹状”,为典型的俯冲带变质作用特征。M3期显示出又一期的进变质P-T轨迹(图 8a)。这很可能表明,石榴黑云片岩经历了一个俯冲-折返-再俯冲过程。

图 8 石榴黑云片岩的P-T轨迹(a)和天山榴辉岩的多旋回式P-T轨迹图(b) 变质相边界据Vernon and Clarke (2008):AM-角闪岩相;HGR-高压麻粒岩相;LGR-低压麻粒岩相.图中绿线为龟山杂岩的P-T轨迹 Fig. 8 The poly-cyclic P-T path of the garnet-biotite schist of the Wuguan complex (a) and the eclogite of the Tianshan orogen (b) Metamorphic facies boundaries are after Vernon and Clarke (2008). AM-amphibolite facies; HGR-high-pressure granulite facies; LGR-low-pressure granulite facies. The green line is P-T path of the Guishan complex

大多数研究表明,形成在俯冲带中的变质岩只记录一期俯冲与折返过程。但也有研究表明,形成于俯冲带的变质岩可记录多期俯冲与折返过程。Rubatto et al. (2011)对西阿尔卑斯地区的高压变质岩的研究表明,白云母的成分环带指示其核部形成在高压条件下,幔部形成在低压条件下,而边部又形成在高压条件下。结合同位素定年结果,他们认为在20Myr内,高压变质岩石先俯冲至地幔深度,并快速折返,然后又俯冲至地幔深度,即旋回式俯冲模型。Li et al. (2016)对中国天山Akeyazi地体的超高压榴辉岩进行了P-T轨迹计算,也得到了一个旋转型的复杂P-T轨迹(图 8b),认为岩石经历了多旋回式俯冲-折返过程。类似的,在持续的洋壳俯冲过程中,俯冲通道中岩石经历多旋回的俯冲和折返过程在其它造山带中也常有报道(Whitney et al., 2008; Liati et al., 2016)。数值模拟也表明在俯冲通道中会形成物质回流(return flow),被认为是岩石经历多期俯冲与折返过程的构造机制(Gerya et al., 2002; Blanco-Quintero et al., 2011; Roda et al., 2012)。

武关杂岩的沉积学特征及物源分析表明,该杂岩是形成华北板块南缘活动大陆边缘的泥盆纪沉积岩系(牛宏建, 1995; 闫臻等, 2009; Chen et al., 2014)。最近,Yan et al. (2016)通过岩石学和地球化学研究也认为,武关杂岩主要由杂砂岩和长石石英砂岩组成,沉积于活动大陆边缘。岩屑和碎屑锆石年龄谱均指示武关杂岩的碎屑物来自于北秦岭的丹凤、秦岭、二郎坪和宽坪群(Yan et al., 2016)。中-晚泥盆纪的刘岭群沉积岩也形成于弧前盆地,物质同样来源于北秦岭(Yan et al., 2012)。这些均表明古秦岭洋沿着华北板块南缘在早石炭纪之前持续性地向北俯冲,形成了以武关杂岩为代表的宽阔弧前盆地。武关杂岩的一部分很可能经历了俯冲剥蚀作用,并在俯冲通道内经历了多期俯冲与折返过程。

6.2 构造意义

近年来,学者们主要对武关杂岩的形成环境和变质年龄进行了研究(裴先治等, 1998; 陈隽璐, 2008; 李加好等, 2011; Chen et al., 2014; Yan et al., 2016),但该杂岩的变质条件和P-T轨迹还没有很好的约束。本文通过岩石学和相平衡模拟研究揭示,武关杂岩经历了高角闪岩相作用,并具有多旋回式的变质P-T轨迹。这很可能表明,武关杂岩中的较高级变质岩片经历俯冲带变质作用,并经历了俯冲-折返-再俯冲过程。

现在的研究认为,武关杂岩与桐柏造山带的龟山杂岩和熊店榴辉岩同属于一个东西向的晚古生代变质带(Chen et al., 2014),三者具有相近变质年龄。武关杂岩的变质年龄为350~300Ma(裴先治等, 1998; Chen et al., 2014; Yan et al., 2016)。中-高角闪岩相变质的龟山杂岩具有石炭纪(340~310Ma)的变质年龄(Liu et al., 2011)。在西大别浒湾-熊店地区,出露有高压变质年龄为310Ma左右的洋壳型榴辉岩(Wu et al., 2009; 刘小驰等, 2009)。本文显示出武关杂岩中石榴黑云片岩具有俯冲带特征的“发夹状”P-T轨迹,为其与龟山杂岩和熊店榴辉岩经历了同时代的俯冲带变质作用提供了重要证据。

7 结论

本文对武关杂岩中的石榴黑云片岩进行了变质作用研究,得出主要结论如下:

(1) 武关杂岩石榴黑云片岩主要由斜长石、石榴石、黑云母和石英组成,含少量白云母、金红石和钛铁矿。变斑晶石榴石具有明显的生长环带,其核部成分具有MgO含量升高和MnO降低的特征,幔部表现为FeO含量逐渐升高,MgO、CaO和MnO逐渐降低,而边部CaO明显升高,MgO、FeO和MnO降低。石榴云母片岩保存有三期变质矿物组合。

(2) 相平衡模拟和温压计结果显示,早期矿物组合石榴石(核)和黑云母、斜长石、石英和钛铁矿包体记录了一个升温、升压进变质过程,中期共生矿物组合石榴石(幔)和黑云母、斜长石、石英、白云母和钛铁矿包体记录了一个降温、降压退变质过程,而晚期矿物组合石榴石(边)和基质黑云母、斜长石、石英、白云母和金红石记录了升压进变质过程。三期变质作用给出一个多旋回式的变质P-T轨迹。

(3) 武关杂岩中的石榴云母片岩经历了俯冲带变质作用,并记录了俯冲-折返-再俯冲过程。武关杂岩与桐柏-大别造山带的龟山杂岩和熊店榴辉岩共同组成了一个东西向的石炭纪变质带。

致谢 感谢两位评审人对本文提出的宝贵修改意见;感谢戎合老师在探针实验中的指导!
参考文献
[] Bader T, Franz L, Ratschbacher L, Capitani C D, Webb AAG, Yang J A, Pfander J A, Hofmann M, Linnemann U. 2013. The heart of China revisited:Ⅱ Early Paleozoic (ultra) high-pressure and (ultra) high-temperature metamorphic Qinling orogenic collage. Tectonics, 32(4): 922–947.
[] Blanco-Quintero I F, Gerya T V, García-Casco A, Castro A. 2011. Subduction of young oceanic plates:A numerical study with application to aborted thermal-chemical plumes. Geochemistry, Geophysics, Geosystems, 12: Q10012.
[] Burenjargal U, Okamoto A, Meguro Y, Tsuchiya N. 2012. An exhumation pressure-temperature path and fluid activities during metamorphism in the Tseel terrane, SW Monglia:Constraints from aluminosilicate-bearing quartz veins and garnet zonings in metapelites. Journal of Asian Earth Sciences, 54-55: 214–229. DOI:10.1016/j.jseaes.2012.04.017
[] Cao X D, Hu Y X. 2001. Tectono-stratigraphic sheets on the southern margin of the Shang-Dan fault zone, Qinling. Regional Geology of China, 20(2): 187–194.
[] Chen JL. 2008. Petrogenesis and orogenic process of Early-Paleozoic volcanic rocks in the western segment of the North Qinling orogenic belt, Central China. Ph. D. Dissertation. Wuhan:China University of Geosciences, 175-176 (in Chinese with English summary)
[] Chen L Y, Liu X C, Qu W, Hu J. 2014. U-Pb zircon ages and geochemistry of the Wuguan complex in the Qinling orogen, central China:Implications for the Late Paleozoic tectonic evolution between the Sino-Korean and Yangtze cratons. Lithos, 192-195: 192–207. DOI:10.1016/j.lithos.2014.01.014
[] Chen L Y, Luo Y L, Liu X C, Qu W, Hu J. 2014. LA-ICP-MS-U-Pb geochronology of detrital zircons from the Liuling Group in the South Qinling tectonic belt and its tectonic significance. Geological Bulletin of China, 33(9): 1363–1378.
[] Chen N S, Ba J, Zhang L, Su W, Liu J B, Guo S. 2009. Zircon LA-ICP-MS U-Pb dating of the Wuguan Group, Shangdan fault zone, eastern Qinling, China. Geological Bulletin of China, 28(5): 556–560.
[] Connolly JAD. 2005. Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2): 524–541. DOI:10.1016/j.epsl.2005.04.033
[] Dong Y P, Zhang G W, Neubauer F, Liu X M, Genser J, Hauzenberger C. 2011a. Tectonic evolution of the Qinling orogen, China:Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. DOI:10.1016/j.jseaes.2011.03.002
[] Dong Y P, Zhang G W, Hauzenberger C, Neubauer F, Yang Z, Liu X M. 2011b. Paleozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122(1-2): 39–56. DOI:10.1016/j.lithos.2010.11.011
[] Dong Y P, Liu X, Neubauer F, Zhang W, Tao N, Zhang Y G, Zhang X N, Li W. 2013. Timing of Paleozoic amalgamation between the North China and South China blocks:Evidence from detrital zircon U-Pb ages. Tectonophysics, 586: 173–191. DOI:10.1016/j.tecto.2012.11.018
[] Gerya T V, St ckhert B, Perchuk A L. 2002. Exhumation of high pressure metamorphic rocks in a subduction channel:A numerical simulation. Tectonics, 21(6): 1056.
[] Hacker BR, Ratschbacher L and Liou JG. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. In:Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226:157-175
[] Holdway M J. 2000. Application of new experiment al and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85: 881–892. DOI:10.2138/am-2000-0701
[] Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309–343.
[] Hu J, Liu X C, Chen L Y, Qu W, Li H K, Geng J Z. 2013. A~2.5Ga magmatic event at the northern margin of the Yangtze craton:Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Chinese Science Bulletin, 58(28-29): 3564–3579. DOI:10.1007/s11434-013-5904-1
[] Li H K, Lu S N, Chen Z H, Xiang Z Q, Zhou H Y, Hao G J. 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geological Bulletin of China, 22(10): 775–781.
[] Li J H, Song C Z, Ren S L, Wang Z, Tu W C, Zhang H, Zhang H R. 2011. Discussion on the deformation and metamorphic rocks on the Shangnan part of the Shangnan-Danfeng tectonic belt, Qinling orogen. Geological Review, 57(5): 641–649.
[] Li J L, Klemd R, Gao J, John T. 2016. Poly-cyclic metamorphic evolution of eclogite:Evidence for multistage burial-exhumation cycling in a subduction channel. Journal of Petrology, 57(1): 119–146L. DOI:10.1093/petrology/egw002
[] Liao X Y, Wang Y W, Liu L, Wang C, Santosh M. 2017. Detrital zircon U-Pb and Hf isotopic data from the Liuling Group in the South Qinling belt:Provenance and tectonic implications. Journal of Asian Earth Sciences, 134: 244–261. DOI:10.1016/j.jseaes.2016.11.020
[] Liati A, Theye T, Fanning C M, Gebauer D, Rayner N. 2016. Multiple subduction cycles in the Alpine orogeny, as recorded in single zircon crystals (Rhodope zone, Greece). Gondwana Research, 29(1): 199–207. DOI:10.1016/j.gr.2014.11.007
[] Liu X C, Wu Y B, Wang J, Peng M, Jiao W F. 2009. Zircon U-Pb age recording couple subduction of oceanic and continental eclogites in the Huwan shear zone, western Dabie Mountains, and its geodynamic implications. Acta Petrologica Sinica, 25(9): 2209–2223.
[] Liu X C, Jahn B M, Hu J, Li S Z, Liu X, Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai orogen, central China:Implications for multiple accretion/collision processes prior to terminal continental collision. Journal of Metamorphic Geology, 29(9): 979–1002. DOI:10.1111/jmg.2011.29.issue-9
[] Liu X C, Jahn B M, Li S Z, Liu Y S. 2013. U-Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China. Tectonophysics, 29: 233–249.
[] Lu S N, Li H K, Chen Z H, Hao G J, Zhou H Y, Guo J J, Niu G H, Xiang Z Q. 2003. Meso-Neoproterozoic Geological Evolution in the Qinling Orogeny and Its Response to the Supercontinental Events of Rodinia. Beijing: Geological Publishing House: 25-35.
[] Mattauer M, Matte P, Malavielle J, Tapponnier P, Maluski H, Xu Z Q, Lu Y L, Tang Y Q. 1985. Tectonics of the Qinling belt:Built-up and evolution of Eastern Asia. Nature, 317(6037): 496–500. DOI:10.1038/317496a0
[] Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks:Controversy and reconciliation. Geology, 27(2): 123–126. DOI:10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2
[] Meng Q R, Zhang G W. 2000. Geological framework and tectonic evolution of the Qinling. Tectonophysics, 323(3-4): 183–196. DOI:10.1016/S0040-1951(00)00106-2
[] Niu H J. 1995. The redivision of Liuling group in Eastern Qinling area of central China. Chinese Journal of Geology, 30(4): 313–320.
[] Pei X Z, Li H M, Li G G, Zhang W J, Wang Q Q, Li Z C. 1997. Sm-Nd ages and geological significance of amphibolites of the Wuguan Group complex on the southern side of the Shangdan fault zone in the East Qinling Mountains. Regional Geology of China, 16(1): 38–43.
[] Pei X Z, Li H M, Li G G. 1998. Composition and formation of the Wuguan Group in the East Qinling and its tectonic implication. Journal of Xi'an Engineering University, 20(1): 1–10.
[] Powell R T, Holland T. 2010. Using equilibrium thermodynamics to understand metamorphism and metamorphic rocks. Elements, 6(5): 309–314. DOI:10.2113/gselements.6.5.309
[] Ratschbacher L, Hacker B R, Calvert A, Webb L E, Grimmer J C, McWilliams M O, Ireland T, Dong S W, Hu J M. 2003. Tectonics of the Qinling (Central China):Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1–53. DOI:10.1016/S0040-1951(03)00053-2
[] Ratschbacher L, Franz L, Enkelmann E, Jonckheere R, Porschke A, Hacker B R, Dong S W, Zhang Y Q. 2006. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie mountains. In:Hacker BR, McClelland WC and Liou JG (eds.). Ultrahigh-pressure Metamorphism:Deep Continental Subduction. Geological Society of America Special Paper, 403: 45–75. DOI:10.1130/0-8137-2403-9
[] Roda M, Spalla M I, Marotta A M. 2012. Integration of natural data within a numerical model of ablative subduction:A possible interpretation for the Alpine dynamics of the Austroalpine crust. Journal of Metamorphic Geology, 30: 973–996. DOI:10.1111/jmg.12000
[] Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M. 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geoscience, 4(5): 338–342. DOI:10.1038/ngeo1124
[] Vernon R H, Clarke G L. 2008. Principles of Metamorphic Petrology. Cambridge, United Kingdom: Cambridge University Press: 1-446.
[] Wang H, Wu Y B, Gao S, Liu X C, Gong H J, Li Q L, Li X H, Yuan H L. 2011. Eclogite origin and timing in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019–1031. DOI:10.1111/jmg.2011.29.issue-9
[] Whitney D L, Umhoefer P J, Teyssier C, Fayon A K. 2008. Yo-yo tectonics of the Niǧde massif during wrenching in Central Anatolia. Turkish Journal of Earth Sciences, 17(2): 209–217.
[] Wu C M, Zhang J, Ren L D. 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grademet apelites. Journal of Petrology, 45: 907–1921. DOI:10.1093/petrology/egg116
[] Wu Y B, Hanchar J M, Gao S, Sylvester P J, Tubrett M, Qiu H N, Wijbrans J R, Brouwer F M, Yang S H, Yang Q J, Liu Y S, Yuan H L. 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters, 277(3-4): 345–354. DOI:10.1016/j.epsl.2008.10.031
[] Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen:An overview on the Qinling-Tongbai-Hongan-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402–1428. DOI:10.1016/j.gr.2012.09.007
[] Yan Z, Wang Z Q, Chen J L, Yan Q R, Wang T, Zhang Y L. 2009. Geochemistry and SHRIMP zircon U-Pb dating of amphibolites from the Danfeng Group in the Wuguan area, North Qinling terrane and their tectonic significance. Acta Geologica Sinica, 83(11): 1633–1646.
[] Yan Z, Wang Z Q, Yan Q R, Wang T, Guo X Q. 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling mountains, central China:Implications for the tectonic evolution of the Qinling orogenic belt. Journal of Sedimentary Research, 82: 9–20. DOI:10.2110/jsr.2012.4
[] Yan Z, Fu C L, Wang Z Q, Yan Q R, Chen L, Chen J L. 2016. Late Paleozoic subduction-accretion along the southern margin of the North Qinling terrane, central China:Evidence from zircon U-Pb dating and geochemistry of the Wuguan complex. Gondwana Research, 30: 97–111. DOI:10.1016/j.gr.2015.05.005
[] Zhang G W, Meng Q R, Yu Z P, Sun Y, Zhou D W, Guo A L. 1996. Orogenesis and dynamics of the Qinling orogenic belt. Science in China (Series D), 26(3): 193–201.
[] Zhang G W, Zhang B R, Yuan X C, Xiao Q H. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press: 1-855.
[] Zhang Y Q, Zhang J, Li H K, Lu S N. 2013. Zircon U-Pb geochronology of the meta-acidic volcanic rocks from the Wudangshan Group, southern Qinling Mountains, central China. Acta Geologica Sinica, 87(7): 922–930.
[] Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regime. Earth-Science Review, 62(1-2): 105–161. DOI:10.1016/S0012-8252(02)00133-2
[] Zheng Y F, Zhao Z F, Wu Y B, Zhang S B, Liu X M, Wu F Y. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 231(1-2): 135–158. DOI:10.1016/j.chemgeo.2006.01.005
[] Zhu X Y, Chen F K, Li S Q, Yang Y Z, Nie H, Siebel W, Zhai M G. 2011. Crustal evolution of the North Qinling terrain of the Qinling orogen, China:Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20(1): 194–204. DOI:10.1016/j.gr.2010.12.009
[] 曹宣铎, 胡云绪. 2001. 秦岭商丹断裂带南缘构造岩片地层初析. 中国区域地质, 20(2): 187–194.
[] 陈隽璐. 2008. 北秦岭造山带西端早古生代火山岩成因环境与造山作用过程. 博士学位论文. 武汉: 中国地质大学, 175-176 http://www.doc88.com/p-1932204346375.html
[] 陈龙耀, 罗玉凌, 刘晓春, 曲玮, 胡娟. 2014. 南秦岭刘岭群砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其构造意义. 地质通报, 33(9): 1363–1378.
[] 陈能松, 巴金, 张璐, 苏文, 刘景波, 郭顺. 2009. 东秦岭商丹断裂带南侧武关岩群的锆石LA-ICP-MS U-Pb年龄. 地质通报, 28(5): 556–560.
[] 胡娟, 刘晓春, 陈龙耀, 曲玮, 李怀坤, 耿建珍. 2013. 扬子克拉通北缘约2. 5Ga岩浆事件:来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据.科学通报, 58(34): 3579–3588.
[] 李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775–781. DOI:10.3969/j.issn.1671-2552.2003.10.005
[] 李加好, 宋传中, 任升莲, 王中, 涂文传, 张欢, 张浩然. 2011. 秦岭商丹构造带商南段岩石变形与变质条件探讨. 地质论评, 57(5): 641–649.
[] 李平, 陈隽璐, 徐学义, 王洪亮, 李婷, 高婷. 2011. 北秦岭武关岩体LA-ICPMS锆石U-Pb定年及岩石成因研究. 岩石矿物学杂志, 30(4): 610–624.
[] 刘小驰, 吴元保, 汪晶, 彭敏, 焦文放. 2009. 西大别浒湾变质带洋壳和陆壳耦合俯冲的锆石U-Pb年龄记录及其动力学意义. 岩石学报, 25(9): 2209–2223.
[] 陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛广华, 相振群. 2003. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社: 25-35.
[] 牛宏建. 1995. 东秦岭地区"刘岭群"的重新划分. 地质科学, 30(4): 313–320.
[] 裴先治, 李厚民, 李国光, 张维吉, 王全庆, 李志昌. 1997. 东秦岭"武关岩群"斜长角闪岩Sm-Nd同位素年龄及其地质意义. 中国区域地质, 16(1): 38–43.
[] 裴先治, 李厚民, 李国光. 1998. 东秦岭武关岩群的组成特征及其大地构造意义. 西安工程学院学报, 20(1): 1–10.
[] 闫臻, 王宗起, 陈隽璐, 闫全人, 王涛, 张英利. 2009. 北秦岭武关地区丹凤群斜长角闪岩地球化学特征-锆石SHRIMP测年及其构造意义. 地质学报, 83(11): 1633–1646. DOI:10.3321/j.issn:0001-5717.2009.11.008
[] 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑), 26(3): 193–201.
[] 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社: 1-855.
[] 张永清, 张健, 李怀坤, 陆松年. 2013. 南秦岭武当山群变质酸性火山岩锆石U-Pb年代学. 地质学报, 87(7): 922–930.