岩石学报  2017, Vol. 33 Issue (8): 2494-2508   PDF    
金红石-榍石转变过程中元素地球化学行为——以雅鲁藏布江缝合带角闪岩为例
赵令浩1,2, 曾令森1, 胡明月2, 孙冬阳2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 国家地质实验测试中心, 北京 100037
摘要: 金红石边缘形成榍石冠状边结构在变质中-基性岩中普遍存在,是金红石与退变质流体携带的SiO2与CaO作用的结果,反应形成的榍石微量元素特征受到金红石和流体的共同影响。雅鲁藏布江缝合带中角闪岩LZ06-04在抬升过程经历近等温降压退变质作用,石榴子石分解导致同一样品中含石榴子石部分与不含石榴子石部分的退变质流体成分的差异。两种流体分别与金红石反应,对应形成的榍石具有相似的Nb、Ta含量和Nb/Ta比值特征,但截然不同的REE特征。榍石的Nb、Ta来源于金红石,残余金红石与含水流体再平衡Nb、Ta的分配系数增大,且DNbRt/FluidDTaRt/Fluid;虽然Nb和Ta在含水流体中都表现为不活动元素,但相对于Nb,Ta在含水流体中活动性较高。榍石的Zr-Hf体系特征受到锆石、石榴子石等矿物的综合影响,并且Zr-Hf在含水流体中表现出比Nb-Ta更高的活动性。榍石的REE特征受流体中REE特征、榍石与流体配分系数以及共生矿物的影响。在岩浆或变质体系,榍石形成过程中,REE富集矿物(如石榴子石、锆石、褐帘石、独居石、磷灰石等)形成或分解将影响榍石的REE分布特征或形成REE环带结构。含水流体中金红石退变质形成榍石反应的进行受流体中TiO2、CaO和SiO2活度的影响。因此榍石常见于钙碱性岩浆岩、富Ca基性变质岩和矽卡岩中。流体中CaO活度的变化影响榍石的形成,进而影响Ti、Nb、Ta在流体中的运移能力。俯冲板片产生流体在交代上覆富Ca地幔楔物质过程中形成榍石残留同样可以造成部分熔融体具有亏损HFSE特征。
关键词: 榍石     金红石     退变质流体     HFSE     REE    
Rutile to titanite transformation in amphibolite and its geochemical consequences:A case study of the amphibolite from Yarlung Tsangpo suture zone
ZHAO LingHao1,2, ZENG LingSen1, HU MingYue2, SUN DongYang2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Titanite corona formed around rutile is common in meta-intermediate-mafic rock, which is a reaction product between rutile and CaO and SiO2 carried by metamorphic fluids. Consequently, trace element characteristics of such titanite grains are controlled by rutile and fluid together. Amphibolite sample LZ06-04 from the Yarlung Tsangpo Shear Zone experienced isothermal decompression process during exhumation. Titanite grains from the garnet-bearing domain show significant compositional differences in REE as well as HFSE from those within the garnet-free domain. Such a feature is attributed to garnet effects due to dominant influences on the trace element geochemistry of retrograde metamorphic fluids by retrograde breakdown of garnet. Titanite inherited Nb and Ta from rutile which in equilibrium with an aqueous fluid phase which prefers Nb over Ta. Though Nb and Ta behave as fluid-immobile elements, Ta is more active than Nb in aqueous fluids. Difference in activity of Nb versus Ta in aqueous fluids might be a primary factor that strongly affects fractionation Nb over Ta. Zr-Hf systematics in titanite is largely controlled by the combined effects of Zr-and Hf-bearing minerals. Fluid composition affected by the breakdown of REE-rich phases is one of major factors that strongly regulate REE geochemistry in titanite. Formation of titanite after rutile requires CaO-and SiO2-bearing aqueous fluid. CaO activity in aqueous fluids is particularly an important factor that promotes metamorphic reaction and in turn affects transfer capability of HFSE in aqueous fluids. Thus, interaction of fluids released by a subducting slab toward the overlying Ca-rich mantle wedge could lead to metasomatism with the generation of titanite. Melts from partial melting of such metasomatic mantle will deplete in Ti, Nb and Ta, regardless whether the fluids produced from the subducting slab are enrich in HFSE or not.
Key words: Titanite     Rutile     Retrograde metamorphic fluid     HFSE     REE    
1 引言

自然岩石中,除钛铁矿和磁铁矿外,金红石(TiO2)和榍石(CaTiSiO5)是最主要的富钛矿物。金红石主要以副矿物的形式存在于高级中基性岩变质岩(如斜长角闪岩、石榴角闪岩、石榴辉石岩和榴辉岩)及部分变泥质岩中,是Nb、Ta和V的主要载体。榍石常见于中酸性钙碱性岩浆岩、基性变质岩及热液成因的矽卡岩,富集稀土元素(REE)、高场强元素(Ti、Nb、Ta、Zr、Hf等)和流体活动元素(如Sn、W等)(Frost et al., 2000; Zack et al., 2002; Li et al., 2010; Cao et al., 2015)。在岩浆和变质作用中,金红石和榍石都可能导致与其平衡作用过的流体或熔体的Nb和Ta分馏或富集,是追溯壳幔分异、地壳演化和俯冲带相关地质过程的关键见证矿物(Green, 1995; Rudnick et al., 2000; Rapp et al., 2003; Meinhold, 2010; Glazner et al., 2008; John et al., 2011)。研究并确定金红石和榍石的稳定条件范围(Hellman and Green, 1979; Frost et al., 2000; Harlov et al., 2006)、在硅酸盐熔体和不同性质流体中的溶解行为(Audétat and Keppler, 2005; Tropper and Manning, 2005; Xiong et al., 2009)以及与熔体或流体之间的关键元素的配分行为(Brenan et al., 1994; Schmidt et al., 2004; Prowatke and Klemme, 2005; Xiong et al., 2005, 2011)等,已成为国际矿物学和地球化学研究的焦点课题。

受原岩Ti含量或部分熔融程度的影响(Xiong et al., 2009),中基性岩中金红石可以在压力大于10~15kbar条件下稳定存在(Hellman and Green, 1979; Green and Pearson, 1986; Barth et al., 2002; Klemme et al., 2002; Meinhold, 2010; John et al., 2011; Xiong et al., 2005, 2009, 2011);压力小于15kbar时,金红石开始转变为榍石(Hellman and Green, 1979)。因此在中、下地壳到上地幔很大范围内,金红石可以与榍石共生,并且发生金红石-榍石的转变,如在高压至超高压(从蓝片岩相到超高压榴辉岩相)变质中-基性岩石中,金红石-榍石转变在进变质、退变质甚至部分熔融作用过程中普遍存在(Carswell et al., 1996; Frost et al., 2000; Storkey et al., 2005; Tropper and Manning, 2008)。

流体是触发和维持变质反应进行的必需条件,也是变质反应过程中物质迁移转换的重要介质(Leech, 2001; Putnis, 2002, 2009; Pedrosa et al., 2016)。在脱水或部分熔融过程中,如果含水流体或部分熔融体与金红石或榍石作用后离开体系,携带金红石或榍石信号交代周围岩石或俯冲带上盘岩石,形成高压-超高压变质岩石中具有强烈Nb-Ta分馏的岩脉(Gao et al., 2007; Zhang et al., 2008; John et al., 2011; Huang et al., 2012);在俯冲带环境,类似的流体或熔体作用是导致弧岩浆岩富集LILE、亏损Ti、Nb和Ta的主要介质(Stern, 2002; Bebout, 2013; Spandler and Pirard, 2013; Adam et al., 2014; Zheng and Hermann, 2014)。因此,研究金红石-榍石转变过程控制因素及关键元素(REE、Nb和Ta等)在金红石-榍石-流体体系中的地球化学行为,对于深入了解俯冲带及中下地壳地质演化过程具有至关重要的作用。

已有的实验模拟研究表明:在与流体和硅酸盐熔体的相互作用中,金红石和榍石的微量元素表现出不同的地球化学行为。当与熔体平衡时,金红石与榍石对Ta的分配系数大于Nb(例如DTa/NbRt/Melt≈1.0~2.2;DTa/NbTtn/Melt≈3.5~14.4,Schmidt et al., 2004; Prowatke and Klemme, 2005),使熔体Nb/Ta比值升高;与含水流体平衡时,金红石对Nb、Ta的分配系数均增大,且DNbRt/Fluid > DTaRt/Fluid,使含水流体的Nb/Ta比值降低, 残留金红石的Nb/Ta升高(Brenan et al., 1994)。与Nb和Ta类似,当金红石或榍石与硅酸盐熔体平衡时,DHf > DZr(Klemme et al., 2005; Tiepolo et al., 2002; Prowatke and Klemme, 2005; Olin and Wolff, 2012);但与含水流体平衡时,金红石中Zr与Hf的分配系数明显增大1~2个数量级,并且DHf < DZr(Brenan et al., 1994)。但目前仍未有实验确定榍石与含水流体之间的Nb、Ta和Zr、Hf配分行为。因此需要开展自然岩石的实测研究来揭示其特征,供未来实验检验。

本文以雅鲁藏布缝合带东段角闪岩中金红石退变质形成的榍石为研究对象,在岩相学观测基础上,通过测试金红石、榍石和石榴子石的元素地球化学组成,来揭示:(1) 导致金红石向榍石转变的流体元素地球化学特征;(2) 与石榴子石退变质分解、变质锆石生长之间的关系,探讨金红石-榍石转变约束条件及此过程中HFSE在矿物与流体之间的配分行为特征。

2 地质背景及样品描述

在喜马拉雅造山带的东段,东构造结周缘,雅鲁藏布江缝合带呈倒U形夹持于拉萨地体与南迦巴瓦变质地块之间(图 1)。雅鲁藏布江缝合带是喜马拉雅地块和欧亚板块的边界断层,代表着新特提斯洋的北向俯冲和闭合,主要含有蛇绿岩和混杂堆积岩(耿全如等, 2000, 2004; 郑来林等, 2003; 许志琴等, 2008; 李强等, 2014),局部地段也有来自两侧的外来岩块卷入(张泽明等, 2008)。在紧邻尼洋河和雅鲁藏布江两江汇合处,雅鲁藏布缝合带(也叫雅江剪切带)分割了位于西北的拉萨地块和位于东南的南迦巴瓦高级变质地块(许志琴等, 2012)。西北部拉萨地体主要由中-新元古代念青群和侏罗纪-古近纪冈底斯花岗岩组成(Chung et al., 2003, 2009; 许志琴等, 2011; Zhu et al., 2011; 王莉等, 2012; 董昕和张泽明, 2013)。在冈底斯岩基东部,白垩纪-古近纪冈底斯花岗岩带大体上可以划分为三期:130~80Ma、65~40Ma、35~13Ma,分别对应着印度与欧亚大陆碰撞前、碰撞期和后碰撞3个阶段(Chung et al., 2003, 2009; 许志琴等, 2011; Zhu et al., 2011; 王莉等, 2012)。其中白垩纪花岗岩(130~80Ma)的形成与新特提斯洋盆北向俯冲消减有关(Chu et al., 2006; Wen et al., 2008; Ji et al., 2009; Chung et al., 2003, 2009; Zhu et al., 2011; 许志琴等, 2011; 王莉等, 2012)。

图 1 喜马拉雅东构造结地质简图及采样点位(据Zeng et al., 2012修改) Fig. 1 Simplified geological map of the Eastern Himalayan Syntaxis, showing the sample locations (modified after Zeng et al., 2012)

南迦巴瓦高级变质地块由高喜马拉雅结晶岩系组成, 在喜马拉雅造山带东构造结,高喜马拉雅结晶岩系又称南迦巴瓦群,由片麻岩、角闪岩、麻粒岩及混合岩组成。根据原岩建造、变质程度和变形样式,南迦巴瓦群划分为直白组高压麻粒岩相带、派乡组角闪岩相变质岩和多雄拉组混合岩化角闪岩相变质岩(郑来林等, 2004; Geng et al., 2006; Booth et al., 2009)。锆石U-Pb年龄显示南迦巴瓦群变质岩的原岩形成于元古代和早古生代(Zeng et al., 2012; Zhang et al., 2012; 王誉桦等, 2014)。印度大陆的前缘在印度-欧亚大陆碰撞过程中俯冲经历高压变质作用折返形成南迦巴瓦变质岩体。

本研究样品为含石榴子石角闪岩,采集于雅鲁藏布缝合带东段(图 1)。带内发育角闪岩、斜长角闪岩、花岗质和泥质片麻岩。角闪岩与片麻岩呈断层接触关系。角闪岩样品LZ06-04呈条带状产于石榴黑云花岗质片麻岩中。该角闪岩主要由角闪石、石英和斜长石组成,含有少量石榴子石、榍石、金红石、锆石、黑云母、白云母、磷灰石、绿帘石和硫化物等矿物。石榴子石呈圆形或不规则形状,外围被角闪石、斜长石、石英环绕,说明石榴子石经历了退变质作用(图 2b)。石榴子石在角闪岩中非均匀分布,为便于描述及体现石榴子石分解作用的影响,在薄片尺度上将LZ06-04分为含石榴子石角闪岩及不含石榴子石角闪岩两个区域。两个区域内均有榍石形成,呈菱形、楔形或粒状,粒径60~200μm,少数榍石的核部保留粒状金红石残余,表明榍石是由金红石退变质形成(图 2c, d)。

图 2 角闪岩LZ06-04和LZ06-05显微照片 (a)样品LZ06-04中含石榴子石角闪岩与不含石榴子石角闪岩区域;(b)石榴子石退变质分解边缘形成角闪石+斜长石+石英矿物组合;(c)含石榴子石角闪岩中榍石、磷灰石共生;(d) BSE图像,榍石核部保留金红石残留核;(e、f)样品LZ06-05中金红石与角闪石、石英、斜长石及大量绿帘石共生,部分金红石发生微弱退变质作用.Grt-石榴子石;Pl-斜长石;Ep-绿帘石;Amp-角闪石;Qtz-石英;Ap-磷灰石;Ttn-榍石;Rt-金红石 Fig. 2 Microphotographs showing the mineral assemblage and textures of sample LZ06-04 and LZ06-05 from the Yarlung Tsangpo Shear Zone (a) garnet-bearing and garnet-free region in amphibolite sample LZ06-04; (b) garnet, experienced retrograde metamorphism, decomposed into Amp+Pl+Qtz; (c) some titanite grains are in contact with apatite in garnet-bearing amphibolite; (d) BSE images showing titanite grown at consume of rutile, forming rutile core and titanite corona; (e, f) amphibolite (LZ06-05), consisting of amphibolite, quartz, plagioclase, epidote and rutile. In contrast to LZ06-04, little titanite formed around rutile grain. Grt-garnet; Pl-plagioclase; Ep-epidote; Amp-amphibole; Qtz-quartz; Ap-apatite; Ttn-titanite; Rt-rutile

样品LZ06-05取自出露面积较大的角闪岩块体,由角闪石、石英、斜长石、绿帘石和金红石组成(图 2e, f)。与LZ06-04相比,其中的绿帘石含量较高,多数金红石未发生明显退变质,仅少数金红石边缘形成榍石窄边。

3 分析方法 3.1 SHRIMP锆石U-Pb测试

为了确定角闪岩的原岩形成年代,从具有代表性的角闪岩样品LZ06-04分选出锆石,然后在双目镜下经人工挑选出纯度在99%以上的锆石样品。用环氧树脂将锆石样品和标样固定成圆饼状,用不同型号砂纸和磨料将锆石磨去一半并抛光,然后进行阴极发光(CL)和扫描电镜背散射(BSE)成像观察,揭示锆石的内部结构。阴极发光成像在中国地质科学院地质研究所北京离子探针中心进行。锆石BSE图像和锆石内部包裹体的成分测试在中国地质科学院地质研究所大陆构造与动力学实验室进行。在阴极发光和BSE图像的指导下,揭示锆石不同生长域的细微区别特征,选取锆石U-Pb测试点(图 3)。

图 3 锆石CL图像及U-Pb年龄谐和图 Fig. 3 CL image and concordia diagram for zircon from amphibolite LZ06-04

SHRIMP锆石U-Pb分析在中国地质科学院北京离子探针中心SHRIMP Ⅱ上完成。样品的Pb/U值是根据测量时标样的UO/U-Pb/U关系和样品的UO/U来标定的,样品中的U、Th和Pb含量是根据标样的Zr、U、Th含量和样品的Zr、U和Pb值来校正的。测定的标样为TEMORA锆石(417Ma),每测定3个点后插入一次标样测定,以便及时校正,保障测试精度。数据处理、年龄计算和绘图采用Isoplot程序(Ludwig, 2001)。测试结果见表 1

表 1 角闪岩LZ06-04中锆石SHRIMP U-Pb定年数据 Table 1 SHRIMP Zircon U-Pb isotopic date for amphibole LZ06-04
3.2 全岩地球化学测试

岩石的主量元素、微量元素和稀土元素分析在中国地质科学院国家地质实验测试中心完成。其中,常量元素采用X-射线荧光光谱仪(XRF)测定,并用等离子光谱法进行验正,分析精度为5%。微量元素和稀土元素通过等离子质谱仪(ICP-MS)分析,含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素精度为10%。个别在样品中含量低的元素,测试误差大于10%。分析结果列在表 2

表 2 角闪岩LZ06-04和LZ06-05全岩、金红石、石榴子石、锆石及角闪石微量元素含量(×10-6) Table 2 Trace element compositions of whole rock, rutile, garnet, zircon and amphibole for amphibolite LZ06-04 and LZ06-05 (×10-6)
3.3 矿物微量元素地球化学特征测试

金红石和榍石原位微量元素LA-ICP-MS分析在国家地质实验测试中心完成,使用New Wave 193nm ArF准分子激光器及Thermo Fisher ELEMENT 2高分辨电感耦合等离子体质谱仪。分析激光剥蚀采用30μm激光斑束,频率10Hz,He气作为吹扫气体。ICP-MS分析采用低分辨模式,对金红石、榍石样品主微量共计42个元素进行分析。使用NIST612(Pearce et al., 1997)进行仪器信号调谐,使La和Th信号大于30w,监测ThO+/Th+控制氧化物产率 < 0.2%,238U/232Th≈1,有效降低元素分馏效应。每个分析点采集背景信号20s,激光剥蚀样品信号40s。每分析10个样品点后插入3个标准样品(NIST612、NIST610、KL2-G; Pearce et al., 1997; Jochum et al., 2006)。数据处理采用Excel完成,利用多外标结合内标基体归一定量技术(胡明月等, 2008)。金红石、榍石分析分别选择Ti和Ca为内标元素。利用该方法以NIST610为标准样品,计算KL2-G元素含量与标准值比较,其主量元素误差小于5%,微量元素误差小于10%。分析数据见表 2表 3

表 3 角闪岩LZ06-04榍石微量元素含量(×10-6) Table 3 Trace element compositions of titanite from amphibolite LZ06-04 (×10-6)
4 数据结果 4.1 锆石U-Pb年龄

锆石U-Pb分析数据见表 1。角闪岩LZ06-04中锆石半自形,呈椭圆状,粒度100~250μm。锆石阴极发光图像显示其主体为核部,具有窄的生长边。锆石核部呈浅灰色或白色,具有区域环带结构,部分区域具有清晰的振荡环带结构(图 3)。锆石中含有由绿帘石、石英、黑云母、磷灰石、硫化物等矿物组成的多晶包裹体。锆石U和Th含量分别为29×10-6~60×10-6和3×10-6~31×10-6,Th/U=0.11~0.53,具有明显的岩浆锆石特征(Rubatto, 2002)。

分别对锆石核部不同颜色特征区域进行SHRIMP U-Pb年龄测试,结果如图 3。生长速度的差异是导致锆石区域环带结构的主要原因之一(Watson and Liang, 1995),因此锆石核部不同颜色区域的U-Pb年龄差异反映了岩浆作用过程中结晶的先后顺序。整体上,LZ06-04锆石206Pb/238U年龄集中于103~119Ma之间,加权平均年龄为112±3.1Ma(N=10,MSWD=1.1),反映了原岩的结晶时代。锆石的最外层边缘被暗色边环绕,宽度约2~10μm,限于空间分辨率未进行U-Pb定年。

4.2 全岩元素地球化学特征

全岩微量元素结果见表 2。角闪岩样品LZ06-04和LZ06-05具有相似的主、微量元素特征,SiO2含量分别为47.6%和52.8%。LZ06-05的TiO2含量为0.90%,略高于LZ06-04值0.72%,与此相反,LZ06-04具有更高的CaO含量,分别为10.6%和8.91%。

在微量元素上LZ06-04与LZ06-05表现出相同的特征:(1) 富集LREE,(La/Yb)N分别为1.56和2.47;并且具有平缓的HREE特征,(Ho/Yb)N分别为1.06和1.10,无明显的Eu和Ce异常(图 4);(2) LZ06-04的Nb和Ta含量分别为1.86×10-6和0.13×10-6,略高于LZ06-05(Nb和Ta含量分别为1.80×10-6和0.12×10-6)。二者具有相似的且低于球粒陨石的Nb/Ta比值,分别为14.3和15.6。LZ06-04中Zr和Hf含量分别为51.0×10-6和1.99×10-6,略高于LZ06-05(Zr和Hf含量分别为48.4×10-6和1.36×10-6),LZ06-04的Zr/Hf比值为25.6,低于LZ06-05(Zr/Hf=35.7)(图 5)。

图 4 角闪岩LZ06-04中榍石球粒陨石标准化REE配分模式(标准化值据McDonough and Sun, 1995) Fig. 4 Chondrite-normalized REE distribution patterns for titanite grains from amphibolite sample LZ06-04 (normalization values after McDonough and Sun, 1995)

图 5 榍石、金红石及全岩的Nb-Ta、Zr-Hf、U-Th体系特征 灰色直线为球粒陨石的Nb/Ta和Zr/Hf比值(Münker et al., 2003) Fig. 5 Correlations of trace elements and their ratios for titanites, rutiles and whole rocks The grey lines represent the Nb/Ta and Zr/Hf ratios of chondrite (Münker et al., 2003)
4.3 榍石和金红石的微量元素特征

分别对角闪岩LZ06-04中两种榍石及两颗金红石残留核以及LZ06-05中金红石进行LA-ICP-MS微量元素分析,结果见表 2表 3。为便于数据描述,下文将LZ06-04中,与石榴子石共生之榍石称为榍石-Ⅰ,无石榴子石区域的榍石称为榍石-Ⅱ。

4.3.1 榍石稀土元素特征

榍石-Ⅰ(Ttn-Ⅰ)稀土元素总含量∑REE=276×10-6~425×10-6,表现为LREE亏损、HREE相对富集的“左倾”分配特征(图 4),Eu弱负异常到正异常(Eu/Eu*=0.82~1.38)。与MREE和HREE相比较,LREE含量低,且具有较大的变化范围,表现为较低的(La/Gd)N=0.02~0.11和(Ho/Yb)N=0.62~0.90比值。

榍石-Ⅱ(Ttn-Ⅱ)稀土元素总含量∑REE=514×10-6~1213×10-6,总体高于榍石-Ⅰ,表现为LREE和HREE含量变化范围较大,明显富集MREE,(La/Gd)N=0.05~0.23,(Ho/Yb)N =1.24~3.97,呈拱形稀土分配特征(图 4)。Eu无异常到正异常(Eu/Eu*=1.03~1.32)。与榍石-Ⅰ相比较,榍石-Ⅱ具有较高的LREE、MREE含量,而HREE含量较低。

4.3.2 榍石及金红石中Nb-Ta和Zr-Hf特征

两种榍石具有相似的Nb、Ta含量和Nb/Ta比值特征(图 5)。榍石-Ⅰ的Nb和Ta含量变化范围都较小,分别为153×10-6~209×10-6和14.6×10-6~16.8×10-6,Nb/Ta比值较低,为9.1~14.1(平均12.4),明显低于球粒陨石值(Nb/Ta=19.7)(Münker et al., 2003)。与榍石-Ⅰ相比,榍石-Ⅱ的Nb和Ta含量变化范围较大,分别为126×10-6~382×10-6,13.3×10-6~26.6×10-6,Nb/Ta比值7.2~17.9(平均12.8)。榍石-Ⅱ的Nb/Ta比值也明显低于球粒陨石值。两种榍石具有相似且低于球粒陨石的Nb/Ta比值,与LZ06-04全岩的Nb/Ta比值相一致(14.3)(图 5)。榍石Nb/Ta比值与Nb含量呈正相关关系,与Ta含量呈负相关关系,但变化幅度较小。榍石核部的残余金红石中Nb、Ta平均含量分别为1298×10-6和54×10-6,明显高于榍石及全岩,并且具有高于球粒陨石的Nb/Ta比值特征(~23.8)。

LZ06-05样品中少量金红石颗粒榍石冠状边的出现说明金红石发生了微弱退变质作用。金红石颗粒的Nb含量175×10-6~226×10-6,Ta含量7.14×10-6~9.53×10-6,具有超球粒陨石比值特征Nb/Ta=26.3,明显高于LZ06-05全岩的Nb/Ta比值。

榍石-Ⅰ的Zr和Hf含量变化范围都较大,分别为81×10-6~162×10-6(平均121×10-6)和5.7×10-6~8.4×10-6(平均6.8×10-6)。榍石-Ⅱ的Zr含量变化范围158×10-6~234×10-6,平均198×10-6;Hf含量变化范围7.85×10-6~11.4×10-6,平均含量10×10-6。榍石-Ⅰ的Zr/Hf比值14.4~21.5,平均17.9;榍石-Ⅱ的Zr/Hf比值15.3~21.6,平均19.5。两种榍石的Zr、Hf含量及Zr/Hf比值均低于金红石残留核值(表 3图 5)。

LZ06-05中金红石的Zr、Hf含量变化范围分别为152×10-6~189×10-6,8.51×10-6~11.5×10-6,Zr/Hf比值14.4~19.4,明显低于全岩Zr/Hf比值~35.7(表 2图 5)。

4.3.3 其他元素特征

榍石-Ⅰ的U和Th平均含量分别为1.01×10-6和0.21×10-6,Th/U比值0.14~0.24,平均值0.19;榍石-Ⅱ的U、Th含量明显高于榍石Ⅰ,分别为3.66×10-6和1.29×10-6,Th/U比值变化范围0.19~0.55,平均为0.33(图 5)。

两种榍石具有相似的Sr含量特征。榍石-Ⅰ的Sr含量变化范围为57.9×10-6~72.1×10-6,平均65.9×10-6;榍石-Ⅱ的Sr含量变化范围为52.1×10-6~77.4×10-6,平均66.4×10-6(表 3)。

5 讨论 5.1 角闪岩LZ06-04形成时代和地质过程

角闪岩LZ06-04锆石SHRIMP U-Pb年龄约为112Ma,锆石的CL结构、锆石中的矿物包体以及Th/U比值特征表明其为岩浆成因,其年龄代表该角闪岩体原岩的形成年龄。该角闪岩位于雅鲁藏布江缝合带内,大量的年代学数据显示,雅鲁藏布江蛇绿岩形成于122~175Ma(Miller et al., 2003; 韦栋梁等, 2006; 钟立峰等, 2006; 夏斌等, 2008; 李强等, 2014),且该角闪岩与高喜马拉雅地体中的石榴石黑云母片麻岩接触,周围没有典型的蛇绿岩组合中的其它类型岩石,因此该角闪岩并非雅鲁藏布江蛇绿岩的组成部分。从年龄上分析,该角闪岩原岩年龄与白垩世冈底斯花岗岩年龄(109~80Ma)相近(Wen et al., 2008; Ji et al., 2009)。白垩世花岗岩是拉萨地块南缘出露花岗岩之主体,在主微量元素成分上具有弧岩浆岩特征,其形成与新特提斯洋板片的北向俯冲有关(Ji et al., 2009)。因此我们推断该角闪岩LZ06-04可能来源于上盘下地壳基性物质。

无论是新特提斯洋壳俯冲或拉萨地体下地壳物质均经历了麻粒岩相高压变质作用,随后的抬升过程经历等温降压过程(戚学祥等, 2010; Zhang et al., 2012; Zeitler et al., 2014; Zhang et al., 2015)。研究表明与本文采样点临近的林芝岩体在折返过程中发生角闪岩相变质作用的温压条件为9~10.5kbar,~700℃(Zhang et al., 2013)。根据Hayden et al. (2008)榍石Zr温度压力计,假设榍石形成压力为0.9GPa,采用典型地壳岩石TiO2和SiO2活度α(TiO2)=α(SiO2)=0.5(Hayden and Watson, 2007),计算获得榍石-Ⅰ形成温度约为675℃,榍石-Ⅱ形成温度约688~706℃,二者温度误差小于50℃(Hayden et al., 2008)。榍石的形成温度与临近的林芝岩体角闪岩相变质作用的P-T条件一致。在折返过程中,角闪岩LZ06-04经历了角闪岩相退变质作用,具体表现为金红石退变形成榍石冠状边、石榴子石分解以及部分锆石灰色均匀增生边的形成(图 2)。

5.2 金红石与榍石转变过程中Nb-Ta的地球化学行为

Nb和Ta具有相同的电价(+5价)和相近的离子半径,在地球化学过程中具有相似的性质,长期以来都认为在多数地质过程中Nb和Ta不发生显著分馏。但如前文所述,越来越多的研究表明富集Nb和Ta的矿物,如金红石、榍石、钛铁矿、角闪石、黑云母、白云母等,在变质作用过程中的行为差异将会导致Nb和Ta发生明显分馏(Rudnick et al., 2000; Foley et al., 2002; Prowatke and Klemme, 2005; Hermann and Rubatto, 2009; John et al., 2011; Xiong et al., 2011; Stepanov and Hermann, 2013; Chen and Zheng, 2015)。了解这些矿物在不同的地质作用过程中Nb和Ta的配分行为是理解Nb-Ta迁移及分馏的关键因素。

金红石与榍石是榴辉岩、麻粒岩、角闪岩等基性变质岩中最为主要的Ti、Nb和Ta载体矿物。元素矿物/流体配分实验研究表明:金红石和榍石与熔体发生平衡将导致两种矿物中的Nb/Ta比值降低;金红石与含水流体平衡,金红石的Nb/Ta比值明显升高,而对于榍石在含水流体体系中Nb、Ta的地球化学行为缺少实验约束。介于金红石和榍石在不同流体中的差异,通过其Nb/Ta比值特征可以有效反应与之平衡的流体的性质(熔体或含水流体)。

样品角闪岩LZ06-04全岩Nb/Ta比值为14.3。LZ06-04中两种榍石具有相似的Nb、Ta含量及Nb/Ta比值,且榍石的Nb/Ta比值变化范围与全岩Nb/Ta比值一致,因此榍石是角闪岩LZ06-04中主要的含Ti矿物,控制全岩的Nb/Ta特征,这与LZ06-04中金红石发生退变质作用形成榍石,并保留金红石核残留的现象一致。Lucassen et al. (2010)实验模拟含水流体环境中金红石退变质形成榍石过程,金红石残留核表现出升高的Nb、Ta含量和Nb/Ta比值。在角闪岩LZ06-04中,残留金红石核表现出类似的Nb-Ta系统特征,表明在含水流体中,金红石的Nb和Ta分配系数增大,且DNbDTa,与实验结果(Brenan et al., 1994)相一致。

在角闪岩LZ06-05中,金红石发生弱退变质,其边缘发育极少量或没有榍石边,平均Nb/Ta比值26.3,明显高于全岩(15.6) 和球粒陨石Nb/Ta比值。与LZ06-04金红石残留核相比较,Nb和Ta含量较低,但具有相似的Nb/Ta比值。金红石Nb/Ta比值的升高表明样品LZ06-05的金红石也经历了与含水流体再平衡过程,但与LZ06-04不同,金红石边缘并没有大量的榍石边形成,这可能是受到流体中Ca离子活度的影响。

另外,LZ06-05的金红石Nb/Ta比值高于全岩,说明全岩有相对富集Ta,且具低Nb/Ta比值的矿物存在。在样品LZ06-05中,石榴子石、角闪石、绿帘石和锆石均具有低于全岩的Nb/Ta比值,但石榴子石、角闪石、绿帘石中Ta含量低于5×10-9,锆石中Ta含量0.15×10-6~0.28×10-6,平均0.21×10-6。金红石与含水流体再平衡过程中,大量Nb和Ta进入金红石,流体中少量的Ta可能在与锆石平衡或增生过程中进入锆石或形成其他富集Ta矿物。Ta在含水流体中的迁移表明相对于Nb,Ta具有更高的活动性,这可能是Nb和Ta在含水流体相关地质过程中发生分馏的根本原因。

5.3 金红石-榍石转变过程中Zr-Hf行为

与Ti、Nb和Ta一样,Zr和Hf在含水流体中溶解度较低(Bernini et al., 2013; Boehnke et al., 2013),通常以矿物组成元素的形式赋存在锆石或斜锆石中。在榴辉岩中,锆石的Zr和Hf含量甚至可达全岩含量的>95%和90%(Rubatto and Hermann, 2003)。通过统计地壳岩石常见矿物的Zr和Hf含量,Bea et al. (2006)发现除锆石外,榍石、金红石、石榴子石、辉石、角闪石等矿物中也具有较高的Zr和Hf含量。在不含或仅含少量锆石的岩石中,榍石甚至可以成为最主要的Zr和Hf赋存矿物(Seifert and Kramer, 2003; Marks et al., 2008)。因此探讨矿物中的Zr-Hf体系变化需要综合考虑以上主要矿物相变化的影响。

样品LZ06-04全岩Zr/Hf比值为25.6,低于其中石榴子石(Zr/Hfavg=73.2) 和锆石(Zr/Hfavg=59.4) 比值,但明显高于榍石、金红石残留核及角闪石(Zr/Hfavg=11.6) 和绿帘石(Zr/Hfavg=21.1)。LZ06-04全岩Zr/Hf含量特征是多种矿物平均结果。尽管锆石具有极高Zr和Hf含量,但限于锆石含量较低,因此锆石难以控制全岩的Zr/Hf比值特征。

Zr和Hf在含水流体中溶解度较低,在变质反应矿物转换过程中,在不同温压条件下,可以通过重结晶、变质反应、溶解-重结晶与含水流体作用,发生Zr和Hf在矿物间重新配分(Rubatto, 2002; Tomaschek et al., 2003; Zheng et al., 2009; Xia et al., 2013)。石榴子石、角闪石、黑云母等矿物的分解释放Zr和Hf到流体中,成为新生锆石的物质来源(Vavra et al., 1996; Fraser et al., 1997; Degeling et al., 2001),另外我们最近在松多榴辉岩金红石-榍石转变过程观察发现,金红石分解形成榍石也释放Zr,促使流体达到Zr饱和,在金红石-榍石附近或内部形成新生锆石颗粒(待发表)。在角闪岩样品LZ06-04中,金红石-榍石转变伴随石榴子石和角闪石的分解以及锆石的增生(图 2),因此,在金红石-榍石转变过程中,Zr-Hf体系的变化受到多方面影响。榍石Ⅰ与榍石Ⅱ的Zr、Hf含量及比值的差异及U、Th含量的变化可能与锆石的增生程度相关。矿物分解释放Zr和Hf到共生流体中,以锆石增生边的形式赋存在新生锆石中。与Nb和Ta相比较,Zr和Hf在流体中表现出更高的地球化学活动性。

5.4 金红石-榍石转变过程中Sr、REE地球化学行为及变质流体特征

一般认为在含水流体作用过程中TiO2具有较高的化学活跃度,但活动性较低(Audétat and Keppler, 2005; Tropper and Manning, 2005; Antignano and Manning, 2008; Manning et al., 2008; Rapp et al., 2010)。金红石退变质形成榍石的反应需要携带SiO2和CaO组分的流体,可能发生的反应包括:

金红石边缘形成榍石冠状边结构,表明反应近乎原位完成,退变质反应程度的不同是导致榍石内部金红石残留核粒度的变化的主要因素。榍石与金红石残留核接触面截然,没有明显的扩散现象,金红石-榍石的转变经历了溶解-再沉淀的过程(Putnis, 2002, 2009),因此榍石的微量元素特征受到流体与金红石共同影响。

金红石中不含或仅含极少量的REE和Sr,因此榍石REE和Sr主要来源于流体。含水流体的微量元素特征受共生平衡矿物分解行为的影响。在高级变质条件下,含水矿物(如角闪石)的分解为变质反应的进行提供了最为主要的流体来源,而名义“无水矿物”分解释放流体也是退变质流体的重要来源之一(Zheng and Hermann, 2014)。石榴子石和金红石作为主要的名义“无水矿物”,其中含有大量的OH-,在发生变形的石榴子石中甚至有H2O分子存在(Su et al., 2002),金红石中含水量最高可达9600×10-6(Zhang et al., 2001),在退变质过程中,尤其是在高压岩石折返初期,石榴子石和金红石分解成为退变质流体的重要来源(Sheng et al., 2007; Zheng et al., 2009; Chen et al., 2011; Zheng and Hermann, 2014; 肖益林等, 2015)。角闪岩LZ06-04在折返过程中经历了角闪岩相退变质作用,同时伴随金红石形成榍石及石榴子石形成角闪石+斜长石+石英组合的退变质过程(图 2b),因此角闪石和石榴子石分解可能成为退变质流体的来源。

一般情况下,Sr在石榴子石含量较低(Sr < 0.5×10-6, Messiga et al., 1995),而角闪石是相对富Sr矿物,LZ06-04中角闪石平均Sr含量达26×10-6。榍石-Ⅰ的形成伴随石榴子石的分解(图 2b),而榍石-Ⅱ形成在无石榴子石角闪岩中。榍石-Ⅰ与榍石-Ⅱ之间Sr含量没有明显差异,说明石榴子石分解未影响局部流体的Sr含量,但改变了局部流体的REE特征。两种榍石形成的流体环境具有相似的LILE特征,支持该阶段退变质流体可能主要来源于角闪石分解。

对比两种榍石的REE特征,榍石-Ⅱ具有较高的REE含量,且明显富集LREE和MREE;榍石-Ⅰ相对亏损LREE和MREE,富集HREE。榍石-Ⅰ与石榴子石和磷灰石共生(图 2c),石榴子石的分解释放富含HREE的流体,磷灰石的结晶造成流体中LREE和MREE含量以及∑REE的降低(Bruand et al., 2014),矿物的共生组合在退变质过程中的变化影响了流体的微量元素特征,最终导致两种榍石在REE特征上的差异。

矿物中元素的含量特征是矿物-流体的分配系数和流体中元素的绝对含量综合作用的结果。榍石与熔体微量元素分配系数实验表明,相对于HREE和LREE,榍石更容易富集MREE,但分配系数差距并不大(例如DGd/Yb=3.5~6.1, Tiepolo et al., 2002)。如果流体中各稀土元素的含量相近,则榍石表现出MREE富集的特征;如果在榍石形成过程中,高度富集HREE或LREE矿物形成或分解,如石榴子石、锆石、褐帘石、独居石、磷灰石等,明显改变流体REE含量和特征,与该流体平衡的榍石将记录这一变化。

5.5 金红石-榍石转变的条件及对于HFSE活动性的指示

角闪岩LZ06-04与LZ06-05共同产出于雅鲁藏布江剪切带中,无论是俯冲新特提斯洋壳或拉萨地块的中下地壳物质,在抬升折返过程经历了角闪岩相退变质和流体作用,这与两种岩石的金红石具有升高Nb/Ta比值特征相一致。但在LZ06-04中金红石退变质形成了榍石,而在LZ06-05中金红石未形成榍石,而有大量绿帘石形成。流体是触发和维持变质反应发生进行的必须条件,同时也是变质反应过程中物质迁移转换的重要介质(Leech, 2001; Putnis, 2002, 2009; Pedrosa et al., 2016)。金红石退变质形成榍石的过程是溶解-再沉淀过程,退变质流体沿金红石边缘运移并储存,Ti在流体中的溶解度以及流体中Ca的活度成为榍石形成的必要条件。含水流体中榍石形成的反应:

(1)

该反应的平衡常数:

(2)

公式(2) 显示榍石的形成受到含水流体中TiO2、CaO和SiO2活度的影响。

实验研究表明,在中、下地壳的P-T条件下,金红石在纯水中的溶解度极低(Audétat et al., 2005; Tropper and Manning, 2005; Antignano and Manning, 2008),流体中Cl-和F-含量的增加会明显提高金红石在含水流体中的溶解度(Rap et al., 2010)。另外,金红石在流体中的溶解度也与流体中Na-Al硅酸盐成分含量及Na/Al比值正相(Manning et al., 2008; Antignano and Manning, 2008)。高压/超高压岩体在折返减压过程中,含水及名义无水矿物分解释放流体是退变质流体的主要来源。流体溶解的元素种类及其含量与P-T条件及发生分解矿物的成分相关,Si、Na、K为俯冲带含水流体中的主要元素,根据岩石成分及分解矿物成分差异,含水流体中可能会有一定含量Al、Ca和少量Mg、Fe(Manning, 2004; Hermann et al., 2013; Zheng and Hermann, 2014)。与纯H2O介质相比,金红石在这种Si-Na-Al-H2O流体中的溶解度明显升高。在导致金红石-榍石的转变体系中,金红石保持残留,因此公式(2) 简化为:

(3)

根据公式(3),含水流体中CaO活度的增加将促使反应(1) 向榍石沉淀方向进行。因此,在样品含LZ06-04,石榴子石域的金红石退变质形成榍石,而角闪岩LZ06-05未形成榍石的主要原因可能在于退变质流体中Ca活度的差异。两种角闪岩经历了同期的退变质作用,具有相似全岩主、微量元素特征,具有相同的TiO2含量,而LZ06-05中Fe和Mg含量较高。LZ06-04中石榴子石的分解可能提高退变质流体中Ca的含量和活度,与Ti结合形成榍石。另外与榍石紧密共生的磷灰石的形成也说明了LZ06-04流体中Ca含量较高。LZ06-05中不含石榴子石,Ca可能与Fe等离子结合形成其他矿物,例如绿帘石,这与LZ06-05中大量绿帘石存在的现象相符合。

Ti、Nb和Ta在富含Cl、F以及Si-Na-Al流体(Antignano and Manning, 2008; Manning et al., 2008; Rap et al., 2010; Zeng et al., 2013)以及超临界流体(Kessel et al., 2005; Zhang et al., 2008; Hayden and Manning, 2011)中溶解度升高,因此在俯冲带及中下地壳环境下,Ti、Nb和Ta可随流体运移。Ti、Nb和Ta的活动性强度及运移距离除与流体通量及水岩反应强度相关外(Huang et al., 2012),流体形成及运移过程中溶解其中的富Ca矿物量即流体中Ca活度也可能是制约Ti、Nb和Ta流体运移能力的重要因素。高Ca活度流体中,Ti与Ca形成榍石沉淀;在低Ca活度流体中,Ti、Nb和Ta可以随流体长距离运移,如阿尔卑斯、西天山及大别山等地区发现的由石英、绿帘石及金红石组成的脉体(Franz et al., 2001; Gao et al., 2007; John et al., 2011; Huang et al., 2012)。因此在俯冲带环境,无论俯冲板片产生的是亏损HFSE的含水流体或者富集HFSE的熔体/超临界流体,在流体交代上覆富Ca地幔楔物质过程中,榍石的形成残留依然会导致产生的岩浆具有亏损HFSE特征。

6 结论

雅鲁藏布江缝合带东段内出露角闪岩样品LZ06-04,其原岩为岩浆成因,形成年龄约为112Ma,经历了角闪岩相变质作用。在抬升过程中,角闪石和石榴子石分解释放携带Ca和Si组分的退变质流体,与金红石反应形成榍石。榍石的微量元素特征受到金红石和流体的共同作用影响,具体表现为:

(1) 金红石退变质形成的榍石的REE特征受流体REE特征、榍石与流体配分系数以及共生矿物共同影响。角闪岩LZ06-04等温降压抬升过程中,石榴子石分解形成角闪石、斜长石和石英组合,使局部退变质流体富含HREE。同时少量磷灰石的结晶导致流体中LREE和MREE相对亏损。不同的共生矿物导致两种退变质流体中REE特征的差异,最终两种流体分别与金红石反应形成具有不同REE特征的榍石颗粒。

(2) 金红石的Nb/Ta比值特征可以有效反应与之平衡流体的性质(熔体或含水流体)。LZ06-04中两种榍石相似的Nb、Ta含量和Nb/Ta比值以及LZ06-05全岩及主要单矿物中Nb/Ta特征说明在含水流体中Nb-Ta活动性较弱,但相对于Nb,Ta在含水流体中的活动性更高,这可能是Nb和Ta在地质过程中发生分馏的根本原因。

(3) 金红石-榍石转变过程中,榍石的Zr-Hf特征受到体系中锆石、石榴石和金红石等多种矿物行为的共同影响,并且相对于Nb-Ta,Zr-Hf在流体中活动性更高。

(4) 金红石退变质形成榍石的反应受到流体中TiO2、CaO和SiO2活度的影响。在富Cl、F含水流体中或高流体通量环境中,流体中CaO活度的变化影响榍石的形成,进而影响Ti、Nb、Ta在流体中的运移能力。俯冲板片产生流体在交代上覆富Ca地幔楔物质过程中形成榍石残留同样可以造成部分熔融体具有亏损HFSE特征。

致谢 赵志丹教授和张泽明研究员对本文提出诸多建设性修改建议,获益匪浅,在此表示诚挚感谢!
参考文献
[] Adam J, Locmelis M, Afonso JC, Rushmer T, Fiorentini ML. 2014. The capacity of hydrous fluids to transport and fractionate incompatible elements and metals within the Earth's mantle. Geochemistry, Geophysics, Geosystems, 15(6): 2241–2253. DOI:10.1002/2013GC005199
[] Antignano A, Manning CE. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7~2.0GPa and 700~1000℃:Implications for mobility of nominally insoluble elements. Chemical Geology, 255(1-2): 283–293. DOI:10.1016/j.chemgeo.2008.07.001
[] Audétat A, Keppler H. 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters, 232(3-4): 393–402. DOI:10.1016/j.epsl.2005.01.028
[] Barth MG, Foley SF, Horn I. 2002. Partial melting in Archean subduction zones:Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research, 113(3-4): 323–340. DOI:10.1016/S0301-9268(01)00216-9
[] Bea F, Montero P, Ortega M. 2006. A LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks:Implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist, 44(3): 693–714. DOI:10.2113/gscanmin.44.3.693
[] Bebout GE. 2013. Metasomatism in subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface. In:Harlov DE and Austrheim H (eds.). Metasomatism and the Chemical Transformation of rock:The Role of Fluids in Terrestrial and Extraterrestrial Processes. Berlin Heidelberg:Springer, 289-349
[] Bernini D, Audétat A, Dolejš D, Keppler H. 2013. Zircon solubility in aqueous fluids at high temperatures and pressures. Geochimica et Cosmochimica Acta, 119: 178–187. DOI:10.1016/j.gca.2013.05.018
[] Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK. 2013. Zircon saturation re-revisited. Chemical Geology, 351: 324–334. DOI:10.1016/j.chemgeo.2013.05.028
[] Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geological Society of America Bulletin, 121(3-4): 385–407. DOI:10.1130/B26041.1
[] Brenan JM, Shaw HF, Phinney DL, Ryerson FJ. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th:Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4): 327–339. DOI:10.1016/0012-821X(94)90154-6
[] Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from Northern Scotland:Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55(8): 1619–1651. DOI:10.1093/petrology/egu037
[] Cao MJ, Qin KZ, Li GM, Evans NJ, Jin LY. 2015. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geology Reviews, 65: 940–954. DOI:10.1016/j.oregeorev.2014.07.014
[] Carswell DA, Wilson RN, Zhai M. 1996. Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineralogical Magazine, 60: 461–471. DOI:10.1180/minmag
[] Chen RX, Zheng YF, Gong B. 2011. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite:Constraints on fluid flow during continental subduction-zone metamorphism. Chemical Geology, 281(1-2): 103–124. DOI:10.1016/j.chemgeo.2010.12.002
[] Chen YX, Zheng YF. 2015. Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite. Geochimica et Cosmochimica Acta, 150: 53–73. DOI:10.1016/j.gca.2014.12.002
[] Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson NJ, Ji JQ, Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745–748. DOI:10.1130/G22725.1
[] Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021–1024. DOI:10.1130/G19796.1
[] Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY, Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36–48. DOI:10.1016/j.tecto.2009.08.008
[] Degeling H, Eggins S, Ellis DJ. 2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineralogical Magazine, 65(6): 749–758. DOI:10.1180/0026461016560006
[] Dong X, Zhang ZM. 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrologica Sinica, 29(6): 1933–1948.
[] Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837–840. DOI:10.1038/nature00799
[] Franz L, Romer RL, Klemd R, Schmid R, Oberhänsli R, Wagner T, Dong SW. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology, 141(3): 322–346. DOI:10.1007/s004100000233
[] Fraser G, Ellis D, Eggins S. 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology, 25(7): 607–610. DOI:10.1130/0091-7613(1997)025<0607:ZAIGFM>2.3.CO;2
[] Frost BR, Chamberlain KR, Schumacher JC. 2001. Sphene (titanite):Phase relations and role as a geochronometer. Chemical Geology, 172(1-2): 131–148. DOI:10.1016/S0009-2541(00)00240-0
[] Gao J, John T, Klemd R, Xiong XM. 2007. Mobilization of Ti-Nb-Ta during subduction:Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974–4996. DOI:10.1016/j.gca.2007.07.027
[] Geng QR, Pan GT, Liu YP, Zheng LL. 2000. The preliminary study of the ophiolitic melanges along the Yarlung Zangbo Grand Canyon, Xizang. Sedimentary Geology and Tethyan Geology, 20(1): 28–43.
[] Geng QR, Pan GT, Zheng LL, Sun ZM, Ou CS, Dong H. 2004. Petrological characteristics and original settings of the Yarlung Tsangpo ophiolitic mélange in Namche Barwa, SE Tibet. Chinese Journal of Geology, 39(3): 388–406.
[] Geng QR, Pan GT, Zheng LL, Chen ZL, Fisher RD, Sun ZM, Ou CS, Dong H, Wang XW, Li S, Lou XY, Fu H. 2006. The Eastern Himalayan syntaxis:Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265–285. DOI:10.1016/j.jseaes.2005.03.009
[] Glazner AF, Coleman DS, Bartley JM. 2008. The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology, 36(2): 183–186. DOI:10.1130/G24496A.1
[] Green TH, Pearson NJ. 1986. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chemical Geology, 54(3-4): 185–201. DOI:10.1016/0009-2541(86)90136-1
[] Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347–359. DOI:10.1016/0009-2541(94)00145-X
[] Harlov D, Tropper P, Seifert W, Nijland T, F rster HJ. 2006. Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos, 88(1-4): 72–84. DOI:10.1016/j.lithos.2005.08.005
[] Hayden LA, Watson EB. 2007. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3-4): 561–568. DOI:10.1016/j.epsl.2007.04.020
[] Hayden LA, Watson EB, Wark DA. 2008. A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155(4): 529–540. DOI:10.1007/s00410-007-0256-y
[] Hayden LA, Manning CE. 2011. Rutile solubility in supercritical NaAlSi3O8-H2O fluids. Chemical Geology, 284(1-2): 74–81. DOI:10.1016/j.chemgeo.2011.02.008
[] Hellman PL, Green TH. 1979. The role of sphene as an accessory phase in the high-pressure partial melting of hydrous mafic compositions. Earth and Planetary Science Letters, 42(2): 191–201. DOI:10.1016/0012-821X(79)90024-4
[] Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology, 265(3-4): 512–526. DOI:10.1016/j.chemgeo.2009.05.018
[] Hermann J, Zheng YF, Rubatto D. 2013. Deep fluids in subducted continental crust. Elements, 9(4): 281–287. DOI:10.2113/gselements.9.4.281
[] Hu MY, He HL, Zhan XC, Fan XT, Wang G, Jia ZR. 2008. Matrix normalization for in-situ multi-element quantitative analysis of zircon in laser ablation-inductively coupled plasma mass spectrometry. Chinese Journal of Analytical Chemistry, 36(7): 947–953.
[] Huang J, Xiao Y, Gao Y, Hou Z, Wu W. 2012. Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones:Constraints from UHP eclogite-and vein-hosted rutile from the Dabie orogen, central-eastern China. Journal of Metamorphic Geology, 30(8): 821–842. DOI:10.1111/jmg.2012.30.issue-8
[] Ji WQ, Wu FY, Liu CZ, Chung S. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 52(9): 1240–1261. DOI:10.1007/s11430-009-0131-y
[] Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, de Bruin D, Canil D, Cornell D, de Hoog CJ, Dalpé C, Danyushevsky L, Eisenhauer A, Gao YJ, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, H fer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D and Woodhead JD. 2006. MPI-DING reference glasses for in situ microanalysis:New reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems, 7(2), doi:10.1029/2005GC001060 http://onlinelibrary.wiley.com/doi/10.1029/2005GC001060/full
[] John T, Klemd R, Klemme S, Pfänder JA, Hoffmann JE, Gao J. 2011. Nb-Ta fractionation by partial melting at the titanite-rutile transition. Contributions to Mineralogy and Petrology, 161(1): 35–45. DOI:10.1007/s00410-010-0520-4
[] Kessel R, Schmidt MW, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180km depth. Nature, 437(7059): 724–727. DOI:10.1038/nature03971
[] Klemme S, Blundy JD, Wood BJ. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109–3123. DOI:10.1016/S0016-7037(02)00859-1
[] Klemme S, Prowatke S, Hametner K, Günther D. 2005. Partitioning of trace elements between rutile and silicate melts:Implications for subduction zones. Geochimica et Cosmochimica Acta, 69(9): 2361–2371. DOI:10.1016/j.gca.2004.11.015
[] Leech ML. 2001. Arrested orogenic development:Eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, 185(1-2): 149–159. DOI:10.1016/S0012-821X(00)00374-5
[] Li JW, Deng XD, Zhou MF, Liu YS, Zhao XF, Guo JL. 2010. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1-4): 56–67. DOI:10.1016/j.chemgeo.2009.11.005
[] Li Q, Xia B, Huang QT, Xia LZ, Xia ZY. 2014. The origin and evolution of Zedang ophiolite in the eastern Yarlung-Zangbo suture zone, southern Tibet. Acta Geologica Sinica, 88(2): 145–166.
[] Lucassen F, Dulski P, Abart R, Franz G, Rhede D, Romer RL. 2010. Redistribution of HFSE elements during rutile replacement by titanite. Contributions to Mineralogy and Petrology, 160(2): 279–295. DOI:10.1007/s00410-009-0477-3
[] Ludwig KR. 2001. Squid 1.02:A User's Manual. Berkeley:Berkeley Geochronology Center, Special Publication, 1-19
[] Manning CE. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223(1-2): 1–16. DOI:10.1016/j.epsl.2004.04.030
[] Manning CE, Wilke M, Schmidt C, Cauzid J. 2008. Rutile solubility in albite-H2O and Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-XRF. Earth and Planetary Science Letters, 272(3-4): 730–737. DOI:10.1016/j.epsl.2008.06.004
[] Marks MAW, Coulson IM, Schilling J, Jacob DE, Schmitt AK, Markl G. 2008. The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chemical Geology, 257(1-2): 153–172. DOI:10.1016/j.chemgeo.2008.09.002
[] McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223–253. DOI:10.1016/0009-2541(94)00140-4
[] Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102(1-2): 1–28. DOI:10.1016/j.earscirev.2010.06.001
[] Messiga B, Tribuzio R, Bottazzi P, Ottolini L. 1995. An ion microprobe study on trace element composition of clinopyroxenes from blueschist and eclogitized FeTi-gabbros, Ligurian Alps, northwestern Italy:Some petrologic considerations. Geochimica et Cosmochimica Acta, 59(1): 59–75.
[] Miller C, Th ni M, Frank W, Schuster R, Melcher F, Meisel T, Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155–172. DOI:10.1016/S0024-4937(02)00217-7
[] Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics. Science, 301(5629): 84–87. DOI:10.1126/science.1084662
[] Olin PH, Wolff JA. 2012. Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos, 128-131: 46–54. DOI:10.1016/j.lithos.2011.10.007
[] Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21(1): 115–144. DOI:10.1111/ggr.1997.21.issue-1
[] Pedrosa ET, Putnis CV, Putnis A. 2016. The pseudomorphic replacement of marble by apatite:The role of fluid composition. Chemical Geology, 425: 1–11. DOI:10.1016/j.chemgeo.2016.01.022
[] Prowatke S, Klemme S. 2005. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 69(3): 695–709. DOI:10.1016/j.gca.2004.06.037
[] Putnis A. 2002. Mineral replacement reactions:From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66(5): 689–708. DOI:10.1180/0026461026650056
[] Putnis A. 2009. Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70(1): 87–124. DOI:10.2138/rmg.2009.70.3
[] Qi XX, Li HQ, Li TF, Cai ZH, Yu CL. 2010. Zircon SHRIMP U-Pb dating for garnet rich granite veins in high-pressure granulites from the Namche Barwa complex, eastern syntaxis of the Himalayas, and the relationship with exhumation. Acta Petrologica Sinica, 26(3): 975–984.
[] Rapp JF, Klemme S, Butler IB, Harley SL. 2010. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids:An experimental investigation. Geology, 38(4): 323–326. DOI:10.1130/G30753.1
[] Rapp RP, Shimizu N, Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605–609. DOI:10.1038/nature02031
[] Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123–138. DOI:10.1016/S0009-2541(01)00355-2
[] Rubatto D, Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173–2187. DOI:10.1016/S0016-7037(02)01321-2
[] Rudnick RL, Barth M, Horn I, McDonough WF. 2000. Rutile-bearing refractory eclogites:Missing link between continents and depleted mantle. Science, 287(5451): 278–281. DOI:10.1126/science.287.5451.278
[] Schmidt MW, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3-4): 415–432. DOI:10.1016/j.epsl.2004.08.010
[] Seifert W, Kramer W. 2003. Accessory titanite:An important carrier of zirconium in lamprophyres. Lithos, 71(1): 81–98. DOI:10.1016/j.lithos.2003.07.002
[] Sheng YM, Xia QK, Dallai L, Yang XZ, Hao YT. 2007. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochimica et Cosmochimica Acta, 71(8): 2079–2103. DOI:10.1016/j.gca.2007.01.018
[] Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust:A review. Lithos, 170-171: 208–223. DOI:10.1016/j.lithos.2013.02.016
[] Stepanov AS, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite:Implications for the "missing Nb paradox". Geology, 41(3): 303–306. DOI:10.1130/G33781.1
[] Stern RJ. 2002. Subduction zones. Reviews of Geophysics, 40(4): 3–1.
[] Storkey AC, Hermann J, Hand M, Buick IS. 2005. Using in situ trace-element determinations to monitor partial-melting processes in metabasites. Journal of Petrology, 46(6): 1283–1308. DOI:10.1093/petrology/egi017
[] Su W, You ZD, Cong BL, Ye K, Zhong ZQ. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30(7): 611–614. DOI:10.1130/0091-7613(2002)030<0611:COWMIG>2.0.CO;2
[] Tiepolo M, Oberti R, Vannucci R. 2002. Trace-element incorporation in titanite:Constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191(1-3): 105–119. DOI:10.1016/S0009-2541(02)00151-1
[] Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C. 2003. Zircons from Syros, Cyclades, Greece:Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44(11): 1977–2002. DOI:10.1093/petrology/egg067
[] Tropper P, Manning CE. 2005. Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. American Mineralogist, 90(2-3): 502–505. DOI:10.2138/am.2005.1806
[] Tropper P, Manning CE. 2008. The current status of titanite-rutile thermobarometry in ultrahigh-pressure metamorphic rocks:The influence of titanite activity models on phase equilibrium calculations. Chemical Geology, 254(3-4): 123–132. DOI:10.1016/j.chemgeo.2008.03.010
[] Vavra G, Gebauer D, Schmid R, Compston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122(4): 337–358. DOI:10.1007/s004100050132
[] Wang L, Zeng LS, Gao LE, Tang SH, Hu GY. 2012. Remnant Jurassic intra-oceanic arc system in Southern Tibet:Geochemistry and tectonic implications. Acta Petrologica Sinica, 28(6): 1741–1754.
[] Wang YH, Zeng LS, Gao LE, Zhang LF, Hou KJ. 2014. Labradonian and Greenvillian orogenic events in the Namche Barwa Massif of the Himalayan orogenic belt. Acta Petrologica Sinica, 30(8): 2241–2252.
[] Watson EB, Liang Y. 1995. A simple model for sector zoning in slowly grown crystals:Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist, 80(11-12): 1179–1187. DOI:10.2138/am-1995-11-1209
[] Wei DL, Xia B, Zhou GQ, Wang R, Zhong LF, Wan SK. 2006. Sm-Nd isochron age of Zedang ophiolite in Tibet and its significance. Acta Geoscientica Sinica, 27(1): 31–34.
[] Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191–201. DOI:10.1016/j.chemgeo.2008.03.003
[] Xia B, Li JF, Liu LW, Xu LF, He GS, Wang H, Zhang YQ, Yang ZQ. 2008. SHRIMP U-Pb dating for diabase in Sangsang ophiolite, Xizang, China:Geochronological constraint for development of eastern Tethys basin. Geochimica, 37(4): 399–403.
[] Xia QX, Zheng YF, Chen YX. 2013. Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the Dabie orogen. Journal of Asian Earth Sciences, 67-68: 93–113. DOI:10.1016/j.jseaes.2013.02.014
[] Xiao YL, Sun H, Gu HO, Huang J, Li WY, Liu L. 2015. Fluid/melt in continental deep subduction zones:Compositions and related geochemical fractionations. Science China (Earth Sciences), 58(9): 1457–1476. DOI:10.1007/s11430-015-5149-8
[] Xiong XL, Adam J, Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology, 218(3-4): 339–359. DOI:10.1016/j.chemgeo.2005.01.014
[] Xiong XL, Keppler H, Audétat A, Gudfinnsson G, Sun WD, Song MS, Xiao WS, Yuan L. 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist, 94(8-9): 1175–1186. DOI:10.2138/am.2009.3158
[] Xiong XL, Keppler H, Audétat A, Ni HW, Sun WD, Li Y. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673–1692. DOI:10.1016/j.gca.2010.06.039
[] Xu ZQ, Cai ZH, Zhang ZM, Li HQ, Chen FY, Tang ZM. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463–1476.
[] Xu ZQ, Yang JS, Li HB, Ji SC, Zhang ZM, Liu Y. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1–33. DOI:10.1111/acgs.2011.85.issue-1
[] Xu ZQ, Yang JS, Li HQ, Wang RR, Cai ZH. 2012. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism. Acta Petrologica Sinica, 28(6): 1697–1709.
[] Zack T, Kronz A, Foley SF, Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1-2): 97–122. DOI:10.1016/S0009-2541(01)00357-6
[] Zeitler PK, Meltzer AS, Brown L, Kidd WSF, Lim C, Enkelmann E. 2014. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet. Geological Society of America Special Paper, 507: 22–58.
[] Zeng LS, Gao LE, Dong CY, Tang SH. 2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Research, 21(1): 138–151. DOI:10.1016/j.gr.2011.07.023
[] Zeng LS, Chen ZY, Chen J. 2013. Metamorphic solid salt (KCl-NaCl) in quartzo-feldspathic polyphase inclusions in the Sulu ultrahigh-pressure eclogite. Chinese Science Bulletin, 58(8): 931–937. DOI:10.1007/s11434-012-5373-y
[] Zhang JF, Jin ZM, Green HW, Jin SY. 2001. Hydroxyl in continental deep subduction zone:Evidence from UHP eclogites of the Dabie Mountains. Chinese Science Bulletin, 46(7): 592–596. DOI:10.1007/BF02900418
[] Zhang ZM, Shen K, Sun WD, Liu YS, Liou JG, Shi C, Wang JL. 2008. Fluids in deeply subducted continental crust:Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200–3228. DOI:10.1016/j.gca.2008.04.014
[] Zhang ZM, Wang JL, Zhao GC, Shi C. 2008. Geochronology and precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1477–1487.
[] Zhang ZM, Dong X, Santosh M, Liu F, Wang W, Yiu F, He ZY, Shen K. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123–137. DOI:10.1016/j.gr.2011.02.002
[] Zhang ZM, Dong X, Xiang H, Liou JG, Santosh M. 2013. Building of the deep Gangdese arc, South Tibet:Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547–2580. DOI:10.1093/petrology/egt056
[] Zhang ZM, Dong X, Xiang H, Ding HX, He ZY, Liou JG. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet:Post-collisional metamorphism and anatexis. Journal of Metamorphic Geology, 33(1): 1–21. DOI:10.1111/jmg.12107
[] Zheng LL, Geng QR, Ou CS, Wang XW. 2003. Geochemical characteristics and geological significance of boninite in Yaluzangbujiang ophiolitic mélanges in Najiabawa. Geological Bulletin of China, 22(11-12): 908–911.
[] Zheng LL, Jin ZM, Pan GT, Geng QR, Sun ZM. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalayas. Acta Geologica Sinica, 78(6): 744–751.
[] Zheng YF. 2009. Fluid regime in continental subduction zones:Petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society, 166(4): 763–782. DOI:10.1144/0016-76492008-016R
[] Zheng YF, Chen RX, Zhao ZF. 2009. Chemical geodynamics of continental subduction-zone metamorphism:Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475(2): 327–358. DOI:10.1016/j.tecto.2008.09.014
[] Zheng YF, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66: 93. DOI:10.1186/1880-5981-66-93
[] Zhong LF, Xia B, Zhou GQ, Zhang YQ, Wang R, Wei DL, Yang ZQ. 2006. SHRIMP age determination of the diabase in Luobusa ophiolite, southern Xizang (Tibet). Geological Review, 52(2): 224–229.
[] Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa Terrane:Record of a micro continent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241–255. DOI:10.1016/j.epsl.2010.11.005
[] 董昕, 张泽明. 2013. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义. 岩石学报, 29(6): 1933–1948.
[] 耿全如, 潘桂棠, 刘宇平, 郑来林. 2000. 雅鲁藏布大峡谷地区蛇绿混杂岩带初步研究. 沉积与特提斯地质, 20(1): 28–43.
[] 耿全如, 潘桂棠, 郑来林, 孙志明, 欧春生, 董翰. 2004. 藏东南雅鲁藏布蛇绿混杂岩带的物质组成及形成环境. 地质科学, 39(3): 388–406.
[] 胡明月, 何红蓼, 詹秀春, 樊兴涛, 王广, 贾泽荣. 2008. 基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用. 分析化学, 36(7): 947–953.
[] 李强, 夏斌, 黄强太, 夏连泽, 夏中宇. 2014. 雅鲁藏布江蛇绿岩带东段泽当蛇绿岩起源及演化. 地质学报, 88(2): 145–166.
[] 戚学祥, 李化启, 李天福, 蔡志慧, 于春林. 2010. 东喜马拉雅构造结南迦巴瓦群高压麻粒岩中含石榴石花岗岩脉锆石SHRIMP U-Pb定年及其与折返作用. 岩石学报, 26(3): 975–984.
[] 王莉, 曾令森, 高利娥, 唐索寒, 胡古月. 2012. 藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义. 岩石学报, 28(06): 1741–1754.
[] 王誉桦, 曾令森, 高利娥, 张立飞, 侯可军. 2014. 喜马拉雅造山带东构造结拉布拉多期和格林威尔期造山作用的记录. 岩石学报, 30(8): 2241–2252.
[] 韦栋梁, 夏斌, 周国庆, 王冉, 钟立峰, 万哨凯. 2006. 西藏泽当蛇绿岩的Sm-Nd等时线年龄及其意义. 地球学报, 27(1): 31–34.
[] 夏斌, 李建峰, 刘立文, 徐力峰, 何观生, 王洪, 张玉泉, 杨之青. 2008. 西藏桑桑蛇绿岩辉绿岩SHRIMP锆石U-Pb年龄:对特提斯洋盆发育的年代学制约. 地球化学, 37(4): 399–403.
[] 肖益林, 孙贺, 顾海欧, 黄建, 李王晔, 刘磊. 2015. 大陆深俯冲过程中的熔/流体成分与地球化学分异. 中国科学(地球科学), 45(8): 1063–1087.
[] 许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463–1476.
[] 许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1–33.
[] 许志琴, 杨经绥, 李化启, 王瑞瑞, 蔡志慧. 2012. 中国大陆印支碰撞造山系及其造山机制. 岩石学报, 28(6): 1697–1709.
[] 张泽明, 王金丽, 赵国春, 石超. 2008. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24(7): 1477–1487.
[] 郑来林, 耿全如, 欧春生, 王小伟. 2003. 藏东南迦巴瓦地区雅鲁藏布江蛇绿混杂岩中玻安岩的地球化学特征和地质意义. 地质通报, 22(11-12): 908–911.
[] 郑来林, 金振民, 潘桂棠, 耿全如, 孙志民. 2004. 东喜马拉雅南迦巴瓦地区区域地质特征及构造演化. 地质学报, 78(6): 744–751.
[] 钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224–229.