岩石学报  2017, Vol. 33 Issue (8): 2377-2394   PDF    
西藏南部冈底斯大陆弧早白垩纪弧前伸展作用
曾令森1, 高利娥1, 郭春丽2, 侯可军2, 王倩2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国地质科学院矿产资源研究所, 北京 100037
摘要: 在现今活动的俯冲带系统中,俯冲板片的后撤或回卷都可能导致弧前伸展作用,但弧前伸展作用是否局限于浅部构造层次,还是涉及整个岩石圈,是理解岛弧构造演化和地球化学效应的重要课题。在西藏冈底斯岩基南缘,保留着世界上典型的弧前盆地——日喀则弧前盆地。在该盆地的北缘,除了发育中新世闪长玢岩脉外,还发育一系列近东西向展布的辉绿岩脉,形成时代为106.6±0.8Ma(锆石U-Pb年龄)。基性岩脉在岩石学、矿物学和地球化学特征上较均一,具体表现为:(1)富集LREE,亏损HREE,但HREE平直;(2)强烈亏损Rb、Ba、Nb和Ta,微弱亏损Ti,但Zr和Hf不具亏损现象;(3)锆石Hf同位素组成(εHft)=+11.7~+15.4)较高;和(4)包含捕获的早侏罗世岩浆锆石。上述数据表明:在日喀则弧前盆地形成过程中,伴随着强烈的早白垩纪弧前伸展作用,诱发较亏损地幔发生部分熔融,形成不同于典型岛弧岩浆岩的基性岩,可能是在新特提斯洋北向俯冲过程中,海沟后撤,在弧前形成强烈的地幔角流的结果。同时,日喀则弧前盆地可能构建于早侏罗纪结晶岩系之上。
关键词: 日喀则弧前盆地     弧前伸展作用     基性岩浆作用     冈底斯岩基     西藏    
Early Cretaceous forearc extension of the Gangdese continental arc, southern Tibet
ZENG LingSen1, GAO LiE1, GUO ChunLi2, HOU KeJun2, WANG Qian2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: In modern subduction systems, forearc extension is common and associated with the retreat or roll-back of subducting oceanic slab. Whether such extension is limited to the crustal level or involves the mantle lithosphere is one of the interesting questions poorly resolved. The Xigatze forearc basin developed along the southern margin of the Gangdese batholith is one of the best preserved forearc basins worldwide. Within this basin, except for the Mid-Miocene dioritic dikes, there occur a series of nearly E-W trending dikes of diabasic composition. Zircon U-Pb dating results show that these mafic dikes formed at 106.6±0.8Ma, substantially younger than those mafic dikes by~20Myr within the Xigatze ophiolite. These mafic dikes are characterized by (1) enrichment in LREE, depletion in HREE, and nearly flat HREE distribution patterns; (2) strong depletion in Rb, Ba, Nb, and Ta, weak depletion in Ti, and no anomalies in Zr and Hf; (3) high and positive zircon εHf values ( > +11.7 and up to +15.4); and (4) presence of possibly captured Early Jurassic zircon grains. These observations suggest that the development of the Xigatze forearc basin was accompanied by intensive forearc extension which induced partial melting of relatively more depleted forearc mantle lithosphere and the generation of basaltic magmas different from typical arc basalts. The Early Cretaceous forarc extension and melting could be triggered by enhanced corner flow due to southward retreat of subducting Neo-Tethyan oceanic slab. Zircon grains with ages~180Ma from the diabases might suggest the presence of Early Jurassic crystalline rocks beneath the Xigaze forearc basin.
Key words: Xigatze forarc basin     Forearc extension     Mafic magmatism     Gangdese batholith     Tibet    
1 引言

在现今活动的俯冲带系统中,弧前伸展作用是普遍存在的现象(Fitch, 1972; McCaffrey, 1991, 1992; McIntosh et al., 1993; Meschede et al., 1999; Whitmore et al., 1997; Schellart and Lister, 2005; Morell et al., 2011; Reitz and Seeber, 2012; Reagan et al., 2010; Maffione et al., 2013, 2015; Xiong et al., 2016),常常与俯冲剥蚀作用、俯冲带的后撤或回卷(Reitz and Seeber, 2012)或与俯冲带的启动相关(Reagan et al., 2010),同时伴随着不同规模的基性岩浆作用。厘定这些基性岩浆作用的地球化学特征,不仅是鉴别上述不同作用机制的关键,还是限定新俯冲带启动和形成机制的重要课题(Pearce et al., 1984; Stern and Bloomer, 1992; Le Brun et al., 2003; Sutherland et al., 2006; Stern et al., 2012; Turner et al., 2014)。新俯冲带启动的作用尺度达半球尺度,强烈地改变原有岩石圈作用力平衡状态,导致上地幔流动的重组,改变板块运动方式,诱发广泛、大规模的岩浆作用,是板块构造研究最为薄弱的环节。已有研究揭示了俯冲带的启动在重溯中生代西北美板块边缘(Dickinson, 2004)、晚白垩纪欧亚大陆西南汇聚大陆边缘的建立(Moghadam and Stern, 2011)和西太平洋活动俯冲带的形成(Ishizuka et al., 2011)等构造转换中起了关键作用。俯冲带启动过程是快速、转眼即逝的过程,现今地球上只存在为数不多的、还在活动的例子,如南新西兰海岸的Puysegur俯冲带(Le Brun et al., 2003; Sutherland et al., 2006Stern et al., 2012)。几乎所有与俯冲带启动相关的构造、岩浆作用和沉积响应的记录都保存在弧前,深深地淹没和埋藏在沉积物之下,较难于够及,严重地影响着对俯冲带系统弧前构造过程的认识。在已消亡的大陆弧或大洋弧中,是否存在同样的现象,是值得探讨深入研究的问题。另外,在非加积增生边缘(如委内瑞拉和马里亚纳)(Aubouin and von Huene, 1985Hussong et al., 1988; von Huene et al., 2004)和发生俯冲剥蚀作用的岛弧系统中,都有弧前伸展作用的报道,但这些伸展作用都局限于浅部地壳层次,弧前伸展作用是否可波及较深的构造层次是另一个有待深入研究的课题。因此,厘定已消亡弧的弧前伸展作用对于识别和深入理解消亡弧的弧前构造作用及其地球化学和构造物理效应具有重要意义。

藏南冈底斯岩基是已消亡的大陆弧(或大洋弧)(Wen et al., 2008; Ji et al., 2009; 张泽明等,2009Chu et al., 2011; Zhu et al., 2011; 王莉等,2012; Zhang et al., 2014),保留了大量有关新特提斯洋北向俯冲的构造、沉积和岩浆作用的记录。在冈底斯岩基形成和演化过程中,是否经历了弧前伸展和基性岩浆作用?深入研究和回答该问题,将有助于了解弧前盆地的沉积环境和基底组成和新特提斯洋俯冲动力学过程。冈底斯岩基的南缘保留着世界上保存最好的弧前盆地之一——日喀则弧前盆地,除了发育中新世闪长斑岩脉外(Ji et al., 2009; 陈希节等,2014),还发育大量的、近东西向平行展布基性岩脉或基性岩体(图 1),为了解冈底斯弧的弧前伸展作用的时代和岩浆作用的性质提供了良好机会。

图 1 西藏日喀则盆地地质简图(据Pan et al., 2004和野外观测修编) Fig. 1 Simplified geological map of the Xigatze forearc basin near Xigatze (after Pan et al., 2004 and field observations)

在本文中,就日喀则弧前盆地中发育的两类岩浆岩(辉绿岩和闪长玢岩)开展了全岩元素地球化学、锆石U-Pb地质年代学和Hf同位素研究,来揭示冈底斯弧弧前岩浆作用的时限和地球化学特征,同时结合文献数据,来限定日喀则弧前盆地沉积岩沉积年龄,了解弧前盆地的基底性质和特征。

2 地质背景和样品描述

藏南冈底斯岩基是已消亡的大陆弧(或大洋弧)(Chu et al., 2011; Zhu et al., 2011; 王莉等,2012),保留了大量有关新特提斯洋北向俯冲的构造、沉积和岩浆作用的记录。冈底斯岩基的南缘保留着世界上保存最好的弧前盆地之一——日喀则弧前盆地,除了发育中新世闪长玢岩脉外(Ji et al., 2009; 陈希节等,2014),还发育大量的、近东西向平行展布基性岩脉或基性岩体(图 1)。日喀则弧前盆地主要由日喀则群碎屑沉积岩组成。从底部往上,日喀则群依次由冲堆组、昂仁组、帕达那组和曲贝亚组组成(钱定宇等,1982吴浩若, 1984; Einsele et al., 1994; Dürr, 1996; Wan et al., 1998; 王成善,1999贾建称等,2005Wu et al., 2010Wang et al., 2012)。其中,昂仁组是日喀则群的主要组成部分,分为上中下三统,微体化石组合特征表明该套地层的沉积时限为ca.100~86Ma(Wan et al., 1998),与碎屑锆石地质年代学的限定(ca.107~84Ma)较一致(Wu et al., 2010)。在日喀则市周边,以雅鲁藏布江缝合带为界,昂仁组地层往南依次变新。在昂仁组下统地层中,发育一系列近东西向展布的辉绿岩脉和闪长玢岩脉。辉绿岩脉间隔分布,构成辉绿岩墙群,局部被闪长玢岩脉切穿(图 2),表明辉绿岩脉形成时间要早于闪长玢岩脉。辉绿岩主要有单斜辉石、斜长石组成,经历了一定程度的后期蚀变作用,部分单斜辉石蚀变成为角闪石或绿帘石(图 3a, b)。闪长玢岩较新鲜,斑晶主要由角闪石和斜长石组成,基质由斜长石、角闪石、黑云母和石英组成。斜长石和角闪石斑晶都具有成分环带(图 3c, d)。已有锆石U-Pb地质年代学数据表明闪长玢岩脉的形成年龄为~14Ma(Ji et al., 2009; 陈希节等,2014)。确定这些辉绿岩脉的年龄揭示日喀则弧前盆地形成过程中可能的构造过程都具有关键意义。

图 2 西藏日喀则盆地辉绿岩和闪长玢岩脉野外照片 Fig. 2 Field photograph showing the intrusion of diabase and diorite dikes into the shale and sandstone sequence of the Xigatze forearc basin

图 3 西藏日喀则盆地辉绿岩(a、b)和闪长玢岩脉(c、d)显微照片 Pl-斜长石; Cpx-单斜辉石; Hbl-角闪石; Ilm-钛铁矿; Epi-绿帘石 Fig. 3 Microphotograph showing the texture and mineral assemblage of diabase (a, b) and diorite (c, d) from the Xigatze forearc basin Pl-plagioclase; Cpx-clinopyroxene; Hbl-hornblende; Ilm-ilmenite; Epi-epidote
3 分析方法 3.1 锆石U-Pb定年

为了确定两类岩脉的形成年代,从辉绿岩样品T0900-C和闪长玢岩样品T0900-A和T0900-B中挑选锆石,经过手工挑选、制靶和抛光,然后进行阴极发光(CL)和扫描电镜背散射(BSE)成像观察, 揭示锆石的内部结构。阴极发光成像在中国地质科学院地质研究所北京离子探针中心进行。在中国地质科学院地质研究所大陆构造与动力学国家重点实验室进行了BSE图像和锆石内部包裹体的成分测试.在阴极发光和BSE图像的指导下,揭示锆石不同生长域的细微区别特征,选取锆石U-Pb测试点。锆石U/Pb同位素定年测试在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室进行。所用仪器为德国Finnigan公司生产的Neptune型激光多接收等离子体质谱(LA-MC-ICPMS), 并结合美国New Wave公司生产的UP213nm激光剥蚀系统, 激光剥蚀所用斑束直径为25μm, 频率为10Hz, 能量密度约为2.5J/cm2, 以He为载气。U和Th含量以锆石标样M 127 (U=923×10-6; Th=439×10-6; Th/U=0.475) 为外标进行校正。在测试过程中, 每测定10个样品点前后重复测量两次锆石标样GJ-1和一次锆石标样Plesovice。分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal完成(Liu et al., 2010), 锆石年龄谐和图用Isoplot 3.0程序获得。测试结果见表 1

表 1 西藏日喀则弧前盆地辉绿岩和闪长玢岩锆石U-Pb定年数据 Table 1 U-Pb analytical results for zircons from diabase and diorite samples in the Xigatze forearc basin, southern Tibet
3.2 全岩地球化学测试

为确定日喀则辉绿岩和闪长玢岩的地球化学特征,通过野外系统采样和室内样品的制备,分析了它们的全岩主量和微量元素组成,测试在国土资源部国家地质实验测试中心进行。主量元素通过XRF(X荧光光谱仪3080E)方法测试,分析精度为5%。微量元素和稀土元素(REE)通过等离子质谱仪(ICP-MS-Excell)分析,含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素精度为10%。个别在样品中含量低的元素,测试误差大于10%。分析结果见表 2

表 2 藏南日喀则弧前盆地辉绿岩和闪长玢岩全岩地球化学组成(主量元素:wt%;稀土和微量元素:×10-6) Table 2 Whole-rock geochemical compositions of for the diabase and diorite samples from the Xigatze forearc basin, southern Tibet (major elements: wt%; trace elements: ×10-6)
3.3 锆石Hf同位素测试

锆石Hf同位素测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用He作为剥蚀物质载气,剥蚀直径采用40μm,测定时使用锆石国际标样GJ1和Plesovice作为参考物质,分析点与U-Pb定年分析点为同一位置。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ1和Plesovice的176Hf/177Hf测试加权平均值分别为0.282007±0.000007 (, n=36) 和0.282476±0.000004 (2σ, n=27),与文献报道值(侯可军等,2007Morel et al., 2008; Sláma et al., 2008)在误差范围内完全一致。测试结果见表 3

表 3 藏南日喀则弧前盆地辉绿岩和闪长玢岩锆石Hf同位素组成 Table 3 Zircon Hf isotope compositions for the diabase and diorite samples from the Xigatze forearc basin, southern Tibet
4 数据和结果 4.1 基性岩脉的结晶年龄 4.1.1 辉绿岩形成时代

辉绿岩呈近平行基性岩墙,侵入到日喀则弧前盆地沉积岩中(图 2)。在辉绿岩样品中,多数锆石为短柱状,具宽板状韵律环带(图 4a),个别为具有较小的继承性核部。为确定日喀则辉绿岩的形成时代和继承性锆石的年龄,选择了具有不同结构的24颗锆石,测量了它们的U-Pb同位素组成。测试结果表明,结构较简单的锆石在U和Th含量及U/Pb年龄上都表现出较一致的特征。U和Th的含量较低,分别在27.7×10-6~188.4×10-6,和26.9×10-6~147.1×10-6,Th/U比值为0.46~1.17(表 1)。206Pb/238U年龄变化较小,在96.5Ma到109.1Ma之间,集中在谐和线的~106.6Ma附近,加权平均年龄为106.6±0.8Ma (N=11, MSWD=0.96)(图 5)。典型的生长韵律环带和较高的Th/U比值表明该年龄为辉绿岩的结晶年龄。

图 4 西藏日喀则盆地辉绿岩(a)和闪长玢岩脉(b、c)锆石阴极发光(CL)图像,显示锆石内部结构及U-Pb测试位置 Fig. 4 CL images of zircons from diabase (a) and diorite (b, c) dikes showing the internal texture and respective spot for U-Pb isotope analyses

图 5 日喀则弧前盆地辉绿岩锆石U-Pb定年谐和图(a)和年龄分布图(b) Fig. 5 U-Pb concordia diagram (a) and age distribution diagram (b) for U-Pb analytical results for zircon grains from the diabase within the Xigatze forearc basin

这些基性岩脉还包含一些继承性锆石,无论是锆石结构(图 4a),还是U和Th含量、U-Th系统关系(表 1)以及206Pb/238U年龄都与上述锆石不同。继承性锆石的年龄从110.4Ma到180.8Ma,其中多数锆石年龄分布在170.3Ma到180.8Ma之间。

4.1.2 闪长玢岩脉的年龄

在日喀则弧前盆地中,还发育一系列近平行展布的闪长玢岩脉。为确定这些脉体的形成时代,从中选择了两条脉体T0900-A和T0900-B,从中挑选出锆石,进行了U-Pb地质年代学测试。两条脉体中的锆石表现出相似特征,都具有良好的韵律环带(图 4b, c)。在样品T0900-A中,锆石在U和Th含量及U-Pb年龄上都表现出较一致的特征。U和Th的含量较低,分别在48.2×10-6~543.9×10-6,和26.9×10-6~208.2×10-6,Th/U比值较高,为0.14~1.09(表 1)。206Pb/238U年龄变化较小,在13.3Ma到16.9Ma之间,集中在谐和线的~14.9 Ma附近,加权平均年龄为14.9±0.7Ma (N= 15, MSWD=1.7)(图 6)。典型的生长韵律环带和较高的Th/U比值都表明该年龄为闪长玢岩的结晶年龄。样品T0900-B给出的结果类似,结晶年龄为14.7±0.2Ma(N=12,MSWD=2.9)(图 6)。上述数据表明,闪长玢岩脉的形成时代为14.7~14.9Ma,与前人报道的年龄相似(Chung et al., 2003; Chu et al., 2006; Ji et al., 2009; 陈希节等,2014)。

图 6 日喀则弧前盆地闪长玢岩锆石U-Pb定年谐和图和年龄分布图 (a、b)样品T0900-A;(c、d)样品T0900-B Fig. 6 U-Pb concordia and age distribution diagrams for U-Pb analytical results for zircon grains from dioritic sample T0900-A (a, b) and T0900-B (c, d) from the Xigatze forearc basin
4.2 基性岩脉的元素地球化学特征

在主量元素组成特征上(图 7),日喀则辉绿岩表现出以下特征:(1) SiO2含量较低,在47.3%~53.0%之间,Al2O3的变化范围较大为15.2%~17.0%;(2) FeOT(6.6%~8.3%), MgO(3.3%~5.0%)和TiO2(0.8%~1.1%)含量都较低;(3) CaO(7.6%~12.1%)和Na2O(2.7%~4.3%)含量较高;(4) K2O的较低(<0.4%)(表 2);(4) Mg#(=MgO/(FeO+MgO))在47.9到52.4之间,其中样品T0900-C3的MgO含量最高(5.4%),最接近于原始岩浆。上述特征表明这套辉绿岩为低钾玄武质岩石,部分钙较高的样品明显经历了碳酸盐化作用。

图 7 日喀则弧前盆地辉绿岩和闪长玢岩主量元素TiO2 (a)、Al2O3 (b)、FeOT (c)、MgO (d)、CaO (e)和K2O (f)与SiO2之间的协变图 Fig. 7 Co-variation diagram of TiO2 (a), Al2O3 (b), FeOT (c), MgO (d), CaO (e) and K2O (f) versus SiO2 for the diabase and dioritic dikes from the Xigatze forearc basin

日喀则辉绿岩具有以下微量元素地球化学特征,表现为(1) 轻重稀土明显分馏((La/Yb)N=5.08~6.94),富集稀土(LREE),相对亏损重稀土(HREE),但HREE相对平直((Ho/Yb)N=1.03~1.24) (表 2图 8a); (2) 无铕异常(Eu/Eu*=0.92~1.07)(表 2);(3) 中等含量的Sr (181×10-6~378×10-6)、V (192×10-6~269×10-6)、Sc (17.6×10-6~24.0×10-6)和Y (15.7×10-6~19.4×10-6), 但Rb (<8.0×10-6)、Cs (<1.8×10-6)和Ba (<90×10-6)含量都较低;(4) 高场强元素(Zr、Hf、Nb和Ta)含量都较低,具有明显的Nb、Ta和Ti负异常,但Zr和Hf不显示异常(图 8b),并且Zr/Hf(31.0~38.8) 和Nb/Ta(13.5~16.4) 变化都较大(表 2)。

图 8 日喀则弧前盆地基性岩辉绿岩和闪长玢岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the diabase and dioritic dikes from the Xigatze forearc basin (normalization values after Sun and McDonough, 1989)
4.3 闪长玢岩脉的元素地球化学特征

和辉绿岩相比,日喀则闪长玢岩表现出以下主量元素组成特征(图 7):(1) SiO2 (61.3%~64.1%)、Al2O3 (16.1%~17.0%)和Na2O(5.2%~6.3%)含量较高且较均一;(2) FeOT(3.7%~4.3%)、MgO(<2.4%)、TiO2(<0.8%)和CaO(<6.0%)含量都较低, 但K2O的较高(1.1%~2.2%);(3) Na2O/K2O比值(2.56~5.06) 较高;(4) Mg#在47.7~53.2之间,与辉绿岩相似。上述特征表明这套闪长玢岩为富钠闪长质岩石。

日喀则闪长玢岩具有以下微量元素地球化学特征,表现为(1) 轻重稀土明显分馏((La/Yb)N=17.3~23.4),富集稀土(LREE),强烈亏损重稀土(HREE),但HREE相对平直((Ho/Yb)N=(1.16~1.56))(表 2图 8a); (2) 微弱副铕异常(Eu/Eu*=0.81~0.92)(表 2);(3) Sr(601×10-6~1090×10-6)、Ba(422×10-6~661×10-6)和La (12.8×10-6~17.6×10-6)较高,但Y(<7.6×10-6)、Yb (<0.6×10-6)和Sc(<8.0×10-6)都较低;(3) 较高的Sr/Y(81.7~162) 和La/Yb(24.7~33.2) 比值(表 2);(4) 富集大离子亲石元素,高场强元素(Zr、Hf、Nb和Ta)含量都较低(图 8b),具有明显的Nb、Ta、Zr和Ti负异常(图 8b),与弧岩浆岩类似,并且Zr/Hf(26.7~33.8) 和Nb/Ta(14.3~17.1) 变化都较大(表 2)。

4.4 锆石Hf同位素组成

为确定日喀则辉绿岩和闪长玢岩中锆石Hf同位素的组成,利用MC-ICP-MS对上述锆石进行了原位Hf同位素测试。在辉绿岩中,除了捕获锆石具有变化较大的εHf(t)(+7.2 ~+18.0) 外,其它岩浆锆石的176Lu/177Hf比值低(<0.00289), εHf(t)值较高,在+11.7~+17.6之间(图 9),平均为+13.5±0.8,锆石Hf同位素的亏损地幔模式年龄(tDM)较年轻,为59~296Ma(表 3)。

图 9 日喀则弧前盆地基性岩辉绿岩(a)和闪长玢岩(b、c)锆石Hf同位素组成特征 Fig. 9 Zircon Hf isotope compositions for the diabase (a) and dioritic dikes (b, c) from the Xigatze forearc basin

在闪长玢岩脉T0900-A中,锆石Hf同位素测试结果表明:(1) 锆石的176Lu/177Hf比值低,小于0.00163;(2) 除了捕获锆石具有较低的εHf(t)(<+4.8) 外,其他锆石Hf同位素组成较均一, εHf(t)值在+4.4~+7.3之间(图 9),平均+6.2±0.8;和(3) 锆石Hf同位素的亏损地幔模式年龄(tDM)较年轻,为385~506Ma。另1件样品(T0900-B)表现出类似特征,εHf(t)值在+3.8~+9.6之间(图 9),平均+6.2±0.7,锆石Hf同位素的亏损地幔模式年龄(tDM)为313~553Ma(表 3)。较低的Hf同位素比值和较年轻的Hf同位素模式年龄,表明这些玢岩脉的源区是新生地壳物质。

上述数据表明:(1) 辉绿岩形成时代为106.6±0.8Ma,包含年龄为ca.170~180Ma的捕获锆石;(2) 早白垩纪岩浆锆石与捕获锆石具有不同的U-Th系统关系,表明它们的成因不同;(3) 辉绿岩具有较高的锆石Hf同位素比值(εHf(t)=+11.7~+15.4),与稍微低于同期的亏损地幔值;(4) 闪长玢岩脉形成于中新世,具有高Sr/Y(81.7~162) 和La/Yb(24.7~33.2) 比值、较低的Hf同位素组成和弧岩浆岩的微量元素特征。无论在形成时代,还是在全岩元素和锆石Hf同位素地球化学特征上,日喀则弧前盆地闪长玢岩脉和冈底斯岩基中同期高Sr/Y比花岗质岩石(Chung et al., 2003; Hou et al., 2004; Chu et al., 2006; 侯增谦等,2006; Ji et al., 2009; 陈希节等,2014)都具有高度的相似性,可能是增厚地壳条件下基性新生下地壳部分熔融的产物。

5 讨论 5.1 日喀则弧前盆地辉绿岩的形成时代和构造背景

日喀则弧前盆地中的辉绿岩在形成时代和元素地球化学特征上都与日喀则蛇绿岩和增生楔中基性岩存在明显的差异性。例如在斯米拉山的满拉水库附近,发育一较大型的辉绿岩体,侵入到甲不拉组页岩和碳酸岩中,形成时代为69.2±0.9Ma(锆石U-Pb年龄),具有介于MORE和OIB之间的REE、地幔相容元素、较低的锆石Hf(εHf(t)=-1.0~-5.5) 等地球化学特征(Zeng et al., 2012)。同时也明显不同于~125Ma的侵入到蛇绿岩套中的具有MORB特征的辉长岩或辉绿岩(Bédard et al., 2009; Hébert et al., 2012; Dai et al., 2013Liu et al., 2014; Huang et al., 2015),也不同于特提斯喜马拉雅带广泛分布的辉绿岩(Zhu et al., 2009; 曾令森等,2012王亚莹等,2016)。

在元素地球化学特征上,这些辉绿岩脉都表现出富集LREE,但亏损大离子亲石元素(Rb、K、Ba和Sr)和高场强元素(Ti,Nb和Ta)。该套基性岩石亏损大离子亲石元素(图 8b),明显不同于岛弧岩浆岩;但在高场强元素上,有表现出类似弧玄武岩(IAB)的特征。上述特征不太吻合经历过强烈流体交代的俯冲带上盘地幔楔的部分熔融的特征。Reagan et al.(2010)研究了太平洋西部的马里亚纳弧弧前岩浆作用的地球化学特征,识别出一套具有特殊元素地球化学特征的的玄武岩,并命名为弧前玄武岩(FAB,Fore-arc basalt)。与MORB或弧后盆地玄武岩(BAB)相比,虽然FAB具有相似的微量元素地球化学特征,但在Ti和V上明显更亏损,要求比MORB或BAB更加亏损源区。在产出背景上,日喀则基性岩产出在弧前环境,与FAB相似,但在Ti-V和Yb-V特征上(图 10),位于正常弧玄武岩和FAB之间,表现为IAB和FAB混合特征,预示着其源区的特殊性。同时与亏损地幔Hf同位素组成相比,Hf同位素组成稍微降低,表明其源区经历了微弱程度的壳源物质的混染。

图 10 日喀则弧前盆地基性岩Ti-V(a)和Yb-V(b)关系图 FAB=弧前玄武岩;P-MORB=太平洋洋中脊玄武岩;M-Trough=马里亚纳海沟玄武岩;M-Arc=马里亚纳岛弧玄武岩;WPB=板内玄武岩;MDT=基性岩浆演化趋势 Fig. 10 Diagrams showing relationship of Ti (a) and Yb (b) with V in the diabases from the Xigatze forearc basin, southern Tibet FAB=Forearc basalt; P-MORB=Pacific MORB; M-Trough=Basalt from the Mariana trough; M-Arc=Basalt from the Mariana Island Arc; WPB=Within-plate basalt; MDT=Magmatic differentiation trend of the mafic rocks

值得指出的是该套~107Ma的基性岩脉具有一些特殊的地球化学特征,具体表现为(1) 亏损大离子亲石元素(LILE, 如Rb,Cs和Ba)和部分高场强元素(HFSE,如Ti,Nb和Ta),但Zr和Hf不亏损(图 8);和(2) 富集LREE等。锆石Hf同位素组成特征表明其源区是亏损地幔(图 9),同时亏损LILE和部分HFSE也要求其源区是较亏损的地幔,但Ti-Nb-Ta与Zr-Hf体系的解耦和富集LREE的现象要求该套基性岩脉的亏损地幔源区经历了一定程度的Zr、Hf和LREE的富集作用。在俯冲带环境中,常常由于来自俯冲板片的流体或硅酸盐熔体或来自深部的碳酸盐熔体的交代作用,俯冲带上盘地幔楔或弧前岩石圈地幔发生不同程度的富集作用(Elliott et al., 1997; Ducea et al., 2005; Pearce et al., 2005; König et al., 2010Ling et al., 2013; Hou et al., 2015),但俯冲带流体携带REE和HFSE的能力较差,不可能导致亏损地幔源区富集LREE和HFSE,因此,上述特征与流体交代过的地幔源区的部分熔融作用不吻合,可能是原来较亏损的地幔经历了硅酸盐熔体或碳酸盐熔体的交代作用的结果。硅酸盐熔体和碳酸盐熔体在携带LREE和HFSE的能力上也具有一定差别,但要甄别是硅酸盐熔体还是碳酸盐熔体的交代作用,还有待未来放射性同位(Sr-Nd-Pb)和稳定同位素(O-Mg)等研究。

在结合野外观测结果的基础上,Maffione et al. (2015)分析了切穿雅江蛇绿岩套(桑桑和全让)的正断层的古地磁数据,认为冈底斯弧前在130~120Ma经历了从弧前扩张到弧前伸展作用的构造演化,形成一系列拆离断层,把弧前基性岩和超基性岩剥露带浅部。雅江蛇绿岩中的辉长岩的地质年代学和地球化学的研究结果也揭示了类似过程(Dai et al., 2013; Huang et al., 2015)。在泽当蛇绿岩套中,与西部二辉橄榄岩相比,东部方辉橄榄岩的尖晶石亏损程度较高,平衡温度要低250~150℃左右,经历了后期交代作用(Xiong et al., 2016)。结合侵入到橄榄岩中基性岩脉的年代学和同位素(Nd和Hf)数据,Xiong et al.(2016)认为在130~120Ma期间,新特提斯俯冲系统经历了海沟后撤和二次俯冲的启动,导致弧前的伸展作用。因此,如果海沟后撤和弧前伸展作用持续进行,可能导致弧前较亏损的地幔的上涌,发生减压部分熔融(Schellart, 2004; Funiciello et al., 2003a, b),形成类似于日喀则辉绿岩的玄武质岩浆。同时,其它研究也表明,在早白垩纪新特提斯洋的北向俯冲可能是斜向俯冲(Aitchison et al., 2011),也有利于弧前伸展作用(Beck, 1983)和弧上伸展作用(叶丽娟等,2015Huang et al., 2016; 高家昊等,2017)。在日喀则弧前盆地发育这些深源基性岩浆作用,表明弧前伸展作用波及整个俯冲带上盘的岩石圈,不局限于浅部构造层次。

上述分析表明,在日喀则弧前盆地形成过程中,伴随着强烈的早白垩纪弧前伸展作用(图 11),可能是在新特提斯洋北向俯冲过程中,海沟后撤,在弧前形成强烈的地幔角流的结果。

图 11 早白垩纪冈底斯弧前构造演化示意图 Fig. 11 Schematic cartoons (not to scale) illustrating the tectonic evolution of forearc region of the Gangdese Arc from > 120Ma to 100Ma
5.2 日喀则弧前盆地的基底组成

郝杰等(1999)认为日喀则弧前盆地是在雅鲁藏布江边缘海基础上演化而来, 盆地的南部边缘和基底由雅鲁藏布江蛇绿岩代表的洋壳构成, 盆地北部的基底则由类似拉萨地块的结晶岩石构成。如果该推论正确,那么在日喀则弧前盆地中发育的后期岩浆岩中有可能存在与冈底斯岩基相似的年龄信息。日喀则辉绿岩脉包含年龄约为ca.170~180Ma的锆石,从锆石的形态和阴极发光特征上看,都是岩浆锆石。其来源可能为捕获围岩或来自结晶基底。日喀则弧前盆地沉积岩包含大量的年龄为ca.140~200Ma的锆石(Wu et al., 2010), 如果是捕获锆石的话,那么其他年龄的锆石也应大量存在,但这些辉绿岩中并没有类似的锆石,因此可以排除第一种来源,应来源于日喀则盆地的基底物质。在冈底斯岩基的花岗质岩石中,包含大量的形成于ca.190~160Ma的侏罗纪岩浆岩(Wen et al., 2008; Ji et al., 2009; Zhu et al., 2008, 2011张宏飞等,2007McDermid et al., 2002; 王莉等,2012董昕和张泽明, 2013; 邱检生等,2015),表明冈底斯岩基经历了早期侏罗纪弧岩浆作用。随着新特提斯洋北向俯冲的后撤,弧岩浆作用的南移,早期的岩浆岩可能成为后期弧前沉积作用的基底。因此,日喀则辉绿岩存在大量的侏罗纪岩浆锆石,可能表明日喀则弧前盆地(至少是北缘部分)构建在侏罗纪结晶岩系之上。

6 结论

西藏日喀则弧前盆地北缘,除了发育中新世闪长玢岩脉外,还发育一系列近东西向展布的辉绿岩脉,形成时代为106.6±0.8Ma(锆石U-Pb年龄)。基性岩脉在岩石学、矿物学和地球化学特征上较均一,具体表现为:(1) 富集LREE,亏损HREE,但HREE平直;(2) 强烈亏损Rb、Ba、Nb和Ta,微弱亏损Ti,但Zr和Hf不具亏损现象;(3) 锆石Hf同位素组成(εHf(t)=+11.7~+15.4) 较高;和(4) 包含捕获的早侏罗纪岩浆锆石。这些数据表明:在日喀则弧前盆地形成过程中,伴随着强烈的早白垩纪弧前伸展作用,诱发较亏损地幔发生部分熔融,形成不同于典型岛弧岩浆岩的基性岩,可能是在新特提斯洋北向俯冲过程中,海沟后撤,在弧前形成强烈的地幔角流的结果。同时,日喀则弧前盆地可能构建于早侏罗纪结晶岩系之上。

致谢 感谢赵志丹教授和张泽明研究员的细致审稿,提出诸多建设性修改意见。
参考文献
[] Aitchison JC, Xia X, Baxter AT, Ali JR. 2011. Detrital zircon U-Pb ages along the Yarlung-Tsangpo suture zone, Tibet:Implications for oblique convergence and collision between India and Asia. Gondwana Research, 20(4): 691–709. DOI:10.1016/j.gr.2011.04.002
[] Aubouin J and von Huene R. 1985. Initial reports of the Deep Sea Drilling Project. Summary:Leg 84, Middle America Trench transect off Guatemala and Costa Rica. Swindon:NERC, 84:939-957
[] Beck ME. 1983. On the mechanism of tectonic transport in zones of oblique subduction. Tectonophysics, 93(1-2): 1–11. DOI:10.1016/0040-1951(83)90230-5
[] Bédard E, Hébert R, Guilmette C, Lesage G, Wang CS, Dostal J. 2009. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, southern Tibet:Evidence for an arc-back-arc origin. Lithos, 113(1-2): 48–67. DOI:10.1016/j.lithos.2009.01.011
[] Chen XJ, Xu ZQ, Meng YK, He ZY. 2014. Petrogenesis of Miocene adakitic diorite-porphyrite in middle Gangdes batholith, southern Tibet:Constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 30(8): 2253–2268.
[] Chu MF, Chung SL, Song B, Liu D, O'Reilly SY, Pearson NJ, Ji JQ, Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745–748. DOI:10.1130/G22725.1
[] Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu CH, Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3-4): 479–486. DOI:10.1016/j.epsl.2011.05.020
[] Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021–1024. DOI:10.1130/G19796.1
[] Dai J, Wang C, Polat A, Santosh M, Li Y, Ge Y. 2013. Rapid forearc spreading between 130 and 120 Ma:Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172-173: 1–16. DOI:10.1016/j.lithos.2013.03.011
[] Dickinson WR. 2004. Evolution of the North American Cordillera. Annual Review of Earth and Planetary Sciences, 32(1): 13–45. DOI:10.1146/annurev.earth.32.101802.120257
[] Dong X, Zhang ZM. 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrologica Sinica, 29(6): 1933–1948.
[] Ducea MN, Saleeby J, Morrison J, Valenica VA. 2005. Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation:An example from California. American Mineralogist, 90(5-6): 864–870. DOI:10.2138/am.2005.1670
[] Dürr SB. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, South Tibet). GSA Bulletin, 108(6): 669–684. DOI:10.1130/0016-7606(1996)108<0669:POXFAB>2.3.CO;2
[] Einsele G, Liu B, Dürr S, Frisch W, Liu G, Luterbacher HP, Ratschbacher L, Ricken W, Wendt J, Wetzel A, Yu G, Zheng H. 1994. The Xigaze forearc basin:Evolution and facies architecture (Cretaceous, Tibet). Sedimentary Geology, 90(1-2): 1–32. DOI:10.1016/0037-0738(94)90014-0
[] Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991–15019. DOI:10.1029/97JB00788
[] Fitch TJ. 1972. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research, 77(23): 4432–4460. DOI:10.1029/JB077i023p04432
[] Funiciello F, Morra G, Regenauer-Lieb K, Giardini D. 2003a. Dynamics of retreating slabs:1. Insights from two-dimensional numerical experiments. Journal of Geophysical Research:Solid Earth, 108(B4). DOI:10.1029/2001JB000898
[] Funiciello F, Faccenna C, Giardini D, Regenauer-Lieb K. 2003b. Dynamics of retreating slabs:2. Insights from three-dimensional laboratory experiments. Journal of Geophysical Research:Solid Earth, 108(B4). DOI:10.1029/2001JB000896
[] Gao JH, Zeng LS, Guo CL, Li QL, Wang YY. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, Southern Tibet:A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412–2436.
[] Hao J, Chai YC, Li JL. 1999. Original tectonic setting of the Tsangpo ophiolite and sedimentary evolution of the Xigaze forearc basin. Scientia Geologica Sinica, 34(1): 1–9.
[] Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS, Liu ZF. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet:First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377–397. DOI:10.1016/j.gr.2011.10.013
[] Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595–2604.
[] Hou ZQ, Gao YF, Qu XM, Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139–155. DOI:10.1016/S0012-821X(04)00007-X
[] Hou ZQ, Zhao ZD, Gao YF, Yang ZM, Jiang W. 2006. Tearing and dischronal subduction of the Indian continental slab:Evidence from Cenozoic Gangdese volcano-magmatic rocks in South Tibet. Acta Petrologica Sinica, 22(4): 761–774.
[] Hou ZQ, Liu Y, Tian SH, Yang ZM, Xie YL. 2015. Formation of carbonatite-related giant rare earth element deposits by the recycling of marine sediments. Scientific Reports, 5: 10231. DOI:10.1038/srep10231
[] Huang F, Xu JF, Chen JL, Wu JB, Zeng YC, Xiong QW, Chen XF, Yu HX. 2016. Two Cenozoic tectonic events of N-S and E-W extension in the Lhasa Terrane:Evidence from geology and geochronology. Lithos, 245: 118–132. DOI:10.1016/j.lithos.2015.08.014
[] Huang W, van Hinsbergen DJ, Maffione M, Orme DA, Dupont-Nivet G, Guilmette C, Ding L, Guo ZJ, Kapp P. 2015. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc:Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth and Planetary Science Letters, 415: 142–153. DOI:10.1016/j.epsl.2015.01.032
[] Hussong DM, Reed TB, Bartlett WA. 1988. SEA-MARC Ⅱ sonar imagery and bathymetry of the Nazca plate and forearc, ODP Leg 112. In:Suess E and von Huene R (eds.). Proceedings of the Ocean Drilling Program. Scientific Results, 112: 125–130.
[] Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dunkley DJ. 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 306(3-4): 229–240. DOI:10.1016/j.epsl.2011.04.006
[] Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229–245. DOI:10.1016/j.chemgeo.2009.01.020
[] Jia JC, Wen CS, Wang GH, Zhang ZL, Wang LJ. 2005. New understanding of stratum of Xigaze forearc basin in the north of Qiongguo area, Zhongba, Tibet. Northwestern Geology, 38(2): 33–39.
[] König S, Münker C, Schuth S, Luguet A, Hoffmann JE, Kuduon J. 2010. Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta, 74(2): 684–704. DOI:10.1016/j.gca.2009.10.011
[] LeBrun JF, Lamarche G, Collot JY. 2003. Subduction initiation at a strike-slip boundary:The Cenozoic Pacific-Australian plate boundary, south of New Zealand. Journal of Geophysical Research, 108(B9). DOI:10.1029/2002JB002041
[] Lester R, Lavier LL, McIntosh K, Van Avendonk HJA, Wu F. 2012. Active extension in Taiwan's pre-collision zone:A new model of plate bending in continental crust. Geology, 40(9): 24–37.
[] Ling MX, Liu YL, Williams IS, Teng FZ, Yang XY, Ding X, Wei GJ, Xie LH, Deng WF, Fan WM, Sun WD. 2013. Formation of the world's largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Scientific Reports, 3: 1776. DOI:10.1038/srep01776
[] Liu CZ, Zhang C, Yang LY, Zhang LL, Ji WQ, Wu FY. 2014. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 205: 127–141. DOI:10.1016/j.lithos.2014.06.019
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Maffione M, Morris A, Anderson MW. 2013. Recognizing detachment-mode seafloor spreading in the deep geological past. Scientific Reports, 3: 2336. DOI:10.1038/srep02336
[] Maffione M, van Hinsbergen DJJ, Koomneef LMT, Guilmette C, Hodges K, Borneman N, Huang WT, Ding L, Kapp P. 2015. Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 43(6): 475–478. DOI:10.1130/G36472.1
[] McCaffrey R. 1991. Slip vectors and stretching of the Sumatran fore arc. Geology, 19(9): 881–884. DOI:10.1130/0091-7613(1991)019<0881:SVASOT>2.3.CO;2
[] Mccaffrey R. 1992. Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geophysical Research, 97(B6): 8905–8915. DOI:10.1029/92JB00483
[] McIntosh K, Silver E, Shipley T. 1993. Evidence and mechanisms for forearc extension at the accretionary Costa Rica convergent margin. Tectonics, 12(6): 1380–1392. DOI:10.1029/93TC01792
[] McDermid IRC, Aitchison JC, Davis AM, Harrison TM, Grove M. 2002. The Zedong terrane:A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3-4): 267–277. DOI:10.1016/S0009-2541(02)00040-2
[] Meschede M, Zweigel P, Kiefer E. 1999. Subsidence and extension at a convergent plate margin:Evidence for subduction erosion off Costa Rica. Terra Nova, 11(2-3): 112–117. DOI:10.1046/j.1365-3121.1999.00234.x
[] Moghadam HS, Stern RJ. 2011. Geodynamic evolution of Upper Cretaceous Zagros ophiolites:Formation of oceanic lithosphere above a nascent subduction zone. Geological Magazine, 148(5-6): 762–801. DOI:10.1017/S0016756811000410
[] Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS, Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231–235. DOI:10.1016/j.chemgeo.2008.06.040
[] Morell KD, Fisher DM, Gardner TW, Femina PL, Davidson D, Teletzke A. 2011. Quaternary outer fore-arc deformation and uplift inboard of the Panama Triple Junction, Burica Peninsula. Journal of Geophysical Research:Solid Earth, 116(B5). DOI:10.1029/2010JB007979
[] Pan G, Ding J, Yao D, Wang L. 2004. Geological Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu: Chengdu Cartographic Publishing House.
[] Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In:Kokelaar BP and Howells MF (eds.). Marginal Basin Geology:Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. Geological Society, London, Special Publication, 16:77-94
[] Pearce JA, Stern RJ, Bloomer SH, Fryer P. 2005. Geochemical mapping of the Mariana arc-basin system:Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006.
[] Qiu JS, Wang RQ, Zhao JL, Yu SB. 2015. Petrogenesis of the Early Jurassic gabbro-granite complex in the middle segment of the Gangdese belt and its implications for tectonic evolution of Neo-Tethys:A case study of the Dongga pluton in Xi'gaze. Acta Petrologica Sinica, 31(12): 3569–3580.
[] Qian DY, Zhang SM, Gu QG. 1982. Some new data on the age of the Ngamring formation of the Xigaze Group in southern Xizang (Tibet), China. Scientia Geologica Sinica(3): 329–331.
[] Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura JI, Peate DW, Rowe MC, Woods M. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12.
[] Reitz MA, Seeber L. 2012. Arc-parallel strain in a short rollback-subduction system:The structural evolution of the Crotone basin (northeastern Calabria, southern Italy). Tectonics, 31(4): 4017.
[] Schellart WP. 2004. Kinematics of subduction and subduction-induced flow in the upper mantle. Journal of Geophysical Research, 109(B7). DOI:10.1029/2004JB002970
[] Schellart WP, Lister GS. 2005. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia. Journal of the Geological Society, 162(6): 959–972. DOI:10.1144/0016-764904-112
[] Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, HorstwoodMSA, Morris GA, Nasdala L, Tubrett MN, Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1–35. DOI:10.1016/j.chemgeo.2007.11.005
[] Stern RJ, Bloomer SH. 1992. Subduction zone infancy:Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin, 104(12): 1621–1636. DOI:10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
[] Stern RJ, Reagan M, Ishizuka O, Ohara Y, Whattam S. 2012. To understand subduction initiation, study forearc crust:To understand forearc crust, study ophiolites. Lithosphere, 4(6): 469–483. DOI:10.1130/L183.1
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42:313-345
[] Sutherland R, Barnes P, Uruski C. 2006. Miocene-Recent deformation, surface elevation, and volcanic intrusion of the overriding plate during subduction initiation, offshore southern Fiordland, Puysegur margin, Southwest New Zealand. New Zealand Journal of Geology and Geophysics, 49(1): 131–149. DOI:10.1080/00288306.2006.9515154
[] Turner S, Rushmer T, Reagan M, Moyen JF. 2014. Heading down early on? Start of subduction on Earth. Geology, 42(2): 139–142. DOI:10.1130/G34886.1
[] von Huene R, Ranero CR, Vannucchi P. 2004. Generic model of subduction erosion. Geology, 32(10): 913–916. DOI:10.1130/G20563.1
[] Wan XQ, Luo W, Wang CS, Luba JS. 1998. Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet. Journal of Asian Earth Sciences, 16(2-3): 217–223. DOI:10.1016/S0743-9547(98)00012-9
[] Wang CS. 1999. Xigaze Fore-arc Basin and Yarlung Zangbo Suture Zone, Tibet. Beijing: Geological Publishing House: 1-237.
[] Wang CS, Li XH, Liu ZF, Li YL, Jansa L, Dai JG, Wei YS. 2012. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 22(2): 415–433. DOI:10.1016/j.gr.2011.09.014
[] Wang L, Zeng LS, Gao LE, Tang SH, Hu GY. 2012. Remnant Jurassic intra-oceanic arc system in Southern Tibet:Geochemistry and tectonic implications. Acta Petrologica Sinica, 28(6): 1741–1754.
[] Wang YY, Zeng LS, Gao LE, chen FK, Hou KJ, Wang Q, Zhao LH, Gao JH. 2016. Multiple phases of Cretaceous mafic magmatism in the Gyangze-Kangma area, Tethyan Himalaya, Southern Tibet. Acta Petrologica Sinica, 32(12): 3572–3596.
[] Wen DR, Liu D, Chung SL, Chu MF, Ji J, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191–201. DOI:10.1016/j.chemgeo.2008.03.003
[] Whitmore GP, Johnson DP, Crook KAW, Galewsky J, Silver EA. 1997. Convergent margin extension associated with arc-continent collision:The Finsch Deep, Papua New Guinea. Tectonics, 16(1): 77–87. DOI:10.1029/96TC02476
[] Wu FY, Ji WQ, Liu CZ, Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13–25. DOI:10.1016/j.chemgeo.2009.12.007
[] Wu HR. 1984. The Congdu formation-Cretaceous deep-sea deposits in southern Xizang (Tibet) and its significance. Scientia Geologica Sinica, 19(1): 26–33.
[] Xiong Q, Griffin WL, Zheng JP, O'Reilly SY, Pearson NJ, Xu B, Belousova EA. 2016. Southward trench migration at ca.130~120Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 438: 57–65. DOI:10.1016/j.epsl.2016.01.014
[] Ye LJ, Zhao ZD, Liu D, Zhu DC, Dong GC, Mo XX, Hu ZC, Liu YS. 2015. Late Cretaceous diabase and granite dike in Namling, Tibet:Petrogenesis and implications for extension. Acta Petrologica Sinica, 31(5): 1298–1312.
[] Zeng LS, Gao LE, He KJ, Tang SH, Guo CL. 2012. Multiple mafic magmatic events along the Tethyan Himalaya:Tracing the life-time of the Neo-Tethyan ocean. Acta Geoscientica Sinica, 33(Suppl.1): 72–73.
[] Zeng LS, Gao LE, Hou KJ, Tang SH. 2012. Late Permian maifc magmatism along the Tethyan Himalayan Belt, southern Tibet and tectonic implications. Acta Petrologica Sinica, 28(6): 1731–1740.
[] Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM, Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese Belt, Tibet:Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347–1353.
[] Zhang ZM, Wang JL, Dong X, Zhao GC, Yu F, Wang W, Liu F, Geng GS. 2009. Petrology and geochronology of the charnockite from the southern Gangdese Belt, Tibet:Evidence for the Andean-type orogen. Acta Petrologica Sinica, 25(7): 1707–1720.
[] Zhang ZM, Dong X, Xiang H, He ZY, Liou JG. 2014. Metagabbros of the Gangdese arc root, South Tibet:Implications for the growth of continental crust. Geochimica et Cosmochimica Acta, 143: 268–284. DOI:10.1016/j.gca.2014.01.045
[] Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ, Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442–471. DOI:10.2747/0020-6814.50.5.442
[] Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu YL, Song B, Yang YH. 2009. The 132 Ma Comei-Bunbury large igneous province:Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37(7): 583–586. DOI:10.1130/G30001A.1
[] Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241–255. DOI:10.1016/j.epsl.2010.11.005
[] 陈希节, 许志琴, 孟元库, 贺振宇. 2014. 冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 30(8): 2253–2268.
[] 董昕, 张泽明. 2013. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义. 岩石学报, 29(6): 1933–1948.
[] 高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用:以拉萨白堆复合岩体中-基性岩脉群为例. 岩石学报, 33(8): 2412–2436.
[] 郝杰, 柴育成, 李继亮. 1999. 雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化. 地质科学, 34(1): 1–9.
[] 侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595–2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
[] 侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006. 印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761–774.
[] 贾建称, 温长顺, 王根厚, 张振利, 汪立军. 2005. 西藏仲巴县穷果北部日喀则弧前盆地地层再认识. 西北地质, 36(2): 33–39.
[] 邱检生, 王睿强, 赵姣龙, 喻思斌. 2015. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示:以日喀则东嘎岩体为例. 岩石学报, 31(12): 3569–3580.
[] 钱定宇, 章树民, 顾庆阁. 1982. 西藏日喀则群昂仁组时代问题新资料. 地质科学(3): 329–331.
[] 王成善. 1999. 西藏日喀则弧前盆地与雅鲁藏布江缝合带. 北京: 地质出版社: 1-237.
[] 王莉, 曾令森, 高利娥, 唐索寒, 胡古月. 2012. 藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义. 岩石学报, 28(6): 1741–1754.
[] 王亚莹, 高利娥, 曾令森, 陈福坤, 侯可军, 王倩, 赵令浩, 高家昊. 2016. 藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用. 岩石学报, 32(12): 3572–3596.
[] 吴浩若. 1984. 西藏南部白垩纪深海沉积地层:冲堆组及其地质意义. 地质科学, 19(1): 26–33.
[] 叶丽娟, 赵志丹, 刘栋, 朱弟成, 董国臣, 莫宣学, 胡昭初, 刘永胜. 2015. 西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景. 岩石学报, 31(5): 1298–1312.
[] 曾令森, 高利娥, 侯可军, 唐索寒. 2012. 藏南特提斯喜马拉雅带晚二叠纪基性岩浆作用及其构造地质意义. 岩石学报, 28(6): 1731–1740.
[] 张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347–1353.
[] 张泽明, 王金丽, 董昕, 赵国春, 于飞, 王伟, 刘峰, 耿官升. 2009. 青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据. 岩石学报, 25(7): 1707–1720.