大陆碰撞造山形成的壮观变质岩系和淡色花岗岩构成了喜马拉雅造山带的核心,是研究碰撞造山作用和板块构造理论的天然实验室。与其它古老造山带相比,研究喜马拉雅造山带的变质作用有三大优势:一,喜马拉雅造山作用正在进行中,与碰撞造山相关的地质记录保存完好,没有受到后期构造热事件的叠加和改造。二,构造热事件非常年轻,可以进行精细的年代学限定。目前常见的显微定年方法的分析误差是~2%,对于新生代(<50Ma)的喜马拉雅变质岩和岩浆岩可获得≤1Ma的有效年龄。但对古生代和元古代的造山带,要想获得同样的有效年龄,则要求分析误差<0.1%~0.5%,这显然是目前的分析技术所达不到的。三,造山带的主要构造单元和构造边界沿走向连续延伸,可以通过造山带不同部位的对比研究发现局部的构造异常。因此,喜马拉雅造山带的变质与岩浆作用被广泛和深入研究,已经成为碰撞造山带研究的范例,所建立的构造模型在古老造山带研究中得到广泛借鉴。近十年来,随着原位微区分析技术的快速发展,喜马拉雅造山带的变质地质学研究取得了新的重要成果,同时也提出了许多新的问题。本文综述了喜马拉雅造山带变质作用与部分熔融取得的新进展和存在的争议。主要内容包括变质作用条件与P-T轨迹、石榴石的成分环带、反转变质带、部分熔融、变质与深熔作用时间与持续过程、构造变质不连续和造山作用模型。
2 喜马拉雅造山带的构造单元和变质作用特征喜马拉雅造山带位于青藏高原南缘,新特提斯洋在55~50Ma闭合导致的印度与亚洲大陆的碰撞和后续的汇聚形成了这个世界上最大且仍在活动的碰撞造山带。喜马拉雅造山带呈弧形,从位于中国西藏的东构造结(Namche Barwa Syntaxis,南迦巴瓦构造结)到巴基斯坦的西构造结(Nanga Parbat Syntaxis,南迦帕尔巴特构造结)延伸长达~2500km(图 1、图 2)。
喜马拉雅造山带主要由三个构造单元组成,从北向南依次是,特提斯喜马拉雅系列(Tethyan Himalayan Sequence, THS)、高喜马拉雅系列(Greater Himalayan Sequence, GHS)和低喜马拉雅系列(Lesser Himalayan Sequence, LHS)(图 1、图 2; Yin and Harrison, 2000)。特提斯喜马拉雅系列的北界为印度-雅鲁藏布缝合带(Indus-Tsangpo Suture Zone, ITSZ),代表了残留的印度与亚洲大陆之间的新特提斯洋。特提斯喜马拉雅系列的南界是由一系列剪切带和脆性断层组成的藏南拆离系(South Tibetan Detachment System, STDS)。藏南拆离系之下的高喜马拉雅系列构成了造山带的核心。低喜马拉雅系列位于高喜马拉雅岩系之下,二者间界限为主中央逆冲断裂(Main Central Thrust, MCT)。低喜马拉雅系列的下部边界为主边界逆冲断裂(Main Boundary Thrust, MBT),其之下是第三系的前陆盆地(Tertiary Siwaliks)。最南部的逆冲断裂是主前缘断裂(Main Frontal Thrust, MFT)。在造山带中-东段,分布于特提斯喜马拉雅系列中部、呈穹窿状产出的中-高级变质岩系被称为北喜马拉雅片麻岩穹窿,或北喜马拉雅变质岩(图 1、图 2)。
特提斯喜马拉雅系列由晚元古代至中生代沉积岩系组成,未变质到低角闪岩相变质。高喜马拉雅系列由元古代至古生代的沉积岩系和不同类型的岩浆岩组成,经历了麻粒岩相到榴辉岩相变质作用。因此,高喜马拉雅岩系是一套高级变质的结晶杂岩。低喜马拉雅系列主要由元古代的沉积岩系和岩浆岩组成,经历了绿片岩相到角闪岩相变质作用。
喜马拉雅造山带的岩石构造单元具有很好的沿造山带走向连续分布的特征。尽管在某些细节上有所不同,但LHS、GHS、THS、MBT、MCT和STDS都毫无例外地沿造山带连续产出至少2000km(图 1、图 2)。穿过造山带北西、中部和东部的横剖面显示,低喜马拉雅岩系的叠覆体(Lesser Himalayan Duplex, LHD)产出在造山带的中心部位,其上部的MCT、GHS和THS呈宽阔的背形样式分布(图 1c-e)。在某些地区的造山带前缘,THS和GHS形成宽阔的向斜。在造山带内部,所有构造单元和构造边界均向北或北东倾斜(图 1)。
从变质作用角度来看,LHS-GHS-THS组合构成一个三明治构造,即高级变质的GHS夹持在低级变质的THS和LHS之间(图 1、图 2、图 3)。GHS的构造厚度可以从3~5km变化到25~30km。LHS的变质程度从下部构造层位到上部构造层位逐渐增高,即底部为绿片岩相的绿泥石带、黑云母带,上部为石榴石带(图 3)。GHS中下部的变质程度也从下向上升高,底部为角闪岩相十字石带和蓝晶石带,核部为麻粒岩相夕线石-钾长石带,并发生强烈部分熔融(图 3)。在某些地区,STDS压缩或截断了GHS的角闪岩相到麻粒岩相等变度,表明STDS具有明显的位移(Law et al., 2011; Kohn, 2014)。但在其它地区,GHS上部的变质程度向上逐渐降低,表明STDS具有很小或没有位移(Kohn, 2014)。大多数情况下,THS的变质程度向上降低,表现为从其最下部低角闪岩相变质作用向上过渡到未发生变质。
关于MCT的位置存在较大争议,有人认为是在石榴石带与十字石带之间(图 3),有人认为是在蓝晶石带之上。也有人将从石榴石带和十字石带之间向上至夕线石带间的区域称为主中央逆冲断裂带(Main Central Thrust Zone, MCTZ, 图 3)。为了回避边界划分争议,最近的研究者将造山带核部的中、高级变质岩统称为喜马拉雅变质核(Himalayan metamorphic core, HMC; Kohn, 2014; Ambrose et al., 2015; Larson et al., 2015)。
3 变质作用类型与P-T轨迹以前的研究大多认为,喜马拉雅造山带核部经历了典型的巴罗型中压变质作用,发育典型的中压变质相系岩石。在造山带中段锡金地区出露有完整的以加热和埋藏变质为特征的变泥质岩系,从下部到上部构造层位,依次出现黑云母带、石榴石带、十字石带、蓝晶石带、夕线石带和夕线石+钾长石带岩石(Dasgupta et al., 2004, 2009; Anczkiewicz et al., 2014; Sorcar et al., 2014; Gaidies et al., 2015)。Rubatto et al. (2013)也认为锡金地区GHS的变泥质岩经历了中压高温变质作用和部分熔融,峰期变质条件为在夕线石稳定域的8~9kbar和~800℃。
但是,以前的研究多采用传统地质温压计估算岩石的变质作用条件。由于受到后期高温变质作用叠加,其矿物成分发生了重置,通过传统温压计获得的通常是温度峰期或退变质期条件,而没有得到压力峰期的变质条件。
最近,众多研究表明喜马拉雅造山带核部至少经历了高压麻粒岩相的变质作用和部分熔融。泥质和长英质麻粒岩以石榴石+蓝晶石+黑云母+斜长石+钾长石+石英+熔体共生为特征,白云母普遍缺失或仅作为少量退变质矿物出现,表明白云母已通过脱水熔融消失。基性麻粒岩以石榴石+单斜辉石+斜长石+石英+金红石+熔体组合为特征。这些高压变质岩普遍叠加了低压麻粒岩相退变质作用,以夕线石、堇青石或斜方辉石等中-低压、高温矿物的出现为特征(Harris et al., 2004; Imayama et al., 2010, 2012)。
近年来的相平衡模拟进一步揭示GHS的变质作用发生在高压条件下。如尼泊尔Ama Drime Range地区含蓝晶石夕线石片麻岩的峰期变质条件>14kbar和>850℃(Kali et al., 2010)。尼泊尔中部含蓝晶石片麻岩的峰变质条件为>12kbar和>800℃,并在进变质过程中发生了白云母和黑云母脱水熔融,之后经历了近等温降压退变质和伴随的熔体结晶过程(Groppo et al., 2012)。Sorcar et al. (2014)认为锡金地区含蓝晶石混合岩形成在>10kbar的高压麻粒岩相条件下,经历了低压麻粒岩相退变质作用。Regis et al. (2014)认为不丹地区含蓝晶石混合岩早期变质压力>14kbar,叠加了低压高温麻粒岩相退变质作用。亚东地区含蓝晶石夕线石片岩经历了>12kbar和>850℃的高压、高温麻粒岩相变质作用和进变质熔融,以转熔相蓝晶石和石榴石的产出为特征,在退变质阶段叠加了中-低压高温麻粒岩相变质作用,以夕线石和堇青石的形成为特征(图 4; Zhang et al., 2017a)。
在造山带中段的尼泊尔东部、锡金和不丹一带陆续报道有麻粒岩化榴辉岩,由于没有发现绿辉石,没有直接定命为榴辉岩(Lombardo and Rolfo, 2000; Groppo et al., 2007; Cottle et al., 2009a; Guillot et al., 2008; Chakungal et al., 2010; Corrie et al., 2010; Grujic et al., 2011; Warren et al., 2011)。新近,Wang et al. (2017)在我国定结地区确证了榴辉岩的存在,获得的峰期变质条件是20~21kbar和720~760℃。这与以前认为的麻粒岩化榴辉岩的峰期变质条件类似或具有更高的压力。
东喜马拉雅构造结发育典型的高压麻粒岩相变质岩。变泥质和长英质麻粒岩的峰期变质矿物组合是石榴石+蓝晶石+黑云母+三元长石+石英+金红石+熔体(图 5)。石榴石含单相和多相矿物包体,显示转熔结晶的特征。由于受晚期中-低压麻粒岩相退变质作用叠加,峰期变质矿物被夕线石、堇青石、斜长石、黑云母和尖晶石等替代(图 5)。Liu and Zhong (1997)获得的早期高压和晚期低压变质条件分别是17~18kbar和890℃及5kbar和850℃。Booth et al. (2009)报道了一个宽泛的变质作用条件(5~14kbar和700~900℃)。基于含蓝晶石片麻岩的相平衡模拟,Guilmette et al. (2011)获得了>14kbar和825℃的变质条件,并认为峰变质条件很可能达到15~16kbar和850℃,之后降压冷却到~9kbar和~810℃。Zhang et al. (2015)获得的泥质麻粒岩的峰期变质条件是13~16kbar和840~880℃,之后近等温降压到5~6kbar和830~870℃。在东喜马拉雅构造结也发育有典型的基性高压麻粒岩,峰期矿物组合为石榴石+单斜辉石+斜长石+石英+金红石+熔体。Ding et al. (2001)估算的变质条件是14~15kbar和~800℃。
本文大致总结了喜马拉雅造山带中、东段泥质和长英质高压麻粒岩进变质、峰期变质与部分熔融、早期退变质过程中的矿物组成与反应演化,见图 6。在部分熔融发生前的进变质过程中,以石榴石+黑云母+白云母+蓝晶石+斜长石+石英共生为特征,其中的斜长石和石英作为反应物逐渐减少。随着岩石变质温度和压力的升高,开始发生白云母脱水熔融,相应的反应是:
斜长石、石英和白云母作为反应物逐渐减少,而钾长石和蓝晶石作为生成物(转熔相)逐渐增多。随着变质温度进一步增加,白云母消失,发生黑云母脱水熔融,相应的反应是:
黑云母、斜长石、石英和蓝晶石作为反应物逐渐减少,而石榴石和钾长石作为生成物(转熔相)逐渐增多。在退变质过程中,转熔矿物相石榴石和钾长石将与熔体发生反应形成黑云母、斜长石和石英,以及夕线石和堇青石。
尽管对泥质和长英质混合岩中的常见定年副矿物(如锆石、独居石、磷钇石、榍石和金红石等)进行了岩石年代学(Petrochronology)研究,但对这些矿物的生长和分解行为仍然不是完全了解。因为这些矿物的生长不仅受全岩成分、温度、压力和流体成分控制,同时还取决于岩石的进变质和退变质作用P-T轨迹(Regis et al., 2016)。一般认为,锆石、独居石和磷钇石在进变质和退变质过程中生长,在部分熔融过程中分解(图 6; Corrie and Kohn, 2011; Larson et al., 2011; Tobgay et al., 2012; Kohn, 2014; Regis et al., 2016)。但也有研究认为,锆石和独居石可以在部分熔融过程中从熔体中结晶生长(Rubatto et al., 2013; Wang et al., 2017)。
尽管人们目前对喜马拉雅造山带中、东段GHS的峰期变质作用条件存在争议,但是越来越多研究表明,GHS核部经历了高压麻粒岩相至榴辉岩相变质作用,并不是典型的巴罗型中压变质作用。这些高压变质岩具有顺时针的变质作用P-T轨迹,进变质过程以加热增压(埋藏)为特征,早期退变质以近等温或增温降压为特征,晚期退变质作用为近等压降温过程(图 7)。
在喜马拉雅造山带西段的Tso Morari(印度西北部)和Kaghan(巴基斯坦北部)地区,紧邻新特提斯洋缝合带产出的GHS经历了超高压变质作用(图 2),以含柯石英榴辉岩为特征(de Sigoyer et al., 2000; O’Brien et al., 2001; Treloar et al., 2003; Sachan et al., 2004; Parrish et al., 2006; St-Onge et al., 2013)。Wilke et al. (2010a)起初估算的变质条件是ca.2.7~3.6GPa和640~760℃,但其最近估算的变质条件是4.4~4.8GPa和560~760℃(Wilke et al., 2015)。这些超高压变质岩具有顺时针变质作用P-T轨迹,早期退变质作用以等温或弱降温、显著降压为特征,这之后很可能经历了近等压加热过程,然后是降温降压退变质过程(Parrish et al., 2006; Wilke et al., 2010a; 图 7)。正如下面讨论的,这些超高压变质岩是印度大陆西北边缘深俯冲到地幔深度变质作用的产物,而在造山带中段印度大陆发生平缓俯冲情况下,只能形成高压变质岩。
4 石榴石的成分环带喜马拉雅造山带的变质核发育递增的变质带,为研究矿物成分环带与形成条件变化关系提供了机会。Corrie and Kohn (2011)的研究显示,LHS上部岩石中的石榴石具有明显的成分环带,从核部到边部,钙铝和锰铝榴石组分减少,而铁铝和镁铝榴石组分增加,是典型的进变质生长成分环带(图 8d-f)。在MCT带上下500m内岩石中的石榴石不仅较好地保存了生长成分环带,而且还具有Ca的韵律环带(图 8c, d),被认为是MCT不均匀逆冲和加热速率变化的结果。在GHS的下部,石榴石具有典型的生长成分环带(图 8c),向较上部石榴石无成分环带,为峰期高温条件下扩散均匀化的结果(图 8b),向更上部石榴石具有均匀的核部,而其边部Mn明显增加(图 8a),这是初始扩散均匀化后,又在冷却过程中经历了再吸收和反扩散的成分特征。因此,GHS岩石中的石榴石显示出向上部构造层位扩散改造作用逐渐增强的特征。在几个造山带的横剖面中都报道有类似的石榴石成分环带变化趋势,即在较低级变质的GHS下部和最上部岩石中的石榴石具有生长成分环带,而在高级变质和混合岩化的GHS中部石榴石发育扩散成分环带(Kaneko, 1995; Groppo et al., 2009, 2010; Martin et al., 2010; Catlos et al., 2001; Kohn et al., 2004; Jessup et al., 2008; Spencer et al., 2012)。相关的研究都认为,GHS核部岩石经历了高温变质和部分熔融,石榴石的生长成分环带不可能被保存下来,石榴石不具生长成分环带被认为是GHS核部高温变质的标志之一。
但是,Zhang et al. (2015)通过对东喜马拉雅构造结高温高压变质和深熔的泥质麻粒岩研究表明,其中的大颗粒(~5.5mm)石榴石具有完好的生长成分环带,即从核部到边部,锰铝和钙铝榴石组分逐渐减少,而镁铝和铁铝榴石组分增加,只是在~0.2mm宽的石榴石最边部发育扩散环带(图 9)。Kali et al. (2010)的研究也表明,Ama Drime Range地区高温(>850℃)高压片麻岩中较大颗粒(~3mm)石榴石的核部发育生长成分环带,边部具有扩散成分环带。最新的研究表明,不丹地区高温(>700℃)变质和深熔的泥质岩中大颗粒(~3.7mm)石榴石具有非常好的主量与微量元素生长成分环带(图 10; Regis et al., 2016)。基于石榴石中Y、稀土元素(REE)和Eu含量的变化可以建立石榴石与定年副矿物独居石和锆石的生长关系,进而准确解释副矿物的定年结果,精确限定岩石变质作用和部分熔融的时间与持续过程。这些研究表明,即使岩石经历了高温变质和部分熔融,如果石榴石颗粒比较大(>3mm),记录在石榴石核部的进变质生长成分环带也可以保存下来,而峰期变质和退变质过程中的成分扩散只会影响到石榴石的边缘成分。
Kellett et al. (2014)对中喜马拉雅Ama Drime地区麻粒岩化榴辉岩的研究表明,石榴石(~1.5mm)核部保存有生长成分环带,较宽的边部具有扩散环带。而且,他们还认为这种榴辉岩在中下地壳停留了~20Myr,并叠加了高温麻粒岩相退变质作用。这表明持续的高温变质作用并没有使石榴石核部的生长成分环带均匀化。Wilke et al. (2015)对Tso Morari超高压榴辉岩中石榴石的主量与微量元素分析表明,除了一个很薄的退变质交生边外,石榴石具有完好的生长成分环带,记录了其从进变质到峰变质的生长过程,而且,生长环带的成分变化与矿物包体分布有直接对应关系(图 11)。如,角闪石生长导致石榴石核部HREE含量不断降低,绿帘石和云母生长导致石榴石外核REE和Sm含量降低,斜长石分解导致石榴石幔部MREE和LREE含量增加,角闪石分解使石榴石内边(含柯石英包体)HREE含量增加,次生黝帘石和云母生长导致石榴石最外边MREE和Sm含量降低(图 11)。这一研究揭示,石榴石作为变质岩中稀土元素的主要载体,其REE成分环带不仅受结晶分异作用控制,也与其它矿物的生长或分解有关,为我们进行相关研究提供了很好的范例。
大量研究表明,从LHS到GHS中部岩石的变质程度逐渐增高,即从下部构造层位到上部构造层位岩石的变质程度增加,从下部的黑云母带,向上依次变为石榴石带、十字石带、蓝晶石带和夕线石带(图 3; Le Fort, 1975; Hodges et al., 1988; Pêcher, 1989; Vannay and Hodges, 1996; Fraser et al., 2000; Goscombe and Hand, 2000; Hodges, 2000; Stephenson et al., 2000; Vannay and Grasemann, 2001; Dasgupta et al., 2004, 2009; Jessup et al., 2008; Searle et al., 2008; Imayama et al., 2010, 2012; Yakymchuk and Godin, 2012; Mottram et al., 2014)。这个沿整个造山带连续产出的反转变质带或反转变质序列(Inverted Metamorphic Sequence, IMS)是喜马拉雅造山带的重要特征之一。
关于反转变质带的成因主要有四种模式:(1) 热熨斗模式,认为高温变质的GHS的快速挤出和向下的热传导,形成了反转变质带(Le Fort, 1975);(2) 剪切热模式(Arita, 1983; England and Molnar, 1993; Harrison et al., 1998);(3) 富集放射性生热元素地壳物质在GHS底部的增生,加热传导的联合作用(Royden, 1993; Huerta et al., 1996);(4) 后变质模式,先前存在的正常变质带发生褶皱(Searle and Rex, 1989; Searle, 1999),或经历了叠瓦状逆冲(如Brunel, 1986; Treloar et al., 1989; Swapp and Hollister, 1991)。
Kohn (2014)认为现有的反转变质带成因模式忽略了两个事实。第一,来自深部的高温逆冲岩片并不一定是热侵位的,在侵位过程中或之前岩片可能已经冷却。所以,就位过程中的等温线并不会明显不同于稳态的地温线。第二,许多模拟表明,大陆板片的连续俯冲会导致俯冲带的稳态等温线在数十千米的规模上发生弯曲,而岩石并不发生变形。因此,沿着这样一个热构造域的侧向运动可以产生反转的变质梯度带或变质三明治构造,而不需要喜马拉雅变质核的褶皱或差异性挤出。但是,Catlos et al. (2001)的较早研究表明,在尼泊尔中部,MCT之下LHS石榴石变质带岩石的进变质和峰期变质年龄要比其上部GHS岩石的峰期变质年龄(≥20Ma)年轻6~8Myr。而且,LHS的峰期变质年龄比GHS的白云母40Ar/39Ar年龄(10~20Ma,冷却到~425℃的年龄)还要年轻。这表明,当LHS发生变质时,GHS的温度比LHS要低,地温线并不反转。
Cottle et al. (2015a)通过对不丹地区进行系统构造分析,认为向前陆的逆冲带不断向下重复繁衍形成了反转变质带。当逆冲断层(剪切带)向前陆繁衍,或者底垫的物质添加到逆冲断层的上盘,新的逆冲断层形成,都会形成反转变质带。这样的模式与地质年代学结果相一致,因为从高变质级别到低变质级别,变质年龄减小(Catlos et al., 2001; Kohn et al., 2001; Larson et al., 2013; Mottram et al., 2014)。而且,这与底垫作为喜马拉雅造山带演化的主要构造作用也是一致的(Bollinger et al., 2006; Herman et al., 2010; Webb, 2013)。正如后文描述的,这种不断向下的构造繁衍会导致上部构造层位岩石中出现逆冲不连续面(Carosi et al., 2010; Larson et al., 2013; Montomoli et al., 2013)。
6 部分熔融与淡色花岗岩成因喜马拉雅-青藏高原造山带是典型的大、热造山带(Large hot orogen),其重要特征是中下地壳广泛深熔(Beaumont et al., 2006)。GHS是折返出来的造山带中下地壳物质,确实发生了强烈部分熔融。但是,对GHS的部分熔融机制有三种不同观点:降压熔融、进变质(近等压)加热熔融和进变质增压增温熔融。有相当多的研究者认为,GHS的快速折返导致的显著降压引起了部分熔融,而且多认为熔融发生在从蓝晶石稳定域到夕线石稳定域的近等温降压过程中(Pognante and Benna, 1993; Harris and Massey, 1994; Harris et al., 1995, 2004; Harrison et al., 1998; Patiño-Douce and Harris, 1998; Searle, 1999; Searle et al., 2009; Knesel and Davidson, 2002; Yang et al., 2002; Zhang et al., 2004; Aoya et al., 2005; Viskupic et al., 2005; King et al., 2011)。此外,GHS的上部构造层位富集淡色花岗岩脉体,淡色花岗岩体经常产出在GHS顶部,并沿STD分布。因此,很多研究者认为在与STD活动伴随的折返过程中发生的减压作用导致了GHS的部分熔融,即STD韧性变形、降压和广泛深熔之间具有密切的成因联系(Cottle et al., 2009a, b)。但是,降压是发生在部分熔融之前,还是部分熔融之后,还是一个争论的问题(Weinberg, 2016)。
有研究认为,减压熔融并不是含红柱石和堇青石二云母淡色花岗岩的成因,而其是在低压下近等压加热熔融中形成的(Visonà and Lombardo, 2002; Streule et al., 2010)。Visonà et al. (2012) 认为淡色花岗岩中的红柱石是一个早期的岩浆转熔相,表明岩石的部分熔融发生在低压(<4kbar)条件下。Groppo et al. (2013)研究表明,含堇青石的混合岩位于GHS上部构造层位,而且就在广泛分布的、以小岩体或网状岩墙产出的始新世淡色花岗岩体之下。这些混合岩经历了在低压下的近等压加热进变质熔融,是含红柱石淡色花岗岩的源区。
GHS的部分熔融很可能主要发生在增压增温或降压增温进变质过程中,因为GHS在压力峰期和温度峰期的变质条件已经明显超过变泥质和长英质岩石的固相线,可以导致白云母和黑云母脱水熔融,而且峰压力条件下的部分熔融发生在蓝晶石稳定的高压条件下(图 12; Coleman, 1998; Godin et al., 2001; Prince et al., 2001; Viskupic and Hodges, 2001; Zhang et al., 2004; Lee and Whitehouse, 2007; Cottle et al., 2009a; Streule et al., 2010; Imayama et al., 2012; Rubatto et al., 2013; Finch et al., 2014; Regis et al., 2014)。Groppo et al.(2010, 2012)研究表明,尼泊尔地区片麻岩的部分熔融是在11~13kbar和800~820℃峰期变质条件下(蓝晶石稳定域)的白云母和黑云母脱水熔融,熔融主要发生在加热条件下,可以有也可以没有降压熔融的共同作用。基于目前的研究结果,我们认为在印度大陆地壳俯冲过程中,变泥质和长英质岩石经历了增温增压进变质作用,当变质温度达到~650℃,首先发生白云母脱水熔融,在进一步增压增温(达到峰压力)和降压增温(达到峰温度)过程中,黑云母发生脱水熔融(图 12)。
喜马拉雅造山带的淡色花岗岩体主要沿南北两个带产出,即北部的特提斯喜马拉雅(或北喜马拉雅)淡色花岗岩带和南部的高喜马拉雅淡色花岗岩带。尽管这些淡色花岗岩具有不同的产状和结晶年龄,但是大量研究认为它们来源于GHS的部分熔融,而且多认为是泥质和长英质岩石深熔的产物(Harris andMassey, 1994; Patiño-Douce and Harris, 1998; Knesel and Davidson, 2002; Zeng et al., 2011, 2012; Guo and Wilson, 2012; Gao et al., 2016; Gou et al., 2016; Weinberg, 2016)。尽管较多研究表明,白云母和黑云母脱水熔融是形成淡色花岗岩的主要方式(Harris et al., 1993; Ganguly et al., 2000; Dasgupta et al., 2009; Kellett et al., 2009; Groppo et al., 2010, 2012, 2013; Streule et al., 2010; Imayama et al., 2012; Visonà et al., 2012; Rubatto et al., 2013; Gaidies et al., 2015),但也有学者认为淡色花岗岩形成于注水熔融(water-fluxed melting, water-present melting or wet melting; Scaillet et al., 1990; Prince et al., 2001; Sachan et al., 2010; King et al., 2011; Guo and Wilson, 2012; Finch et al., 2014; Gao and Zeng, 2014; Zeng et al., 2015)或脱水熔融+注水熔融(Pognante and Lombardo, 1989; Knesel and Davidson, 2002; Finch et al., 2014)。
近年来的相平衡模拟及熔体含量与成分计算表明,GHS中的变泥质和长英质岩石在高温和高压条件下可发生高程度(20%~30%)部分熔融,生成淡色花岗岩质成分的熔体(Guilmette et al., 2011; Groppo et al., 2012; 向华等, 2013; Zhang et al., 2015, 2017a)。最近,Carosi et al. (2015)在尼泊尔中部含蓝晶石片麻岩的石榴石中发现了纳米级的、早期熔体包体结晶形成的多相矿物包体(图 13)。含包体的石榴石具有明显进变质成分环带,表明熔融发生时,石榴石处于进变质生长过程中,是在蓝晶石稳定域高压条件下白云母和黑云母脱水熔融的产物。独居石定年结果表明,熔融发生在中始新世(41~36Ma),明显早于普遍认为的GHS折返时间,为进变质熔融提供了更加确切的证据。通过对多相矿物包体再熔融形成的熔体进行探针成分分析,获得了两种不同的熔体成分:一种是花岗质成分,其SiO2=71%、FeO=2.5%、Na2O=4%、K2O=5.2%、CaO=0.4%和MgO=0.2%,具弱过铝质(ASI=1.02) 岩石特征;另一种是英云闪长质成分,其SiO2=66.8%、FeO=2.78%、Na2O=2.4%、K2O=1.2%和MgO=0.45%,为强过铝质(ASI=1.39)。英云闪长质熔体具有较高的CaO含量(2.6%),与造山带中某些高Ca淡色花岗岩成分相一致。有的研究认为高Ca淡色花岗岩是在高压条件下注水部分熔融形成的(King et al., 2011; Zeng et al., 2012)。实验研究表明,贫钠的泥质岩石在10kbar和740℃条件下发生饱和水熔融可以形成与石榴石、蓝晶石和黑云母平衡的富Ca质熔体(Ferri et al., 2009)。
最新的相平衡模拟表明,在12~16kbar压力下,变基性岩(石榴石斜长角闪岩)发生部分熔融的温度仅为620~700℃(Green et al., 2016; Palin et al., 2016)。GHS的变质条件已经达到800℃,足以使基性麻粒岩发生至少10%的部分熔融。有研究已经认为,GHS中变质基性岩的部分熔融形成了高Na/K和Sr/Y值的淡色花岗岩(King et al., 2007; Zeng et al., 2011; Hou et al., 2012; Liu et al., 2014)。野外观察也表明,东喜马拉雅构造结的基性麻粒岩含有原位或源区浅色体。这些都说明GHS中基性岩的部分熔融对淡色花岗岩的形成有一定贡献。
现有研究认为,喜马拉雅期的花岗岩是起源于加厚下地壳的过铝质淡色花岗岩(Zeng et al., 2011, 2012; Guo and Wilson, 2012; 吴福元等, 2015; Liu et al., 2016)。但是,Zheng et al. (2016)在特提斯喜马拉雅淡色花岗岩中发现了同期的闪长岩包体,认为其起源于岩石圈地幔。Zhang et al. (2017b)在亚东地区识别出了中新世(~16Ma)的环状闪长岩,但认为是花岗质岩浆分离结晶作用形成的堆晶岩。
关于GHS发生部分熔融的热源问题一直存在争议。但现在看来,GHS的高变质温度(>700~800℃)足以使其发生区域性的高程度部分熔融,而不需要其它热源,如剪切热和放射性元素生成热。对于发生在低压条件下(<4kbar)的进变质加热熔融,可能是由于深部高温变质岩快速折返产生的热对流导致浅表岩石发生部分熔融(Visonà et al., 2012)。此外,Zheng et al. (2016)认为幔源岩浆的注入可以为GHS的部分熔融提供热源。
7 变质与深熔作用的时间和持续过程在造山带西段,超高压变质岩紧邻缝合带产出(图 2),是印度大陆最北缘深俯冲到地幔深处后折返回地表的产物。大量研究表明,在印度大陆西缘与亚洲大陆之间的新特提斯洋中存在一个岛弧(Kohistan Island Arc, KIA; 图 14)。因此,超高压变质岩的形成年龄可以用来限定印度大陆与洋内弧(KIA)的初始碰撞时间。以前的锆石定年表明,造山带最西端Kaghan地区超高压榴辉岩的峰变质年龄在~46Ma,而向东约450km的Tso Morari地区超高压榴辉岩的峰变质年龄为55~51Ma(de Sigoyer et al., 2000, 2004; Kaneko et al., 2003; Leech et al., 2005; Wilke et al., 2010b; Rehman et al., 2013)。由于明显的变质年龄差异,Guillot et al. (2008)提出在造山带西段印度大陆的俯冲是穿时的,即在Tso Morari地区早俯冲,而在Kaghan地区晚。但是,Donaldson et al. (2013)的系统岩石年代学研究表明,Tso Morari超高压榴辉岩的变质年龄在53~37Ma之间,峰值为47~43Ma。由此可见,两个地区超高压变质岩的形成时间是相同的,因此他们认为,在造山带西段印度大陆与洋内弧的初始碰撞时间相同,约在50Ma。而印度大陆+洋内弧与亚洲大陆的碰撞发生在~40Ma(Bouilhol et al., 2013; Gibbons et al., 2015; 图 14)。
如图 2所示,在造山带中东段,以前获得的高压和中压变质作用年龄均小于40Ma,明显晚于造山带西段超高压变质作用的时间。对此有两种可能的解释,一是,在造山带西段两个大陆较早碰撞,而在中东段两个大陆的碰撞时间较晚;二是,在造山带中东段获得较小年龄的变质岩原来在印度大陆内部,远离缝合带,它们较晚发生俯冲,所以其变质年龄晚于两个大陆的初始碰撞时间。新近,Ding et al. (2016a)在造山带东段雅拉香波片麻岩穹窿中获得了~47Ma的变质年龄。由于定年岩石较接近缝合带(图 2),所获得的变质年龄很可能表明,在造山带东段印度大陆的初始俯冲时间约在50Ma。考虑到现有的研究并没有证明,在印度大陆东北缘与亚洲大陆之间存在洋内弧,目前可以认为,造山带西段印度大陆与岛弧的碰撞与造山带东段印度与亚洲大陆的碰撞同时发生在~50Ma(图 14),即两个大陆的碰撞应该是更早发生在造山带东段,即印度大陆与冈底斯大陆弧之间(图 14)。
现在的研究表明,在造山带中东段最早期的构造热事件约为50Ma的陆-陆碰撞,而与变质核折返相关的主要构造边界MCT和STD的活动开始于~25Ma。因此,GHS的构造热事件可分成两个阶段,第一阶段,即始喜马拉雅阶段(50~25Ma),对应于大陆碰撞/俯冲和造山带地壳加厚,即GHS的进变质过程;第二阶段,即新喜马拉雅阶段(25Ma~至今),对应于俯冲印度大陆地壳的折返,即GHS的退变质过程(Hodges, 2000; Jamieson et al., 2004; Godin et al., 2006)。
尽管GHS普遍叠加了新喜马拉雅阶段的退变质作用,但锆石和独居石定年却获得了许多40~25Ma的年龄(Coleman, 1998; Vance and Harris, 1999; Walker et al., 1999; Simpson et al., 2000; Catlos et al., 2001; Godin, 2003; Searle et al., 2003; Kohn et al., 2004, 2005; Liu et al., 2007; Jessup et al., 2008; Cottle et al., 2009a, b; Carosi et al., 2010; Groppo et al., 2010; Kellett et al., 2010; Streule et al., 2010; Corrie and Kohn, 2011; Larson et al., 2011; Imayama et al., 2012; Montomoli et al., 2013; Rubatto et al., 2013; Regis et al., 2016)。同时,在含蓝晶石浅色体和淡色花岗岩中也获得了35~25Ma的结晶年龄(Coleman, 1998; Godin et al., 2001; Prince et al., 2001; Viskupic and Hodges, 2001; Zhang et al., 2004; Lee and Whitehouse, 2007; Cottle et al., 2009a; Groppo et al., 2010; Imayama et al., 2012; Rubatto et al., 2013)。这些年龄记录了印度大陆地壳俯冲过程中的变质和部分熔融时间,表明GHS的部分熔融发生在地壳加厚导致的进变质过程中(图 12)。Iaccarino et al. (2015)通过对含蓝晶石片麻岩的P-T-t-D轨迹研究,进一步证明GHS的部分熔融发生在36~28Ma的进变质过程中(图 15)。此外,产出在THS的更早期(~44Ma)淡色花岗岩表明,加厚地壳的部分熔融在中始新世就已经开始(Aikman et al., 2008, 2012; 戚学祥等, 2008; Zeng et al., 2011; Gao et al., 2012)。
越来越多的精细定年结果表明,GHS经历了长期持续的变质作用过程。例如,Zeiger et al. (2015)在不丹中东部GHS上部构造层位获得了36~28Ma的进变质年龄和28~13Ma的退变质和熔体结晶年龄。Iaccarino et al. (2015)在尼泊尔中部GHS下部构造层位的含蓝晶石片麻岩中获得了43~36Ma的进变质年龄,36~28Ma的峰变质和部分熔融年龄,25~18Ma的退变质和熔体结晶年龄(图 15)。Wang et al. (2015a)认为聂拉木地区GHS上部构造层位的部分熔融发生在35~20Ma,退变质年龄在20~15Ma,下部构造层位的进变质发生在30~20Ma,部分熔融发生在19~17Ma,退变质年龄在16~14Ma,金红石给出的晚期退变质年龄在10~5Ma。此外,其他研究也表明,GHS经历了持续的变质作用过程,如35~16Ma(Imayama et al., 2012)、32~17Ma(Searle et al., 2003)、39~13Ma(Cottle et al., 2009a; Kali et al., 2010)、35~16Ma(Streule et al., 2010)、37~20Ma(Kohn and Corrie, 2011)、25~9Ma(Guo and Wilson, 2012)、40~14Ma(Wang et al., 2013)、36~17Ma(Rubatto et al., 2013)、42~16Ma(Ambrose et al., 2015)和43~7Ma(Zhang et al., 2010, 2012b, 2015)。Wang et al. (2016)总结表明,在尼泊尔地区GHS的变质作用开始于45Ma,持续到12Ma,在锡金地区GHS的变质作用开始于40Ma,持续到13Ma(图 16)。
GHS不仅经历了长期持续的变质作用过程,而且也记录了长期的高温变质和部分熔融过程。如Kellett et al. (2013)认为锡金地区GHS的麻粒岩相变质作用开始于约34Ma,持续到至少14Ma。其他研究也表明GHS的麻粒岩相变质作用时间持续超过了20Myr,高温变质作用初始年龄早到30~40Ma(Cottle et al., 2009a; Rubatto et al., 2013; Wang et al., 2013; Iaccarino et al., 2015; Zhang et al., 2015, 2017a)。基于目前研究结果,我们认为GHS的高温变质和部分熔融很可能在~45Ma就已经开始,并至少持续到了~25Ma的峰变质期(图 12)。在25~15Ma,高压和高温岩石发生近等温降压退变质和可能的持续部分熔融。在15~7Ma,岩石经历了近等压降温退变质和熔体结晶过程(图 12)。
现有的证据充分表明,GHS的部分熔融在STD和MCT活动之前就已经开始。Carosi et al. (2015)和Iaccarino et al. (2015)明确指出,尼泊尔东部GHS下部构造层位含蓝晶石片麻岩的部分熔融发生在始新世(41~36Ma),蓝晶石稳定域的进变质过程中。因此,并不像以往认为的那样,GHS折返过程中的明显降压导致了部分熔融。降压导致部分熔融的认识主要是源于喜马拉雅的淡色花岗岩多具有早-中中新世的结晶年龄(Searle and Gondin, 2003; Streule et al., 2010; Streule et al., 2010; Gou and Wilson, 2012; Cottle et al., 2015b; Gou et al., 2016)。许多学者将这一结晶年龄直接推测为部分熔融时间,由此得出GHS的部分熔融时间与STD和MCT的活动时间相同的结论。很明显,淡色花岗岩的定年结果给出的是结晶年龄,应该不同程度地晚于GHS的部分熔融时间。我们的未发表资料清楚地表明,亚东地区混合岩暗色体中的锆石给出了~30Ma的峰期变质和深熔年龄,而原位和源区浅色体中岩浆锆石给出的最年轻结晶年龄为~13Ma。这表明从部分熔融开始到最后熔体结晶之间约有20Myr的时间间隔。
事实上,对淡色花岗岩中的锆石和独居石进行定年,常常获得很大的年龄范围(Cottle et al., 2007, 2009b; Lee and Whitehouse, 2007; Langille et al., 2012; Zeng et al., 2012; Zhang et al., 2012a; Lederer et al., 2013)。对此有两种不同的解释,一种是认为这些可变的年龄或不同的年龄组表明岩浆是通过多阶段部分熔融形成的,另一种认为是岩浆长时间持续结晶过程的反映。Lederer et al. (2013)认为形成淡色花岗岩最多要经历5个阶段,包括熔体通过部分熔融形成、熔体分异与积累、熔体汇聚和混合、熔体上升、熔体侵位与最后结晶。除了第1阶段外都会有独居石结晶形成。如果生成的熔体直接快速上升侵位,独居石仅仅形成在最后结晶过程中,只会得到一组类似的结晶年龄。如果缺少熔体的积累过程,会得出多组不同的独居石年龄。如果经历了全部5个阶段,所获得的独居石年龄会在很大范围内连续变化。
现有的研究多认为,造山带中段高压榴辉岩或麻粒岩化榴辉岩的峰期变质作用发生在中新世(Cottle et al., 2009a; Corrie et al., 2010; Grujic et al., 2011; Warren et al., 2011; Wang et al., 2017)。考虑到榴辉岩的围岩具有较低的变质压力和较早的变质时间,有人提出,GHS是由来源于造山带不同深度、不同变质时代的块体构成(Regis et al., 2014)。Grujic et al. (2011)和Warren et al. (2011)认为中新世的榴辉岩形成于俯冲带上盘的加厚下地壳底部,刚性大陆斜坡的俯冲导致榴辉岩快速折返(图 17)。而且,Grujic et al. (2011)还推测高压榴辉岩的原岩是源于地幔的中新世基性岩,在拉萨地体也有这种基性岩产出(图 17)。因此,与造山带西段的超高压变质岩相比,高压榴辉岩的形成与折返机制是完全不同的,高压榴辉岩的形成时间也不代表两个大陆的碰撞时间。
但是,Kellett et al. (2014)通过对Ama Drime麻粒岩化榴辉岩石榴石的Lu-Hf定年,获得了~38Ma的榴辉岩相变质年龄,通过锆石U-Pb定年获得了~14Ma的麻粒岩相退变质年龄。因此,他们认为榴辉岩是大陆碰撞早期地壳加厚的产物,其在折返和再加热前在中下地壳的停留时间>20Myr,并没有经历象造山带西段超高压变质岩那样的快速俯冲与折返过程。他们认为,在晚始新世,造山带的地壳已经加厚到至少~60km。考虑到与榴辉岩伴生的片麻岩或片岩可获得晚始新世和渐新世的变质年龄(Kali et al., 2010),我们认为通过锆石U-Pb定年获得的中新世年龄更可能是榴辉岩的麻粒岩相退变质时间。
8 造山带变质核的构造变质不连续喜马拉雅造山带的一级构造不连续边界,即STD、MCT、MBT和MFT,划分出造山带的主要构造单元。这些构造单元沿造山带走向连续产出是喜马拉雅造山带的重要特征。以前的研究认为,作为造山带变质核的GHS尽管经历了复杂的变形历史,但它是一个相对均匀和连续的岩石构造单元(Le Fort, 1975; Searle and Godin, 2003; Yin and Harrison, 2000; Yin, 2006)。但是,越来越多的研究表明,GHS是不均匀的,由不同的构造岩片组成,岩片之间存在明显的构造变质不连续(Tectonometamorphic discontinuity; Inger and Harris, 1992; Fraser et al., 2000; Kohn et al., 2001, 2004; Kohn, 2008; Groppo et al., 2009; Imayama et al., 2010; Corrie and Kohn, 2011; Larson et al., 2013, 2015; Montomoli et al., 2013, 2014; Larson and Cottle, 2014; Ambrose et al., 2015; Wang et al., 2015a, b, 2016; Ding et al., 2016a; Rapa et al., 2016; Tian et al., 2016)。
Goscombe et al. (2006)基于地质填图和详细的地层、变形和变质作用研究提出,在尼泊尔中部,控制造山带结构的最主要构造边界是GHS内部的高喜马逆冲断裂(High Himal Thrust, HHT)(图 3)。他们认为HHT是一个厚100~400m的糜棱岩带,是一个截然的变形不连续面,具有陡的变质梯度。HHT上部的GHS在24~20Ma发生了高温/中压变质作用,记录了HHT和STDS之间物质的挤出作用;而HHT下部的GHS是一个反转的中温/高压变质岩系,其变质作用发生在18~6Ma。尽管后来的研究进一步证明HHT确实是一个构造变质不连续面,但HHT上下构造层位的变质条件和年龄与上面所说的并不一致。
Groppo et al. (2009)通过对尼泊尔东部地区的研究揭示,从LHS到GHS变质程度逐渐增加,构成反转变质带,但其由三个构造单元组成,它们之间被隐秘的或过渡的变质不连续面所分隔。这三个构造单元具有不同的P-T轨迹,不同的石榴石成分环带类型和不同的变质梯度。Larson et al. (2013)对尼泊尔东部地区的研究表明,喜马拉雅变质核的岩石具有明显不同的P-T-t-D轨迹,其中较下部的岩石经历了在十字石带的变质和变形作用,具有埋藏特征的进变质轨迹持续了约2Myr,而较上部构造层位的岩石经历了在蓝晶石到夕线石带的变质作用,其持续时间至少为6Myr。这样的年龄差异表明,十字石和蓝晶石带变质岩并不是形成在一个典型的巴罗型变质作用过程中。石英的C轴定向组构研究表明,十字石和蓝晶石带的岩石之间存在变质温度间断,进一步证明了构造变质不连续的存在(Larson and Cottle, 2014)。
Corrie and Kohn (2011)和Kohn (2014)在GHS中区分出四个世代的独居石,包括继承的和(或)混合的、早期进变质的、晚期进变质的和深熔之后的(退变质的)。他们认为,进变质世代的独居石是具有低Y和Th含量的核,而退变质世代的是具有高Y和Th含量的交生边,最年轻的进变质年龄与最老的退变质年龄之间是深熔作用的持续时间。此外,他们还发现尼泊尔中部GHS不同构造层位的早期进变质、晚期进变质和熔体结晶年龄都有向下部构造层位逐渐变小的趋势,其中在Modi地区从GHS的最上部、中部、中下部到最下部的晚期进变质年龄从~35Ma降低到<25Ma(图 18)。在Langtang地区,从GHS中部到LHS下部构造层位的变质年龄也逐渐降低(图 18)。上部构造层位岩石的冷却与下部构造层位岩石的加热是同时发生的。如,Langtang地区GHS中部岩石的熔体结晶与GHS下部岩石的加热是同时的。这样的年龄变化趋势与有序逆冲模式相一致,因为有序逆冲可以导致在下盘岩石加热的同时,上盘岩石发生冷却。在尼泊尔中部GHS上部构造层位岩石在25Ma就已发生逆冲,而其下部MCT的活动发生在20~15Ma,LHS的逆冲则是更晚开始的。Zeiger et al. (2015)认为不丹地区的GHS有从上到下熔体结晶年龄变小的趋势,韧性剪切物质的逐渐底垫导致了GHS的折返。
Montomoli et al. (2014)认为GHS内部存在一个区域性的构造变质不连续面,即高喜马拉雅不连续(Higher Himalayan Discontinuity, HHD)。HHD是一个韧性剪切带,具有向南或南西的挤压剪切指向,它将GHS划分成两部分。GHS的上部是含夕线石和蓝晶石的混合岩,具有高的熔融程度,而GHS的下部由低熔融程度的岩石组成。HHD早于MCT形成,即在27~26Ma之前就开始活动,而且持续到17Ma。HHD上盘岩石的峰变质时间要比下盘的早,上盘岩石的折返发生在MCT和STD活动之前。
Wang et al. (2016)研究了喜马拉雅带中段STD、MCT和GHS内部不连续面的活动时间,认为STD的韧性剪切发生在25~15Ma,而MCT的活动时间是在18~10Ma(图 19)。在尼泊尔和锡金地区GHS上部具有更高的峰变质温度(比下部高~100℃)和更早的变质年龄(比下部早ca.5~10Myr)(图 16)。他们也认为,在造山带中段存在一个区域性的(>800km)逆冲性剪切带(即HHD),其将GHS划分成上下两个岩片(图 19)。该剪切带的活动时间与STD是近同时的,即在27~16Ma。
关于HHD成因的构造模型,有研究认为,HHD上盘的岩石是在较深部变质形成的,在上盘岩石向南逆冲过程中,下盘岩石发生俯冲变质(Montomoli et al., 2013, 2014; Wang et al., 2016)。所以,上、下盘岩石的变质作用并不是同时发生的,上盘岩石变质更早,发生在更高温条件下,而下盘岩石变质较晚,且发生在更高压条件下。HHD形成在晚渐新世到早中新世,至少有一部分是与STD同时的。在HHD停止以后,GHS内的变形向前陆和下部构造层位迁移,引起了MCT的活动。
Ambrose et al. (2015)认为,在泥泊尔东部GHS内部存在至少五条构造变质不连续面,不同岩片的进变质、退变质及其持续时间都是不同的,而且并不具有规律性空间变化(图 20)。Larson et al. (2015)认为GHS内部的构造变质不连续形成在不同时间,出现在不同构造层次,除了有序逆冲导致不连续之外,也有无序逆冲(逆冲发生在下盘变质作用之后)导致的构造变质不连续(图 21)。Larson et al. (2015)提出了一个新的叠瓦状逆冲构造模型,认为GHS内部逆冲性质的构造变质不连续面是MCTZ的一部分,导致造山带中、下地壳明显加厚的叠瓦状逆冲构造包括一系列逆冲断层,但它们都向下汇聚到同一个拆离带上(图 21)。
但是,目前研究揭示出的GHS内部构造变质不连续难以全部用叠瓦状逆冲构造模型来解释。如Ding et al.(2016a, b)研究表明,在雅拉香波片麻岩穹窿核部产出的、代表GHS最上部构造层位的变质岩经历了中压角闪岩相变质作用,具有~47Ma的进变质年龄。这与GHS中部岩石经历高压麻粒岩相变质作用和进变质年龄小于40Ma之间存在明显差异,表明GHS上部存在一条明显的构造不连续面(图 22b)。不连续面上部的岩石经历了较早期,但较低级的变质作用,而不是上述模型预测的较高变质程度。Tian et al. (2016)对东喜马拉雅构造结的研究表明,GHS由三个岩片组成,从上到下依次为相对低温的高压麻粒岩片、相对高温的高压麻粒岩片和混合岩化角闪岩片,在前两个岩片之间很可能存在一个拆离断层,而不是上述模型预测的逆冲断层。此外,如上文所述,Carosi et al. (2015)和Iaccarino et al. (2015)的研究认为,尼泊尔东部GHS底部含蓝晶石片麻岩的部分熔融发生在始新世(41~36Ma),蓝晶石稳定域的进变质过程中。这期高压深熔事件明显老于其他研究揭示的该地区GHS底部的峰变质和部分熔融年龄,不同于上述模型预测的向GHS下部构造层位变质和熔融年龄变小的趋势。
GHS由不同构造岩片组成的地壳结构特征是揭示造山带构造演化的关键(Montomoli et al., 2014; Ambrose et al., 2015; Larson et al., 2015)。尽管GHS内部构造变质不连续的样式和形成机制还需要深入研究,但其存在本身至少表明,已有的不考虑GHS内部变形,或者假定GHS内部变形是均匀的、透入性的构造模型都需要修正。逆冲性构造的广泛存在表明,GHS的变形是沿着分划性构造面发生的局部化变形,GHS发生了明显的构造加厚。以前基于构造恢复估算的GHS缩短量应该是最小缩短量,低估了真实的缩短量。
9 造山带的构造演化喜马拉雅造山带的高压和超高压变质岩,是造山带的“黑匣子”,记录了造山作用过程,可以为构造模型的建立提供非常重要的限定。尽管不同学科研究给出的印度与亚洲大陆碰撞时间具有较大差别,可以从65Ma变化到35Ma(Rowely, 1996; Najman et al., 2010; Bouilhol et al., 2013; Smit et al., 2014; Ding et al., 2016a, b; Hu et al., 2016)。但是,基于造山带西段超高压变质岩的形成时间(~46Ma),很多研究者将印度大陆与Kohistan岛弧的碰撞时间限定在~50Ma(图 14)。在陆-弧碰撞后,印度大陆的前缘深俯冲到>80~100km的地幔深处,形成超高压榴辉岩。在浮力的作用下,超高压变质岩片从俯冲板块拆离,快速折返回中下地壳深度,经历了~40Ma的中压角闪岩相变质作用叠加(图 14; Epard and Steck, 2008)。
在造山带东段北喜马拉雅片麻岩穹窿核部产出的、代表GHS最上部构造层位岩石的变质年龄为~47Ma,表明印度大陆与冈底斯大陆岩浆弧的初始碰撞很可能发生在~50Ma(Ding et al., 2016a, b)。在造山带中东段,GHS经历了中、高压变质作用,表明印度大陆平缓俯冲到亚洲大陆之下(Guillot et al., 2008),俯冲的印度地壳上部经历了中压角闪岩相变质作用,而下地壳经历了高压高温麻粒岩相至榴辉岩相变质作用和部分熔融(图 22; Ding et al., 2016a)。所形成的熔体或上升到GHS顶部,或侵位于更上部的THS中,构成喜马拉雅淡色花岗岩的重要组成部分。从晚渐新世开始,GHS的差异性折返形成了造山带的变质核,其下部为反转变质序列(IMS),中部为高压麻粒岩相和榴辉岩相变质岩,而上部为中压角闪岩相变质岩(图 22)。这些变质岩内部或之间发育多条逆冲性剪切带或隐秘的构造变质不连续面。印度大陆岩石圈沿着主喜马拉雅断裂(MHT)向青藏高原之下继续俯冲,俯冲的地壳岩石(青藏高原的加厚下地壳)发生高压高温,甚至近超高压超高温变质作用(图 22)。在青藏高原中部产出的后碰撞钾质和超钾质幔源火山岩中就携带有这些形成在加厚下地壳的高温和超高温变质岩包体(Hacker et al., 2000, 2005)。
关于造山带变质核的折返机制已经提出了许多构造模型,包括楔形挤出模型(Wedge extrusion; Burchfiel and Royden, 1985; Grujic et al., 1996; Kohn, 2008)、隧道流与集中剥蚀模型(Channel flow coupled to focused denudation; Beaumont et al., 2001; Jamieson et al., 2006; Robinson et al., 2006)、临界楔模型(Critical taper; Kohn et al., 2004; Bollinger et al., 2016; Robinson et al., 2006; Kohn, 2008; Corrie and Kohn, 2011)和构造楔模型(Tectonic wedging; Yin, 2006; Webb et al., 2007, 2011)。楔形挤出模式认为,GHS是向下变细的楔形体从两个低级变质系岩中向南挤出。隧道流模型认为,GHS是熔融的造山带中下地壳,在双倍加厚地壳的重力作用下向南流动(Beaumont et al., 2001, 2004; Godin et al., 2006)。由于喜马拉雅山南坡大量降水所导致的集中剥蚀作用,使隧道流物质通过两个韧性剪切带流出到地表。隧道流与集中剥蚀耦合系统的形成很可能是气候变化导致降水量增加的结果。临界楔模型,即是传统的造山带逆冲推覆(推土机)模型,强调板底垫托作用对上伏岩片折返的贡献。构造楔模式认为,沿着STD的向北运动并不代表伸展,而是MCT上盘反向逆冲的结果。STD与北部的逆冲系统(Great Counter Thrust System, GCT)相连。GCT在早、中中新世开始活动(即与STD同时活动),将THS岩石推覆到北部的亚洲板块和缝合带岩石之上。这个模式是由于发现MCT和STD在造山带前缘合并为一条断裂提出来的(Yin, 2006; Webb et al., 2007, 2011)。这样的构造格局排除了楔形挤出和隧道流模型存在的可能性,因为这两个模型认为GHS在早-中中新世就已经被挤出到地表,已经被侵蚀了~15~20Ma的GHS前缘不可能保存下来。
上述构造模型都认为造山带的变质核是一个沿走向和倾向都相对均匀和连续的构造单元,认为GHS下部的MCT具逆冲性质,上部的STD具有正滑性质,它们是同时形成的,而且有较长的共同活动时间,控制着造山带核部的主体构造格局。但是,像上文描述的,造山带的变质核是不均匀的,其内部存在明显的构造变质不连续,是由多个不同变质条件和不同变质时代的岩片组成(图 17~图 22)。而且,目前的研究还表明,STD韧性剪切的时间在不同地区是不同的,并具有较短的活动时间。如Finch et al. (2014)认为,在造山带西段的Zanskar地区,STD的正滑发生在26~20Ma之间,最大持续时间为6Ma,在尼泊尔西部,STD韧性变形的结束时间在16Ma。Carosi et al. (2013)认为,在尼泊尔西部STD和MCT的共同活动时间只有ca.1~2Myr。Wang et al. (2016)揭示,尼泊尔地区STD的活动时间早于MCT。这些基本特征都不支持上述折返构造模型。
Cottle et al. (2015a)认为现有的构造模型并不是相互排斥的,隧道流模型可以解释部分熔融的中下地壳在造山带内部的侧向(向南)流动,而其它模型,特别是构造楔模型可以解释在低粘度岩层缺失条件下造山带前缘的构造作用。他们提出的综合模型认为,印度与亚洲板块的汇聚导致了早始新世造山带地壳的缩短和加厚,始新世到渐新世的进变质作用和不同程度的部分熔融。温度峰期的变质作用发生在晚渐新世到早中新世,伴随的强烈部分熔融导致了造山带中、下地壳的去耦合和变质核的向南侧向流动,以及构造变质不连续和叠置构造的形成。在造山带前陆,较刚性岩片呈构造楔式逆冲挤出。最后,在晚中新世,LHS的多重叠置导致了造山带变质核的剥露。这一构造模型体现了造山带构造变形样式与机制的时空差异,更能合理地解释碰撞造山带构造演化的复杂性。
10 结语从本文的综述中,读者不难发现,喜马拉雅造山带的变质作用与部分熔融研究已经进入到全过程的刻画阶段。通过岩石学、矿物化学、相平衡模拟,特别是岩石年代学研究,限定变质作用和部分熔融每一阶段的温、压条件,起始时间与持续过程,揭示造山带不同构造部位与构造层次的相似性与差异性,为建立造山作用的构造模型提供了重要制约。
喜马拉雅造山带是新生代大陆碰撞的产物,具有较清晰的构造格局,所取得的研究成果较容易总结为构造模型。我们目前对山脉形成过程中地质、气候和环境作用的认识大多是来源于喜马拉雅造山带和青藏高原的研究成果。但是,由于喜马拉雅造山带非常巨大,自然条件恶劣和政治因素,许多地区无法到达,难以对整个造山带进行全面、系统地研究。所以,对造山带变质核和花岗岩的成因还存在很多争议,对造山作用过程和机制的基本认识还有待深化。
喜马拉雅造山带是国际地质学界的研究热点,已经发表了近600篇与变质作用相关的高水平文章。由于作者水平有限,难以全面评述取得的重要进展,不当之处在所难免,敬请批评指正!
致谢 感谢许志琴、金振民、莫宣学和吴福元院士,侯增谦和曾令森研究员,赵志丹和朱弟成教授在工作中的指导与帮助!王佳敏和郭亮博士审阅全文并提出重要修改意见。[] | Aikman AB, Harrison TM, Lin D. 2008. Evidence for early ( > 44Ma) Himalayan crustal thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2): 14–23. DOI:10.1016/j.epsl.2008.06.038 |
[] | Aikman AB, Harrison TM, Hermann J. 2012. The origin of Eo-and Neo-Himalayan granitoids, Eastern Tibet. Journal of Asian Earth Sciences, 58: 143–157. DOI:10.1016/j.jseaes.2012.05.018 |
[] | Ambrose TK, Larson KP, Guilmette C, Cottle JM, Buckingham H, Rai S. 2015. Lateral extrusion, underplating, and out-of-sequence thrusting within the Himalayan metamorphic core, Kanchenjunga, Nepal. Lithosphere, 7(4): 441–464. DOI:10.1130/L437.1 |
[] | Anczkiewicz R, Chakraborty S, Dasgupta S, Mukhopadhyay D, Kołtonik K. 2014. Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu-Hf garnet dating:A case study from the Sikkim Himalaya, NE India. Earth and Planetary Science Letters, 407: 70–81. DOI:10.1016/j.epsl.2014.09.035 |
[] | Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y, Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33(11): 853–856. DOI:10.1130/G21806.1 |
[] | Arita K. 1983. Origin of the inverted metamorphism of the lower Himalayas, Central Nepal. Tectonophysics, 95(1-2): 43–60. DOI:10.1016/0040-1951(83)90258-5 |
[] | Beaumont C, Jamieson RA, Nguyen MH, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738–742. DOI:10.1038/414738a |
[] | Beaumont C, Jamieson RA, Nguyen MH, Medvedev S. 2004. Crustal channel flows:1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research, 109(B6): B06406. |
[] | Beaumont C, Nguyen MH, Jamieson RA and Ellis S. 2006. Crustal flow modes in large hot orogens. In:Law RD, Searle MP and Godin L (eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications, 268:91-145 |
[] | Bollinger L, Henry P, Avouac JP. 2006. Mountain building in the Nepal Himalaya:Thermal and kinematic model. Earth and Planetary Science Letters, 244(1-2): 58–71. DOI:10.1016/j.epsl.2006.01.045 |
[] | Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geological Society of America Bulletin, 121(3-4): 385–407. DOI:10.1130/B26041.1 |
[] | Bouilhol P, Jagoutz O, Hanchar JM, Dudas FO. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth and Planetary Science Letters, 366: 163–175. DOI:10.1016/j.epsl.2013.01.023 |
[] | Brunel M. 1986. Ductile thrusting in the Himalayas:Shear sense criteria and stretching lineations. Tectonics, 5(2): 247–265. DOI:10.1029/TC005i002p00247 |
[] | Burchfiel BC, Royden LH. 1985. North-south extension within the convergent Himalayan region. Geology, 13(10): 679–682. DOI:10.1130/0091-7613(1985)13<679:NEWTCH>2.0.CO;2 |
[] | Carosi R, Montomoli C, Rubatto D, Visonà D. 2010. Late Oligocene high-temperature shear zones in the core of the higher Himalayan crystallines (Lower Dolpo, Western Nepal). Tectonics, 29(4): TC4029. |
[] | Carosi R, Montomoli C, Rubatto D, Visonà D. 2013. Leucogranite intruding the South Tibetan Detachment in western Nepal:Implications for exhumation models in the Himalayas. Terra Nova, 25(6): 478–489. DOI:10.1111/ter.12062 |
[] | Carosi R, Montomoli C, Langone A, Turina A, Cesare B, Iaccarino S, Fascioli L, Visonà D, Ronchi A and Rai SM. 2015. Eocene partial melting recorded in peritectic garnets from kyanite-gneiss, Greater Himalayan Sequence, central Nepal. In:Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK and Robinson DM (eds.). Tectonics of the Himalaya. Geological Society, London, Special Publications, 412:111-129 |
[] | Catlos EJ, Harrison TM, Kohn MJ, Grove M, Ryerson FJ, Manning GE, Upreti BN. 2001. Geochronologic and thermobarometric constraints on the evolution of the main central thrust, Central Nepal Himalaya. Journal of Geophysical Research, 106(B8): 16177–16204. DOI:10.1029/2000JB900375 |
[] | Chakungal J, Dostal J, Grujic D, Duchêne S, Ghalley KS. 2010. Provenance of the Greater Himalayan Sequence:Evidence from mafic granulites and amphibolites in NW Bhutan. Tectonophysics, 480(1-4): 198–212. DOI:10.1016/j.tecto.2009.10.014 |
[] | Coleman ME. 1998. U-Pb constraints on Oligocene-Miocene deformation and anatexis within the Central Himalaya, Marsyandi Valley, Nepal. American Journal of Science, 298(7): 553–571. DOI:10.2475/ajs.298.7.553 |
[] | Corrie SL, Kohn MJ, Vervoort JD. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, Eastern Nepal:P-T-t path and tectonic implications. Earth and Planetary Science Letters, 289(3-4): 406–416. DOI:10.1016/j.epsl.2009.11.029 |
[] | Corrie SL, Kohn MJ. 2011. Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models. Geological Society of America Bulletin, 123(9-10): 1863–1879. DOI:10.1130/B30376.1 |
[] | Cottle JM, Jessup MJ, Newell DL, Searle MP, Law RD, Horstwood MSA. 2007. Structural insights into the early stages of exhumation along an orogen-scale detachment:The south Tibetan detachment system, Dzakaa Chu section, eastern Himalaya. Journal of Structural Geology, 29(11): 1781–1797. DOI:10.1016/j.jsg.2007.08.007 |
[] | Cottle JM, Jessup MJ, Newell DL, Horstwood MSA, Noble SR, Parrish RR, Waters DJ, Searle MP. 2009a. Geochronology of granulitized eclogite from the Ama Drime Massif:Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 28(1): TC1002. |
[] | Cottle JM, Searle MP, Horstwood MSA, Waters DJ. 2009b. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of Southern Tibet revealed by U(-Th)-Pb geochronology. The Journal of Geology, 117(6): 643–664. DOI:10.1086/605994 |
[] | Cottle JM, Larson KP, Kellett DA. 2015a. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. Journal of Structural Geology, 78: 119–133. DOI:10.1016/j.jsg.2015.06.008 |
[] | Cottle JM, Searle MP, Jessup MJ, Crowley JL, Law RD. 2015b. Rongbuk re-visited:Geochronology of leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet. Lithos, 227: 94–106. DOI:10.1016/j.lithos.2015.03.019 |
[] | Dasgupta S, Ganguly J, Neogi S. 2004. Inverted metamorphic sequence in the Sikkim Himalayas:Crystallization history, P-T gradient and implications. Journal of Metamorphic Geology, 22(5): 395–412. DOI:10.1111/jmg.2004.22.issue-5 |
[] | Dasgupta S, Chakraborty S, Neogi S. 2009. Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India:Constraints on the tectonics of inversion. American Journal of Science, 309(1): 43–84. DOI:10.2475/01.2009.02 |
[] | de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G. 2000. Dating the Indian continental subduction and collisional thickening in the Northwest Himalaya:Multichronology of the Tso Morari eclogites. Geology, 28(6): 487–490. DOI:10.1130/0091-7613(2000)28<487:DTICSA>2.0.CO;2 |
[] | de Sigoyer J, Guillot S, Dick P. 2004. Exhumation of the ultrahigh-pressure Tso Morari unit in Eastern Ladakh (NW Himalaya):A case study. Tectonics, 23(3): TC3003. |
[] | Ding HX, Zhang ZM, Dong X, Tian ZL, Xiang H, Mu HC, Gou ZB, Shui XF, Li WC, Mao LJ. 2016a. Early Eocene (ca. 50Ma) collision of the Indian and Asian continents:Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth and Planetary Science Letters, 435: 64–73. DOI:10.1016/j.epsl.2015.12.006 |
[] | Ding HX, Zhang ZM, Hu KM, Dong X, Xiang H, Mu HC. 2016b. P-T-t-D paths of the North Himalayan metamorphic rocks:Implications for the Himalayan orogeny. Tectonophysics, 683: 393–404. DOI:10.1016/j.tecto.2016.06.035 |
[] | Ding L, Zhong DL, Yin A, Kapp P, Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423–438. DOI:10.1016/S0012-821X(01)00463-0 |
[] | Donaldson DG, Webb AAG, Menold CA, Kylander-Clark ARC, Hacker BR. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, 41(8): 835–838. DOI:10.1130/G33699.1 |
[] | England P and Molnar P. 1993. Cause and effect among thrust and normal faulting, anatectic melting and exhumation in the Himalaya. In:Treloar PJ and Searle MP (eds.). Himalayan Tectonics. Geological Society, London, Special Publications, 74:401-411 |
[] | Epard JL, Steck A. 2008. Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics, 451(1-4): 242–264. DOI:10.1016/j.tecto.2007.11.050 |
[] | Ferri F, Poli S, Vielzeuf D. 2009. An experimental determination of the effect of bulk composition on phase relationships in metasediments at near-solidus conditions. Journal of Petrology, 50(5): 909–931. DOI:10.1093/petrology/egp026 |
[] | Finch M, Hasalova P, Weinberg RF, Fanning CM. 2014. Switch from thrusting to normal shearing in the Zanskar shear zone, NW Himalaya:Implications for channel flow. Geological Society of America Bulletin, 126(7-8): 892–924. DOI:10.1130/B30817.1 |
[] | Fraser G, Worley B, Sandiford M. 2000. High-precision geothermobarometry across the High Himalayan metamorphic sequence, Langtang Valley, Nepal. Journal of Metamorphic Geology, 18(6): 665–681. DOI:10.1046/j.1525-1314.2000.00283.x |
[] | Gaidies F, Petley-Ragan A, Chakraborty S, Dasgupta S, Jones P. 2015. Constraining the conditions of Barrovian metamorphism in Sikkim, India:P-T-t paths of garnet crystallization in the Lesser Himalayan Belt. Journal of Metamorphic Geology, 33(1): 23–44. DOI:10.1111/jmg.12108 |
[] | Ganguly J, Dasgupta S, Cheng W, Neogi S. 2000. Exhumation history of a section of the Sikkim Himalayas, India:Records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth and Planetary Science Letters, 183(3-4): 471–486. DOI:10.1016/S0012-821X(00)00280-6 |
[] | Gao LE, Zeng LS, Xie KJ. 2012. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(6): 639–650. DOI:10.1007/s11434-011-4805-4 |
[] | Gao LE, Zeng LS. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochimica et Cosmochimica Acta, 130: 136–155. DOI:10.1016/j.gca.2014.01.003 |
[] | Gao LE, Zeng LS, Gao JH, Shang Z, Hou KJ, Wang Q. 2016. Oligocene crustal anatexis in the Tethyan Himalaya, southern Tibet. Lithos, 264: 201–209. DOI:10.1016/j.lithos.2016.08.038 |
[] | Gibbons AD, Zahirovic S, Müller RD, Whittaker JM, Yatheesh V. 2015. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Research, 28(2): 451–492. DOI:10.1016/j.gr.2015.01.001 |
[] | Godin L, Parrish RR, Brown RL, Hodges KV. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of Central Nepal:Insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics, 20(5): 729–747. DOI:10.1029/2000TC001204 |
[] | Godin L. 2003. Structural evolution of the Tethyan sedimentary sequence in the Annapurna area, Central Nepal Himalaya. Journal of Asian Earth Sciences, 22(4): 307–328. DOI:10.1016/S1367-9120(03)00066-X |
[] | Godin L, Grujic D, Law RD and Searle MP. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones:An introduction. In:Law RD and Searle MP (eds.). Channel Flow, Extrusion and Extrusion in Continental Collision Zones. Geological Society, London, Special Publications, 268:1-23 |
[] | Goscombe B, Hand M. 2000. Contrasting P-T paths in the Eastern Himalaya, Nepal:Inverted isograds in a paired metamorphic mountain belt. Journal of Petrology, 41(12): 1673–1719. DOI:10.1093/petrology/41.12.1673 |
[] | Goscombe B, Gray D, Hand M. 2006. Crustal architecture of the Himalayan metamorphic front in Eastern Nepal. Gondwana Research, 10(3-4): 232–255. DOI:10.1016/j.gr.2006.05.003 |
[] | Gou ZB, Zhang ZM, Dong X, Xiang H, Ding HX, Tian ZL, Lei HC. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos, 256-257: 300–310. DOI:10.1016/j.lithos.2016.04.009 |
[] | Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845–869. DOI:10.1111/jmg.2016.34.issue-9 |
[] | Groppo C, Lombardo B, Rolfo F, Pertusati P. 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51–75. DOI:10.1111/jmg.2007.25.issue-1 |
[] | Groppo C, Rolfo F, Lombardo B. 2009. P-T evolution across the main central thrust zone (Eastern Nepal):Hidden discontinuities revealed by Petrology. Journal of Petrology, 50(6): 1149–1180. DOI:10.1093/petrology/egp036 |
[] | Groppo C, Rubatto D, Rolfo F, Lombardo B. 2010. Early Oligocene partial melting in the main Central thrust zone (Arun Valley, eastern Nepal Himalaya). Lithos, 118(3-4): 287–301. DOI:10.1016/j.lithos.2010.05.003 |
[] | Groppo C, Rolfo F, Indares A. 2012. Partial melting in the Higher Himalayan Crystallines of Eastern Nepal:The effect of decompression and implications for the 'Channel flow' model. Journal of Petrology, 53(5): 1057–1058. DOI:10.1093/petrology/egs009 |
[] | Groppo C, Rolfo F, Mosca P. 2013. The cordPierite-bearing anatectic rocks of the higher Himalayan crystallines (eastern Nepal):Low-pressure anatexis, melt productivity, melt loss and the preservation of cordierite. Journal of Metamorphic Geology, 31(2): 187–204. DOI:10.1111/jmg.12014 |
[] | Grujic D, Casey M, Davidson C, Hollister LS, Kündig R, Pavlis T, Schmid S. 1996. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan:Evidence from quartz microfabrics. Tectonophysics, 260(1-3): 21–43. DOI:10.1016/0040-1951(96)00074-1 |
[] | Grujic D, Warren CJ, Wooden JL. 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 3(5): 346–366. DOI:10.1130/L154.1 |
[] | Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451(1-4): 225–241. DOI:10.1016/j.tecto.2007.11.059 |
[] | Guilmette C, Indares A, Hebert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1-2): 66–81. DOI:10.1016/j.lithos.2010.09.003 |
[] | Guo ZF, Wilson M. 2012. The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22(2): 360–376. DOI:10.1016/j.gr.2011.07.027 |
[] | Hacker B, Luffi P, Lutkov V, Minaev V, Ratschbacher L, Plank T, Ducea M, Patiño-Douce A, McWilliams M, Metcalf J. 2005. Near-ultrahigh pressure processing of continental crust:Miocene crustal xenoliths from the Pamir. Journal of Petrology, 46(8): 1661–1687. DOI:10.1093/petrology/egi030 |
[] | Hacker BR, Gons E, Ratschbacher L, Grove M, McWilliams M, Sobolev SV, Jiang W, Wu ZH. 2000. Hot and dry deep crustal xenoliths from Tibet. Science, 287(5462): 2463–2466. DOI:10.1126/science.287.5462.2463 |
[] | Harris N, Inger S and Massey J. 1993. The role of fluids in the formation of High Himalayan leucogranites. In:Searle MP and Treloar PJ (eds.). Himalayan Tectonics. Geological Society, London, Special Publications, 74:391-400 |
[] | Harris N, Ayres MW, Massey J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 100(B8): 15767–15777. DOI:10.1029/94JB02623 |
[] | Harris NBW, Massey JA. 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13(6): 1537–1546. DOI:10.1029/94TC01611 |
[] | Harris NBW, Caddick M, Kosler J, Goswami S, Vance D, Tindle AG. 2004. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 22(3): 249–264. DOI:10.1111/jmg.2004.22.issue-3 |
[] | Harrison TM, Grove M, Lovera OM, Catlos EJ. 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 103(B11): 27017–27032. DOI:10.1029/98JB02468 |
[] | Herman F, Copeland P, Avouac JP, Bollinger L, Mahéo G, Le Fort P, Rai S, Foster D, Pêcher A, Stüwe K, Henry P. 2010. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. Journal of Geophysical Research, 115(B6): B06407. |
[] | Hodges KV, Le Fort P, Pêcher A. 1988. Possible thermal buffering by crustal anatexis in collisional orogens:Thermobarometric evidence from the Nepalese Himalaya. Geology, 16(8): 707–710. DOI:10.1130/0091-7613(1988)016<0707:PTBBCA>2.3.CO;2 |
[] | Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 11(3): 324–350. |
[] | Horton F, Lee J, Hacker B, Bowman-Kamaha'o M, Cosca M. 2015. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting:New geochronology of Gianbul dome, northwestern India. Geological Society of America Bulletin, 127(1-2): 162–180. DOI:10.1130/B31005.1 |
[] | Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W, Sun QZ. 2012. Eocene-Oligocene granitoids in Southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350: 38–52. DOI:10.1016/j.epsl.2012.06.030 |
[] | Hu XM, Garzanti E, Wang JG, Huang WT, An W, Webb A. 2016. The timing of India-Asia collision onset-Facts, theories, controversies. Earth-Science Reviews, 160: 264–299. DOI:10.1016/j.earscirev.2016.07.014 |
[] | Huerta AD, Royden LH, Hodges KV. 1996. The interdependence of deformational and thermal processes in mountain belts. Science, 273(5275): 637–639. DOI:10.1126/science.273.5275.637 |
[] | Iaccarino S, Montomoli C, Carosi R, Massonne HJ, Langone A, Visonà D. 2015. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal):Investigation of Late Eocene-Early Oligocene melting processes. Lithos, 231: 103–121. DOI:10.1016/j.lithos.2015.06.005 |
[] | Imayama T, Takeshita T, Arita K. 2010. Metamorphic P-T profile and P-T path discontinuity across the far-eastern Nepal Himalaya:Investigation of channel flow models. Journal of Metamorphic Geology, 28(5): 527–549. DOI:10.1111/jmg.2010.28.issue-5 |
[] | Imayama T, Takeshita T, Yi K, Cho DL, Kitajima K, Tsutsumi Y, Kayama M, Nishido H, Okumura T, Yagi K, Itaya T, Sano T. 2012. Two-stage partial melting and contrasting cooling history within the Higher Himalayan crystalline sequence in the far-Eastern Nepal Himalaya. Lithos, 134-135: 1–22. DOI:10.1016/j.lithos.2011.12.004 |
[] | Inger S, Harris NBW. 1992. Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal. Journal of Metamorphic Geology, 10(3): 439–452. DOI:10.1111/jmg.1992.10.issue-3 |
[] | Jamieson RA, Beaumont C, Medvedev S, Nguyen MH. 2004. Crustal channel flows:2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Journal of Geophysical Research, 109(B6): B06407. |
[] | Jamieson RA, Beaumont C, Nguyen MH and Grujic D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks:Predictions of channel flow models. In:Law RD, Searle MP and Godin L (eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications, 268:165-182 |
[] | Jessup MJ, Cottle JM, Searle MP, Law RD, Newell DL, Tracy RJ, Waters DJ. 2008. P-T-t-D paths of Everest Series schist, Nepal. Journal of Metamorphic Geology, 26(7): 717–739. DOI:10.1111/jmg.2008.26.issue-7 |
[] | Kali E, Leloup PH, Arnaud N, Mahéo G, Liu DY, Boutonnet E, Van der Woerd J, Liu XH, Liu ZJ, Li HB. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range:Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 29(2): TC2014. |
[] | Kaneko Y. 1995. Thermal structure in the Annapurna region, central Nepal Himalaya:Implication for the inverted metamorphism. Journal of Mineralogy, Petrology and Economic Geology, 90(5): 143–154. DOI:10.2465/ganko.90.143 |
[] | Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman HU, Kausar AB, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism:Sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21(6): 589–599. DOI:10.1046/j.1525-1314.2003.00466.x |
[] | Kellett DA, Grujic D, Erdmann S. 2009. Miocene structural reorganization of the South Tibetan detachment, Eastern Himalaya:Implications for continental collision. Lithosphere, 1(5): 259–281. DOI:10.1130/L56.1 |
[] | Kellett DA, Grujic D, Warren C, Cottle JM, Jamieson RA, Tenzin T. 2010. Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system, Bhutan Himalaya. Journal of Metamorphic Geology, 28(8): 785–808. DOI:10.1111/jmg.2010.28.issue-8 |
[] | Kellett DA, Grujic D, Coutand I, Cottle JM, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics, 32(2): 252–270. DOI:10.1002/tect.v32.2 |
[] | Kellett DA, Cottle JM, Smit M. 2014. Eocene deep crust at Ama Drime, Tibet:Early evolution of the Himalayan orogen. Lithosphere, 6(4): 220–229. DOI:10.1130/L350.1 |
[] | King J, Harris N, Argles T, Parrish RR, Charlier BLA, Sherlock S, Zhang HF. 2007. First field evidence of southward ductile flow of Asian crust beneath Southern Tibet. Geology, 35(8): 727–730. DOI:10.1130/G23630A.1 |
[] | King J, Harris N, Argles T, Parrish R, Zhang H. 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123(1-2): 218–239. DOI:10.1130/B30085.1 |
[] | Knesel KM, Davidson JP. 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science, 296(5576): 2206–2208. DOI:10.1126/science.1070622 |
[] | Kohn MJ, Catlos EJ, Ryerson FJ, Harrison TM. 2001. Pressure-temperature-time path discontinuity in the main central thrust zone, Central Nepal. Geology, 29(7): 571–574. DOI:10.1130/0091-7613(2001)029<0571:PTTPDI>2.0.CO;2 |
[] | Kohn MJ, Wieland M, Parkinson CD, Upreti BN. 2004. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters, 228(3-4): 299–310. DOI:10.1016/j.epsl.2004.10.007 |
[] | Kohn MJ, Wieland MS, Parkinson CD, Upreti BN. 2005. Five generations of monazite in Langtang gneisses:Implications for chronology of the Himalayan metamorphic core. Journal of Metamorphic Geology, 23(5): 399–406. DOI:10.1111/jmg.2005.23.issue-5 |
[] | Kohn MJ. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan sequence. Geological Society of America Bulletin, 120(3-4): 259–273. DOI:10.1130/B26252.1 |
[] | Kohn MJ, Corrie SL. 2011. Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite:Evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters, 311(1-2): 136–143. DOI:10.1016/j.epsl.2011.09.008 |
[] | Kohn MJ. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42(1): 381–419. DOI:10.1146/annurev-earth-060313-055005 |
[] | Langille JM, Jessup MJ, Cottle JM, Lederer G, Ahmad T. 2012. Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India. Journal of Metamorphic Geology, 30(8): 769–791. DOI:10.1111/jmg.2012.30.issue-8 |
[] | Larson KP, Cottle JM, Godin L. 2011. Petrochronologic record of metamorphism and melting in the upper Greater Himalayan sequence, Manaslu-Himal Chuli Himalaya, west-central Nepal. Lithosphere, 3(6): 379–392. DOI:10.1130/L149.1 |
[] | Larson KP, Gervais F, Kellett DA. 2013. A P-T-t-D discontinuity in east-central Nepal:Implications for the evolution of the Himalayan mid-crust. Lithos, 179: 275–292. DOI:10.1016/j.lithos.2013.08.012 |
[] | Larson KP, Cottle JM. 2014. Mid-crustal discontinuities and the assembly of the Himalayan midcrust. Tectonics, 33(5): 718–740. DOI:10.1002/2013TC003452 |
[] | Larson KP, Ambrose TK, Webb AAG, Cottle JM, Shrestha S. 2015. Reconciling Himalayan midcrustal discontinuities:The Main Central thrust system. Earth and Planetary Science Letters, 429: 139–146. DOI:10.1016/j.epsl.2015.07.070 |
[] | Law RD, Jessup MJ, Searle MP, Francsis MK, Waters DJ, Cottle JM. 2011. Telescoping of isotherms beneath the south Tibetan detachment system, Mount Everest massif. Journal of Structural Geology, 33(11): 1569–1594. DOI:10.1016/j.jsg.2011.09.004 |
[] | Le Fort P. 1975. Himalayas:The Collided range. Present knowledge of the continental arc. American Journal of Science, 275-A: 1–44. |
[] | Lederer GW, Cottle JM, Jessup MJ, Langille JM, Ahmad T. 2013. Timescales of partial melting in the Himalayan middle crust:Insight from the Leo Pargil Dome, Northwest India. Contributions to Mineralogy and Petrology, 166(5): 1415–1441. DOI:10.1007/s00410-013-0935-9 |
[] | Lee J, Whitehouse MJ. 2007. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages. Geology, 35(1): 45–48. DOI:10.1130/G22842A.1 |
[] | Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM. 2005. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters, 234(1-2): 83–97. DOI:10.1016/j.epsl.2005.02.038 |
[] | Liu Y, Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451–466. DOI:10.1111/j.1525-1314.1997.00033.x |
[] | Liu Y, Siebel W, Massonne HJ, Xiao XC. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. The Journal of Geology, 115(2): 215–230. DOI:10.1086/510806 |
[] | Liu ZC, Wu FY, Ji WQ, Wang JG, Liu CZ. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118–136. DOI:10.1016/j.lithos.2014.08.022 |
[] | Liu ZC, Wu FY, Ding L, Liu XC, Wang JG, Ji WQ. 2016. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337–354. DOI:10.1016/j.lithos.2015.11.026 |
[] | Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in the Himalayas:Implications for the Himalayan orogeny. Journal of Geodynamics, 30(1-2): 37–60. DOI:10.1016/S0264-3707(99)00026-5 |
[] | Martin AJ, Ganguly J, DeCelles PG. 2010. Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola valley, central Nepal. Contributions to Mineralogy and Petrology, 159(2): 203–223. DOI:10.1007/s00410-009-0424-3 |
[] | Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D. 2013. Tectonometamorphic discontinuities within the Greater Himalayan sequence in Western Nepal (Central Himalaya):Insights on the exhumation of crystalline rocks. Tectonophysics, 608: 1349–1370. DOI:10.1016/j.tecto.2013.06.006 |
[] | Montomoli C, Carosi R and Iaccarino S. 2014. Tectonometamorphic discontinuities in the Greater Himalayan Sequence:A local or a regional feature? In:Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK and Robinson DM (eds.). Tectonics of the Himalaya. Geological Society, London, Special Publication, 412:25-41 |
[] | Mottram CM, Warren CJ, Regis D, Roberts NMW, Harris NBW, Argles TW, Parrish RR. 2014. Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters, 403: 418–431. DOI:10.1016/j.epsl.2014.07.006 |
[] | Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han JT, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, 115(B12): B12416. DOI:10.1029/2010JB007673 |
[] | O'Brien PJ, Zotov N, Law R, Khan MA, Jan MQ. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435–438. DOI:10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2 |
[] | Palin RM, White RW, Green ECR, Diener JFA, Powell R, Holland TJB. 2016. High-grade metamorphism and partial melting of basic and intermediate rocks. Journal of Metamorphic Geology, 34(9): 871–892. DOI:10.1111/jmg.2016.34.issue-9 |
[] | Parrish RR, Gough SJ, Searle MP, Waters DJ. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 34(11): 989–992. DOI:10.1130/G22796A.1 |
[] | Patiño-Douce AE, Harris NBW. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689–710. DOI:10.1093/petroj/39.4.689 |
[] | Pêcher A. 1989. The metamorphism in the central Himalaya. Journal of Metamorphic Geology, 7(1): 31–41. DOI:10.1111/jmg.1989.7.issue-1 |
[] | Pognante U, Lombardo B. 1989. Metamorphic evolution of the High Himalayan crystallines in SE Zanskar, India. Journal of Metamorphic Geology, 7(1): 9–17. DOI:10.1111/jmg.1989.7.issue-1 |
[] | Pognante U and Benna P. 1993. Metamorphic zonation, migmatization, and leucogranites along the Everest transect (eastern Nepal and Tibet):Record of an exhumation history. In:Treloar PJ and Searle MP (eds.). Himalayan Tectonics. Geological Society, London, Special Publication, 74:323-340 |
[] | Prince C, Harris NBW, Vance D. 2001. Fluid-enhanced melting during prograde metamorphism. Journal of the Geological Society, 158(2): 233–241. DOI:10.1144/jgs.158.2.233 |
[] | Qi XX, Zeng LS, Meng XJ, Xu ZQ, Li TF. 2008. Zircon SHRIMP U-Pb dating for Dala granite in the Tethyan Himalaya and its geological implication. Acta Petrologica Sinica, 24(7): 1501–1508. |
[] | Rapa G, Groppo C, Mosca P, Rolfo F. 2016. Petrological constraints on the tectonic setting of the Kathmandu nappe in the Langtang-Gosainkund-Helambu regions, Central Nepal Himalaya. Journal of Metamorphic Geology, 34(9): 999–1023. DOI:10.1111/jmg.2016.34.issue-9 |
[] | Regis D, Warren CJ, Young D, Roberts NMW. 2014. Tectono-metamorphic evolution of the Jomolhari massif:Variations in timing of syn-collisional metamorphism across western Bhutan. Lithos, 190-191: 449–466. DOI:10.1016/j.lithos.2014.01.001 |
[] | Regis D, Warren CJ, Mottram CM, Roberts MW. 2016. Using monazite and zircon petrochronology to constrain the P-T-t evolution of the middle crust in the Bhutan Himalaya. Journal of Metamorphic Geology, 34(6): 617–639. DOI:10.1111/jmg.2016.34.issue-6 |
[] | Rehman HU, Kobayash K, Tsujimori T, Ota T, Yamamoto H, Nakamura E, Kaneko Y, Khan T, Terabayashi M, Yoshida K, Hirajima T. 2013. Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high-and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. Journal of Asian Earth Sciences, 63: 179–196. DOI:10.1016/j.jseaes.2012.04.025 |
[] | Robinson DM, DeCelles PG, Copeland P. 2006. Tectonic evolution of the Himalayan thrust belt in western Nepal:Implications for channel flow models. Geological Society of America Bulletin, 118(7-8): 865–885. DOI:10.1130/B25911.1 |
[] | Rolfo F, Groppo C and Mosca P. 2015. Petrological constraints of the 'Channel Flow' model in eastern Nepal. In:Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK and Robinson DM (eds.). Tectonics of the Himalaya. Geological Society, London, Special Publications, 412:177-197 |
[] | Rowley DB. 1996. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4): 1–13. DOI:10.1016/S0012-821X(96)00201-4 |
[] | Royden LH. 1993. The steady state thermal structure of eroding orogenic belts and accretionary prisms. Journal of Geophysical Research, 98(B3): 4487–4507. DOI:10.1029/92JB01954 |
[] | Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349–372. DOI:10.1007/s00410-012-0812-y |
[] | Sachan HK, Mukherjee BK, Ogasawara Y, Maruyama S, Ishida H, Muko A, Yoshioka N. 2004. Discovery of coesite from Indus suture zone (ISZ), Ladakh, India:Evidence for deep subduction. European Journal of Mineralogy, 16(2): 235–240. DOI:10.1127/0935-1221/2004/0016-0235 |
[] | Sachan HK, Kohn MJ, Saxena A, Corrie SL. 2010. The Malari leucogranite, Garhwal Himalaya, northern India:Chemistry, age, and tectonic implications. Geological Society of America Bulletin, 122(11-12): 1865–1876. DOI:10.1130/B30153.1 |
[] | Scaillet B, France-Lanord C, Le Fort P. 1990. Badrinath-Gangotri Plutons (Garhwal, India):Petrological and geochemical evidence for fractionation processes in a High Himalayan leucogranite. Journal of Volcanology and Geothermal Research, 44(1-2): 163–188. DOI:10.1016/0377-0273(90)90017-A |
[] | Searle MP, Rex AJ. 1989. Thermal-model for the Zanskar Himalaya. Journal of Metamorphic Geology, 7(1): 127–134. DOI:10.1111/jmg.1989.7.issue-1 |
[] | Searle MP. 1999. Extensional and compressional faults in the Everest Lhotse massif, Khumbu Himalaya, Nepal. Journal of the Geological Society, 156(2): 227–240. DOI:10.1144/gsjgs.156.2.0227 |
[] | Searle MP, Godin L. 2003. The South Tibetan Detachment and the Manaslu leucogranite:A Structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5): 505–523. DOI:10.1086/376763 |
[] | Searle MP, Simpson RL, Law RD, Parrish RR, Waters DJ. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345–366. DOI:10.1144/0016-764902-126 |
[] | Searle MP, Law RD, Godin L, Larson KP, Streule MJ, Cottle JM, Jessup MJ. 2008. Defining the Himalayan Main Central thrust in Nepal. Journal of the Geological Society, 165(2): 523–534. DOI:10.1144/0016-76492007-081 |
[] | Searle MP, Cottle JM, Streule MJ, Waters DJ. 2009. Crustal melt granites and migmatites along the Himalaya:Melt source, segregation, transport and granite emplacement mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 219–233. DOI:10.1017/S175569100901617X |
[] | Simpson RL, Parrish RR, Searle MP, Waters DJ. 2000. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya. Geology, 28(5): 403–406. DOI:10.1130/0091-7613(2000)28<403:TEOMCD>2.0.CO;2 |
[] | Smit MA, Hacker BR, Lee J. 2014. Tibetan garnet records early Eocene initiation of thickening in the Himalaya. Geology, 42(7): 591–594. DOI:10.1130/G35524.1 |
[] | Sorcar N, Hoppe U, Dasgupta S, Chakraborty S. 2014. High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India:Rapid cooling unrelated to exhumation?. Contributions to Mineralogy and Petrology, 167(2): 957. DOI:10.1007/s00410-013-0957-3 |
[] | Spencer CJ, Harris RA, Dorais MJ. 2012. The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, 31(1): C1007. |
[] | Stephenson BJ, Waters DJ, Searle MP. 2000. Inverted metamorphism and the Main Central thrust:Field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. Journal of Metamorphic Geology, 18(5): 571–590. DOI:10.1046/j.1525-1314.2000.00277.x |
[] | St-Onge MR, Rayner N, Palin RM, Searle MP, Waters DJ. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India):Implications for the burial and exhumation path of UHP units in the western Himalaya. Journal of Metamorphic Geology, 31(5): 469–504. DOI:10.1111/jmg.2013.31.issue-5 |
[] | Streule MJ, Searle MP, Waters DJ, Horstwood MSA. 2010. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite:Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 29(5): TC5011. |
[] | Swapp SM, Hollister LS. 1991. Inverted metamorphism within the Tibetan slab of Bhutan:Evidence for a tectonically transported heat source. Canadian Mineralogist, 29(4): 1019–1041. |
[] | Tian ZL, Zhang ZM, Dong X. 2016. Metamorphism of high-P metagreywacke from the Eastern Himalayan syntaxis:Phase equilibria and P-T path. Journal of Metamorphic Geology, 34(7): 697–718. DOI:10.1111/jmg.2016.34.issue-7 |
[] | Tobgay T, McQuarrie N, Long S, Kohn MJ, Corrie SL. 2012. The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya. Earth and Planetary Science Letters, 319-320: 146–158. DOI:10.1016/j.epsl.2011.12.005 |
[] | Treloar PJ, Rex DC, Guise PG, Coward MP, Searle MP, Windley BF, Petterson MG, Jan MQ, Luff IW. 1989. K-Ar and Ar-Ar geochronology of the Himalayan collision in NW Pakistan:Constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics, 8(4): 881–909. DOI:10.1029/TC008i004p00881 |
[] | Treloar PJ, O'Brien PJ, Parrish RR, Khan MA. 2003. Exhumation of early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. Journal of the Geological Society, 160(3): 367–376. DOI:10.1144/0016-764902-075 |
[] | Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27(5): 395–398. DOI:10.1130/0091-7613(1999)027<0395:TOPMIT>2.3.CO;2 |
[] | Vannay JC, Hodges KV. 1996. Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology, 14(5): 635–656. |
[] | Vannay JC, Grasemann B. 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geological Magazine, 138(3): 253–276. |
[] | Viskupic K, Hodges KV. 2001. Monazite-xenotime thermochronometry:Methodology and an example from the Nepalese Himalaya. Contributions to Mineralogy and Petrology, 141(2): 233–247. DOI:10.1007/s004100100239 |
[] | Viskupic K, Hodges KV, Bowring SA. 2005. Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contributions to Mineralogy and Petrology, 149(1): 1–21. DOI:10.1007/s00410-004-0628-5 |
[] | Visonà D, Lombardo B. 2002. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet).Himalayan leucogranite genesis by isobaric heating?. Lithos, 62(3-4): 125–150. DOI:10.1016/S0024-4937(02)00112-3 |
[] | Visonà D, Carosi R, Montomoli C, Tiepolo M, Peruzzo L. 2012. Miocene andalusite leucogranite in central-east Himalaya (Everest-Masang Kang area):Low-pressure melting during heating. Lithos, 144-145: 194–208. DOI:10.1016/j.lithos.2012.04.012 |
[] | Walker JD, Martin MW, Bowring SA, Searle MP, Waters DJ, Hodges KV. 1999. Metamorphism, melting, and extension:Age constraints from the High Himalayan slab of Southeast Zanskar and Northwest Lahaul. The Journal of Geology, 107(4): 473–495. DOI:10.1086/314360 |
[] | Wang JM, Zhang JJ, Wang XX. 2013. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet:Implication for a revised channel flow. Journal of Metamorphic Geology, 31(6): 607–628. DOI:10.1111/jmg.2013.31.issue-6 |
[] | Wang JM, Rubatto D, Zhang JJ. 2015a. Timing of partial melting and cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-sequence thrusting and its implications. Journal of Petrology, 56(9): 1677–1702. DOI:10.1093/petrology/egv050 |
[] | Wang JM, Zhang JJ, Wei CJ, Rai S, Wang M, Qian JH. 2015b. Characterising the metamorphic discontinuity across the Main Central Thrust Zone of eastern-central Nepal. Journal of Asian Earth Sciences, 101: 83–100. DOI:10.1016/j.jseaes.2015.01.027 |
[] | Wang JM, Zhang JJ, Liu K, Zhang B, Wang XX, Rai S, Scheltens M. 2016. Spatial and temporal evolution of Tectonometamorphic discontinuities in the central Himalaya:Constraints from P-T paths and geochronology. Tectonophysics, 679: 41–60. DOI:10.1016/j.tecto.2016.04.035 |
[] | Wang YH, Zhang LF, Zhang JJ, Wei CJ. 2017. The youngest eclogite in central Himalaya:P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188–206. DOI:10.1016/j.gr.2015.10.013 |
[] | Warren CJ, Grujic D, Kellett DA, Cottle J, Jamieson RA, Ghalley KS. 2011. Probing the depths of the India-Asia collision:U-Th-Pb monazite chronology of granulites from NW Bhutan. Tectonics, 30(2): TC2004. |
[] | Webb AAG, Yin A, Harrison TM, Célérier J, Burgess WP. 2007. The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya:Implications for the evolution of the Himalayan orogen. Geology, 35(10): 955–958. DOI:10.1130/G23931A.1 |
[] | Webb AAG, Schmitt AK, He D, Weigand EL. 2011. Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya. Earth and Planetary Science Letters, 304(3-4): 483–495. DOI:10.1016/j.epsl.2011.02.024 |
[] | Webb AAG. 2013. Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere, 9(3): 572–587. DOI:10.1130/GES00787.1 |
[] | Weinberg RF. 2016. Himalayan leucogranites and migmatites:Nature, timing and duration of anatexis. Journal of Metamorphic Geology, 34(8): 821–843. DOI:10.1111/jmg.2016.34.issue-8 |
[] | Wilke FDH, O'Brien PJ, Altenberger U, Konrad-Schmolke M, Khan MA. 2010a. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos, 114(1-2): 70–85. DOI:10.1016/j.lithos.2009.07.015 |
[] | Wilke FDH, O'Brien PJ, Gerdes A, Timmerman MJ, Sudo M, Khan MA. 2010b. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. European Journal of Mineralogy, 22(5): 703–719. DOI:10.1127/0935-1221/2010/0022-2051 |
[] | Wilke FDH, O'Brien PJ, Schmidt A, Ziemann MA. 2015. Subduction, peak and multi-stage exhumation metamorphism:Traces from one coesite-bearing eclogite, Tso Morari, western Himalaya. Lithos, 231: 77–91. DOI:10.1016/j.lithos.2015.06.007 |
[] | Wu FY, Liu ZC, Liu XC, Ji WQ. 2015. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1–36. |
[] | Xiang H, Zhang ZM, Dong X, Qi M, Lin YH, Lei HC. 2013. High-pressure metamorphism and anatexis during the subduction of Indian continent:Phase equilibria modeling of the Namche Barwa complex, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 29(11): 3792–3802. |
[] | Yakymchuk C, Godin L. 2012. Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences:An example from far-northwest Nepal. Journal of Metamorphic Geology, 30(5): 513–535. DOI:10.1111/jmg.2012.30.issue-5 |
[] | Yang XS, Jin ZM, Huenges E, Gao S, Wunder B, Schilling FR. 2002. Genesis of granulite in Himalayan lower crust:Evidence from experimental study at high temperature and high pressure. Chinese Science Bulletin, 47(6): 448–454. DOI:10.1360/02tb9103 |
[] | Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetn orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. DOI:10.1146/annurev.earth.28.1.211 |
[] | Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1–131. DOI:10.1016/j.earscirev.2005.05.004 |
[] | Zeiger K, Gordon SM, Long SP, Kylander-Clark ARC, Aguestsson K, Penfold M. 2015. Timing and conditions of metamorphism and melt crystallization in Greater Himalayan rocks, eastern and central Bhutan:Insight from U-Pb zircon and monazite geochronology and trace-element analyses. Contributions to Mineralogy and Petrology, 169(5): 47. DOI:10.1007/s00410-015-1143-6 |
[] | Zeng LS, Gao LE, Xie KJ, Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251–266. DOI:10.1016/j.epsl.2011.01.005 |
[] | Zeng LS, Gao LE, Dong CY, Tang SH. 2012. High pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Research, 21(1): 138–151. DOI:10.1016/j.gr.2011.07.023 |
[] | Zeng LS, Gao LE, Tang SH, Hou KJ, Guo CL and Hu GY.2015.Eocene magmatism in the Tethyan Himalaya, southern Tibet.In:Jenkin GRT and Lusty PAJ (eds.).Ore Deposits in an Evolving Earth.Geological Society, London, Special Publications, 412:287-316 |
[] | Zhang HF, Harris NBW, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195–212. DOI:10.1016/j.epsl.2004.09.031 |
[] | Zhang JJ, Santosh M, Wang XX, Guo L, Yang YY, Zhang B. 2012a. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4): 939–960. DOI:10.1016/j.gr.2011.11.004 |
[] | Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719–733. |
[] | Zhang ZM, Dong X, Santosh M, Liu F, Wang W, Yiu F, He ZY, Shen K. 2012b. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123–137. DOI:10.1016/j.gr.2011.02.002 |
[] | Zhang ZM, Xiang H, Dong X, Ding HX, He ZY. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, South Tibet. Lithos, 212-215: 1–15. DOI:10.1016/j.lithos.2014.10.009 |
[] | Zhang ZM, Xiang H, Dong X, Li WC, Ding HX, Gou ZB, Tian ZL. 2017a. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research, 41: 173–187. DOI:10.1016/j.gr.2015.03.002 |
[] | Zhang ZM, Xiang H, Ding HX, Dong X, Gou ZB, Tian ZL, Santosh M. 2017b. Miocene orbicular diorite in east-central Himalaya:Anatexis, melt mixing, and fractional crystallization of the Greater Himalayan Sequence. Geological Society of America Bulletin, 129(5-6). DOI:10.1130/B31586.1 |
[] | Zheng YC, Hou ZQ, Fu Q, Zhu DC, Liang W, Xu PY. 2016. Mantle inputs to Himalayan anatexis:Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos, 264: 125–140. DOI:10.1016/j.lithos.2016.08.019 |
[] | 戚学祥, 曾令森, 孟祥金, 许志琴, 李天褔. 2008. 特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 24(7): 1501–1508. |
[] | 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1–36. |
[] | 向华, 张泽明, 董昕, 祁敏, 林彦蒿, 雷恒聪. 2013. 印度大陆俯冲过程中的高压变质与深熔作用:东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究. 岩石学报, 29(11): 3792–3802. |