岩石学报  2017, Vol. 33 Issue (7): 2161-2174   PDF    
滇西北铜厂沟Mo-Cu矿床成矿流体和成矿物质来源:矽卡岩矿物学与稳定同位素证据
高雪1, 孟健寅2     
1. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083;
2. 五矿勘查开发有限公司, 北京 100010
摘要: 义敦地体位于三江特提斯成矿域中北段,晚三叠世和晚白垩世斑岩-矽卡岩型Mo-Cu多金属成矿作用强烈。铜厂沟Mo-Cu矿床位于义敦地体最南端,是近年来该区新探明的Mo-Cu矿床之一,已探明资源量142.5Mt。矽卡岩在铜厂沟矿区广泛出露,是该矿区最主要的赋矿岩石。根据矿物组合及共生关系,可将矽卡岩划分为石榴子石矽卡岩、透辉石矽卡岩和透闪石矽卡岩三种类型。通过详细的地质填图和钻孔岩心编录,发现铜厂沟矿区矽卡岩矿物组合受花岗闪长斑岩体与大理岩空间分布的控制:① 由大理岩向外依次发育透辉石矽卡岩→透闪石矽卡岩→石榴子石矽卡岩;② 由浅至深,石榴子石粒度逐渐变大;③ 矿化与透闪石、绿帘石等退化蚀变矿物密切相关,矿体多形成于外接触带。矽卡岩中最主要的矿物是石榴子石,多呈自形粒状或粒状集合体产出,颜色较深,均质性,以钙铝榴石为主(62.2%~78.3%),其次为钙铁榴石(16.7%~34.2%),少量锰铝榴石、铁铝榴石和镁铝榴石,属于钙铝榴石-钙铁榴石固溶体系列(Gro62-78And17-34Spe+Pyr+Alm2-6)。石榴子石Fe2+/Fe3+比值变化范围为0.00~0.20,平均值为0.06,指示石榴子石形成于酸性的氧化环境。石榴子石的δ18OSMOW变化范围为5.2‰~9.5‰,反映矽卡岩可能直接继承斑岩体的氧同位素组成;金属硫化物具有较为均一的S-Pb同位素范围(δ34S(CDT)=-0.7‰~1.4‰;206Pb/204Pb=18.332~18.694,208Pb/204Pb=38.454~39.088,207Pb/204Pb=15.588~15.663),表明成矿流体和成矿物质均来源于壳源的长英质岩浆。
关键词: 矽卡岩     矿物学     稳定同位素     铜厂沟Mo-Cu矿床     滇西北    
The source of ore-forming fluids and materials in the Tongchanggou Mo-Cu deposit, northwestern Yunnan, China:Constrains from skarn mineralogy and stable isotopes
GAO Xue1, MENG JianYin2     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. China Minmetals Corporation, Beijing 100010, China
Abstract: Yidun Terrane is located in the northern-central segment of Sanjiang Tethys metallogenic domain, developing massive Late Triassic and Late Cretaceous felsic magmatism and related porphyry-skarn Mo-Cu-polymetallic mineralization. The Tongchanggou deposit is a newly discovered porphyry-skarn type Mo-Cu deposit in the southern Yidun Terrane, with proven reserves of 142.5Mt. Skarn extensively exposed in the Tongchanggou district, with skarn-type ore being the most important ore type. Based on the mineral assemblages and paragenesis, Tongchanggou skarn can be divided into garnet skarn, diopside skarn and tremolite skarn. Detailed adit mapping and drill-hole logging suggest that the skarn mineralogy at Tongchanggou is controlled by the spatial distribution of granodiorite and marble:1) it develops diopside skarn → tremolite skarn → garnet skarn upward or downward from the marble, 2) the grain size of garnet turns to be larger from top to bottom along the drill-hole, and 3) Mo-Cu mineralization is associated with retrograde altered minerals such as tremolite and epidote, thus orebody usually develop in the outer contact zone between granodiorite and marble. The dominant garnet at Tongchanggou occurs as euhedral grain or granular aggregates, and is dark and isotropical. The compositions of garnet are mainly grossularite (62.2~78.3), followed by andradite (16.7~34.2), with minor spessartite, almandine and pyrope. The Fe2+/Fe3+ ratios of garnet from Tongchanggou deposit are varying from 0.00 to 0.20, with an average value of 0.06, indicating a relatively oxidative environment for the formation of garnet. The δ18OSMOW values of garnet are ranging between 5.2‰ and 9.5‰, indicating that skarn might have directly inherited the oxygen isotope compositions of granodiorite. Additionally, sulfides are characterized by uniform S-Pb isotopes, with δ34S(CDT)values of 0.7‰~1.4‰, 206Pb/204Pb ratios of 18.332~18.694, 208Pb/204Pb ratios of 38.454~39.088, and 207Pb/204Pb ratios of 15.588~15.663, indicating that the ore-forming fluids and materials of Tongchanggou deposit originated from crust-derived felsic magmas.
Key words: Skarn     Mineralogy     Stable isotopes     Tongchanggou Mo-Cu deposit     Northwestern Yunnan    
1 引言

矽卡岩型矿床是世界上分布最广泛的矿床类型之一,多发育于中-浅成侵入体与碳酸盐岩的接触部位(Meinert et al., 2005)。成矿流体与成矿物质来源一直是矽卡岩矿床研究的热点问题之一(Hedenquist and Lowenstern, 1994Meinert et al., 1997, 2005Deng and Wang, 2016Deng et al., 2016彭慧娟等,2014)。大量研究表明以无水硅酸盐矿物组合为代表的早期进化矽卡岩阶段,其成矿流体来源于岩浆(Einaudi et al., 1981; Bowman, 1998; Meinert et al., 2003)。关于退化蚀变阶段的流体来源仍存在争议:部分研究表明进化和退化矽卡岩阶段的成矿流体均来源于岩浆(Meinert et al., 2003Williams-Jones et al., 2010);部分研究发现在退化蚀变的晚阶段有大气降水混入(Palinkaš et al., 2013; He et al., 2015, 2016Shu et al., 2013)。矽卡岩矿物学特征往往记录了成矿流体的信息,如早期交代作用形成的石榴子石和透辉石,常形成于高温、高盐度的流体(Baker et al., 2004),晚期退化蚀变形成的透闪石、绿帘石和绢云母等,常形成于低温、低盐度的流体(Meinert et al., 2005)。不同种类的石榴子石亦可以反映形成环境的重要信息,钙铁榴石通常反映相对氧化、碱性的环境而钙铝榴石通常指示形成环境为相对还原的酸性(赵斌等,1983艾永富和金玲年,1981Meinert et al., 2005)。因此,通过矿物学研究可以反演矿床形成的物理化学条件变化及成矿过程。

西南三江地区是我国重要的贵金属、有色金属及非金属成矿带,Cu、Pb、Zn、Mo、Ag、Au和Sn等优势资源潜力巨大(Deng et al., 2014a, b2015a2017; Wang et al., 2014a, b)。香格里拉(中甸)地区是三江成矿域北中段义敦地体的南延部分,复杂的演化历史及其相应的构造-岩浆过程,造就了其相当有利的成矿地质条件。晚三叠世俯冲造山和晚白垩世后造山伸展作用过程中发育两期大规模的区域岩浆活动和斑岩-矽卡岩Cu-Mo-Pb-Zn多金属成矿作用(侯增谦等, 2003, 2004杨立强等,2015Yang et al., 2017b)。铜厂沟斑岩-矽卡岩型Mo-Cu矿床是近年来香格里拉地区最南端新探明的晚白垩世Mo-Cu矿床,迄今已探明资源量约为142.5Mt(0.3Mt @ 0.3% Mo,0.034Mt @ 0.8%Cu)。目前对铜厂沟Mo-Cu矿床的研究大多集中于地质构造(刘军,2013)、矿床成因类型(杨丽梅等,2013)、成岩成矿年代学(李文昌等,2012Yang et al., 2017a)及成矿岩体地球化学(余海军等,2015Yang et al., 2017a)等方面,对矽卡岩矿物学、蚀变分带及稳定同位素地球化学等方面研究较少,制约了对该矿床成矿机制及成矿过程的深入认识。本文在已有研究的基础上,通过详细的平硐填图和钻孔柱状图编录,结合详细的矽卡岩矿物岩相学特征和电子探针(EPMA)分析,厘定矽卡岩蚀变分带特征,划分成矿阶段,探讨矽卡岩矿物形成的物理化学条件;通过矿物学特征及H-O-S-Pb稳定同位素特征,示踪成矿流体和成矿物质来源。

2 区域及矿床地质 2.1 区域地质背景

义敦地体位于三江特提斯成矿域北中段,夹持于松潘-甘孜褶皱带、扬子陆块和羌塘地体之间,西以金沙江结合带为界,东以甘孜-理塘结合带为限,NW向延伸数千千米(图 1a)。义敦地体主要出露地层为中-下三叠统的一套海相碎屑岩夹碳酸盐岩和硅质岩(厚达5000m)、上三叠统中下部的一套巨厚的复理石砂板岩夹基性-酸性火山岩及碳酸盐岩,南部有二叠纪基性岩和碳酸盐岩出露(Chang,1997)。

图 1 义敦地体区域地质简图(a)和香格里拉地区区域地质矿产简图(b)(据李文昌等, 2011; 高雪等, 2014; 余海军和李文昌, 2016修改) Fig. 1 Simplified geologic map of the Yidun Terrane (a) and simplified geologic-metallogenic map of the Shangri-La region (b) (modified after Li et al., 2011; Gao et al., 2014; Yu and Li, 2016)

香格里拉地区为义敦地体的南延,其东部和南部为甘孜-理塘结合带,西部为格咱深大断裂,与甘孜-理塘深大断裂相接,从而在南部封闭了义敦地体(图 1b杨立强等,2015)。区内地层主要为晚三叠世的一套碎屑岩-碳酸盐岩-火山岩建造,岩性为砂板岩夹灰岩、安山质玄武岩-安山岩、英安岩,划分为曲嘎寺组(T3q)、图姆沟组(T3t)、喇嘛亚组(T3lm);区内构造复杂,主要发育NW和NE向两组断裂。香格里拉地区主要发育两期岩浆-成矿作用:晚三叠世主要为石英二长斑岩、石英闪长玢岩及少量正长斑岩,近NNW向展布,多呈岩株或岩脉产出,高Sr/Y和La/Yb比值,低Y和REE含量,与甘孜-理塘洋大规模西向俯冲作用相关,发育斑岩型或矽卡岩型Cu-Mo-Pb-Zn多金属矿化(杨岳清等,2002李文昌等,2011Wang et al., 2011; Leng et al., 2012姜丽莉等,2015);晚白垩世主要为二长花岗斑岩、花岗岩,近NS向展布,相比具有更高的SiO2含量,富集大离子亲石元素,亏损高场强元素,εHf(t)和εNd(t)均为负值,与后造山陆内伸展作用相关(Deng et al., 2015c; Yang et al., 2015a, b, 2016f),发育斑岩-矽卡岩型Cu-Mo矿化及岩浆热液脉型Mo-W矿化(Yang et al., 2016a, b, 2017ab)。香格里拉地区是我国重要的Cu-Mo多金属成矿区(邓军等, 2010, 2011, 2013杨立强等,2015),除产出普朗超大型、雪鸡坪大型和浪都大型晚三叠世斑岩-矽卡岩矿床外,也发育有晚白垩世红山斑岩-矽卡岩型Cu-Mo-Pb-Zn矿床、铜厂沟斑岩-矽卡岩型Mo-Cu矿床和休瓦促岩浆热液脉型Mo-W矿床等著名的大型多金属矿床(图 1b王新松等,2015杨立强等,2015)。

2.2 矿床地质特征

铜厂沟Mo-Cu矿床位于香格里拉县城东南约15km处(图 1b),迄今已探明资源量142.5Mt(0.3Mt @ 0.3% Mo,0.034Mt @ 0.8% Cu)。铜厂沟铜矿化点发现于1995年,2005年云南省地质调查院对其进行了详细评价,仅圈出一个工业矿体,规模较小(李文昌等,2012)。然而随着区域晚白垩世花岗斑岩发育以Mo为主的多金属矿化的成矿规律的揭示(李建康等,2007李文昌等,2011),2010~2011年铜厂沟取得找矿新突破,发现并控制了脉状Mo-Cu富矿体及斑岩型矿体(图 2a)。矿区出露地层主要为三叠纪灰岩、白云岩和大理岩以及二叠纪玄武岩夹火山角砾岩。灰岩与玄武岩接触带附近、灰岩与花岗闪长斑岩内外接触带及附近发育矽卡岩化、碳酸盐化、黄铜矿化、黄铁矿、辉钼矿化、方铅矿化和闪锌矿化。二叠纪玄武岩主要为微晶玄武岩、含斑玄武岩和杏仁状玄武岩,发育绿泥石化、绿帘石化、碳酸盐化、硅化。晚白垩世花岗闪长斑岩侵入三叠纪和二叠纪地层,仅在矿区西南部有零星出露(图 2a),钻探工程揭露深部存在隐伏的花岗闪长斑岩岩基(图 2b余海军等,2015)。矿区花岗闪长斑岩与Mo-Cu成矿作用密切相关,锆石LA-ICP-MS U-Pb年龄约为85Ma,属于偏铝质埃达克质花岗岩,具有较低MgO、Cr和Ni含量,高Sr含量及高Sr/Y、La/Yb比值(Yang et al., 2017a)。铜厂沟花岗闪长斑岩体具有较高(87Sr/86Sr)i(0.706254~0.706770),负的εHf(t)值(-7.4~-4.3) 和εNd(t)值(-5.3~-4.2) 以及老的Hf-Nd模式年龄,指示其母岩浆主要来源于加厚中基性下地壳的部分熔融(Yang et al., 2017a)。矿区北部还发育三叠纪辉绿玢岩,平行于矿区次级断裂(F3、F4),与矿化关系不大。

图 2 铜厂沟Mo-Cu矿床地质图(a)和地质剖面简图(b)(据李文昌等, 2012; 余海军等, 2015; Yang et al., 2017a修改) Fig. 2 Simplified geological map (a) and cross-section map (b) of the Tongchanggou Mo-Cu deposit (modified after Li et al., 2012, Yu et al., 2015; Yang et al., 2017a)

铜厂沟矿区主要发育三种类型矿体:产于围岩、不同岩层间破碎带及断裂带的脉状矿体;产于矽卡岩化灰岩、大理岩中的脉状矽卡岩型矿体;产于花岗闪长斑岩中细脉、透镜状的斑岩型矿体(图 2李文昌等,2012)。矿区地表及浅部主要发育Cu-Pb-Zn矿化,深部以Mo为主,伴生Cu。脉状矿体主要位于二叠纪玄武岩与三叠纪灰岩的断层接触带附近,Cu-Mo共生,延伸较远,厚0.2~12m,Cu平均品位为1.45%,Mo平均品位为0.17%;矽卡岩矿体赋存于矽卡岩和矽卡岩化大理岩中,主要为Mo矿化,呈脉状、细脉状产于矽卡岩中。矿石矿物以黄铜矿、辉钼矿和黄铁矿为主,少量方铅矿和闪锌矿(图 3)。脉石矿物主要为石榴子石、透辉石、透闪石、石英、方解石、绢云母、绿帘石和绿泥石。矿石结构主要有交代结构和包含结构,矿石构造以块状构造、细脉状构造、条带状构造为主。斑岩型矿体主要赋存于花岗闪长斑岩中,矿体露头呈椭圆状,主要为Mo矿化,局部见弱Cu矿化,辉钼矿主要呈透镜状、细脉浸染状分布。

图 3 铜厂沟Mo-Cu矿床矽卡岩手标本及显微镜下照片 (a)石榴子石矽卡岩,石榴子石呈自形五角十二面体,可见方解石和浸染状辉钼矿;(b)透闪石矽卡岩,以针柱状透闪石和交代残留方解石为主;(c)单偏光下石榴子石,无色透明,粒间裂隙发育;(d、e)正交偏光下石榴子石,均质性,全消光,绢云母、方解石充填于石榴子石粒间裂隙中;(f)正交偏光下针柱状透闪石,干涉色呈二级黄蓝,可见零星辉钼矿;(g)正交偏光下短柱状透辉石和残留方解石;(h)自形黄铁矿和半自形-他形黄铜矿共生,方铅矿和闪锌矿切穿黄铜矿.Grt-石榴石;Cc-方解石;Mo-辉钼矿;Tr-透闪石;Di-透辉石;Ep-绿帘石;Py-黄铁矿;Ccp-黄铜矿;Gn-方铅矿;Sph-闪锌矿 Fig. 3 Photographs of hand specimens and photomicrographs of garnet skarn and tremolite skarn from Tongchanggou Mo-Cu deposit (a) garnet (Grt) skarn with euhedral garnet and residual calcite (Cc) and disseminated molybdenite (Mo); (b) tremolite (Tr) skarn with needle-shaped tremolite and residual calcite; (c) transparent garnet under plane polarized light (PPL), developing intergranular fissures; (d, e) complete-extinct garnet under crossed polarized light (CPL), with sericite and calcite filling in the intergranular fissures of garnet; (f) needle-shaped tremolite under CPL with the development of disseminated molybdenite; (g) short-column diopside (Di) and residual calcite under CPL; (h) coexisting euhedral pyrite (Py) and subhedral-anhedral chalcopyrite (Ccp) intergrow with late-stage galena (Gn) and sphalerite (Sph)

根据铜厂沟矿区野外不同矿体、矿化的分布特征,显微镜下矿石的结构构造及矿物间共生、伴生组合关系,成矿过程可划分为四个阶段(图 4):(1) 接触变质阶段,铜厂沟花岗闪长斑岩体侵入三叠纪灰岩发生热接触变质作用,使灰岩变质为大理岩、大理岩化灰岩,主要矿物为方解石;(2) 进化矽卡岩阶段,该阶段主要表现为矽卡岩化,岩浆热液交代大理岩形成钙质矽卡岩,主要矿物为石榴子石和透辉石,少量交代残余的方解石(图 3ae);(3) 退化矽卡岩阶段,石榴子石矽卡岩和透辉石矽卡岩发生退化蚀变,透闪石、绿帘石、绢云母等矿物交代石榴子石、透辉石等矿物,在交代强烈地段常见石榴子石残余体(图 3b-df);(4) 石英硫化物阶段,大量黄铜矿、辉钼矿、黄铁矿等金属硫化物呈细脉状、浸染状沿退化蚀变带、层间破碎带发育,该阶段晚期出现方铅矿、闪锌矿(图 3h)。

图 4 铜厂沟Mo-Cu矿床矿物生成顺序 Fig. 4 Paragenesis of minerals from the Tongchanggou Mo-Cu deposit
3 矽卡岩特征 3.1 矽卡岩类型

矽卡岩在铜厂沟矿区广泛出露,是该矿区最主要的矿石类型。由于原岩为大理岩,矽卡岩矿物类型较简单,包括石榴子石、透辉石、透闪石、绿帘石、绿泥石和绢云母等。根据矿物组合及共生关系,可将矽卡岩类型划分为石榴子石矽卡岩、透辉石矽卡岩和透闪石矽卡岩(图 3)。

石榴子石矽卡岩是铜厂沟Mo-Cu矿床分布最广的矽卡岩,其矿物组成主要为石榴子石,有时还有少量的透辉石,在石榴子石之间常见交代残余的方解石(图 3a)。手标本上观察石榴子石常呈粒状或粒状集合体产出,颜色较深,呈红褐色,菱形十二面体或四角三八面体的半自形-自形粒状结构,颗粒粒度一般小于4mm,个别可达7mm以上。粒状变晶结构、不等粒粒状变晶结构,也常有各种交代结构,均质性,单偏光镜下全消光(图 3c)。石榴子石矽卡岩的构造主要有块状、斑杂状、斑块状构造,有时可见条带状和角砾状构造(图 5b)。石榴子石是石榴子石矽卡岩的主要造岩矿物,其含量约为70%~90%。由于后期的热液蚀变作用强烈,退化蚀变矿物常常交代石榴子石、透辉石等早期的矽卡岩矿物,因此可见绿帘石、绢云母、黄铜矿、黄铁矿、辉钼矿等充填石榴子石粒间间隙的现象(图 3d)。石榴子石矽卡岩通常位于矽卡岩矿体的顶板,矿化以黄铜矿、黄铁矿、辉钼矿矿化为主,浅部可见方铅矿化和闪锌矿化。

图 5 铜厂沟Mo-Cu矿床矽卡岩分带示意图 (a)PD6剖面图(CD位置见图 2),水平方向上大理岩近端透辉石矽卡岩最为发育,远端则以石榴子石矽卡岩为主;(b)石榴子石矽卡岩与矽卡岩Mo矿体接触部位,赋矿矽卡岩发育绿帘石化;(c)大理岩、透辉石矽卡岩和石榴子石矽卡岩接触关系;(d)钻孔ZK3201柱状图,垂向上可见角砾岩与岩体接触带,靠近角砾岩发育透辉石矽卡岩,靠近岩体发育石榴子石矽卡岩 Fig. 5 Zonation patterns of skarn from the Tongchanggou Mo-Cu deposit (a) simplified geologic map of adit PD6 (see the location of CD section in Fig. 2), with proximal diopside skarn and distal garnet skarn away from marble in horizontal direction; (b) contact zone between garnet skarn and skarn Mo orebody, where Mo-bearing skarn develop epidotization; (c) the contact relationship between marble, diopside skarn and garnet skarn; (d) histogram of drill hole ZK3201, showing the contact zone between the breccia and granodiorite vertically, with the development of diopside skarn near the breccia and garnet skarn near the granodiorite

透辉石矽卡岩也是分布较广和常见的矽卡岩之一。手标本观察,透辉石多呈浅绿色、绿色、灰白色,多呈短柱状或粒状晶体,颗粒粒度为柱状或粒状变晶结构,致密块状构造(图 5c)。镜下观察透辉石呈短柱状、粒状或长柱状分布在早期石榴子石附近,或呈脉状充填于石榴子石矽卡岩中。单偏光下具有浅绿色、粉红色多色性,正高突起,具有辉石式解理,正交偏光下为Ⅱ级干涉色(图 3g)。

透闪石是铜厂沟矿区退化蚀变阶段分布最广的矿物,常常交代进化矽卡岩阶段的石榴子石和辉石。透闪石矽卡岩手标本呈绿色、黄绿色,粒状变晶结构,块状构造。透闪石多呈弥散状、不规则状、放射状密集产出,正交偏光下干涉色为较鲜艳的彩色,发育零星辉钼矿化(图 3f)。

3.2 矽卡岩分带特征

通过大量平硐和岩心的系统编录,本文对铜厂沟Mo-Cu矿床中矽卡岩矿物的分带特征进行了归纳总结。矽卡岩矿物组合受花岗闪长斑岩体与大理岩、角砾灰岩分布的控制,由大理岩向外依次发育透辉石矽卡岩→Mo(Cu)矿体→透闪石矽卡岩→石榴子石矽卡岩。以钻孔ZK3201为例具体说明,由上至下依次为:① 0~117m,角砾灰岩,可见细脉状透辉石、绿帘石等;② 117~119m,青磐岩化花岗闪长斑岩,岩体中可见零星黄铜矿、黄铁矿和辉钼矿;③ 119~147m,角砾灰岩与花岗闪长斑岩接触带,近岩体为石榴子石矽卡岩,石榴子石呈红褐色,自形粒状结构,近角砾灰岩发育透闪石矽卡岩和透辉石矽卡岩;④ 147~478m,青磐岩化花岗闪长斑岩,近矽卡岩部位较为破碎,沿裂隙面和微裂隙发育大量黄铁矿、黄铜矿和辉钼矿;⑤ 478~506m,构造破碎带;⑥ 506~515m,青磐岩化和硅化花岗闪长斑岩;⑦ 515~523m,石榴子石矽卡岩,石榴子石晶形较好,仅见少量辉钼矿化;⑧ 515~532m,矽卡岩型Mo矿体;⑨ 532~551m,透辉石矽卡岩,较为破碎,辉钼矿化发育;⑩ 551~572m,大理岩,可见矽卡岩化。综上所述,由浅至深,石榴子石粒度逐渐变大,矿化与透闪石、绿帘石等退化蚀变矿物密切相关,矿体多形成于外接触带。

4 样品及分析测试方法 4.1 石榴子石电子探针分析

本次测试的石榴子石样品采自钻孔ZK3201(图 5),主量元素测试在中国地质科学院矿产资源研究所电子探针实验室完成,电子探针仪仪器型号为JXA-8230,测试加速电压为15kV,束电流为20nA,束斑大小为10μm,检测精度为0.02%。

4.2 H-O同位素分析

本次测试的石榴子石样品分别采自平硐PD6的CD剖面和钻孔ZK3201(图 5),H-O同位素测试在核工业北京地质研究院分析测试研究中心完成,测试仪器为MAT-253质谱仪。氧同位素分析首先破碎采集的样品,过筛至40~60目,然后在双目镜下观察并挑选纯净单矿物,纯度应在99%以上。经清洗样品,并去样品的吸附水和次生包裹体后进行研究。氧同位素分析采用BrF5法(Clayton and Mayeda, 1963),首先将纯净的样品选取12mg,并将其与BrF5反应15h,萃取O2。并将萃取的O2放入CO2转化系统,并设置700℃、12min,制成并收集CO2。氢同位素分析采用真空爆裂法和锌还原法提取氢。首先加热至可爆裂包裹体样品的温度,并释放挥发分,提取水蒸气,然后使水与锌在400℃条件下发生反应并产生氢气,用液氮冷却,放入含有活性炭的瓶中。氢和氧同位素的分析结果均以平均海水(SMOW)为标准。氢同位素的分析精度为±2%,氧同位素的分析精度为±0.2%。

5 分析结果 5.1 石榴子石端元组分

3件石榴子石样品的电子探针分析结果见表 1,采用Knowles算法,求出各自的端元组分,并做成分三角图(图 6)。由表 1可以看出,石榴子石的SiO2和CaO含量较高且变化不大,SiO2含量变化范围为37.19%~39.43%,CaO为33.46%~34.64%。TiO2、Cr2O3、MnO和MgO含量较低,变化范围分别为0.14%~1.88%,0.00%~0.09%,0.47%~0.90%和0.18%~0.42%。Al2O3含量较高,变化范围为14.00%~18.04%;FeO含量相对较低,变化范围为6.12%~11.04%;且所有样品中FeO和Al2O3含量呈负相关,SiO2和CaO整体呈正相关。石榴子石中Fe2+/Fe3+比值变化范围为0.00~0.20,平均值为0.06。端元组分以钙铝榴石为主(62.2~78.3),其次为钙铁榴石(16.7~34.2),少量锰铝榴石(1.1~2.0),铁铝榴石(0.0~2.2) 和镁铝榴石(0.7~1.7),属于钙铝榴石-钙铁榴石固溶体系列(Gro62-78And17-34Spe+Pyr+Alm2-6)。

表 1 铜厂沟Mo-Cu矿床石榴子石电子探针分析结果(wt%) Table 1 Analyses of garnet from the Tongchanggou Mo-Cu deposit (wt%)

图 6 铜厂沟Mo-Cu矿床与世界不同矿种矽卡岩矿床中石榴子石端元组分特征对比(底图据Meinert, 1992) Fig. 6 Comparison of garnet's composition between the Tongchanggou Mo-Cu deposit and different metal-bearing skarn deposits in the world (base map after Meinert, 1992)

目前关于世界上大型矽卡岩Mo矿床的研究较少:Meinert(1992)提出Mo矽卡岩矿床多与浅色花岗岩有关,且往往伴生W、Cu、Pb和U,矽卡岩矿物组合以钙铁辉石-钙铁榴石-硅灰石-萤石为主;而艾永富和金玲年(1981)通过计算与矿化有关的石榴子石的端元组分,得出与Mo和(Cu)Mo矿化有关的石榴子石成分以钙铝榴石为主,钙铁榴石含量为13%~26%。铜厂沟Mo-Cu矿床成因上与区域晚白垩世花岗闪长斑岩密切相关,矽卡岩矿物组合以钙铝榴石为主,含少量透辉石和透闪石,可能导致其石榴子石端元成分变化范围与浅色花岗岩形成的矽卡岩Mo矿床不太一致(图 6)。

5.2 石榴子石H-O同位素

透辉石-透闪石-石榴子石矽卡岩型矿石是铜厂沟Mo-Cu矿床最主要的矿石类型,本次分析样品即采自于其中的石榴子石。由于石榴子石是造岩矿物中稳定性最好和氧扩散速率最慢的矿物之一,正常的热液蚀变难以改变其氧同位素组成(吴元保等,2005),因此石榴子石的氧同位素组成可以有效指示其结晶介质的氧同位素组成(王守旭等,2008)。由表 2可知,8件石榴子石的氧同位素组成分布集中,δ18OSMOW变化范围为5.2‰~9.5‰,平均值为7.1‰,符合正常花岗岩类的氧同位素组成范围(δ18OSMOW=6‰~10‰;郑永飞和陈江峰,2000),表明石榴子石的矿物氧主要来自于中酸性岩浆。

表 2 铜厂沟Mo-Cu矿床石榴子石H-O同位素组成 Table 2 H-O isotopic compositions of garnet from the Tongchanggou Mo-Cu deposit

石榴子石中流体包裹体δDSMOW的变化范围为-111.9‰~-96.8‰,平均值为-106.7‰。成矿流体氧同位素组成所使用的计算方程为;:1000Inα石榴子石-水=1.14×106T-2-3.70(卢武长和杨绍全,1982)。以进化矽卡岩阶段流体包裹体的平均均一温度为370℃计算(未发表数据),石榴子石中流体包裹体的δ18OH2O的变化范围为2.2‰~6.5‰。

6 讨论 6.1 石榴子石形成环境

实验研究表明,石榴子石形成于较氧化的条件,且钙铁榴石组分高的石榴子石比钙铝榴石组分高的石榴子石在更加氧化的条件下形成(赵斌等,1983)。钙铁榴石在中-碱性溶液中最易形成,而钙铝榴石在酸性介质中最易形成(高pH时难以形成六配位的Al),因此矽卡岩矿床中石榴子石成分可作为成矿流体酸度的标志(艾永富和金玲年,1981)。铜厂沟Mo-Cu矿床石榴子石的端元组分以钙铝榴石为主,其次为钙铁榴石,表明进化矽卡岩阶段交代大理岩的热液流体呈酸性;Fe2+/Fe3+比值变化范围为0.00~0.20,平均值为0.06,指示其形成于较氧化的环境。因此,铜厂沟石榴子石形成于酸性较氧化的条件下。

石榴子石和透辉石等进化阶段矽卡岩矿物的大量生成,造成大理岩中的CO2丢失,密度增加,使原岩孔隙度和渗透性增加,有利于金属以络合物形式搬运(如Cl的络合物);而成矿流体中CO2含量增高,又增强了流体萃取矿质的能力(Meinert et al., 2003)。随着pH值的增加和温度的降低,早期形成的进化矽卡岩矿物不稳定,被热液交代发生退化蚀变,形成透闪石、绿帘石、绿泥石等含水矿物及大量石英(早期钙铝榴石被绿帘石和方解石交代;图 3d)。

6.2 成矿流体来源

如前所述,根据石榴子石的氧同位素组成所计算的进化矽卡岩阶段成矿流体δ18OH2O的变化范围为2.2‰~6.5‰,基本与长英质岩浆水的氧同位素变化范围一致(图 7)。石榴子石样品中δDSMOW的变化范围为-111.9‰~-96.8‰,超出岩浆水范围(图 7δDH2O=-80‰~-40‰;Taylor,1974),可能受到混入岩浆水的大气降水的影响或者含大气水的次生包裹体的影响,也可能由于石榴子石中包裹体的H同位素体系未封闭而导致δDSMOW的值易受外界因素的干扰。

图 7 铜厂沟Mo-Cu矿床石榴子石中水的δ18O-δD图解(底图范围据Hedenquist and Lowenstern, 1994) Fig. 7 Plot of δ18O vs. δD values of water hosted by prograde garnet from the Tongchanggou Mo-Cu deposit (fields from Hedenquist and Lowenstern, 1994)

铜厂沟矿区的金属硫化物具有较均一的δ34S(CDT)值,除1件矽卡岩化大理岩中的辉钼矿δ34S(CDT)值较富,为3.8‰,其余采自花岗闪长斑岩和矽卡岩矿石中的13件黄铁矿、5件辉钼矿和1件黄铜矿的δ34S(CDT)值分布较为集中,在-0.7‰~1.4‰之间(刘学龙等,2016)。该矿区矿石矿物共生组合为辉钼矿-黄铜矿-黄铁矿-方铅矿-闪锌矿,重晶石、石膏等硫酸盐矿物不发育,表明成矿流体体系的硫以H2S为主,因此金属硫化物的δ34S(CDT)值可近似地反应成矿流体的硫同位素组成(杨立强等,2014Zhang et al., 2013Yang et al., 2014, 2016c, d, eDeng et al., 2015bWang et al., 2015)。成矿流体的δ34S值在0值附近(图 8),与岩浆热液流体形成的矿床硫同位素值接近(0±5 ‰;Bowman,1998),表明铜厂沟成矿流体主要来源于岩浆。

图 8 香格里拉地区主要晚白垩世矿床金属硫化物的S同位素直方图 铜厂沟矿床数据刘学龙等(2016),红山矿床数据王守旭等(2008),休瓦促矿床数据王新松等(2015),热林矿床数据孟健寅(2014) Fig. 8 Histogram and range of δ34S values for sulfides from the major ore deposits in the Shangri-La region The sulfur isotopic compositions of the Late Cretaceous Tongchanggou, Hongshan, Xiuwacu and Relin Cu-Mo (W) deposits are from Liu et al. (2016), Wang et al. (2008) Wang et al. (2015) and Meng (2014), respectively
6.3 成矿物质来源

金属硫化物Pb同位素结果表明,各种金属硫化物也具有较为相似的Pb同位素组成,其变化范围分别为206Pb/204Pb=18.332~18.694,208Pb/204Pb=38.454~39.088,207Pb/204Pb=15.588~15.663(刘学龙等,2016)。由于金属硫化物基本不含U、Th,在矿物形成后几乎没有放射成因的铅生成,故而这些金属硫化物的铅同位素组成可以反映成矿流体中初始Pb同位素组成。Zartman and Doe(1981)绘制了Pb同位素随时间的演化曲线,207Pb/204Pb-206Pb/204Pb可以很好地判别上地壳、下地壳及地幔等源区。铜厂沟Mo-Cu矿床矿石铅同位素样品集中于造山带和上地壳演化线之间,且更靠近造山带演化线(图 9a);在Δγ和Δβ的投图中,它们主要落在上地壳和岩浆作用之间(图 9b; 朱炳泉,1998)。结合铜厂沟矿区与Mo-Cu矿化密切相关的花岗闪长斑岩的母岩浆主要来源于加厚下地壳的部分熔融(Yang et al., 2017a),推断该区成矿物质主要来自于壳源的长英质岩浆。

图 9 香格里拉地区主要矿床金属硫化物的Pb同位素特征 (a)207Pb/204Pb-206Pb/204Pb图解(Zartman and Doe, 1981); (b)Δγ和Δβ值的相关关系图解(朱炳泉, 1998).晚白垩世铜厂沟Mo-Cu矿床和休瓦促Mo-W矿床数据刘学龙等(2016)王新松等(2015);晚三叠世普朗和雪鸡坪Cu矿床数据冷成彪等(2008)刘学龙等(2012) Fig. 9 207Pb/204Pb vs. 206Pb/204Pb diagram (a, after Zartman and Doe, 1981) and Δγ vs. Δβ diagram (b, after Zhu, 1998) of Pb isotope compositions of sulfide from major ore deposits in the Shangri-La region The Pb isotope data of Late Cretaceous Tongchanggou Mo-Cu deposit and Xiuwacu Mo-W deposit are from Liu et al. (2016) and Wang et al. (2015). The Pb isotope compositions of Late Triassic Pulang and Xuejiping porphyry Cu deposits are from Leng et al. (2008) and Liu et al. (2012)
7 结论

(1) 铜厂沟Mo-Cu矿床主要矽卡岩类型为石榴子石矽卡岩、透辉石矽卡岩和透闪石矽卡岩,其分布具有一定的分带性:由大理岩向外依次发育透辉石矽卡岩→透闪石矽卡岩→石榴子石矽卡岩→花岗闪长斑岩;由浅至深,石榴子石粒度逐渐变大;矿化与透闪石、绿帘石等退化蚀变矿物密切相关,矿体多形成于外接触带。

(2) 铜厂沟Mo-Cu矿床石榴子石呈自形粒状或粒状集合体产出,颜色较深,均质性,以钙铝榴石为主(62.2~78.3),其次为钙铁榴石(16.7~34.2),少量锰铝榴石、铁铝榴石和镁铝榴石,属于钙铝榴石-钙铁榴石固溶体系列(Gro62-78And17-34Spe+Pyr+Alm2-6);Fe2+/Fe3+比值变化范围为0.00~0.20,平均值为0.06,指示石榴子石形成于酸性的氧化环境。

(3) 进化矽卡岩阶段形成的石榴子石的δ18OSMOW变化范围为5.2‰~9.5‰,表明矿物O主要来源于中酸性岩浆;金属硫化物具有较为均一的S-Pb同位素范围(δ34S(CDT)=-0.7‰~1.4‰;206Pb/204Pb=18.332~18.694,208Pb/204Pb=38.454~39.088,207Pb/204Pb=15.588~15.663),表明成矿流体和成矿物质均来源于壳源的长英质岩浆。

致谢 论文的完成得益于与杨立强教授的讨论; 感谢两位审稿人提出的宝贵意见。感谢香格里拉县鼎立矿业有限公司梅社华经理、毛涌清工程师及其他工作人员对野外工作的大力支持和帮助。感谢陈振宇副研究员和陈小丹硕士对本文电子探针分析工作的实验指导,刘牧实验员对本文稳定同位素分析测试的帮助。感谢和文言博士、刘江涛博士、杨镇博士、魏超硕士对野外和室内工作的帮助。
参考文献
[] Ai YF, Jin LN. 1981. The study of the relationship between the minaralizaiton and the garnet in the skarn ore deposits. Acta Scicentiarum Naturalum Universitis Pekinesis, 9(1): 83–90.
[] Baker T, van Achterberg E, Ryan CG, Lang JR. 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32(2): 117–120. DOI:10.1130/G19950.1
[] Bowman JR. 1998. Stable isotope systematic of skarns. In:Lentz DR (ed.). Mineralized Intrusion-Related Skarn Systems. Mineralogical Association of Canada, Québec, Short Course Series, 26: 99–145.
[] Chang C. 1997. Geology and Tectonics of Qinghai-Xizang Plateau Solid Earth Sciences Research in China. Beijing: Science Press: 1-153.
[] Clayton RN, Mayeda TK. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27(1): 43–52. DOI:10.1016/0016-7037(63)90071-1
[] Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ, Wang CM. 2010. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China. Acta Petrologica Sinica, 26(6): 1633–1645.
[] Deng J, Yang LQ, Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501–2509.
[] Deng J, Ge LS, Yang LQ. 2013. Tectonic dynamic system and compound orogeny:Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China. Acta Petrologica Sinica, 29(4): 1099–1114.
[] Deng J, Wang QF, Li GJ, Li CS, Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419–437. DOI:10.1016/j.gr.2013.08.002
[] Deng J, Wang QF, Li GJ, Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268–299. DOI:10.1016/j.earscirev.2014.05.015
[] Deng J, Wang QF, Li GJ, Zhao Y. 2015a. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geology Reviews, 65: 42–54. DOI:10.1016/j.oregeorev.2014.08.002
[] Deng J, Liu XF, Wang QF, Pan RG. 2015b. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China:Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews, 65: 674–686. DOI:10.1016/j.oregeorev.2014.04.018
[] Deng J, Wang CM, Bagas L, Carranza EJM, Lu YJ. 2015c. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China:Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry. Mineralium Deposita, 50(8): 987–1006. DOI:10.1007/s00126-015-0584-1
[] Deng J, Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219–274. DOI:10.1016/j.gr.2015.10.003
[] Deng J, Wang QF, Li GJ, Hou ZQ, Jiang CZ, Danyushevsky L. 2016. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China. Ore Geology Reviews, 70: 457–485.
[] Deng J, Wang QF, Li GJ. 2017. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research. DOI:10.1016/j.gr.2017.02.005
[] Einaudi MT, Meinert LD and Newberry RJ. 1981. Skarn deposits. In:Economic Geology:75th Anniversary Volume. El Paso:Economic Geology Publishing Co., 317-391
[] Gao X, Deng J, Meng JY, Yan H, Li JX, Yang CH, Sun N, Wei C. 2014. Characteristics of garnet in the Hongniu skarn copper deposit, western Yunnan. Acta Petrologica Sinica, 30(9): 2695–2708.
[] He WY, Mo XX, He ZH, White NC, Chen JB, Yang KH, Wang R, Yu XH, Dong GC, Huang XF. 2015. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, southwest China. Economic Geology, 110(6): 1625–1641. DOI:10.2113/econgeo.110.6.1625
[] He WY, Yang LQ, Brugger J, McCuaig TC, Lu YJ, Bao XS, Gao XQ, Lu YG, Xing YL. 2016. Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China:Evidence from fluid inclusions and H-O-S-Pb isotopes. Ore Geology Reviews. DOI:10.1016/j.oregeorev.2016.10.035
[] Hedenquist JW, Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519–527. DOI:10.1038/370519a0
[] Hou ZQ, Yang YQ, Wang HP, Qu XM, Huang DH. 2003. Collision-Orogenic Processes and Mineralization Systems of the Yidun Arc. Beijing: Geological Publishing House: 1-345.
[] Hou ZQ, Yang YQ, Qu XM, Huang DH, Lü QT, Wang HP, Yu JJ, Tang SH. 2004. Tectonic evolution and mineralization systems of the Yidun arc Orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1): 109–120.
[] Jiang LL, Xue CD, Hou ZQ, Xiang K. 2015. Petrogenesis of the Bengge syenites, northwestern Yunnan:Geochemistry, geochronology and Hf isotopes evidence. Acta Petrologica Sinica, 31(11): 3234–3246.
[] Leng CB, Zhang XC, Wang SX, Wang WQ, Qin CJ, Wu KW, Ren T. 2008. Sulfur and lead isotope compositions of the Xuejiping porphyry copper deposit in Northwest Yunnan, China:Tracing for the source of metals. Journal of Mineralogy and Petrology, 28(4): 80–88.
[] Leng CB, Zhang XC, Hu RZ, Wang SX, Zhong H, Wang WQ, Bi XW. 2012. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences, 60: 31–48. DOI:10.1016/j.jseaes.2012.07.019
[] Li JK, Li WC, Wang DH, Lu YX, Yin GH, Xue SR. 2007. Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian Arc. Acta Petrologica Sinica, 23(10): 2415–2422.
[] Li WC, Yin GH, Yu HJ, Lu YX, Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541–2552.
[] Li WC, Yu HJ, Yin GH, Cao XM, Huang DZ, Dong T. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in Northwest Yunnan and its metallogenic environment. Acta Petrologica Sinica, 31(2): 282–292.
[] Liu J. 2013. Deposit geology and prospecting direction of the Tongchanggou Cu-Mo deposit, Yunnan. West-China Exploration Engineering, 25(3): 105–107.
[] Liu XL, Li WC, Yin GH. 2012. Lead isotope characteristics and tracing significance of ore metallogenic material in Geza arc metallogenic belt, Yunnan. Geoscience, 26(3): 445–452.
[] Liu XL, Li WC, Zhang N, Yang FC, Kang J, Zhang B. 2016. Characteristics of sulfur and lead isotopes and tracing of mineral sources in the Tongchanggou porphyry Mo (Cu) deposit at the southern edge of Geza arc belt, Yunnan. Geology in China, 43(1): 209–220.
[] Lu WC, Yang SQ. 1982. Use of oxygen bonds to calculate fractionation on equations of oxygen isotope for minerals containing kyanite and staurolite. Journal of Mineralogy and Petrology(2): 106–113.
[] Meinert LD. 1992. Skarns and skarn deposits. Geoscience Canada, 19(4): 145–162.
[] Meinert LD, Hefton KK, Mayes D, Tasiran I. 1997. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Economic Geology, 92(5): 509–534. DOI:10.2113/gsecongeo.92.5.509
[] Meinert LD, Hedenquist J, Satoh H, Matsuhisa Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 98(1): 147–156. DOI:10.2113/gsecongeo.98.1.147
[] Meinert LD, Dipple G and Nicolescu S. 2005. World skarn deposits. In:Economic Geology:100th Anniversary Volume. El Paso:Economic Geology Publishing Co., 299-336
[] Meng JY. 2014. The porphyry copper-polymetallic deposit in Zhongdian, West Yunnan:Magmatism and mineralization. Ph. D. Dissertation. Beijing:China University of Geosciences (in Chinese with English summary)
[] Palinkaš SS, Palinkaš LA, Renac C, Spangenberg JE, Lüders V, Molnar F, Maliqi G. 2013. Metallogenic model of the Trepča Pb-Zn-Ag skarn deposit, Kosovo:Evidence from fluid inclusions, rare earth elements, and stable isotope data. Economic Geology, 108(1): 135–162. DOI:10.2113/econgeo.108.1.135
[] Peng HJ, Li HY, Pei RF, Zhang CQ, Zhou YM, Tian G, Li JX, Long F. 2014. Mineralogical characteristics and metallogeny of the Hongniu-Hongshan copper deposit in Zhongdian area, Yunnan Province, China. Acta Petrologica Sinica, 30(1): 237–256.
[] Shu QH, Lai Y, Sun Y, Wang C, Meng S. 2013. Ore genesis and hydrothermal evolution of the Baiyinnuo'er zinc-lead skarn deposit, Northeast China:Evidence from isotopes (S, Pb) and fluid inclusions. Economic Geology, 108(4): 835–860. DOI:10.2113/econgeo.108.4.835
[] Taylor HP. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6): 843–883. DOI:10.2113/gsecongeo.69.6.843
[] Wang BQ, Zhou MF, Li JW, Yan DP. 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau:Adakitic magmatism and porphyry copper mineralization. Lithos, 127(1-2): 24–38. DOI:10.1016/j.lithos.2011.07.028
[] Wang CM, Deng J, Carranza EJM, Santosh M. 2014a. Tin metallogenesis associated with granitoids in the southwestern sanjiang tethyan domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2): 576–593. DOI:10.1016/j.gr.2013.05.005
[] Wang QF, Deng J, Li CS, Li GJ, Yu L, Qiao L. 2014b. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438–448. DOI:10.1016/j.gr.2013.10.002
[] Wang SX, Zhang XC, Leng CB, Qin CJ, Wang WQ, Zhao MC. 2008. Stable isotopic compositions of the Hongshan skarn copper deposit in the Zhongdian area and its implication for the copper mineralization process. Acta Petrologica Sinica, 24(3): 480–488.
[] Wang XS, Bi XW, Hu RZ, Leng CB, Yin GH, Yu HJ. 2015. S-Pb isotopic geochemistry of Xiuwacu magmatic hydrothermal Mo-W deposit in Zhongdian area, NW Yunnan:Constrains on the sources of metal. Acta Petrologica Sinica, 31(11): 3171–3188.
[] Wang ZL, Yang LQ, Guo LN, Marsh E, Wang JP, Liu Y, Zhang C, Li RH, Zhang L, Zheng XL, Zhao H. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China:A fluid inclusion study. Ore Geology Reviews, 65: 701–717. DOI:10.1016/j.oregeorev.2014.06.006
[] Williams-Jones AE, Samson IM, Ault KM, Gagnon JE, Fryer BJ. 2010. The genesis of distal zinc skarns:Evidence from the Mochito deposit, Honduras. Economic Geology, 105(8): 1411–1440. DOI:10.2113/econgeo.105.8.1411
[] Wu YB, Zheng YF, Gong B, Zhao XF. 2005. Zircon U-Pb ages and oxygen isotope compositions for granite at Xinkailing in the Beihuaiyang zone and their significance. Earth Science-Journal of China University of Geosciences, 30(6): 659–672.
[] Yang LM, Wu JJ, Li ZY, Yang XQ. 2013. A probe into the geology and genesis of Tongchanggou Cu-Mo deposit, Zhongdian. Yunnan Geology, 32(1): 121–124.
[] Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF, Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469–1483. DOI:10.1016/j.gr.2013.07.001
[] Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC, Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447–2467.
[] Yang LQ, Gao X, He WY. 2015. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China. Acta Petrologica Sinica, 31(11): 3155–3170.
[] Yang LQ, Deng J, Dilek Y, Qiu KF, Ji XZ, Li N, Taylor RD, Yu JY. 2015a. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue Suture Zone, Qinling Orogen, China. The Geological Society of America Bulletin, 127(11-12): 1831–1854. DOI:10.1130/B31249.1
[] Yang LQ, Deng J, Qiu KF, Ji XZ, Santosh M, Song KR, Song YH, Geng JZ, Zhang C, Hua B. 2015b. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane, central China:Constraints from petrology, geochemistry, and zircon U-Pb-Hf isotopic systematics. Journal of Asian Earth Sciences, 98: 320–341. DOI:10.1016/j.jseaes.2014.11.023
[] Yang LQ, Deng J, Dilek Y, Meng JY, Gao X, Santosh M, Wang D, Yan H. 2016a. Melt source and evolution of Ⅰ-type granitoids in the SE Tibetan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics. Lithos, 245: 258–273. DOI:10.1016/j.lithos.2015.10.005
[] Yang LQ, Deng J, Wang ZL, Guo LN, Li RH, Groves DI, Danyushevsky LV, Zhang C, Zheng XL, Zhao H. 2016b. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China:Implications for gold source and deposition in a brittle epizonal environment. Economic Geology, 111(1): 105–126. DOI:10.2113/econgeo.111.1.105
[] Yang LQ, Deng J, Li N, Zhang C, Ji XZ, Yu JY. 2016c. Isotopic characteristics of gold deposits in the Yangshan Gold Belt, West Qinling, central China:Implications for fluid and metal sources and ore genesis. Journal of Geochemical Exploration, 168: 103–118. DOI:10.1016/j.gexplo.2016.06.006
[] Yang LQ, Deng J, Guo LN, Wang ZL, Li XZ, Li JL. 2016d. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews, 72: 585–602. DOI:10.1016/j.oregeorev.2015.08.021
[] Yang LQ, Deng J, Guo RP, Guo LL, Wang ZL, Chen BH, Wang XD. 2016e. World-class Xincheng gold deposit:An example from the giant Jiaodong gold province. Geoscience Frontiers, 7(3): 419–430. DOI:10.1016/j.gsf.2015.08.006
[] Yang LQ, Deng J, Wang ZL, Zhang L, Goldfarb RJ, Yuan WM, Weinberg RF, Zhang RZ. 2016f. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization:A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews, 72: 165–178. DOI:10.1016/j.oregeorev.2015.07.006
[] Yang LQ, Deng J, Gao X, He WY, Meng JY, Santosh M, Yu HJ, Yang Z, Wang D. 2017a. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015–1032. DOI:10.1016/j.oregeorev.2016.03.015
[] Yang LQ, Gao X, Shu QH. 2017b. Multiple Mesozoic porphyry-skarn Cu (Mo-W) systems in Yidun Terrane, East Tethys:Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews. DOI:10.1016/j.oregeorev.2017.01.030
[] Yang YQ, Hou ZQ, Huang DH, Qu XM. 2002. Collision orogenic process and magmatic metallogenic system in Zhongdian arc. Acta Geoscientia Sinica, 23(1): 17–24.
[] Yu HJ, Li WC, Yin GH, Wang JH, Jiang WT, Wu S, Tang Z. 2015. Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan. Acta Petrologica Sinica, 31(11): 3217–3233.
[] Yu HJ, Li WC. 2016. Geochronology and geochemistry of Xiuwacu intrusions, NW Yunnan:Evidences for two-period magmatic activity and mineralization. Acta Petrologica Sinica, 32(8): 2265–2280.
[] Zartman RE, Doe BR. 1981. Plumbotectonics-the model. Tectonophysics, 75(1-2): 135–162. DOI:10.1016/0040-1951(81)90213-4
[] Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L, Gong QJ. 2013. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2): 557–575.
[] Zhao B, Li TJ, Li ZP. 1983. Experimental study of physic-chemical conditions of the formation of skarns. Geochimica(3): 256–267.
[] Zheng YF, Chen JF. 2000. Stable Isotope Geochemistry. Beijing: Science Press: 1-247.
[] Zhu BQ. 1998. The Theory and Practice of Isotope System in Geoscience-Concurrent Discussion of the Continental Crust and Mantle Evolvements in China. Beijing:Science Press: 1–133.
[] 艾永富, 金玲年. 1981. 石榴石成分与矿化关系的初步研究. 北京大学学报(1): 83–90.
[] 邓军, 杨立强, 葛良胜, 袁士松, 王庆飞, 张静, 龚庆杰, 王长明. 2010. 滇西富碱斑岩型金成矿系统特征与变化保存. 岩石学报, 26(6): 1633–1645.
[] 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501–2509.
[] 邓军, 葛良胜, 杨立强. 2013. 构造动力体制与复合造山作用:兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099–1114.
[] 高雪, 邓军, 孟健寅, 闫寒, 李建新, 杨春海, 孙诺, 魏超. 2014. 滇西红牛矽卡岩型铜矿床石榴子石特征. 岩石学报, 30(9): 2695–2708.
[] 侯增谦, 杨岳清, 王海平, 曲晓明, 黄典豪. 2003. 三江义敦岛弧碰撞造山过程与成矿系统. 北京: 地质出版社: 1-345.
[] 侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109–120.
[] 姜丽莉, 薛传东, 侯增谦, 向坤. 2015. 滇西北甭哥正长岩体成因:锆石U-Pb年龄、Hf同位素和地球化学证据. 岩石学报, 31(11): 3234–3246.
[] 冷成彪, 张兴春, 王守旭, 王外全, 秦朝建, 吴孔文, 任涛. 2008. 滇西北雪鸡坪斑岩铜矿S, Pb同位素组成及对成矿物质来源的示踪. 矿物岩石, 28(4): 80–88.
[] 李建康, 李文昌, 王登红, 卢映祥, 尹光侯, 薛顺荣. 2007. 中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究. 岩石学报, 23(10): 2415–2422. DOI:10.3969/j.issn.1000-0569.2007.10.010
[] 李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541–2552.
[] 李文昌, 余海军, 尹光候, 曹晓民, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282–292.
[] 刘军. 2013. 云南铜厂沟铜钼矿矿床地质特征及找矿方向. 西部探矿工程, 25(3): 105–107.
[] 刘学龙, 李文昌, 尹光侯. 2012. 云南格咱岛弧岩浆成矿带铅同位素特征及成矿物质来源示踪. 现代地质, 26(3): 445–452.
[] 刘学龙, 李文昌, 张娜, 杨富成, 康健, 张彪. 2016. 云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪. 中国地质, 43(1): 209–220. DOI:10.12029/gc20160115
[] 卢武长, 杨绍全. 1982. 利用氧键计算兰晶石、十字石等矿物的氧同位素分馏方程. 矿物岩石(2): 106–113.
[] 孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统. 博士学位论文. 北京: 中国地质大学
[] 彭惠娟, 李洪英, 裴荣富, 张长青, 周云满, 田广, 李建新, 龙飞. 2014. 云南中甸红牛-红山矽卡岩型铜矿床矿物学特征与成矿作用. 岩石学报, 30(1): 237–256.
[] 王守旭, 张兴春, 冷成彪, 秦建朝, 王外全, 赵茂春. 2008. 中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示. 岩石学报, 24(3): 480–488.
[] 王新松, 毕献武, 胡瑞忠, 冷成彪, 尹光侯, 余海军. 2015. 滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束. 岩石学报, 31(11): 3171–3188.
[] 吴元保, 郑永飞, 龚冰, 赵子福. 2005. 北淮阳新开岭地区花岗岩锆石U-Pb年龄和氧同位素组成. 地球科学-中国地质大学学报, 30(6): 659–672.
[] 杨丽梅, 伍建兢, 李宗勇, 杨新强. 2013. 中甸铜厂沟铜钼矿矿床地质及成因探讨. 云南地质, 32(1): 121–124.
[] 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447–2467.
[] 杨立强, 高雪, 和文言. 2015. 义敦岛弧晚白垩世斑岩成矿系统. 岩石学报, 31(11): 3155–3170.
[] 杨岳清, 侯增谦, 黄典豪, 曲晓明. 2002. 中甸弧碰撞造山作用和岩浆成矿系统. 地球学报, 23(1): 17–24.
[] 余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义. 岩石学报, 31(11): 3217–3233.
[] 余海军, 李文昌. 2016. 滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据. 岩石学报, 32(8): 2265–2280.
[] 赵斌, 李统锦, 李昭平. 1983. 夕卡岩形成的物理化学条件实验研究. 地球化学(3): 256–267.
[] 郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社: 1-247.
[] 朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化. 北京: 科学出版社: 1-333.