岩石学报  2017, Vol. 33 Issue (7): 2115-2128   PDF    
滇西兰坪盆地莲花山岩体成因与构造意义:岩石地球化学、锆石U-Pb年代学及Hf同位素约束
刘金宇1, 邓军1, 李龚健1, 肖昌浩2, 孟富军3, 陈福川1, 吴伟1, 张琦玮1     
1. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083;
2. 中国地质科学院地质力学研究所, 北京 100081;
3. 云南省地质矿产勘查院, 昆明 650000
摘要: 沿金沙江-哀牢山古特提斯缝合带两侧发育的巨型新生代陆内钾质岩浆岩带一直是地质学界关注的热点,其西侧的印支地块钾质岩浆岩尚缺乏深入探讨,制约着对钾质岩浆岩带成因的理解以及对印支地块深部壳幔物质结构的认识。本研究选取的莲花山岩体位于印支地块北部的兰坪盆地东南端,依次对其开展系统的岩相学、元素地球化学、锆石U-Pb年代学以及Hf同位素研究。结果显示,岩体主要由石英二长斑岩组成,LA-ICPMS锆石U-Pb定年结果制约岩体侵位时代在~34Ma。岩石样品具有富碱(Na2O+K2O=9.0%~9.2%)、高K(K2O/Na2O=1.0~1.2)特征,属钾玄岩浆系列;富集Th和U等大离子亲石元素,亏损Nb和Ta等高场强元素,轻稀土元素富集((La/Yb)N=22~24)。综合反映莲花山钾质岩浆岩系由大洋板片俯冲作用造成的富集源区的部分熔融作用而产生。锆石εHft)在+1.4~+4.6,集中在+2.8~+4.0,对应的Hf同位素地壳模式年龄为1027~815Ma,集中在934~860Ma。岩体集中的锆石εHft)值和缺乏继承锆石的特征,说明岩浆岩上侵过程中未受到围岩的混染。目前已知的印支地块东部自新元古代以来( < 1000Ma)经历的俯冲作用仅有金沙江-哀牢山古特提斯洋二叠纪(ca.290~250Ma)西向俯冲,莲花山岩体锆石具有的新元古代Hf同位素地壳模式年龄反映古特提斯洋板片俯冲过程有陆源沉积物质加入地幔中,该认识与岩石Nb/U比值(1.3~4.7)所反映的加入地幔的俯冲物质属性一致。莲花山岩体和其西侧同期卓潘钾质杂岩体与扬子西缘钾质岩体群同属金沙江-哀牢山钾质岩浆岩带的组成部分,它们由始新世时期古特提斯缝合带加厚岩石圈拆沉作用导致的软流圈热上涌而诱发。该构造-热事件影响的空间范围可能较传统认为的更大,其向西远涉至印支地块内部,从而导致了莲花山和卓潘等岩体的形成。
关键词: 莲花山岩体     钾质岩浆岩     新生代     俯冲作用     拆沉作用     滇西兰坪盆地    
Petrogenesis and tectonic significance of the Lianhuashan intrusion in the Lanping Basin, western Yunnan:Constraints from bulk element composition, zircon U-Pb geochronology and Hf isotopic compositions
LIU JinYu1, DENG Jun1, LI GongJian1, XIAO ChangHao2, MENG FuJun3, CHEN FuChuan1, WU Wei1, ZHANG QiWei1     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
3. Yunnan Institute of Geology and Mineral Resources Exploration, Kunming 650000, China
Abstract: The Cenozoic intra-continental potassic magmatic belt along the Jinshajiang-Ailaoshan Paleo-Tethyan suture zone has been a hot issue in geological research, whereas the igneous rocks in the Indo-China Block, west to Jinshajiang-Ailaoshan potassic magmatic belt have been rarely investigated, restricting a deeper insight into the formation of this potassic magmatic belt and the architecture of crust-mantle underneath the Indo-China Block. In this paper, we carry out a systematic study of the petrography, whole rock geochemistry, zircon U-Pb dating and Hf isotope for the Lianhuashan intrusion, which is located in the southeast of the Lanping Basin, the northern part of the Indo-China Block. Our results demonstrate that the Lianhuashan intrusion is mainly composed of quartz monzonite porphyries. LA-ICPMS zircon U-Pb dating shows that the Lianhuashan intrusion was emplaced at~34Ma. The rocks show shoshonitic affinity, with high total alkali (Na2O+K2O=9.0%~9.2%), and potassium (K2O/Na2O=1.0~1.2). They are also enriched in LILEs (Th and U) and LREEs ((La/Yb)N=22~24), but relatively depleted in HFSEs (Nb and Ta). Based on the above-mentioned data, it is suggested that the magmas for the Lianhuashan intrusion were derived from an enriched source region ever metasomatized by oceanic slab subduction. Zircon εHf(t) values range from +1.4 to +4.6, mostly clustering between +2.8 and +4.0, corresponding to Hf crust model ages (tDM2) ranging from 1027Ma to 815Ma and mainly clustering between 934Ma and 860Ma. The narrow range of zircon εHf(t) values and lack of inherited zircons preclude assimilation of wall rocks during the magma ascent. As currently known, since Neoproterozoic ( < 1000Ma), the Indo-China Block had been merely subducted by the Jinshajiang-Ailaoshan Paleo-Tethyan ocean during Permian (ca.290~250Ma). Neoproterozoic Hf crust model ages demonstrate an input of terrigenous sediments into mantle during the Paleo-Tethyan slab subduction, which is consistent with Nb/U ratio (1.3~4.7) of the Lianhuashan intrusion. The Lianhuashan intrusion, the Zhuopan potassic mafic complex to the west of the Lianhuashan intrusion, and potassic rocks in the western Yangtze block, together constitute a part of the Jinshajiang-Ailaoshan potassic magmatic belt, which was triggered by upwelling asthenosphere after delamination of lithosphere underneath the Paleo-Tethyan suture. This tectonic-thermal event, which gave rise to the formation of the Lianhuashan and the Zhuopan intrusion, is suggested to have influenced westwards to the interior of the Indo-China Block, spatially more broadly than previously believed.
Key words: Lianhuashan intrusion     Potassic rocks     Cenozoic     Subduction     Delamination     Lanping Basin, western Yunnan    
1 引言

沿金沙江-哀牢山古特提斯缝合带两侧发育的巨型新生代(45~30Ma)陆内钾质岩浆岩带,由北向南跨越东羌塘地块、印支地块和华南地块,绵延2000多千米,且伴随大量的斑岩型Cu-Mo-Au矿床的形成,其重要科研和经济价值一直吸引着众多地质学家的兴趣(图 1) (张玉泉等, 1998; Chung et al., 1998; Roger et al., 2000; Wang et al., 2001a, b, 2016; Bi et al., 2004; Hu et al., 2004; 毕献武等, 2005; Hou et al., 2007; 张静等, 2010; 杨立强等, 2011a, b; Lu et al., 2012, 2013; Zhang et al., 2014; Deng et al., 2014a, b, 2015a, b; 陈福川等, 2015; Deng and Wang, 2016)。

图 1 三江特提斯构造带简略图(a, 据云南省地质矿产局, 1990; Deng et al., 2014a, b; 李龚健等, 2013)、金沙江-哀牢山缝合带及其附近钾质岩浆岩时空分布图(b)和莲花山岩体地质简图(c, 据云南省地质局第一区域地质测量大队, 1975) 金沙江-哀牢山钾质岩浆岩带年龄数据引自: Chung et al. (1997), Roger et al. (2000), 董方浏等(2005), Jiang et al. (2006), 王成辉等(2009), 邓军等(2010), 李勇等(2011), 和文言等(2013), Lu et al.(2012, 2013), 黄行凯等(2013), Deng et al.(2014a, b), 肖晓牛等(2009) Fig. 1 Simplified geological map of the Sanjiang Tethyan domain (a, after BGMRY, 1990; Deng et al., 2014a, b; Li et al., 2013), temporal-spatial distribution of the potassic rocks along the Jinshajiang-Ailaoshan suture zone (b) and simplified sketch map of the Lianhuashan intrusion (c)

① 云南省地质局第一区域地质测量大队.1975. 1:200000巍山幅矿产图

钾质岩浆岩是理解深部壳幔物质组成的重要窗口(Rogers et al., 1998; Guo et al., 2006),目前认为的岩浆岩成因主要包括:(1) 富集交代岩石圈地幔部分熔融(Foley, 1992; Turner et al., 1996; Miller et al., 1999; Jiang et al., 2006; Holbig and Grove, 2008); (2) 俯冲过程中底垫作用形成的玄武质新生下地壳部分熔融(Zhao et al., 2009; Lu et al., 2013); 但无可否认,这两种成因机制均与大洋板片俯冲密切相关。前人对金沙江-哀牢山钾质岩浆岩带岩石成因的研究工作主要集中在北段东羌塘地块的玉龙地区(Hou et al., 2003, 2007; Hu et al., 2004; Liang et al., 2006, 2009; Jiang et al., 2006; 郭利果等, 2006; 王成辉等, 2009; 伍静等, 2011; 陈喜连等, 2016)和中段扬子地块西缘(梁华英等, 2004; Bi et al., 2004; Hu et al., 2004; 毕献武等, 2005; 徐受民等, 2006; Xu et al., 2007; 郭晓东等, 2009; 邓军等, 2010; 李勇等, 2011; 和文言等, 2013; Lu et al., 2012, 2013; Deng et al., 2015a)。代表性观点认为,玉龙岩体所处的东羌塘地块曾遭受过板片俯冲作用,起源于深部交代富集地幔的直接部分熔融(Jiang et al., 2006);扬子地块西缘新元古代经历洋板片俯冲作用,地幔发生交代富集、同期基性岩浆底垫形成新生下地壳,富集地幔在新生代发生部分熔融产生区域煌斑岩和姚安花岗质岩体,而玄武质新生下地壳同时发生部分熔融形成马厂箐和北衙花岗质岩体(Lu et al., 2013; Deng et al., 2014a, b, 2015a)。这些研究丰富了对金沙江-哀牢山钾质岩浆岩成因的认识,也加深了对东羌塘地块和扬子地块西缘深部岩石圈物质组成的理解。然而,对位于印支地块内部的新生代钾质岩体鲜有报道,这制约了我们对该区域深部壳幔组成的理解以及对金沙江-哀牢山钾质岩浆岩成因的深入讨论。本文研究的莲花山岩体位于印支地块北部的兰坪盆地东南部,对其开展了系统的岩相学、主、微量元素地球化学、锆石U-Pb年代学以及Hf同位素研究,旨在揭示印支地块岩石圈深部富集源区物质组成特征及其形成的动力学过程。本研究将进一步丰富对金沙江-哀牢山钾质岩浆岩成因的认识。

2 地质背景与样品

兰坪盆地位于西南三江特提斯构造带印支地块的北部,属中新生代大型复合盆地(图 1a) (薛春纪等, 2002; Deng et al., 2014a, b)。兰坪盆地东侧以金沙江-哀牢山缝合带为界与华南板块相隔,西侧以崇山-澜沧江断裂为界与保山地块毗邻(图 1b),其显生宙构造演化主要受古特提斯洋的俯冲、闭合与地块增生,以及印度与欧亚大陆的碰撞造山作用的制约。兰坪盆地东侧的金沙江洋开启于中泥盆世,早二叠世开始向西俯冲,早三叠世洋盆闭合导致印支地块(含兰坪盆地)拼贴至华南板块(李龚健等, 2013; Deng et al., 2014a, b, 2017; Wang et al., 2014; 邓军等, 2016);兰坪盆地西侧的昌宁-孟连洋亦开启于中泥盆世,早二叠世开始向东俯冲,中三叠世俯冲作用结束,洋盆闭合导致保山地块与印支地块拼合(Deng et al., 2014a, b)。此后,兰坪盆地依次经历了晚三叠世-早侏罗世的陆内裂谷盆地、中侏罗世-白垩纪的拗陷盆地和新生代走滑拉分盆地的演化阶段(薛春纪等, 2002; Deng et al., 2014a, b, 2017)。在新生代印度-欧亚陆陆碰撞(Chung et al., 2005)环境下,兰坪盆地东侧的金沙江-哀牢山缝合带两侧发育大量钾质岩浆岩(Wang et al., 2001a, b; 梁华英等, 2004; Bi et al., 2004; Hu et al., 2004; 毕献武等, 2005; Hou et al., 2003; 徐受民等, 2006; 郭利果等, 2006; Xu et al., 2007; 郭晓东等, 2009; 邓军等, 2010, 2016; 李勇等, 2011; 和文言等, 2013; Lu et al., 2012, 2013; Deng et al., 2014a, b, 2015a, b)。

兰坪盆地主体由中生代沉积岩覆盖,局部分布第四系沉积物(董方浏等,2005),主要构造线呈近南北向分布,如中央断裂系统(王宝禄和李文昌, 2001; 薛春纪等, 2002)。零星出露少量始新世(~35Ma)钾质岩体,如巍山莲花山岩体和卓潘钾质杂岩体等(图 1b; 董方浏等, 2007; 肖昌浩, 2013; 陈喜峰等, 2015)。

莲花山岩体沿北西-南东方向零散分布,呈岩枝、岩株状侵位到三叠系麦初箐组灰色砂岩和侏罗系漾江组紫红色砂岩中(图 1c) (董方浏等,2005)。通过手标本观察,结合镜下特征,莲花山岩体主要为石英二长斑岩(图 2a)。岩石具斑状结构,斑晶主要为斜长石,钾长石和石英,含少量角闪石和黑云母。石英斑晶呈粒状,粒径在0.3~0.8mm,具有波状消光(图 2b),含量10%~15%。钾长石斑晶具有格子双晶(图 2c),粒径在0.6~1.2mm,含量15%~20%。斜长石斑晶粒径在0.6~1.0mm,局部可见黏土化蚀变;可见条纹双晶(图 2d)和环带结构,含量50%~55%。角闪石呈纺锤状(图 2b, c), 单偏光下为绿色,含量在6%~8%。黑云母呈长板状(图 2d),单偏光下为褐色,具有多色性,粒径0.4×0.8mm,含量在2%~4%。基质成分与斑晶组成一致(图 2b, c),由斜长石、钾长石和石英组成,含少量角闪石、黑云母等暗色矿物;基质为显微晶质结构。

图 2 滇西莲花山石英二长斑岩手标本及显微照片 (a)手标本; (b)石英斑晶,具波状消光; 斜长石斑晶; 纺锤状角闪石; (c)钾长石斑晶可见格子双晶; 角闪石; (d)斜长石斑晶条纹双晶; 板片状黑云母(b-d均为正交镜下照片). Qz-石英; Bt-黑云母; Pl-斜长石; Hb-角闪石; Matrix-基质 Fig. 2 Hand specimen photograph (a) and microphotographs (b-d) of the Lianhuashan quartz monzonite porphyries, western Yunnan Province
3 测试方法

本文采集莲花山岩体5件新鲜样品(LHS11-01, LHS11-02, LHS11-03, LHS11-04和LHS11-05)。首先在廊坊地科勘探技术服务有限公司完成薄片、光片和探针片的磨制。接着将样品粉碎并研磨至200目,取50g进行主、微量元素测试。主量元素采用常规X荧光光谱法(XRF)分析,分析不确定度为0.1%~1.0%;微量元素采用电感耦合等离子质谱法(ICP-MS)分析,测试精度优于2×10-6。主、微量元素测试均在中国地质科学院地球物理与地球化学勘查研究所完成,具体测试操作流程见Qi et al. (2000)

本次研究选取2件新鲜的岩石样品(LHS11-03和LHS11-05) 进行锆石U-Pb年代学以及Hf同位素分析。在廊坊地科勘探技术服务有限公司完成锆石分选和制成样靶工作,具体步骤如下:将样品粉碎后,经淘洗、电磁、重液分选,再利用双目镜挑选晶型完好、粒度较大、无明显裂隙和包裹体的锆石颗粒;置所选锆石于环氧树脂内,进行抛光清洗,直至露出锆石颗粒,然后在北京锆石领航科技服务公司的电镜室完成锆石阴极发光(CL)图像的采集。锆石U-Pb年龄在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用LA-ICPMS仪器进行测定。此后,依据CL图像以及早先的U-Pb年龄点位确定Hf同位素测试点位,并采用该实验室LA-MC-ICPMS仪器完成锆石Hf同位素分析。运用ICPMSDataCal 9.0软件完成对锆石U-Pb年龄以及Hf同位素数据的离线处理,具体实验操作流程与数据处理方法见Liu et al.(2008, 2010a, b)。

4 分析结果 4.1 锆石U-Pb年代学

莲花山岩体2件锆石样品19个测试点的年代学分析结果见表 1。锆石颗粒多数呈透明的自形-半自形晶(图 3),多为长柱状,大小在80~150μm间,长宽比约为4:1~2:1,锆石阴极发光(CL)图像显示出较为完整的环带结构。锆石的U含量190×10-6~2484×10-6, Th含量162×10-6~1594×10-6,Th/U比值均大于0.1 (Th/U=0.21~0.85),表明它们均属于典型的岩浆成因锆石(Hoskin and Black, 2000)。本研究未发现继承锆石的存在。

表 1 滇西莲花山石英二长斑岩锆石LA-ICPMS分析结果 Table 1 LA-ICPMS zircon U-Pb analytical data of the Lianhuashan quartz monzonite porphyries, western Yunnan Province

图 3 滇西莲花山石英二长斑岩代表性锆石颗粒阴极发光照片 红色圈代表年龄测试点位; 黄色圈代表Hf同位素测试点位 Fig. 3 Cathodoluminescence (CL) images of representative zircon grains from the Lianhuashan quartz monzonite porphyries, western Yunnan Province

LHS11-03样品10颗锆石的加权平均年龄为34.2±0.4Ma (MSWD=0.65),在U-Pb年龄协和图上,分析点均分布在一致曲线上或附近,显示出较好的协和性(图 4a);LHS11-05样品9颗锆石的加权平均年龄为34.5±1.0Ma (MSWD=3.70) (图 4b)。

图 4 滇西莲花山石英二长斑岩LA-ICMPS锆石U-Pb协和图 Fig. 4 LA-ICMPS zircon U-Pb concordia diagram for the Lianhuashan quartz monzonite porphyries, western Yunnan Province
4.2 全岩元素组成

莲花山岩体的主量元素分析结果见表 2。岩体SiO2含量集中,为67.43%~68.30%;K2O含量在4.48%~5.03%,Na2O含量为4.06%~4.44%,全碱含量(Na2O+K2O)=8.86%~9.21%,显示富碱(Na2O+K2O>8%)特征。在TAS (SiO2-Na2O+K2O)图解(图 5a)中,5件样品落在石英二长岩范围。Al2O3含量15.64%~15.98%,具有较高铝含量;A/CNK=0.93~0.96,属准铝质岩石(图 5b)。K2O/Na2O=1.01~1.20,具高钾特征,在SiO2-K2O图解中,莲花山石英二长斑岩属于钾玄岩浆系列(图 5c);在Na2O-K2O图解中进一步划分为钾玄质岩石(图 5d)。

表 2 滇西莲花山石英二长斑岩主量元素(wt%)和微量元素(×10-6)分析结果 Table 2 Major (wt%) and trace elements (×10-6) of the Lianhuashan quartz monzonite porphyries, western Yunnan Province

图 5 SiO2-(K2O+Na2O)判别图(a, 据Middlemost, 1994; 区分碱性系列和亚碱性系列线来自Irvine and Baragar, 1971)、SiO2-A/CNK判别图(b, 据Kemp and Hawkesworth, 2003)、SiO2-K2O判别图(c, 据Peccerillo and Taylor, 1976)和Na2O-K2O判别图(d, 据Turner et al., 1996) 区域钾质岩体元素组成数据来自毕献武等(2005), Jiang et al. (2006), Xu et al. (2007), Lu et al. (2013)陈喜峰等(2015) Fig. 5 Fig. 5 Silica vs. total alkaline diagram (a, after Middlemost, 1994; the line separating alkaline series and sub-alkaline series is from Irvine and Baragar, 1971), SiO2 vs. A/CNK plot (b, after Kemp and Hawkesworth, 2003), SiO2 vs. K2O plot (c, after Peccerillo and Taylor, 1976) and Na2O vs. K2O plot (d, after Turner et al., 1996)

莲花山岩体的微量元素分析结果列于表 2中。该岩体稀土元素总量∑REE为175.8×10-6~221.1×10-6,LREE/HREE=14.9~16.8,(La/Yb)N=21.5~24.3。在稀土元素球粒陨石标准化图解中(图 6a),呈右倾的平滑曲线,显示出富集轻稀土,轻、重稀土分馏显著的特征;Eu无明显异常,δEu=0.80~0.83。相对于原始地幔,莲花山岩体明显富集Rb, Th, U, La和Pb等大离子亲石元素,而相对亏损Nb, Ta, P, Zr和Ti等高场强元素(图 6b)。

图 6 滇西莲花山石英二长斑岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化蛛微量元素网图(b)(标准化值据Sun and McDonough, 1989) 下地壳元素组成数据引自Rudnick and Gao (2003);区域钾质岩体元素组成数据来自Jiang et al. (2006), Lu et al.(2013, 2015), 陈喜峰等(2015) Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the Lianhuashan quartz monzonite porphyries, western Yunnan Province (normalization values after Sun and McDonough, 1989)
4.3 锆石Hf同位素特征

在年龄的基础上,本次研究测试了10颗锆石Hf同位素组成(表 3)。LHS11-03测试的5个数据点的176Lu/177Hf比值在0.001134~0.001655间,176Hf/177Hf比值为0.28279~0.282846,εHf(t)在1.35~3.32之间,Hf同位素亏损地幔两阶段模式年龄(tDM2)为1027~900Ma;LHS11-05测试的5个数据点的176Lu/177Hf比值在0.001257~0.001826间,176Hf/177Hf比值为0.282848~0.282884,εHf(t)在3.39~4.64之间,锆石Hf同位素亏损地幔两阶段模式年龄(tDM2)为896~815Ma。整体来看,锆石εHf(t)分布在+1.35~+4.64,集中在+2.82~+3.97范围;锆石Hf同位素亏损地幔两阶段模式年龄(tDM2)为1027~815Ma,集中分布在934~860Ma间。

表 3 莲花山石英二长斑岩锆石Hf同位素 Table 3 Zircon Hf isotopic data of the Lianhuashan quartz monzonite porphyries, western Yunnan Province
5 讨论 5.1 钾质岩浆侵位年代

本文采用LA-ICPMS定年方法,获得2件典型岩浆结晶锆石样品的加权平均年龄分别为34.2±0.4Ma (LHS11-03) 和34.5±1.0Ma (LHS11-05),其中样品LHS11-03具有较好的协和性(图 4a), 样品LHS11-05年龄在误差范围内与LHS11-03基本一致。上述可靠的锆石U-Pb年龄数据表明莲花山岩体侵位时代为~34Ma,这与区域上金沙江-哀牢山钾质岩浆岩带其他岩体,包括扬子地块西缘姚安、北衙、马厂箐岩体(37~33Ma)和兰坪盆地卓潘岩体(40~30Ma)等,具有一致的形成年代(董方浏等, 2005; 肖晓牛等, 2009; 邓军等, 2010; 李勇等, 2011; 和文言等, 2013; Lu et al., 2012, 2013, 2015; Deng et al., 2014a, b)。此外,上述岩体均具有富碱和高钾特征、较为相似的稀土和微量元素配分模式以及相似的锆石Hf同位素组成(图 5图 6图 7),表明莲花山岩体属金沙江-哀牢山钾质岩浆岩带的组成部分。

图 7 滇西莲花山石英二长斑岩锆石εHf(t)值与U-Pb年龄图解 区域钾质岩体锆石Hf同位素组成数据来自Jiang et al. (2006), Lu et al. (2013) Fig. 7 Plots of zircon U-Pb ages vs. εHf(t) values for the Lianhuashan quartz monzonite porphyries, western Yunnan Province
5.2 岩浆岩成因与源区

莲花山石英二长斑岩具有富碱、高K2O特征,属钾玄岩系列。大量实验研究表明,钾玄岩系列岩浆岩的形成与大洋板片俯冲作用有关,其主要来源包括以下两种可能:(1) 由板片俯冲脱水交代形成的富集岩石圈地幔(Morrison, 1980; Wyllie and Sekine, 1982; Pe-Piper and Piper, 1992; Turner et al., 1996; Jiang et al., 2006; Conticelli et al., 2009; Ersoy et al., 2010)或者(2) 同俯冲期底垫的新生玄武质下地壳(Küster and Harms, 1998; Chen et al., 2010; Lu et al., 2013; Campbell et al., 2014; Liu et al., 2014)。

莲花山岩体中岩浆锆石εHf(t)值集中在+2.82~+3.97,岩石样品无继承锆石发现(图 3);Nb/La=0.26~0.30 (平均值为0.28),明显低于地壳平均值(Nb/La=0.40; Rudnick and Gao, 2003),这些特征综合反映在岩浆上侵过程中未受到地壳物质的混染。莲花山岩体Nb/Ta比值为12.3~13.3,低于MORB (Nb/Ta=16.7) 和由俯冲洋片直接部分熔融形成的新生代埃达克岩,证明莲花山岩体具有岛弧岩浆性质(Kamber et al., 2002)。因此,岩体富集Th和U等大离子亲石元素和轻稀土元素,亏损Nb, Ta和Ti等高场强元素是源区经历过俯冲洋壳板片脱水交代作用的反映(Thirlwall et al., 1994),而非地壳混染造成的结果。此外,岩体Nb/U均值为2.69,在俯冲带流体(Nb/U≈0.22; Ayers, 1998)与全球俯冲沉积物(Nb/U≈5; Plank and Langmuir, 1998)范围间,亦指示俯冲作用的存在。

位于莲花山岩体西侧,同期的卓潘钾质偏基性-偏酸性杂岩体和扬子西缘煌斑岩(图 1b)通常认为是源于交代富集地幔(Rock, 1987; Müller and Groves, 2000; Guo et al., 2005; 董方浏等, 2007; Prelevic′ et al., 2008; Karsli et al., 2014; 陈喜峰等, 2015; Lu et al., 2013, 2015)。上述三者均表现出高钾、富集大离子亲石元素以及相似的稀土、微量元素配分型式(图 6)等特征,这亦能说明莲花山岩体的岩浆源区具有类似于受俯冲带流体交代而形成的富集地幔的特征。至于莲花山钾质斑岩岩浆到底是来自富集岩石圈地幔的直接部分熔融,还是源自俯冲阶段起源于富集地幔并底侵在下地壳的新生玄武质组分部分熔融,根据现有数据和研究手段,仍无法给出定论,故本文不做相关讨论。

5.3 动力学驱动机制 5.3.1 富集源区的形成过程

从目前相关的研究进展来看,莲花山岩体所处的印支地块东缘自新元古代以来(<1000Ma),仅经历了金沙江-哀牢山古特提斯洋在二叠纪(ca.290~250Ma)的西向俯冲作用,由此产生了江达-维西和雅仙桥陆弧岩浆岩带(Zi et al., 2012; Fan et al., 2010; Deng et al., 2014a, b)。莲花山岩体具有新元古代锆石Hf同位素地壳模式年龄(1027~815Ma) (图 7),指示在岩浆源区存在由大洋板片俯冲作用引起的陆源沉积物质的加入。此外,莲花山岩体具有介于俯冲带流体(Nb/U≈0.22; Ayers, 1998)与全球俯冲沉积物(Nb/U≈5; Plank and Langmuir, 1998)之间的Nb/U比值(1.30~4.73,均值为2.69),进一步暗示岩浆源区在经历大洋板片俯冲过程中存在陆源沉积物加入。通过以上证据,本文认为莲花山岩体的富集源区形成过程可以概括为:金沙江-哀牢山古特提斯洋在二叠纪发生西向俯冲作用,大洋板片及俯冲沉积物发生脱水熔融,形成富集大离子亲石元素而亏损高场强元素的熔体/流体,其向上迁移并交代上部地幔楔,形成交代富集地幔,这之后可能存在两种熔融机制产生莲花山岩体所需的岩浆:(1) 受俯冲交代的富集地幔一直保留至始新世,直接发生部分熔融形成莲花山岩体所需的岩浆;(2) 俯冲过程中交代流体引发上覆地幔楔发生部分熔融,形成富钾、富集大离子亲石元素和轻稀土元素以及亏损高场强元素的基性岩浆,该基性岩浆底垫于壳幔边界,形成新生玄武质下地壳,并一直保留至始新世近而发生部分熔融形成莲花山岩体所需的岩浆。从区域构造的时空演化来看,尽管金沙江-哀牢山古特提斯的西向俯冲对莲花山岩体的交代富集地幔的形成具有更为直接关系,但也不能完全排除印支板块西侧早古生代(462~429Ma)经历过原特提斯洋的东向俯冲(Lehmann et al., 2013; Nie et al., 2014; Xing et al., 2015)以及形成扬子内部攀西-汉南岩浆弧的新远古代俯冲作用(Zhou et al., 2006; Zhao and Zhou, 2007)等对对该区交代地幔的形成可能存在的贡献。

5.3.2 始新世岩浆活动构造驱动机制

印度-欧亚陆陆碰撞,导致滇西地区地壳增厚(Chung et al., 2005)。赵欣等(2003)通过对始新世-渐新世富碱长英质斑岩中的下地壳包体分析,认为该时期滇西地区地壳厚度为55km。与前人认识总体相似(Lu et al., 2013; Deng et al., 2014a, b),本文同样认为认为加厚岩石圈的拆沉作用是形成金沙江-哀牢山缝合带富钾岩浆岩的驱动机制,但拆沉作用影响的空间范围更大,可延伸至印支地块内部。拆成作用诱发热的软流圈物质上涌为上部岩石圈发生部分熔融提供充分的热源,从而导致在金沙江-哀牢山古特提斯洋俯冲过程中形成的交代富集地幔或者俯冲阶段起源于交代富集地幔并低垫到下地壳的玄武质组分发生部分熔融形成富碱高钾的长英质岩浆,其上侵到浅部地壳后,形成莲花山钾质岩体。

6 结论

(1) 锆石U-Pb定年结果表明,滇西莲花山岩体侵位时代为~34Ma。该岩体和其西侧卓潘杂岩体属金沙江-哀牢山钾质岩浆岩带组成部分。

(2) 莲花山岩体属钾玄岩系列。岩浆来自遭受了金沙江-哀牢山古特提斯大洋板片俯冲交代以及少量陆源沉积物加入而形成的富集源区。

(3) 古特提斯缝合带始新世加厚岩石圈的拆沉作用导致软流圈热上涌,诱发印支地块内部莲花山等钾质岩浆岩的形成。该构造-热事件的影响可能比传统认为的空间范围更大,向西远至印支地块内部。

致谢 本论文中的野外工作得到了云南省地质调查院孙载波高级工程师,云南省地质调查局余海军工程师、唐忠工程师和张向飞工程师的大力帮助。室内数据处理和解释工作得到了中国地质大学(北京)赵睿博士、崔晓琳博士和张玉洁硕士的帮助。两位审稿人对本文提出了建设性的修改意见。在此一并表示感谢!
参考文献
[] Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contributions to Mineralogy and Petrology, 132(4): 390–404. DOI:10.1007/s004100050431
[] Bi XW, Hu RZ, Cornell DH. 2004. The alkaline porphyry associated Yao'an gold deposit, Yunnan, China:Rare earth element and stable isotope evidence for magmatic-hydrothermal ore formation. Mineralium Deposita, 39(1): 21–30. DOI:10.1007/s00126-003-0374-z
[] Bi XW, Hu RZ, Peng JT, Wu KX, Su WC, Zhan XZ. 2005. Geochemical characteristics of the Yao'an and Machangqing alkaline-rich intrusions. Acta Petrologica Sinica, 21(1): 113–124.
[] Blichert-Toft J, Chauvel C, Albarede F. 1997. Seperation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260. DOI:10.1007/s004100050278
[] Bureau of Geology and Mineral Resources of Yunnan Province (BGMRY). 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing House: 1-658.
[] Campbell IH, Stepanov AS, Liang HY, Allen CM, Norman MD, Zhang YQ, Xie YW. 2014. The origin of shoshonites:New insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions to Mineralogy and Petrology, 167(3): 983. DOI:10.1007/s00410-014-0983-9
[] Chen FC, Wang QF, Li GJ, Zhao Y. 2015. 40Ar-39Ar chronological and geochemical characteristics of Zhenyuan lamprophyres in Ailaoshan belt, western Yunnan. Acta Petrologica Sinica, 31(11): 3203–3216.
[] Chen JL, Xu JF, Wang BD, Kang ZQ, Jie L. 2010. Origin of Cenozoic alkaline potassic volcanic rocks at Konglongxiang, Lhasa terrane, Tibetan Plateau:Products of partial melting of a mafic lower-crustal source?. Chemical Geology, 273(3): 286–299.
[] Chen XF, Zeng PS, Zhang XT, Xu WR, Wan DF. 2015. Petrology and geochemistry of the Zhuopan alkaline complex in Yongping, Yunnan Province:Constraints on petrogenesis and tectonic setting. Acta Petrologica Sinica, 31(9): 2597–2608.
[] Chen XL, Huang WT, Zou YQ, Liang HY, Zhang J, Zhang YQ. 2016. Zircon U-Pb geochronology and geochemistry of ore-bearing porphyries in the southern Yulong porphyry copper belt, and factors resulting in the differences in scale of mineralization between the southern and northern Yulong porphyry copper belt. Acta Petrologica Sinica, 32(8): 2522–2534.
[] Chung SL, Lee TY, Lo CH, Wang PL, Chen CY, Yem NT, Hoa TT, Wu GY. 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 25(4): 311–314. DOI:10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
[] Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL, Wang PL. 1998. Diachronous uplift of the Tibetan plateau starting 40Myr ago. Nature, 394(6695): 769–773. DOI:10.1038/29511
[] Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173–196.
[] Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G. 2009. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the western Mediterranean region:Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107(1-2): 68–92. DOI:10.1016/j.lithos.2008.07.016
[] Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ, Wang CM. 2010. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China. Acta Petrologica Sinica, 26(6): 1633–1645.
[] Deng J, Wang QF, Li GJ, Li CS, Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419–437. DOI:10.1016/j.gr.2013.08.002
[] Deng J, Wang QF, Li GJ, Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268–299. DOI:10.1016/j.earscirev.2014.05.015
[] Deng J, Wang QF, Li GJ, Hou ZQ, Jiang C, Danyushevsky L. 2015a. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China. Ore Geology Reviews, 70: 457–485. DOI:10.1016/j.oregeorev.2015.02.015
[] Deng J, Wang QF, Li GJ, Zhao Y. 2015b. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geology Reviews, 65: 42–54. DOI:10.1016/j.oregeorev.2014.08.002
[] Deng J, Wang QF. 2016. Gold mineralization in china:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219–274. DOI:10.1016/j.gr.2015.10.003
[] Deng J, Wang QF, Li GJ. 2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt, SW China. Acta Petrologica Sinica, 32(8): 2225–2247.
[] Deng J, Wang QF, Li GJ. 2017. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research.
[] Dong FL, Mo XX, Hou ZQ, Wang Y, Bi XM, Zhou S. 2005. 40Ar/39Ar ages of Himalayan alkaline rocks in Lanping basin, Yunnan Province, and their geological implications. Acta Petrologica et Mineralogica, 24(2): 103–109.
[] Dong FL, Mo XX, Yu XH, Hou ZQ, Wang Y. 2007. Trace elements geochemical and Nd-Sr-Pb isotopes characteristics of the Zhuopan alkaline complex in Yongping, Yunnan Province and its geological significance. Acta Petrologica Sinica, 23(5): 986–994.
[] Ersoy EY, Helvacı C, Palmer MR. 2010. Mantle source characteristics and melting models for the early-middle Miocene mafic volcanism in Western Anatolia:Implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings. Journal of Volcanology and Geothermal Research, 198(1-2): 112–128. DOI:10.1016/j.jvolgeores.2010.08.014
[] Fan WM, Wang YJ, Zhang AM, Zhang FF, Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos, 119(3-4): 553–568. DOI:10.1016/j.lithos.2010.08.010
[] Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28(3-6): 435–453. DOI:10.1016/0024-4937(92)90018-T
[] Griffin WL, Wang X, Jackson SE, Pearson NJ, O' Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237–269. DOI:10.1016/S0024-4937(02)00082-8
[] Guo XD, Hou ZQ, Chen X, Wang ZH. 2009. Identification of adakitic characteristics of Machangjing alkali-rock porphyry in Yunnan Province and its significance to mineralization research. Acta Petrologica et Mineralogica, 28(4): 375–386.
[] Guo ZF, Hertogen J, Liu JQ, Pasteels P, Boven A, Punzalan L, He HY, Luo XJ, Zhang WH. 2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China:Petrological and geochemical constraints on petrogenesis. Journal of Petrology, 46(1): 33–78. DOI:10.1093/petrology/egh061
[] Guo ZF, Wilson M, Liu JQ, Mao Q. 2006. Post-collisional, potassic and ultrapotassic magmatism of the Northern Tibetan Plateau:Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology, 47(6): 1177–1220. DOI:10.1093/petrology/egl007
[] He WY, Mo XX, Yu XH, He ZH, Dong GC, Liu XB, Su GS, Huang XF. 2013. Zircon U-Pb and molybdenite Re-Os dating for the Beiya gold-polymetallic deposit in the western Yunnan Province and its geological significance. Acta Petrologica Sinica, 29(4): 1301–1310.
[] Holbig ES, Grove TL. 2008. Mantle melting beneath the Tibetan Plateau:Experimental constraints on ultrapotassic magmatism. Journal of Geophysical Research Solid Earth, 113(B4): B04210.
[] Hoskin PWO, Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423–439.
[] Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT, Tang RL. 2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98(1): 125–145.
[] Hou ZQ, Xie YL, Xu WY, Li YQ, Zhu XK, Khin Z, Beaudoin G, Rui ZY, Huang W, Ciren L. 2007. Yulong deposit, eastern Tibet:A high-sulfidation Cu-Au porphyry copper deposit in the eastern Indo-Asian collision zone. International Geology Review, 49(3): 235–258. DOI:10.2747/0020-6814.49.3.235
[] Hu RZ, Burnard PG, Bi XW, Zhou MF, Pen JT, Su WC, Wu KX. 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chemical Geology, 203(3-4): 305–317. DOI:10.1016/j.chemgeo.2003.10.006
[] Huang XK, Mo XX, Yu XH, Li Y, He WY. 2013. Geochemical characteristics and geodynamic significance of Cenozoic basalts from Maguan and Pingbian, southeastern Yunnan Province. Acta Petrologica Sinica, 29(4): 1325–1337.
[] Irvine TNJ, Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. DOI:10.1139/e71-055
[] Jiang YH, Jiang SY, Ling HF, Dai BZ. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, East Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters, 241(3): 617–633.
[] Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD. 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144(1): 38–56. DOI:10.1007/s00410-002-0374-5
[] Karsli O, Dokuz A, Kaliwoda M, Uysal I, Aydin F, Kandemir R, Fehr KT. 2014. Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey:A key to understanding lamprophyre formation in a subduction-related environment. Lithos, 196-197: 181–197. DOI:10.1016/j.lithos.2014.02.022
[] Kemp AIS, Hawkesworth CJ. 2003. Granitic perspectives on the generation and secular evolution of the continental crust. Treatise in Geochemistry, 3: 349–410.
[] Küster D, Harms U. 1998. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen:A review. Lithos, 45(1-4): 177–195. DOI:10.1016/S0024-4937(98)00031-0
[] Lehmann B, Zhao XF, Zhou MF, Du AD, Mao JM, Zeng PS, Henjes-Kunst F, Heppe K. 2013. Mid-Silurian back-arc spreading at the northeastern margin of Gondwana:The Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China. Gondwana Research, 24(2): 648–663. DOI:10.1016/j.gr.2012.12.018
[] Li GJ, Wang QF, Yu L, Hu ZC, Ma N, Huang YH. 2013. Closure time of the Ailaoshan Paleo-Tethys Ocean:Constraints from the zircon U-Pb dating and geochemistry of the Late Permian granitoids. Acta Petrologica Sinica, 29(11): 3883–3900.
[] Li Y, Mo XX, Yu XH, Huang XK, He WY. 2011. Zircon U-Pb dating of several selected alkali-rich porphyries from the Jinshajiang-Ailaoshan fault zone and geological significance. Geoscience, 25(2): 189–200.
[] Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW, Zhang YQ. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152–159. DOI:10.1007/s00126-005-0047-1
[] Liang HY, Sun WD, Su WC, Zartman RE. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587–596. DOI:10.2113/gsecongeo.104.4.587
[] Liu D, Zhao ZD, Zhu DC, Niu YL, Depaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun CG, Zhang ZC, Liu JL. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207–231. DOI:10.1016/j.gca.2014.03.031
[] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34–43. DOI:10.1016/j.chemgeo.2008.08.004
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. DOI:10.1007/s11434-010-3052-4
[] Lu YJ, Kerrich R, Cawood PA, McCuaig TC, Hart CJR, Li ZX, Hou ZQ, Bagas L. 2012. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China:Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Research, 22(2): 737–747. DOI:10.1016/j.gr.2011.11.016
[] Lu YJ, Kerrich R, Kemp AIS, McCuaig TC, Hou ZQ, Hart CJR, Li ZX, Cawood PA, Bagas L, Yang ZM, Cliff J, Belousova EA, Jourdan F, Evans NJ. 2013. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China:Compositional characteristics, sources, and implications for continental collision metallogeny. Economic Geology, 108(7): 1541–1576. DOI:10.2113/econgeo.108.7.1541
[] Lu YJ, McCuaig TC, Li ZX, Jourdan F, Hart CJR, Hou ZQ, Tang SH. 2015. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton:Mantle source and tectonic implications. Lithos, 233: 139–161. DOI:10.1016/j.lithos.2015.02.003
[] Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215–224. DOI:10.1016/0012-8252(94)90029-9
[] Miller C, Schuster R, Kl tzli U, Frank W, Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399–1424. DOI:10.1093/petroj/40.9.1399
[] Morrison GW. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1): 97–108. DOI:10.1016/0024-4937(80)90067-5
[] Müller D, Groves DI. 2000. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Berlin: Springer: 265-266.
[] Nie XM, Feng QL, Qian X, Wang YJ. 2014. Magmatic record of Prototethyan evolution in SW Yunnan, China:Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone. Gondwana Research, 28(2): 757–768.
[] Peccerillo A, Taylor SR. 1976. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. DOI:10.1007/BF00384745
[] Pe-Piper G, Piper DJW. 1992. Geochemical variation with time in the Cenozoic high-K volcanic rocks of the island of Lesbos, Greece:Significance for shoshonite petrogenesis. Journal of Volcanology and Geothermal Research, 53(1-4): 371–387. DOI:10.1016/0377-0273(92)90092-R
[] Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325–394. DOI:10.1016/S0009-2541(97)00150-2
[] Prelevic' D, Foley SF, Romer R, Conticelli S. 2008. Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochimica et Cosmochimica Acta, 72(8): 2125–2156. DOI:10.1016/j.gca.2008.01.029
[] Qi L, Hu J, Conard DG. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507–513. DOI:10.1016/S0039-9140(99)00318-5
[] Rock NMS. 1987. The nature and origin of lamprophyres:An overview. Geological Society, London, Special Publications, 30(1): 191–226. DOI:10.1144/GSL.SP.1987.030.01.09
[] Roger F, Tapponnier P, Arnaud N, Schärer U, Brunel M, Xu ZQ, Yang JS. 2000. An Eocene magmatic belt across central Tibet:Mantle subduction triggered by the Indian collision?. Terra Nova, 12(3): 102–108. DOI:10.1046/j.1365-3121.2000.123282.x
[] Rogers NW, James D, Kelley SP, De Mulder M. 1998. The generation of potassic lavas from the eastern Virunga province, Rwanda. Journal of Petrology, 39(6): 1223–1247. DOI:10.1093/petroj/39.6.1223
[] Rudnick RL, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1–64.
[] Sun SS, McDonough WS. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Thirlwall MF, Smith TE, Graham AM, Theodorou N, Hollings P, Davidson JP, Arculus RJ. 1994. High field strength element anomalies in arc lavas:Source or process?. Journal of Petrology, 35(3): 819–838. DOI:10.1093/petrology/35.3.819
[] Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45–71. DOI:10.1093/petrology/37.1.45
[] Wang BL, Li WC. 2001. A Preliminary study on the Weixi-Jinghong fault depression zone. Yunnan Geology, 20(1): 39–45.
[] Wang CH, Tang JX, Chen JP, Hao JH, Gao YM, Liu YW, Fan T, Zhang QZ, Ying LJ, Chen ZJ. 2009. Chronological research of Yulong copper-molybdenum porphyry deposit. Acta Geologica Sinica, 83(10): 1445–1455.
[] Wang CM, Bagas L, Lu YJ, Santosh M, Du B, McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39–65. DOI:10.1016/j.earscirev.2016.02.008
[] Wang JH, Yin A, Harrison MT, Grove M, Zhang YQ, Xie GH. 2001a. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(1-2): 123–133. DOI:10.1016/S0012-821X(01)00315-6
[] Wang JH, Yin A, Harrison MT, Grove M, Zhou JY, Zhang YQ, Xie GH. 2001b. Thermochronological constraints on two pulses of Cenozoic high-K magmatism in eastern Tibet. Science in China Series D:Earth Science, 46(7): 719–729.
[] Wang QF, Deng J, Li CS, Li GJ, Yu L, Qiao L. 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438–448. DOI:10.1016/j.gr.2013.10.002
[] Wu J, Liang HY, Mo JH, Zhang YQ, Hu GQ. 2011. Petrochemistry and Zircon LA-ICP-MS U-Pb Age of the mangzong porphyry associated with Cu-Mo mineralization in the Yulong ore belt. Geotectonica et Metallogenia, 35(2): 300–306.
[] Wyllie PJ, Sekine T. 1982. The formation of mantle phlogopite in subduction zone hybridization. Contributions to Mineralogy and Petrology, 79(4): 375–380. DOI:10.1007/BF01132067
[] Xiao CH. 2013. The study on minerogenic series of epithermal deposits in mid-southern segment of the Sanjiang Orogenic Belt, Southwest China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-153 (in Chinese with English summary)
[] Xiao XN, Yu XH, Mo XX, Yang GL, Li Y, Huang XK. 2009. Geochemistry, zircon SHRIMP U-Pb dating and origin of alkali-rich porphyries in Beiya area, North Erhai Lake, western Yunnan, China. Geological Bulletin of China, 28(12): 1786–1803.
[] Xing XW, Wang YJ, Cawood PA, Zhang YZ. 2015. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan. International Journal of Earth Sciences, 106(5): 1469–1486.
[] Xu SM, Mo XX, Zeng PS, Zhang WH, Zhao HB, Zhao HD. 2006. Characteristics and origin of alkali-rich porphyries from Beiya in western Yunnan. Geoscience, 20(4): 527–535.
[] Xu XW, Zhang BL, Qin KZ, Mao Q, Cai XP. 2007. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China. Lithos, 99(3-4): 339–362. DOI:10.1016/j.lithos.2007.06.011
[] Xue CJ, Chen YC, Yang JM, Wang DH, Yang WG, Yang QB. 2002. Analysis of ore-forming background and tectonic system of Lanping Basin, western Yunnan Province. Mineral Deposits, 21(1): 36–44.
[] Yang LQ, Deng J, Zhao K, Liu JT. 2011. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China:Geochronological constraints. Acta Petrologica Sinica, 27(9): 2519–2532.
[] Zhang J, Deng J, Li SH, Yan N, Yang LQ, Ma N, Wang QF, Gong QJ. 2010. Petrological characteristics of magmatites and their relationship with gold mineralization in the Chang'an gold deposit in southern Ailaoshan metallogenic belt. Acta Petrologica Sinica, 26(6): 1740–1750.
[] Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L, Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2): 557–575. DOI:10.1016/j.gr.2013.11.003
[] Zhao JH, Zhou MF. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27–47. DOI:10.1016/j.precamres.2006.09.002
[] Zhao X, Mo XX, Yu XH, Lv BX, Zhang J. 2003. Mineralogical characteristics and petrogenesis of deep-derived xenoliths in Cenozoic syenite-porphyry in Liuhe, western Yunnan Province. Earth Science Frontiers, 10(3): 93–104.
[] Zhao ZH, Xiong XL, Wang Q, Bai ZH, Qiao YL. 2009. Late Paleozoic underplating in North Xinjiang:Evidence from shoshonites and adakites. Gondwana Research, 16(2): 216–226. DOI:10.1016/j.gr.2009.03.001
[] Zhou MF, Ma YX, Yan DP, Xia XP, Zhao JH, Sun M. 2006. The Yanbian terrane (southern Sichuan Province, SW China):A Neoproterozoic arc assemblage in the western margin of the Yangtze block. Precambrian Research, 144(1-2): 19–38. DOI:10.1016/j.precamres.2005.11.002
[] Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ, McCuaig TC. 2012. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140-141: 166–182. DOI:10.1016/j.lithos.2012.02.006
[] 毕献武, 胡瑞忠, 彭建堂, 吴开兴, 苏文超, 战新志. 2005. 姚安和马厂箐富碱侵入岩体的地球化学特征. 岩石学报, 21(1): 113–124.
[] 陈福川, 王庆飞, 李龚健, 赵岩. 2015. 滇西哀牢山镇沅煌斑岩40Ar-39Ar年代学和地球化学特征. 岩石学报, 31(11): 3203–3216.
[] 陈喜峰, 曾普胜, 张雪亭, 徐文荣, 万大幅. 2015. 云南永平卓潘碱性杂岩体岩石学和地球化学特征及成因研究. 岩石学报, 31(9): 2597–2608.
[] 陈喜连, 黄文婷, 邹银桥, 梁华英, 张健, 张玉泉. 2016. 玉龙斑岩铜矿带南段含矿斑岩体锆石U-Pb年龄、地球化学特征及南北段成矿规模差异分析. 岩石学报, 32(8): 2522–2534.
[] 邓军, 杨立强, 葛良胜, 袁士松, 王庆飞, 张静, 龚庆杰, 王长明. 2010. 滇西富碱斑岩型金成矿系统特征与变化保存. 岩石学报, 26(6): 1633–1645.
[] 邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统:三江特提斯例析. 岩石学报, 32(8): 2225–2247.
[] 董方浏, 莫宣学, 侯增谦, 王勇, 毕先梅, 周肃. 2005. 云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义. 岩石矿物学杂志, 24(2): 103–109.
[] 董方浏, 莫宣学, 喻学惠, 侯增谦, 王勇. 2007. 云南永平卓潘新生代碱性杂岩体的元素地球化学和Nd-Sr-Pb同位素特征及地质意义. 岩石学报, 23(5): 986–994.
[] 郭利果, 刘玉平, 徐伟, 张兴春, 秦克章, 李铁胜, 石玉若. 2006. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约. 岩石学报, 22(4): 1009–1016.
[] 郭晓东, 侯增谦, 陈祥, 王治华. 2009. 云南马厂箐富碱斑岩埃达克岩性质的厘定及其成矿意义. 岩石矿物学杂志, 28(4): 375–386.
[] 和文言, 莫宣学, 喻学惠, 和中华, 董国臣, 刘晓波, 苏纲生, 黄雄飞. 2013. 滇西北衙金多金属矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 岩石学报, 29(4): 1301–1310.
[] 黄行凯, 莫宣学, 喻学惠, 李勇, 和文言. 2013. 滇东南马关和屏边地区新生代玄武岩地球化学特征及深部动力学意义. 岩石学报, 29(4): 1325–1337.
[] 李龚健, 王庆飞, 禹丽, 胡兆初, 马楠, 黄钰涵. 2013. 哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约. 岩石学报, 29(11): 3883–3900.
[] 李勇, 莫宣学, 喻学惠, 黄行凯, 和文言. 2011. 金沙江-哀牢山断裂带几个富碱斑岩体的锆石U-Pb定年及地质意义. 现代地质, 25(2): 189–200.
[] 梁华英, 谢应雯, 张玉泉, IanCampbell. 2004. 富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例. 自然科学进展, 14(1): 116–120.
[] 王宝禄, 李文昌. 2001. 维西-景洪裂陷带初步研究. 云南地质, 20(1): 39–45.
[] 王成辉, 唐菊兴, 陈建平, 郝金华, 高一鸣, 刘耀文, 凡韬, 章奇志, 应立娟, 陈志皎. 2009. 西藏玉龙铜钼矿同位素年代学研究. 地质学报, 83(10): 1445–1455. DOI:10.3321/j.issn:0001-5717.2009.10.009
[] 伍静, 梁华英, 莫济海, 张玉泉, 胡光黔. 2011. 玉龙斑岩铜矿带莽总含矿斑岩体岩石学特征及锆石U-Pb年龄研究. 大地构造与成矿学, 35(2): 300–306.
[] 肖昌浩. 2013. 三江中南段低温热液矿床成矿系列研究. 博士学位论文. 北京: 中国地质大学, 1-153
[] 肖晓牛, 喻学惠, 莫宣学, 杨贵来, 李勇, 黄行凯. 2009. 滇西洱海北部北衙地区富碱斑岩的地球化学、锆石SHRIMP U-Pb定年及成因. 地质通报, 28(12): 1786–1803.
[] 徐受民, 莫宣学, 曾普胜, 张文洪, 赵海滨, 赵寒冬. 2006. 滇西北衙富碱斑岩的特征及成因. 现代地质, 20(4): 527–535.
[] 薛春纪, 陈毓川, 杨建民, 王登红, 杨伟光, 杨清标. 2002. 滇西兰坪盆地构造体制和成矿背景分析. 矿床地质, 21(1): 36–44.
[] 杨立强, 邓军, 赵凯, 刘江涛. 2011a. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报, 27(9): 2519–2532.
[] 杨立强, 邓军, 赵凯, 刘江涛, 葛良胜, 周道卿, 李士辉, 曹宝宝. 2011b. 滇西大坪金矿床地质特征及成因初探. 岩石学报, 27(12): 3800–3810.
[] 云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社: 1-658.
[] 张静, 邓军, 李士辉, 燕旎, 杨立强, 马楠, 王庆飞, 龚庆杰. 2010. 哀牢山南段长安金矿床岩浆岩的岩石学特征及其与成矿关系探讨. 岩石学报, 26(6): 1740–1750.
[] 张玉泉, 谢应雯, 邱华宁, 李献华, 钟孙霖. 1998. 钾玄岩系列:藏东玉龙铜矿带含矿斑岩元素地球化学特征. 地球科学-中国地质大学学报, 23(6): 557–561.
[] 赵欣, 莫宣学, 喻学惠, 吕伯西, 张瑾. 2003. 滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义. 地学前缘, 10(3): 93–104.