岩石学报  2017, Vol. 33 Issue (7): 2001-2017   PDF    
滇西镇康水头山Pb-Zn矿床成矿流体及矿质来源探讨——H、O、S、Pb同位素地球化学证据
邓明国1, 赵剑星1, 刘凤祥2, 余海军3, 孙柏东3, 刘飞3, 李仕斌4     
1. 昆明理工大学国土资源工程学院, 昆明 650093;
2. 云南省核工业二○九地质大队, 昆明 650032;
3. 云南省地质调查局, 昆明 650051;
4. 云南省有色地质局地质勘查院, 昆明 650216
摘要: 滇西镇康水头山Pb-Zn矿床是保山地块镇康Pb-Zn-Fe-Cu多金属矿集区内又一重要找矿成果。矿体呈似层状、透镜状产于上寒武统保山组大理岩化灰岩中,呈NEE向顺层产出,矿石矿物主要为闪锌矿和方铅矿,偶见黄铜矿和黄铁矿等;脉石矿物主要有白云石、绿泥石、方解石、石英和绢云母等。本文基于对矿床地质特征的详细研究,结合矿床H、O、S、Pb同位素组成,对其成矿流体和矿质来源进行了探讨,同时与毗邻的芦子园超大型Pb-Zn-Fe-Cu多金属矿床进行了对比。研究表明:该矿床石英的δD值介于-101.1‰~-93.3‰之间,均值为-96.85‰(n=4),δ18OH2O值为3.37‰~3.77‰之间,均值为3.57‰(n=4),表明成矿流体早期以原生岩浆水为主,有大气降水的混入。矿床金属硫化物的δ34S值均为正值,介于4.1‰~12.2‰,均值为8.23‰(n=10),与旁侧的芦子园矿床δ34S值(8.9‰~12‰)较为接近。该矿床可划分出三个成矿阶段,阶段Ⅱ为以闪锌矿和方铅矿为主的主要成矿阶段(δ34S主要集中在4.1‰~6.2‰之间),其δ34S均值可近似代表成矿热液中的δ34S∑S值,即δ34S∑Sδ34S均值=6.56‰(n=7),闪锌矿和方铅矿δ34S值有部分重叠,但总体上具有δ34S闪锌矿 > δ34S方铅矿以及不同颜色闪锌矿之间δ34S深棕色闪锌矿 > δ34S棕褐色闪锌矿>δ34S浅棕色闪锌矿的分布特征,暗示硫同位素在硫化物间的分馏达到平衡,表明S同位素组成较为稳定,显示水头山矿床具有深部壳源岩浆成因的特征。矿床金属硫化物的Pb同位素分析显示,Pb同位素组成非常集中(206Pb/204Pb=18.3408~18.4483,均值为18.3815,207Pb/204Pb=15.8337~15.9440,均值为15.8745,208Pb/204Pb=38.8224~39.4391,均值为38.9941,n=10),投点主要分布在上地壳演化线上方,表明其Pb主要来自于以岩浆作用为主的上地壳物质。本文认为矿区深部壳源岩浆热液是水头山矿床最重要的成矿流体与矿质来源,流体的混合作用是矿床金属元素沉淀和富集的重要机制,矿床具有低温、后生成矿特征,推测矿床的形成与燕山晚期的岩浆热液作用有关。
关键词: 保山地块     水头山Pb-Zn矿床     H-O同位素     S-Pb同位素     成矿流体     矿质    
Discussion on sources of metallogenic fluids and materials of the Shuitoushan Pb-Zn deposit in Zhenkang, western Yunnan:Evidence from H, O, S and Pb isotopes
DENG MingGuo1, ZHAO JianXing1, LIU FengXiang2, YU HaiJun3, SUN BaiDong3, LIU Fei3, LI ShiBin4     
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Geological Team 209, Yunnan Nuclear Industry, Kunming 650032, China;
3. Yunnan Bureau of Geological Survey, Kunming 650051, China;
4. Institute of Geological Investigation, Yunnan Bureau of Nonferrous Geology, Kunming 650216, China
Abstract: Shuitoushan Pb-Zn deposit is a low temperature type deposit, which was one of the significant results from the Zhenkang Pb-Zn-Fe-Cu polymetallic ore concentration area in Baoshan block, western Yunnan. The ore bodies of this deposit occurred as either stratiform-like or lentiform within the marbleization-limestone of the Upper Cambrian Baoshan Formation, and was controlled by NEE trending fault, with sphalerite and galena as main and chalcopyrite and pyrite as occasionally ore minerals; dolomite, chlorite, calcite, quartz and sericite as dominant gangue minerals. Based on the detailed study of the geological features of the deposit, combined with H, O, S and Pb isotope compositions, this paper focused on the sources of metallogenic fluids and materials, and compared with the adjacent Luziyuan super-large Pb-Zn-Fe-Cu polymetallic deposit. This research indicates that the values of δD and δ18OH2O of quartz in the deposit range from -101.1‰ to -93.3‰ with average of -96.85‰ (n=4) and from 3.37‰ to 3.77‰ with average of 3.57‰ (n=4) respectively, implying magmatic as dominant early metallogenic fluids, while increasing gradually mixed with meteoric water later. δ34S values of the sulfides are all positive, varying from 4.1‰ to 12.2‰ with average of 8.23‰ (n=10), and approaching δ34S values (8.9‰ to 12‰) of the adjacent Luziyuan deposit. This deposit can be divided into three metallogenic phases, phase Ⅱ is the main metallogenic stage of the deposit related to sphalerite and galena (δ34S values are mainly concentrated between 4.1‰ to 6.2‰). The δ34SAverage can be used to represent approximately the δ34S∑S of metallogenic hydrotherm i.e. δ34S∑Sδ34SAverage=6.56‰ (n=7). δ34S values of sphalerite and galena are partially overlapped, but have the distribution characteristics of δ34SSphalerite >δ34SGalena, and δ34SDark-brown >δ34SBrown >δ34SLight-brown between the different colors of sphalerite on the whole, showing a sulfur isotope equilibrium fractionation, that S isotopic compositions are relatively stable, that the Shuitoushan deposit has the characteristics of the deep crustal magma in origin. Pb isotope analysis of metal sulfides in this deposit is made, and the results show that it is very concentrated (ranges from 18.3408 to 18.4483 with average of 18.3815, and from 15.8337 to 15.9440 with average of 15.8745, and from 38.8224 to 39.4391 with average of 38.9941 respectively for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb, n=10). The points are mainly distributed above the upper crust evolution line, indicative of primarily the upper crust materials related to magmatism. This paper argues that the deep crustal magmatic hydrotherm in the mining area is the most important sources of metallogenic fluids and materials in the Shuitoushan deposit, that the mixing of fluids is an important mechanism for the precipitation and enrichment of metal elements, that the deposit is characterized by low temperature and epigenetic mineralization, speculating that the formation of the deposit is related to magmatic hydrothermalism of Late Yanshan epoch.
Key words: Baoshan block     Shuitoushan Pb-Zn deposit     H-O isotopes     S-Pb isotopes     Metallogenic fluids     Metallogenic materials    

研究区所属的三江造山带位于古特提斯构造域的东段(Deng et al., 2014a, b; Deng and Wang, 2016),是全球地质构造最为发育、岩浆活动最为强烈、成矿流体最为活跃的矿产资源富集区和造山带之一(Hou et al., 2007; 邓军等,2014)。保山地块位于三江造山带的南西部,西起怒江-瑞丽断裂,北部因怒江断裂与澜沧江断裂的汇拢而呈楔形消失于碧江一带,东与柯街断裂为界,南临南汀河断裂,并延伸至缅甸掸邦地块(Sone and Metcalfe, 2008; Ye et al., 2011),也是我国西南地区最重要的Pb-Zn成矿区域之一(陶琰等,2010; Deng et al., 2014b)。区内广泛发育的芦子园、核桃坪和金厂河等矽卡岩型(陶琰等,2010; Yang et al., 2013, 2016; 黄华等,2014)以及西邑、勐兴和东山等低温热液型(李志群等,2005; 肖昌浩,2013; 聂飞等,2015),是保山地块内两种最重要的矿化类型。位于保山地块南部的水头山Pb-Zn矿床是新近勘查发现的一个典型低温热液型矿床,毗邻芦子园超大型矽卡岩Pb-Zn-Fe-Cu多金属矿床。前人仅对该矿床的地质特征进行了初步研究(陈明勇,2014; 杨飞,2015),整体研究程度较低,制约了对该矿床成矿物质来源、成矿流体来源及演化和成矿机制的深入认识。因此,在区域地质背景和详实的矿床地质特征研究基础上,开展成矿流体及矿质来源的深入探讨,是揭示水头山矿床成因的关键所在。同时,对保山地块南部区域成矿规律的研究也具有重要意义。

本文在前人研究的基础上,结合野外地质观察、区域地质背景及矿床地质特征,利用H-O-S-Pb同位素示踪水头山矿床嗡空矿段主矿体成矿流体和矿质来源,并结合镇康矿集区内芦子园超大型矿床的综合对比分析,进一步探讨了矿床成因,进而为指导区域成矿预测提供理论依据。

1 区域地质背景

三江造山带隶属特提斯成矿域(Li et al., 2015a, 2016a; Wang et al., 2016),是经古特提斯洋闭合、随后的冈瓦纳大陆板块与古生代岛弧地体的融合而形成(Mo et al., 1994; Wang et al., 2014a; Deng et al., 2014a, b)。保山地块西接腾冲地块,东衔昌宁-孟连缝合带,是三江造山带不可或缺的重要组成部分。其大地构造位置处于印-欧大陆碰撞结合带东侧、滇缅泰马(Sibumasu)地块的北端(图 1a, b), 于早二叠世萨克马尔期末从冈瓦纳大陆中裂离(李文昌等,2010; Metcalfe,2013),为中特提斯主洋闭合阶段形成的总体为一北部收敛、向南撒开且被深大断裂围限的古生代沉积盆地(莫宣学和潘桂堂,2006; Cocks and Torsvik, 2013; Deng et al., 2014b)。该盆地是三江地区(尤其滇西)地层发育最为齐全的代表(陈炳蔚等,1987),具典型“双层结构”特点,其变质基底以震旦纪-中寒武世公养河群为代表(黄勇等,2012),是该地块内出露最老地层,属冒地槽沉积,岩性主要为类复理石砂页岩、板岩及硅质岩建造(邓必方,1995; 杨学俊等,2012);沉积盖层发育较为齐全,除缺失二叠系上统和三叠系下统外,晚寒武世-中生代其余地层间均为平行不整合关系,属地台型沉积,主要由碳酸盐岩、碎屑岩及少量早二叠世中基性火山岩组成(邓必方,1995; Burchfiel and Chen, 2012)。

图 1 保山地块构造背景图(a, 底图据Wang et al., 2014c; Deng et al., 2014a, 2015; Deng and Wang, 2016)、保山地块主要构造、岩浆作用和主要矿床位置图(b, 底图据董美玲等,2013; 禹丽等,2014; Li et al., 2015b; Liao et al., 2015)和镇康矿集区矿产分布图(c, 据夏庆霖等,2005) Fig. 1 Tectonic setting of the Baoshan block (a, after Wang et al., 2014c; Deng et al., 2014a, 2015; Deng and Wang, 2016), major tectonic, magmatism and major deposit locations of the Baoshan block (b, after Dong et al., 2013; Yu et al., 2014; Li et al., 2015b; Liao et al., 2015) and the mineral distribution map of Zhenkang area (c, after Xia et al., 2005)

保山地块内发育的多阶段、多类型花岗岩体是经地块两侧边界活动带的强烈持续活动形成,尤以早古生代和中-新生代的S型花岗岩为主(图 1b)(陈吉琛,1991; 李文昌等,2010; 聂飞等,2015)。早古生代S型花岗岩(如平河花岗岩体)出露于保山地块南部,主要由二长花岗岩和花岗岩组成,锆石U-Pb年龄为502~448Ma(Chen et al., 2007; Liu et al., 2009; Dong et al., 2013; Wang et al., 2013)。中生代岩浆活动形成的S型花岗岩主要有耿马大山(232~221Ma)(Ye et al., 2010)、志本山(126.7±1.6Ma) (陶琰等,2010)和柯街(93±13Ma)(陶琰等,2010)岩体。晚中生代-新生代形成蚌渺-桦桃林(85~60Ma)(Chen et al., 2007; 董美玲等,2013)和曹涧(73~72Ma)(廖世勇等,2013; 禹丽等,2014) S型花岗岩。其中,形成于燕山晚期的志本山和柯街花岗岩体为地壳深熔成因的高钾过铝质花岗岩,被认为与保山地块内矽卡岩型Pb-Zn-Fe等多金属矿化密切相关(陶琰等,2010; Deng et al., 2014b)。此外,该区浅表可见大量基性岩脉(301~282Ma)(Liao et al., 2015)。

水头山矿床所在的镇康矿集区地层出露较全,除缺失白垩系地层外,寒武系-第四系均有分布(图 1c)。该区构造主要由NNE向的镇康复背斜和NE向的南汀河断裂带组成,总体组成一“V字形构造格架(杨飞,2015)。该背斜为不对称状倒转背斜,轴面倾向NW,复背斜核部地层出露上寒武统沙河厂组和保山组,主要由一套滨海、浅海相泥质、细碎屑夹碳酸盐岩构成,为矿床赋矿的主体,两翼地层由内向外依次为奥陶系、志留系、泥盆系、石炭系、二叠系、三叠系,岩性以粉砂岩、石英砂岩和碳酸盐岩等为主。该区Pb-Zn-Fe-Cu-Ag-Sn-Sb-Au等热液多金属矿十分发育,形成了以高温-高中温热液的乌木兰Sn矿、小河边Fe矿、打拢Sn矿等为内带;中温热液的芦子园Pb-Zn-Fe多金属矿等为中带;低温热液的水头山Pb-Zn矿、小荒田Sb矿、小干沟Au矿等为外带的水平分带系列(杨小峰和罗刚,2011; 邓明国等,2016),而新突破的水头山矿床是研究本区低温热液成矿的典型代表。

2 矿区及矿床地质特征

水头山矿床位于保山地块镇康复背斜南倾伏端乌木兰背斜北西翼。出露地层为上寒武统沙河厂组(ε3s)和保山组(ε3b)碎屑岩、碳酸盐岩、大理岩(图 2a)。矿区构造主要由NEE向的乌木兰背斜和NW、NEE及近于EW向的断裂构成。该背斜为一轴面近于直立、两翼近对称的短轴背斜,轴向65°~40°,延伸>2.5km,背斜核部地层为上寒武统沙河厂组第一段二亚段(ε3s1-2)灰岩,两翼发育有上寒武统沙河厂组和保山组地层,北西翼总体倾向为330°~350°,倾角20°~40°,局部变陡可达50°~70°,南东翼倾向为150°~165°,倾角20°~40°,局部可达50°。在多期次的构造运动作用下,形成了与镇康复背斜配套的共轭“X”断裂,即NEE和NW向两组断裂。其形成时代与镇康复背斜形成时代大体一致,有相互切割现象,且以正断层为主。其中,NEE向组断裂与成矿作用关系密切,属控矿构造;而NW向组断裂为成矿后期的破矿构造。

图 2 水头山矿床地质简图(a)和B-W3号勘探线剖面示意图(b, 据邓志祥等,2016) Fig. 2 Simplified geological map of the Shuitoushan ore deposit (a) and geological section along W-No.3 exploration line (b)

① 邓志祥, 杨淑胜, 路永严等. 2016.云南省镇康县水头山铅锌矿勘探报告.云南省地质调查院, 1-211

受NW向断层(F5、F6)影响,水头山矿床划分为水头山和嗡空两个矿段,共圈出6个工业矿体,且多为隐伏矿体,赋存在海拔高度2050m以下的矿化带内,其中嗡空矿段储量占绝对优势,目前已探明主矿体共4个(分别为WKT1、WKT2、WKT3、WKT4),其勘查程度较高,为本文主要研究对象。矿体主要赋存于上寒武统保山组第一段二亚段大理岩化灰岩及构造角砾岩中,呈似层状-大透镜状大致平行和顺层产出,其空间展布主要受构造的影响,随断层产状的变化而变化,局部有分枝复合、膨胀收缩现象(图 2b)。WKT1号矿体位于粉砂质粘板岩、粉砂质板岩夹层间破碎带中,矿体纵向延伸>200m,厚0.84~3.93m,矿石的Zn品位为0.33%~1.71%,Pb品位为0.18%~6.07%;WKT2号矿体位于碎裂状大理岩化灰岩和构造角砾岩中,底部为碎裂状粉砂质板岩,矿体延伸>300m,厚0.75~2.64m,Zn品位为1.01%~4.28%,Pb品位为0.11%~2.30%;WKT3号矿体位于碎裂状碳酸盐化板岩和构造角砾岩中,底板为碎裂状泥质条带灰岩和板岩,矿体延伸>300m,厚0.67~3.68m,Zn品位为0.65%~5.42%,Pb品位为0.38%~4.88%;WKT4号矿体位于碎裂状碳酸盐化板岩和构造角砾岩中,底部为钙质板岩,矿体延伸>300m,厚1.09~4.22m,Zn品位为1.13%~8.22%,Pb品位为0.20%~8.43%。总体上,矿体赋存于层间破碎带的构造角砾中,受成岩后断裂控制明显。

矿石按结构构造可分为稀疏浸染状矿石(图 3a, b, h, i)、稠密浸染状矿石(图 3c, d, g)及块状矿石(图 3e, f)。由浅表至深部,矿石出现氧化矿→混合矿→硫化矿的规律性变化。其矿物组成较简单,金属矿物主要为闪锌矿和方铅矿,偶见黄铜矿、黄铁矿和毒砂等;脉石矿物有白云石、绿泥石、方解石、石英和绢云母等低温热液矿物。矿石中有用组份以锌为主,次为铅、铜、铁,伴生有益组份为银、金。Pb-Zn矿床的矿石组构记录了成矿流体与矿质的迁移和演化机制,具有重要的成因指示意义,因而受到诸多学者的关注(林方成,2005; 杨向荣等,2009)。该矿床矿石结构有显著的它形粒状结构、共生边结构、压碎结构、溶蚀结构、筛孔-骸晶结构、溶蚀-残余结构和交代结构等;矿石构造主要有稀疏浸染-浸染状构造、网脉-浸染状构造、碎裂状构造、细脉状构造、网脉状构造、块状构造和角砾状构造等(图 3图 4);围岩蚀变主要发育在矿化破碎带附近,蚀变类型主要有白云石化、绿泥石化、方解石化、硅化、绢云母化、黄铁矿化及大理岩化等。上述结构构造和蚀变特征反映矿床的形成具有明显的低温热液成因。同时由于低温热液型矿床自身的特征,矿石矿物和脉石矿物颗粒均较小,蚀变强度较矽卡岩型矿床要低得多。矿区内至今尚未发现与矿床成因有直接联系的岩浆岩,仅地表及坑道见少量基性喷出岩和辉绿岩脉分布。

图 3 水头山矿床矿石宏观组构特征 (a)稀疏浸染状铅锌矿石,石英团块与闪锌矿、方铅矿共生;(b)稀疏浸染状铅锌矿石,闪锌矿与方铅矿紧密共生,呈网脉状浸染状沿团块状石英的裂隙及其边缘充填;(c)稠密浸染状铅锌矿石,石英呈团块状,与闪锌矿、方铅矿共生;(d)稠密浸染状铅锌铁矿石,石英呈团块状,与闪锌矿和方铅矿共生;(e)块状铅锌铜矿石,闪锌矿与方铅矿密切共生形成共边结构,黄铜矿呈浸染状沿铅锌矿石的粒间及边缘分布,偶见石英小团块;(f)块状铅锌铜矿石,黄铜矿呈细脉浸染状充填交代闪锌矿、方铅矿;(g)稠密浸染状、脉状铅锌矿石,石英脉与闪锌矿-方铅矿脉互层,黄铁矿呈星点状浸染状分布于围岩及石英脉边缘中;(h)稀疏浸染状铅锌矿石,小团块状石英脉与方解石细脉包含于铅锌矿石中,见大量绿泥石化;(i)稀疏浸染状铅锌矿石,闪锌矿与方铅矿共生,黄铜矿呈浸染状分布,见石英与方解石团块;阶段Ⅰ;阶段Ⅱ;阶段Ⅲ;Wallrocks-围岩;Sp-闪锌矿;Gn-方铅矿;Ccp-黄铜矿;Py-黄铁矿;Chl-绿泥石;Q-石英;Cal-方解石 Fig. 3 Macroscopic petrofabric characteristics of the Shuitoushan ore deposit

图 4 水头山矿床矿石微观组构特征 (a)黄铜矿-Ⅰ穿插交代黄铁矿-Ⅰ,使其呈残余结构,闪锌矿-Ⅱ则沿黄铜矿-Ⅰ的粒间交代呈脉状分布;(b)闪锌矿-Ⅱ沿黄铁矿-Ⅰ的边缘及粒间穿插交代,使其呈溶蚀结构,方铅矿-Ⅱ(具黑三角孔特征)则沿闪锌矿-Ⅱ的粒间充填交代,呈网脉状分布;(c)黄铜矿-Ⅰ溶蚀交代黄铁矿-Ⅰ,使其呈溶蚀结构,闪锌矿-Ⅱ、方铅矿-Ⅱ呈尖角状沿黄铜矿-Ⅰ的粒间交代;(d)黄铜矿-Ⅲ呈不规则状沿方铅矿-Ⅱ及闪锌矿-Ⅱ的边缘分布;(e)方铅矿-Ⅱ沿闪锌矿-Ⅱ的边缘穿插交代,使其呈溶蚀结构;(f)黄铁矿-Ⅰ被方铅矿-Ⅱ,闪锌矿-Ⅱ、黄铜矿-Ⅰ交代呈筛孔-骸晶结构;(g)黄铜矿-Ⅰ交代黄铁矿-Ⅰ使其呈溶蚀结构,本身又被闪锌矿-Ⅱ、方铅矿-Ⅱ穿插交代;(h)闪锌矿-Ⅱ、方铅矿-Ⅱ穿插交代黄铁矿-Ⅰ,使其呈残余结构;(i)黄铜矿-Ⅲ沿黄铁矿-Ⅰ、方铅矿-Ⅱ的边缘分布,并有穿插交代方铅矿-Ⅱ的现象 Fig. 4 Microscopic petrofabric characteristics of the Shuitoushan ore deposit

根据野外地质调查、手标本及显微镜下鉴定结果,可将水头山矿床的形成过程划分为热液成矿期和表生期(表 1):(1) 热液成矿期可划分为三个阶段:① 黄铁矿-黄铜矿-方解石阶段(阶段Ⅰ):该阶段形成的金属硫化物为黄铁矿、次为黄铜矿,伴有少量毒砂、绢云母、石英、绿泥石及方解石产出,偶见磁黄铁矿和白铁矿沉淀,黄铁矿为较早形成的金属硫化物,主要呈星点状、浸染状沿围岩与石英脉的边缘及其裂隙中分布,并可见浸染状黄铜矿分布于团块状石英脉及方解石脉边缘中,或穿插交代黄铁矿的现象(图 3c, g, i图 4a, c, f, g);② 闪锌矿-方铅矿-方解石阶段(阶段Ⅱ):该阶段为闪锌矿、方铅矿形成的主要阶段,与芦子园矿床热液成矿期晚硫化物阶段(邓明国等,2016)相对应,石英、绿泥石和方解石大量产出,而方解石和石英作为该矿床发育的贯穿性矿物,此阶段主要呈团块状与闪锌矿和方铅矿密切共生,部分呈细脉状与闪锌矿-方铅矿脉互层,亦可见方铅矿交代闪锌矿,或分别强烈交代黄铜矿和黄铁矿(图 3a-e, h-i图 4a-c, e-h);③ 黄铜矿-方解石阶段(阶段Ⅲ):该阶段主要以少量无矿石英脉和方解石脉切穿早阶段形成的矿体为特征,代表了成矿作用的结束。此阶段亦可见黄铜矿呈不规则状穿插交代方铅矿(图 3f图 4d, i)。(2) 表生期:以氧化作用为主,表现为浅表矿石在此条件下形成褐铁矿、菱锌矿、白铅矿和孔雀石等次生氧化矿物。

表 1 水头山矿床矿物生成顺序表 Table 1 The mineral arisen sequence of the Shuitoushan ore deposit
3 样品采集与分析方法

本次用于分析H、O、S、Pb同位素的单矿物样品,主要采自水头山矿床嗡空矿段深部方解石及石英分布广泛的1820、1930、1956中段主成矿期矿体,采集的闪锌矿、方铅矿、黄铜矿、黄铁矿及石英样品均具有明显的共伴生关系,样品均较为新鲜。H、O同位素样品采自主成矿阶段(阶段Ⅱ),为与闪锌矿和方铅矿密切共生的热液石英;S、Pb同位素样品为阶段Ⅱ闪锌矿和方铅矿,阶段Ⅰ、Ⅲ黄铜矿及阶段Ⅰ黄铁矿。将岩(矿)石样品在玛瑙研钵中手工逐级破碎,过筛至40~60目,清洗、烘干之后在双目镜下重复多次仔细挑选,以确保样品纯度达99%以上。

(1) H、O同位素分析:在北京核工业地质研究院稳定同位素实验室使用MAT253质谱仪测量石英中的δ18OV-SMOW值和流体包裹体水中的δD值。石英的O同位素组成用BrF5法(Coleman et al., 1982)进行分析。流体包裹体水的H同位素组成用Zn还原法(Coleman et al., 1982)进行分析。δ18OV-SMOW值和δD值分析精度分别为±0.2‰和±1‰, 具体分析方法见Mao et al.(2008)

(2) S同位素分析:将单矿物样品磨成粉末后,按照Robinson and Kusakabe(1975)的分析方法,在北京核工业地质研究院稳定同位素实验室使用MAT253质谱仪完成S同位素测试。测试结果以V-CDT的δ34S值表示,精度为±0.2‰。

(3) Pb同位素分析:在中国科学技术大学地球与空间科学学院固体同位素地球化学实验室使用MC-ICP-MS完成。单矿物样品用混合酸溶解后,再用树脂交换法提纯Pb。对于1μg的208Pb/204Pb分析精度优于0.005%,具体分析方法见Li et al.(2016c)

4 分析结果 4.1 H、O同位素

水头山矿床成矿流体的H、O同位素组成列于表 2。分析数据显示,水头山矿床成矿流体的δD值和δ18OH2O值相对稳定,其石英δD值为-101.1‰~-93.3‰,均值为-96.85‰,δ18OH2O值为3.37‰~3.77‰,均值为3.57‰。

表 2 水头山矿床成矿流体的H、O同位素组成 Table 2 Hydrogen and oxygen isotopic compositions of metallogenic fluids from the Shuitoushan ore deposit
4.2 S同位素

S同位素组成见表 3。水头山矿床10件金属硫化物的δ34S值变化范围为4.1‰~12.2‰,均值为8.23‰,极差为8.1‰,其变化范围相对于芦子园矿床较宽,其中,4件闪锌矿δ34S均值为7.75‰;3件方铅矿δ34S均值为4.97‰;2件黄铜矿δ34S均值为12.1‰;1件黄铁矿δ34S值为12.2‰。上述表明,所测金属硫化物样品δ34S均为正值,并以富集重硫同位素为特征,δ34S值变化范围较小,变化相对较为集中,说明S同位素组成较为稳定,矿床形成时的物化环境未发生显著变化。

表 3 水头山矿床矿石硫化物的S同位素组成 Table 3 Sulfur isotopic compositions of the sulfides from the Shuitoushan ore deposit
4.3 Pb同位素

Pb同位素组成分析结果见表 4。水头山矿床10件金属硫化物铅206Pb/204Pb比值变化范围为18.3408~18.4483,均值为18.3815,极差为0.1075,207Pb/204Pb比值变化范围为15.8337~15.9440,均值为15.8745,极差为0.1103,208Pb/204Pb比值变化范围为38.8224~39.4391,均值为38.9941,极差为0.6167。其中,方铅矿Pb同位素组成相对稳定, 变化范围最小, 其206Pb/204Pb比值变化范围为18.3523~18.3643,均值为18.3569,极差为0.0120,207Pb/204Pb比值变化范围为15.8337~15.8380,均值为15.8364,极差为0.0043,208Pb/204Pb比值变化范围为38.8281~38.8409,均值为38.8359,极差为0.0128。上述数据显示,所测各类金属硫化物样品的Pb同位素组成相近,呈良好的线性关系,指示水头山矿床的Pb源较为稳定。不同结构构造(浸染状、细脉状和块状)硫化物、不同颜色(浅棕色、棕褐色和深棕色)闪锌矿及不同硫化物(闪锌矿、方铅矿、黄铜矿和黄铁矿)间有类似的Pb同位素组成,变化范围区间极小,极差均小于1,也表明Pb源较为一致,代表其形成于同一成矿热液。

表 4 水头山矿床矿石硫化物的Pb同位素组成 Table 4 Lead isotopic compositions of the sulfides from the Shuitoushan ore deposit
5 讨论 5.1 成矿流体来源

H、O同位素是成矿流体来源的有效示踪剂(Hoefs,1997; Barker et al., 2013)。从成矿流体的δD-δ18OH2O同位素图解(图 5a)中可以看出,δD值与δ18OH2O值相比变化范围相对较宽,水头山矿床主成矿阶段及与之对应的芦子园矿床晚硫化物阶段(项目组数据未发表)石英样品投点均落在原生岩浆水或变质水区与大气降水线之间,靠近原生岩浆水区(δD值为-85‰~-40‰,δ18OH2O值为5‰~9.5‰)(Ohmoto,1986; Hedenquist and Lowenstern, 1994)而远离变质水区(δD值为-65‰~-20‰,δ18OH2O值为4.5‰~25‰)(Hedenquist and Lowenstern, 1994; Taylor,1997)。根据矿体产出的地质环境,矿床成矿流体可能为原生岩浆水与大气降水的混合热液,其流体富集溶解在岩浆中的成矿元素参与了矿化过程(Meinert et al., 2003; Demir et al., 2015; Li et al., 2016c),表明成矿流体具有深源特征,这与前人推断矿区深部存在隐伏中酸性岩体相吻合。

图 5 水头山矿床石英δD-δ18OH2O图解(a)和低温热液型矿床石英与方解石δD-δ18OH2O图解(b) (底图据Taylor,1997) 观山矿床数据梁业恒等(2008);毫石矿床数据徐步台等(1994);扎西康矿床数据引自Xie et al.(2017);治岭头矿床数据徐步台等(1988);紫金山矿床数据陈景河(1999);悦洋矿床数据林全胜(2006);龙头山矿床数据朱桂田(2002) Fig. 5 δD vs. δ18OH2O diagram of the quartz of the Shuitoushan ore deposit (a) and δD vs. δ18OH2O diagram of the quartz and calcite of lowtemperature type deposit (b) (base map after Taylor, 1997)

H、O同位素数据表明,两个矿床具有相似的成矿流体来源,整体上与保山核桃坪Pb-Zn-Fe多金属矿床(石英样品的δD值为-109‰~-91‰,δ18OH2O值为-4.3‰~2.3‰)(Yang et al., 2013)和金厂河Fe-Cu-Pb-Zn多金属矿床(石英样品的δD值为-129.9‰~-96.9‰,δ18OH2O值为-1.1‰~3.7‰)(黄华,2014)较为相似,其H同位素发生漂移可能是因为原生岩浆水和少量大气降水构成早期成矿流体后,晚期混入大量的大气降水,因为此时成矿流体系统变得更开放(Ruan et al., 2015)。两个矿床的线状褶皱和断裂十分发育,多处形成共轭“X”断裂,其在构造热液活动过程中,为成矿流体提供了后续的途径和为Pb-Zn矿化提供了合适的空间。岩浆流体与外部大气降水混合的流体,长期以来被认为是导致矿石中金属沉淀的有效解释(Taylor,1997),其中原生岩浆水加速了成矿作用的进行,促使矿化组分进入到含矿流体中;大气降水的加入则使得以原生岩浆水为主的含矿流体物化条件发生改变,最终导致矿床或矿石成矿元素的聚集和沉淀。

近年来有关研究显示大气降水在热液体系中扮演着重要角色(Taylor,1997; Akaryalı and Tüysü z,2013),越来越多的证据表明低温热液型矿床主要为原生岩浆水与大气降水的混合成因(Karimpour et al., 2012; Li et al., 2015c; Shafaroudi and Karimpour, 2015)。水头山矿床的H、O同位素组成与众多低温热液型矿床一致(图 5b),说明成矿流体并非为单一的来源,因此,流体的混合机制在矿床形成过程中可能是一个重要的因素。

与芦子园矿床相比,水头山矿床成矿流体一个明显的特征就是石英样品的δD值偏低,投点均落在芦子园矿床石英样品投点之下,但都处于滇西地区中-新生代雨水(-110‰~-90‰)(徐启东和莫宣学,2000)与现代温泉水的δD值(-113‰~-81‰)(上官志冠和张仲禄,1991)范围内。对引起石英样品δD值偏低的原因有两种解释:一是早期的岩浆流体较少;二是混入的大气降水削弱了岩浆流体中的H、O同位素组成。前已述及,水头山矿床石英样品投点都落在原生岩浆水区左下侧,有向大气降水漂移的趋势,表明岩浆流体中混入了大气降水;再者,原生岩浆水与地层水构成的早期流体中,混入的大气降水进入地层形成建造水,基本不改变其H、O同位素组成;同时对石英流体包裹体的研究表明,该矿床阶段Ⅱ石英包裹体主要为气液两相包裹体,由拉曼特征峰值可知,气相和液相成分均以H2O为主,且石英包裹体主要为原生包裹体,几乎不含次生包裹体(数据待发表),亦对其H、O同位素组成影响不大,显然可以排除第一种可能,因此,较合理的解释可能是混入的大气降水削弱了该矿床岩浆流体中的H、O同位素组成。此外,水头山矿床中石英样品的δ18OH2O值投点落在原生岩浆水区之外,极有可能是原生岩浆水与大气降水构成早期混合的流体,随着成矿作用的进行,两者发生同位素平衡交换反应,从而导致δ18OH2O向大气降水线漂移(Rye,1993)。

5.2 矿化剂与矿质来源

S同位素组成是判断硫化物矿床中矿化剂来源的有效途径(Ohmoto,1986; Hoefs,1997)。水头山矿床硫化物闪锌矿、方铅矿极为发育,与少量的黄铜矿和黄铁矿常呈稀疏浸染状、细脉状、稠密浸染状或块状分布于矿石中。阶段Ⅰ的黄铁矿呈浅黄色,他形-半自形晶星散状,为较早形成的金属矿物,常被黄铜矿、闪锌矿和方铅矿穿插交代而呈港湾状、碎粒状,δ34S值为12.2‰,黄铜矿为他形粒状,被闪锌矿和方铅矿交代,呈尖角状,δ34S值为12.2‰;阶段Ⅱ的闪锌矿有多种颜色,多为他形粒状,与方铅矿密切共生,常形成共生边结构,δ34S值范围在5.5‰~11.5‰之间,方铅矿为他形粒状星点状,与闪锌矿共生,或分别交代闪锌矿、黄铜矿和黄铁矿,δ34S值范围在4.1‰~6.2‰之间;阶段Ⅲ的黄铜矿为不规则状,有穿插交代方铅矿的现象,δ34S值为12‰。

通过对比研究发现,水头山矿床阶段Ⅱ的闪锌矿和方铅矿δ34S值相接近,即δ34S值范围有部分重叠,但总体上呈现δ34S闪锌矿>δ34S方铅矿的特征,表明该成矿阶段的闪锌矿与方铅矿之间的S同位素分馏基本达到平衡,暗示矿床成矿热液中硫化物是在平衡共生条件下形成的矿物组合,沉淀于同一物化体系。水头山矿床阶段Ⅱ不同颜色闪锌矿δ34S值出现差异,可能是由深源岩浆与微量元素共同引起(司荣军等,2011; Wang et al., 2014b; 左昌虎,2015),其颜色越深δ34S值越大,具有δ34S深棕色闪锌矿(11.5‰)>δ34S棕褐色闪锌矿(8.3‰)>δ34S浅棕色闪锌矿(5.6‰)的分布特征,与S同位素在热液矿物体系中的平衡结晶顺序(Ohmoto,1986)相一致,表明该矿床成矿热液中S同位素分馏已达到平衡。低温热液型矿床中,受深源岩浆硫及微量元素组成的强烈影响,闪锌矿相对富集重S,δ34S值变化较大,差值可达6‰,且H、O同位素组成已经表明该矿床发生的成矿作用与深部岩浆活动密切相关,因此,与深部岩浆活动有关的成矿作用可能是导致该矿床阶段Ⅱ不同颜色闪锌矿S同位素略有差异的重要原因。

成矿热液中的δ34S∑S值是从热液矿床中获得的δ34S硫化物值,其对分析S源十分重要(韩吟文和马振东,2003)。通过野外调研和室内磨制光薄片等综合鉴定,水头山矿床含硫矿物相对简单,以闪锌矿和方铅矿等金属硫化物为主,未发现矿床及地层中有硫酸盐矿物的存在,说明其成矿热液较为单一, 未曾经历复杂的地质演化过程和强烈的分馏作用。阶段Ⅱ为主成矿阶段,该阶段样品的δ34S硫化物平均值可近似代表成矿热液中δ34S∑S值(Seal,2006; Wang et al., 2015),即δ34S∑Sδ34S均值=6.56‰,因此可以用阶段Ⅱδ34S值来推测成矿热液中的S源。

在水头山矿床S同位素组成直方图(图 6)上,所有样品δ34S值均为正值,相对富集重S同位素,且呈现出“两段式”分布特征。阶段Ⅰ、Ⅲ的δ34S值范围在12‰~12.2‰,与矿集区内芦子园矿床(δ34S值为8.9‰~12‰)(未发表数据)较为接近;阶段Ⅱ的δ34S值主要集中在4.1‰~6.2‰,类似于保山地块内核桃坪矿床(δ34S值为3.7‰~7.1‰)(Chen et al., 2016)和金厂河矿床(δ34S值为3.9‰~6.7‰)(黄华等,2014)。所有成矿阶段δ34S值均高于幔源岩浆硫(0‰)(Chaussidon et al., 1989)、陨石硫(-3‰~3‰)(Chaussidon and Lorand, 1990)及沉积物中还原硫( < 0‰)(Rollinson,1993),而低于同期海水硫酸盐(寒武纪-三叠纪δ34S值为15‰~35‰)(Claypool et al., 1980),与花岗岩δ34S值(5‰~15‰)(Ohmoto and Goldhaber, 1997)最相近,处于典型岩浆硫范围(Wang et al., 2014b; 左昌虎,2015)之内,说明深源岩浆硫是其主要来源。

图 6 水头山矿床S同位素组成直方图 Fig. 6 Sulfur isotopic compositions histogram of the Shuitoushan ore deposit

对比不同储库S同位素组成分布图(图 7),可知水头山矿床(阶段Ⅱ)与保山地块内典型热液Pb-Zn矿床(核桃坪、金厂河)δ34S值非常相似,而与矿集区内芦子园矿床S同位素组成特征略有不同,但均与花岗岩值相近,考虑到这些矿床深部可能存在隐伏的中酸性侵入岩体(黄华等,2014; 邓明国等,2016; Chen et al., 2016),推测矿质来源与深部隐伏中酸性岩体有关。结合矿床地质特征和获得的S同位素数据,笔者认为该矿床S同位素组成均一,在阶段Ⅱ达到了S同位素分馏平衡,且主要来源于与隐伏中酸性岩体有关的深源岩浆,这也与H-O同位素所代表的深源成矿流体相一致。

图 7 S同位素组成分布图(底图据Ohmoto and Goldhaber, 1997; Anderson et al., 1998) Fig. 7 Distribution of Sulfur isotopic compositions (base map after Ohmoto and Goldhaber, 1997; Anderson et al., 1998)

Pb同位素组成是示踪矿床中矿质来源的有力工具(Zartman and Smith, 2009; Haest et al., 2010; Gromek et al., 2012)。由于金属硫化物中通常含有极其少量的U、Th,因此可以根据其Pb同位素组成、相互之间关系及源区特征参数来判断矿质来源(马玉波等,2013; Ding et al., 2014)。水头山矿床所有成矿阶段硫化物Pb的μ值范围为9.94~10.15,均值为10.02,与芦子园矿床晚硫化物阶段硫化物Pb的μ值(9.68~9.97) 部分重叠,但均大于上地壳物质的值(9.58)(Zartman and Doe, 1981);而ω值范围为40.75~43.83,均值为41.706,接近上地壳物质的值(41.860)(Doe and Zartman, 1979);κ(Th/U)值范围为3.97~4.22,均值为4.03,与中国大陆上地壳均值(3.76)(李龙等,2001)和全球上地壳均值(3.47)(Zartman and Haines, 1988)略有差异(表 5),同时考虑到该矿床铀铅富集明显(206Pb/204Pb>18.000,207Pb/204Pb>15.300),钍铅微弱亏损(208Pb/204Pb总体略低于39.000),因此,可以认为该矿床铅源物质主要来源于上地壳。

表 5 水头山矿床与芦子园矿床、中国大陆、全球的μ、κ值对比 Table 5 Comparison of u and k values of the Shuitoushan ore deposit, the Luziyuan ore deposit, Chinese mainland as well as the global

图 8a上,所有样品投点均落在上地壳演化线上方;在图 8b上,所有样品投点亦落在上地壳演化线上方、地幔线右上侧。值得注意的是,水头山矿床所有成矿阶段硫化物Pb的投点大致呈线性排列,与芦子园矿床晚硫化物阶段硫化物Pb同位素组成(待发表)变化趋势具有较好的一致性。该直线的斜率较大,说明它并非是一条等时线,而是代表了一条两个不同程度组份的混合线(Andrew et al., 1984)。综上所述,水头山矿床所有样品投点与保山地块内柯街花岗岩(陈吉琛,1991)及核桃坪矿床硫化物(薛传东等,2008)Pb同位素组成分布范围存在一定距离,而与矿集区内芦子园矿床(待发表)较为相近,投点主要分布在上地壳铅演化线上方,说明硫化物Pb来自上地壳;投点亦靠近地幔线,暗示可能受到幔源物质的混染。此外,由于水头山矿床相对富集铀铅、亏损钍铅的Pb同位素特征,且保山地块内出露有同一时期的志本山、柯街花岗岩,因此认为该矿床矿质主要来源于富铀铅而贫钍铅的上地壳物质,深部壳源甚至幔源岩浆可能提供了部分Pb。

图 8 水头山矿床硫化物Pb同位素组成图解(底图据Zartman and Doe, 1981) 芦子园矿床晚硫化物阶段闪锌矿、方铅矿(待发表);柯街花岗岩数据陈吉琛(1991);核桃坪矿床闪锌矿、方铅矿数据薛传东等(2008) Fig. 8 Lead isotopic compositions diagram of the sulfides from the Shuitoushan ore deposit (base map after Zartman and Doe, 1981)

从水头山矿床Pb同位素组成的△γ-△β图解(图 9)(朱炳泉,1998)上也可以看出,阶段Ⅰ的黄铁矿和黄铜矿投点均落在了上地壳源铅的范围内;阶段Ⅱ的闪锌矿和方铅矿仅有2个点落在上地壳源铅范围内,而另外5个点则均集中在与沉积作用有关的壳幔混合俯冲铅源区,靠近上地壳源铅范围;阶段Ⅲ的黄铜矿投点落在与沉积作用有关的壳幔混合俯冲带铅范围,亦靠近上地壳源铅边界线,其特征与Pb同位素组成演化曲线(图 8)所推测的结果基本一致,类似于矿集区内芦子园矿床(待发表),而与保山地块内核桃坪矿床(薛传东等,2008)、金厂河矿床(周荣等,2008)上地壳-地幔混合源铅(以岩浆作用为主)的特征略有不同,从而进一步证实铅源主要为上地壳,少许来源于深部壳源甚至幔源岩浆的混合。

图 9 水头山矿床Pb同位素组成的△γ-△β图解(底图据朱炳泉,1998) Fig. 9 Lead isotopic △γ vs. △β diagram of the Shuitoushan ore deposit (base map after Zhu, 1998)
5.3 矿床成因

水头山矿床产于保山地块南缘的乌木兰背斜及与之配套的NEE向断裂的交汇处,其形成与构造岩浆热液活动密切相关。在空间展布上,矿体受NEE向组断裂严格控制。围岩蚀变主要以白云石化、绿泥石化、方解石化、绢云母化和硅化等低温热液蚀变为主。矿石矿物组成较简单,主要为闪锌矿和方铅矿,偶见少许黄铜矿、黄铁矿等,脉石矿物以方解石为主的一套低温热液成因的矿物组合。保山地块内志本山、柯街S型花岗岩体的产出,是由于地壳碰撞加厚及阶段性剪切拉张引起地壳重熔形成(陶琰等,2010),且该类型花岗岩具有高钾过铝质性质,亦说明其与地壳缩短加厚及剪切拉张作用有关(廖忠礼等,2006; 张宏飞等,2007),反映保山地块内部可能存在地壳/岩石圈的幕式剪切拉张(范蔚茗等,2003; 毛景文等,2005; 邓明国等,2016);怒江大断裂与柯街-南汀河大断裂的强烈活动使得该区断裂构造错综复杂,多处形成了“X”状裂隙,且矿石角砾状构造、梳状构造、晶洞状构造亦较发育,表明该矿床可能形成于一体系相对开放的构造环境。

通过对同位素的分析,水头山矿床的矿源可概括如下:① H、O同位素组成表明成矿流体为岩浆水与大气降水的混合热液;② δ34S值均为正值,指示矿化剂主要来源于与深部隐伏中酸性岩体有关的深源岩浆;③ Pb同位素的μ、ω值较高,表明矿质主要来源于上地壳物质。因此,水头山矿床的形成极可能与深部壳源岩浆热液有关。同时前人利用地物化遥等资料综合推测矿区深部存在隐伏中酸性岩体(李开毕等,2012; 吾守艾力·肉孜,2015; Liang et al., 2015)。籍此可以推断,该矿床的形成可能是随着中特提斯怒江洋的闭合,保山地块与毗邻的腾冲地块发生碰撞挤压加厚作用引起地壳重熔,最终形成隐伏中酸性岩浆;在碰撞期内发生幕式剪切拉张作用,致使深部岩浆沿深大断裂上侵,上侵过程中萃取的矿质融入于早期成矿流体中,随后又在能量驱动机制下,沿短暂性幕式伸展形成的大量张性裂隙上升运移,与大气降水混合形成大规模的含矿热液流体,随热液流体向上运移温度迅速降低,导致金属硫化物在远离隐伏岩体的断裂构造有利部位(层间破碎带、层间裂隙等)沉淀富集,最终形成似层状、透镜状和脉状矿体。

此外,水头山矿床的成因信息可与邻区的芦子园超大型Pb-Zn-Fe-Cu多金属矿床进行类比。这两个矿床矿化带的海拔高度分别为1750m和2050m,由于彼此相距仅6km(图 1b, c),具有由矽卡岩型Pb-Zn-Fe矿化逐渐过渡到低温热液型Pb-Zn矿化的特征,且其矿体均受控于同期形成的NE、NEE向组断裂(成连华等,2006),表明它们可能为同一构造热液体系的产物。尽管矿集区内的这两个矿床矿化类型及同位素体系不尽相同,但它们在成因上密不可分,均与深部隐伏中酸性岩体有关的热液成矿作用相联系。前人研究认为,保山地块内燕山晚期形成的志本山、柯街等S型花岗岩主要来源于地壳物质(杨启军等,2006; 陶琰等,2010),与水头山矿床的矿质来源基本一致,同时项目组获得的芦子园矿床晚硫化物阶段与Pb-Zn矿共生的方解石Sm-Nd年龄为130±15Ma(未发表数据),与以班公湖-怒江洋为代表的中特提斯主洋的闭合时代(159~99Ma)(莫宣学和潘桂堂,2006; Cocks and Torsvik, 2013; Deng et al., 2014b)大致相当,反映水头山矿床可能为与深部壳源岩浆有关的燕山晚期形成。结合前人地物化遥等资料和H、O、S、Pb同位素地球化学证据,笔者认为矿区深部存在隐伏中酸性岩体,燕山晚期的热液成矿作用是水头山矿床形成的主导因素,而流体的混合作用可能是导致水头山矿床金属元素沉淀和富集的重要机制。

水头山矿床上述地质和地球化学特征与甲乌拉、查干布拉根等典型低温热液型矿床(Hedenquist and Lowenstern, 1994; Li et al., 2015c, 2016b)非常相似。因此,我们认为该矿床是与镇康矿集区内芦子园矿床伴生的、矿化相对较浅的,且与深部中酸性岩浆热液成矿作用有关的低温热液型矿床,并和芦子园超大型矽卡岩矿床为同一构造热液体系,与区域上中酸性岩浆有关的矿产相对应,推测深部隐伏中酸性岩体顶部的接触带上可能形成与之相应的矿化元素(如Cu、Mo、Sn和Hg等)。

6 结论

(1) 水头山矿床受成岩后断裂控矿明显,主要以方解石-硫化物似层状、透镜状产出,矿石以网脉状、稠密浸染状及角砾状构造为特征,发育闪锌矿、方铅矿等低温硫化物矿物组合以及白云石化、绿泥石化和硅化等低温矿物蚀变,具有低温热液成矿的典型特征。

(2) 水头山矿床H、O、S、Pb同位素组成表明,该矿床矿石组分主要来源于深部壳源岩浆热液;通过与芦子园矿床的同位素资料对比,表明两个矿床具有相似的成矿流体与矿质来源。

(3) 地质和综合同位素研究表明,水头山矿床的形成可能与深部壳源岩浆热液有关,流体的混合作用是该矿床金属硫化物沉淀和富集的重要机制,是与芦子园矿床有着成因联系的低温热液型Pb-Zn矿床,并认为深部可能形成与区域上中酸性岩浆成矿系统有关的矿化元素(Cu、Mo、Sn和Hg等)。

致谢 云南兴达矿业有限公司对本次野外调查工作提供了大力支持和帮助;北京核工业地质研究院稳定同位素实验室刘牧老师和中国科学技术大学地球与空间科学学院固体同位素地球化学实验室陈福坤老师对实验进行了认真指导;二位匿名审稿专家对论文提出了宝贵的修改意见;在此一并表示真诚的谢意!
参考文献
[] Akaryalı E, Tüysüz N. 2013. The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey). Geoscience Frontiers, 4(4): 409–421. DOI:10.1016/j.gsf.2012.12.002
[] Anderson IK, Ashton JH, Boyce AJ, Fallick AE, Russell MJ. 1998. Ore depositional process in the Navan Zn-Pb deposit, Ireland. Economic Geology, 93(5): 535–563. DOI:10.2113/gsecongeo.93.5.535
[] Andrew A, Godwin CI, Sinclair AJ. 1984. Mixing line isochrons:A new interpretation of galena lead isotope data from southeastern British Columbia. Economic Geology, 79(5): 919–932. DOI:10.2113/gsecongeo.79.5.919
[] Barker SLL, Dipple GM, Kickey KA, Lepore WA, Vaughan JR. 2013. Applying stable isotopes to mineral exploration:Teaching an old dog new tricks. Economic Geology, 108(1): 1–9. DOI:10.2113/econgeo.108.1.1
[] Burchfiel BC and Chen ZL. 2012. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland:Geological Society of America Memoir 210. Washington DC:The Geological Society of America, 1-164
[] Chaussidon M, Albarède F, Sheppard SMF. 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92(2): 144–156. DOI:10.1016/0012-821X(89)90042-3
[] Chaussidon M, Lorand JP. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France):An ion microprobe study. Geochimica et Cosmochimica Acta, 54(10): 2835–2846. DOI:10.1016/0016-7037(90)90018-G
[] Chen BW, Wang KY, Liu WX, et al. 1987. Geotectonics of the Nujiang-Lancangjiang-Jinshajiang Region. Beijing: Geological Publishing House: 1-206.
[] Chen FC, Deng J, Shu QH, Li GJ, Cui XL, Zhao F and Wang QF. 2016. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China. Ore Geology Reviews, doi:10.1016/j.oregeorev.2016.10.013
[] Chen FK, Li XH, Wang XL, Li QL, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179–1194. DOI:10.1007/s00531-006-0146-y
[] Chen JC. 1991. Characteristics of Pb, Sr isotopic compositions in West Yunnan:Granites discussion on the age and nature of the basement in West Yunnan. Scientia Geologica Sinica, 26(2): 174–183.
[] Chen JH. 1999. The metallogenic mode of Zijinshan copper (gold) deposit. Gold, 20(7): 6–11.
[] Chen MY. 2014. Geological features and prospecting criteria of the Shuitoushan lead zinc deposit in Zhenkang County, Yunnan province. Low Carbon World(7): 117–118.
[] Cheng LH, Xiang HL, Yang S. 2006. Geological characteristics of Dalong tin polymetallic deposit in Yunnan and its exploration prospective. Mineral Resources and Geology, 20(3): 255–259.
[] Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 199–260. DOI:10.1016/0009-2541(80)90047-9
[] Cocks LRM, Torsvik TH. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews, 117: 40–79. DOI:10.1016/j.earscirev.2012.12.001
[] Coleman ML, Shephard TJ, Durham JJ, Rouse JE, Moore GR. 1982. Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54(6): 993–995. DOI:10.1021/ac00243a035
[] Demir Y, Uysal I, Sadiklar MB, Ceriani A, Hanilçi N, Müller D. 2015. Mineralogy, mineral chemistry, fluid inclusion, and stable isotope investigations of the Kabadüz ore veins, Ordu, NE-Turkey. Ore Geology Reviews, 66: 82–98. DOI:10.1016/j.oregeorev.2014.10.023
[] Deng BF. 1995. The metallogenic model of Hg-Pb-Zn in Zhenkang area, Baoshan, Yunnan. Yunnan Geology, 14(4): 355–364.
[] Deng J, Wang QF, Li GJ, Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268–299. DOI:10.1016/j.earscirev.2014.05.015
[] Deng J, Wang QF, Li GJ, Li CS, Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419–437. DOI:10.1016/j.gr.2013.08.002
[] Deng J, Wang CM, Li WC, Yang LQ, Wang QF. 2014. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. Earth Science Frontiers, 21(1): 52–64.
[] Deng J, Wang QF, Li GJ, Zhao Y. 2015. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geology Reviews, 65: 42–54. DOI:10.1016/j.oregeorev.2014.08.002
[] Deng J, Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219–274. DOI:10.1016/j.gr.2015.10.003
[] Deng MG, Xu R, Wang P, Sun BD, Zeng L, Yu HJ, Wang T, Sha JZ. 2016. Geochemistry of the rhodonite in the Luziyuan Pb-Zn-Fe polymetallic deposit in West Yunnan and their genesis significance. Acta Petrologica Sinica, 32(8): 2248–2264.
[] Ding QF, Wu CZ, Santosh M, Fu Y, Dong LH, Qu X, Gu LX. 2014. H-O, S and Pb isotope geochemistry of the Awanda gold deposit in southern Tianshan, Central Asian orogenic belt:Implications for fluid regime and metallogeny. Ore Geology Reviews, 62: 40–53. DOI:10.1016/j.oregeorev.2014.02.017
[] Doe BR and Zartman RE. 1979. Plumbotectonics:The phanerozoic. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley and Sons, 22-70 https://link.springer.com/10.1007/978-94-007-7615-9_8
[] Dong ML, Dong GC, Mo XX, Santosh M, Zhu DC, Yu JC, Nie F, Hu ZC. 2013. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granites in the Baoshan Block, western Yunnan:Implications for Early Paleozoic evolution along the Gondwana margin. Lithos, 179: 36–47. DOI:10.1016/j.lithos.2013.05.011
[] Dong ML, Dong GC, Mo XX, Zhu DC, Nie F, Yu JC, Wang P, Luo W. 2013. The Mesozoic-Cenozoic magmatism in Baoshan Block, western Yunnan and its tectonic significance. Acta Petrologica Sinica, 29(11): 3901–3913.
[] Fan WM, Wang YJ, Guo F, Peng TP. 2003. Mesozoic mafic magmatism in Hunan-Jiangxi provinces and the lithospheric extension. Earth Science Frontiers, 10(3): 159–169.
[] Gromek P, Gleeson SA, Simonetti A. 2012. A basement-interacted fluid in the N81 deposit, Pine Point Pb-Zn district, Canada:Sr isotopic analyses of single dolomite crystals. Mineralium Deposita, 47(7): 749–754. DOI:10.1007/s00126-012-0435-2
[] Haest M, Schneider J, Cloquet C, Latruwe K, Vanhaecke F, Muchez P. 2010. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo). Mineralium Deposita, 45(4): 393–410. DOI:10.1007/s00126-010-0279-6
[] Han YW, Ma ZD. 2003. Geochemistry. Beijing: Geological Publishing House: 1-370.
[] Hedenquist JW, Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519–527. DOI:10.1038/370519a0
[] Hoefs J. 1997. Stable Isotope Geochemistry. 4th Edition. Berlin Heidelberg: Springer-Verlag: 1-201.
[] Hou ZQ, Zaw K, Pan GT, Mo XX, Xu Q, Hu YZ, Li XZ. 2007. Sanjiang Tethyan metallogenesis in S.W. China:Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48–87. DOI:10.1016/j.oregeorev.2004.12.007
[] Huang H. 2014. The research on geological characteristics and metallogenesis of the Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit, Yunnan Province. Master Degree Thesis. Beijing: China University of Geosciences: 52-55.
[] Huang H, Zhang CQ, Zhou YM, Xie HF, Liu B, Xie YF, Dong YT, Yang CH, Dong WW. 2014. Rb-Sr isochron age of Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit in Yunnan Province and its geological significance. Mineral Deposits, 33(1): 123–136.
[] Huang Y, Hao JX, Bai L, Deng GB, Zhang GX, Huang WJ. 2012. Stratigraphic and petrologic response to Late Pan-African movement in Shidian area, western Yunnan Province. Geological Bulletin of China, 31(2-3): 306–313.
[] Karimpour MH, Malekzadeh Shafaroudi A, Farmer GL, Stern CR. 2012. Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran. Journal of Economic Geology, 4(1): 1–27.
[] Li GJ, Wang QF, Huang YH, Chen FC, Dong P. 2015a. Discovery of Hadean-Mesoarchean crustal materials in the northern Sibumasu block and its significance for Gondwana reconstruction. Precambrian Research, 271: 118–137. DOI:10.1016/j.precamres.2015.10.003
[] Li GJ, Deng J, Wang QF, Liang K. 2015b. Metallogenic model for the Laochang Pb-Zn-Ag-Cu volcanogenic massive sulfide deposit related to a Paleo-Tethys OIB-like volcanic center, SW China. Ore Geology Reviews, 70: 578–594. DOI:10.1016/j.oregeorev.2015.01.012
[] Li GJ, Wang QF, Huang YH, Gao F, Yu L. 2016a. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block:Implications for the Early Paleozoic tectonic evolution along East Gondwana. Lithos, 245: 76–92. DOI:10.1016/j.lithos.2015.10.012
[] Li KB, Yang SS, Cai X. 2012. The effect and result of high-precision magnetic survey on prospecting in Luziyuan mine in Zhenkang Country. Journal of Yunnan University, 34(Suppl. 2): 157–162.
[] Li L, Zhang YF, Zhou JB. 2001. Dynamic model for Pb isotope evolution in the continental crust of China. Acta Petrologica Sinica, 17(1): 61–68.
[] Li TG, Wu G, Liu J, Hu YQ, Zhang YF, Luo DF, Mao ZH. 2015c. Fluid inclusions and isotopic characteristics of the Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China. Journal of Asian Earth Sciences, 103: 305–320. DOI:10.1016/j.jseaes.2014.10.003
[] Li TG, Wu G, Liu J, Wang GR, Hu YQ, Zhang YF, Luo DF, Mao ZH, Xu B. 2016b. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China. Lithos, 261: 340–355. DOI:10.1016/j.lithos.2016.04.029
[] Li WC, Pan GT, Hou ZQ, et al. 2010. Archipelagic-Basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House: 134-431.
[] Li XF, Huang C, Wang CZ, Wang LF. 2016c. Genesis of the Huangshaping W-Mo-Cu-Pb-Zn polymetallic deposit in southeastern Hunan Province, China:Constraints from fluid inclusions, trace elements, and isotopes. Ore Geology Reviews, 79: 1–25. DOI:10.1016/j.oregeorev.2016.04.023
[] Li ZQ, Chen YG, Zhang TS, Ren ZJ, Zhao CS, Li WZ. 2005. Geological characters and sustainable mineral resources of Mengnuo Pb-Zn ore deposit in Yunnan. Contributions to Geology and Mineral Resources Research, 20(2): 123-126–131.
[] Liang SX, Jiao YJ, Guo J. 2015. Prediction of hidden granites in the Luziyuan area of Yunnan Province and the prospecting direction. Acta Geologica Sinica, 89(5): 1781–1782. DOI:10.1111/acgs.2015.89.issue-5
[] Liang YH, Sun XM, Zhai W, Ma C, Wu ZQ, Ding CG, Wang TX, Li AJ, Liang JL. 2008. Geochemistry of ore-forming fluids and genesis of Guanshan Cu-Pb-Au polymetallic deposit in Jiangsu Province. Mineral Deposits, 27(5): 605–612.
[] Liao SY, Wang DB, Tang Y, Yin FG, Sun ZM, Sun J. 2013. LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River Region and its geological implications. Acta Petrologica et Mineralogica, 32(4): 450–462.
[] Liao SY, Wang DB, Tang Y, Yin FG, Cao SN, Wang LQ, Wang BD, Sun ZM. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane:Implications for the breakup of eastern Gondwana's northern margin. GSA Bulletin, 127(9-10): 1313–1330. DOI:10.1130/B31210.1
[] Liao ZL, Mo XX, Pan GT, Zhu DC, Wang LQ, Zhao ZD, Jiang XS. 2006. On peraluminous granites in Tibet, China. Geological Bulletin of China, 25(7): 812–821.
[] Lin FC. 2005. Geological and geochemical characteristics and genesis of supper-large-scale sedex-type stratiform lead-zinc deposits in the Dadu River valley on the western margin of the Yangtze craton. Acta Geologica Sinica, 79(4): 540–556. DOI:10.1111/acgs.2005.79.issue-4
[] Lin QS. 2006. On the characteristics and genesis of the Yueyang silver polymetallic deposit in Wuping County, Fujian Province. Geology of Fujian, 25(2): 82–88.
[] Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson IM, Feng GY, Wang T, Qi YQ. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China. Journal of Asian Earth Sciences, 36(2-3): 168–182. DOI:10.1016/j.jseaes.2009.05.004
[] Lu YF. 2004. Geokit:A geochemical toolkit for Microsoft Excel. Geochimica, 33(5): 459–464.
[] Ma YB, Xing SW, Zhang ZJ, Du XH, Zou YF, Wang Y, Li B, Sun JG. 2013. Characteristics of the sulfur and lead isotope compositions of the polymetallic deposit in the Liaoji rift and their geological significance. Acta Geologica Sinica, 87(9): 1399–1410.
[] Mao JW, Xie GQ, Li XF, Zhang ZH, Wang YT, Wang ZL, Zhao CS, Yang FQ, Li HM. 2005. Geodynamic process and metallogeny:History and present research trend, with a special discussion on continental accretion and related metallogeny throughout geological history in South China. Mineral Deposits, 24(3): 193–205.
[] Mao JW, Wang YT, Li HM, Pirajno F, Zhang CQ, Wang RT. 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S isotope systematics. Ore Geology Reviews, 33(3-4): 361–381. DOI:10.1016/j.oregeorev.2007.01.003
[] Meinert LD, Hedenquist JW, Satoh H, Matsuhisa Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 98(1): 147–156. DOI:10.2113/gsecongeo.98.1.147
[] Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. DOI:10.1016/j.jseaes.2012.12.020
[] Mo XX, Deng JF, Lu FX. 1994. Volcanism and the evolution of Tethys in Sanjiang area, southwestern China. Journal of Southeast Asian Earth Sciences, 9(4): 325–333. DOI:10.1016/0743-9547(94)90043-4
[] Mo XX, Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43–51.
[] Nie F, Dong GC, Mo XX, Zhao ZD, Wang P, Cui ZL, Fan WY, Liu SS. 2015. The characteristics of sulfur and lead isotopic compositions of the Xiyi Pb-Zn deposit in Baoshan Block, western Yunnan. Acta Petrologica Sinica, 31(5): 1327–1334.
[] Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16(1): 491–559.
[] Ohmoto H and Goldhaber MB. 1997. Sulfur and carbon isotopes. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York:John Wiley and Sons, 517-611 https://link.springer.com/article/10.1007/s00126-014-0558-8
[] Robinson BW, Kusakabe M. 1975. Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Analytical Chemistry, 47(7): 1179–1181. DOI:10.1021/ac60357a026
[] Rollinson HR. 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Harlow: Longman Scientific and Technical Press: 306-308.
[] Ruan BX, Lv XB, Yang W, Liu ST, Yu YM, Wu CM, Adam MMA. 2015. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China:Implications for tectonic setting and metallogeny. Ore Geology Reviews, 71: 121–137. DOI:10.1016/j.oregeorev.2015.05.004
[] Rye RO. 1993. The evolution of magmatic fluids in the epithermal environment:The stable isotope perspective. Economic Geology, 88(3): 733–752. DOI:10.2113/gsecongeo.88.3.733
[] Seal RR. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633–677. DOI:10.2138/rmg.2006.61.12
[] Shafaroudi AM, Karimpour MH. 2015. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran. Journal of African Earth Sciences, 107: 1–14. DOI:10.1016/j.jafrearsci.2015.03.015
[] Shangguan ZG and Zhang ZL. 1991. The research on experimental field of hot springs of stable isotopic geochemistry in western Yunnan. In:Institute of Geology, National Seismological Bureau (ed.). Modern Crustal Movement Research (5). Beijing:Seismological Press, 87-95 (in Chinese)
[] Si RJ, Gu XX, Xiao C, Yu HT, Wang ZW, Chen YJ, Qiu N. 2011. Geochemical character of trace elements in sphalerite from Fule Pb-Zn deposit, Yunnan Province. Journal of Mineralogy and Petrology, 31(3): 34–40.
[] Sone M, Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia:New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340(2-3): 166–179. DOI:10.1016/j.crte.2007.09.008
[] Tao Y, Hu RZ, Zhu FL, Ma YS, Ye L, Cheng ZT. 2010. Ore-forming age and the geodynamic background of the Hetanping lead-zinc deposit in Baoshan, Yunnan. Acta Petrologica Sinica, 26(6): 1760–1772.
[] Taylor HP. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York:John Wiley & Sons, 229-302 http://www.academia.edu/15149708/Mineralogy_and_geochemistry_of_El_Dorado_epithermal_gold_deposit_El_Sauce_district_central-northern_Chile
[] Wang CM, Deng J, Carranza EJM, Santosh M. 2014a. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2): 576–593. DOI:10.1016/j.gr.2013.05.005
[] Wang CM, Zhang D, Wu GG, Santosh M, Zhang J, Xu YG, Zhang YY. 2014b. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China. Mineralium Deposita, 49(6): 733–749. DOI:10.1007/s00126-014-0521-8
[] Wang CM, Bagas L, Lu YJ, Santosh M, Du B, McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39–65. DOI:10.1016/j.earscirev.2016.02.008
[] Wang QF, Deng J, Li CS, Li GJ, Yu L, Qiao L. 2014c. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438–448. DOI:10.1016/j.gr.2013.10.002
[] Wang XH, Hou ZQ, Song YC, Zhang HR. 2015. Geological, fluid inclusion and isotopic studies of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit, Lanping basin, Yunnan Province, China. Journal of Asian Earth Sciences, 111: 853–871. DOI:10.1016/j.jseaes.2015.08.009
[] Wang YJ, Xing XW, Cawood PA, Lai SC, Xia XP, Fan WM, Liu HC, Zhang FF. 2013. Petrogenesis of Early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos, 182-183: 67–85. DOI:10.1016/j.lithos.2013.09.010
[] Wushouaili RZ, Liang SX, Zou GF, Luo MJ. 2015. The application of AMT and 3D gravity methods to the prospecting for concealed rock body in the Luziyuan area. Geophysical and Geochemical Exploration, 39(3): 525–529.
[] Xia QL, Chen YQ, Lu YX, Jiang CX, Liu HH, Lv ZC. 2005. Geochemistry, fluid inclusion, and stable isotope studies of Luziyuan Pb-Zn deposit in Yunnan Province, southwestern China. Earth Science-Journal of China University of Geosciences, 30(2): 177–186.
[] Xiao CH. 2013. The study on minerogenic series of epithermal deposits in mid-southern segment of the Sanjiang orogenic belt, Southwest China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-153 (in Chinese with English summary)
[] Xie YL, Li LM, Wang BG, Li GM, Liu HF, Li YX, Dong SL, Zhou JJ. 2017. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China:Evidence for a magmatic link. Ore Geology Reviews, 80: 891–909. DOI:10.1016/j.oregeorev.2016.08.007
[] Xu BT, Xia AN, Zheng SH, Chen CY. 1988. Characteristics and sources of ore-forming fluids in the Zhilingtou gold-silver deposit studied by stable isotope method. Mineral Deposits, 7(4): 27–32.
[] Xu BT, Li CJ, Chen HS. 1994. Mineralization chronology and isotopic geochemistry of the Haoshi silver deposit in Zhejiang Province. Mineral Deposits, 13(3): 271–281.
[] Xu QD, Mo XX. 2000. Regional fluid charecters and regimes of "Sanjiang" middle belt during Neo-Tethys. Acta Petrologica Sinica, 16(4): 639–648.
[] Xue CD, Han RS, Yang HL, Yang ZM, Tian SH, Liu YQ, Hao BW. 2008. Isotope geochemical evidence for ore-forming fluid resources in Hetaoping Pb-Zn deposit, Baoshan, northwestern Yunnan. Mineral Deposits, 27(2): 243–252.
[] Yang F. 2015. Metallogenic geological background and geological characteristics of the Wengkong lead-zinc mine in Zhenkang County, Yunnan province. Master Degree Thesis. Beijing: China University of Geosciences: 1-59.
[] Yang L, Wang QF, Liu H, Carranza EJM, Li GJ and Zhou DQ. 2016. Identification and mapping of geochemical patterns and their significance for regional metallogeny in the southern Sanjiang, China. Ore Geology Reviews, doi:10.1016/j.oregeorev.2016.08.014
[] Yang QJ, Xu YG, Huang XL, Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan:Tectonic implications. Acta Petrologica Sinica, 22(4): 817–834.
[] Yang XF, Luo G. 2011. A tentative analysis of the ore-controlling factors of the Luziyuan lead-zinc deposit in Zhenkang area, Yunnan. Geological Bulletin of China, 30(7): 1137–1146.
[] Yang XJ, Jia XC, Xiong CL, Bai XZ, Huang BX, Luo G, Yang CB. 2012. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance. Geological Bulletin of China, 31(2-3): 264–276.
[] Yang XR, Peng JT, Hu RZ, Qi HW, Liu S. 2009. Characteristics and genesis of ore tube structure of Tamu zinc-lead deposit, southwest margin of Tarim Basin, Xinjiang. Acta Petrologica Sinica, 25(4): 977–983.
[] Yang YL, Ye L, Cheng ZT, Bao T. 2013. Origin of fluids in the Hetaoping Pb-Zn deposit, Baoshan-Narong-Dongzhi block metallogenic belt, Yunnan Province, SW China. Journal of Asian Earth Sciences, 73: 362–371. DOI:10.1016/j.jseaes.2013.04.036
[] Ye L, Gao W, Cheng ZT, Yang YL, Tao Y. 2010. LA-ICP-MS Zircon U-Pb geochronology and petrology of the Muchang alkali granite, Zhenkang County, western Yunnan Province, China. Acta Geologica Sinica, 84(6): 1488–1499. DOI:10.1111/acgs.2010.84.issue-6
[] Ye L, Cook NJ, Ciobanu CL, Liu YP, Zhang Q, Liu TG, Gao W, Yang YL, Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study. Ore Geology Reviews, 39(4): 188–217. DOI:10.1016/j.oregeorev.2011.03.001
[] Yu L, Li GJ, Wang QF, Liu XF. 2014. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 30(9): 2709–2724.
[] Zartman RE, Doe BR. 1981. Plumbotectonics:The model. Tectonophysics, 175(1-2): 135–162.
[] Zartman RE, Haines SM. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs:A case for bi-directional transport. Geochimica et Cosmochimica Acta, 52(6): 1327–1339. DOI:10.1016/0016-7037(88)90204-9
[] Zartman RE, Smith JV. 2009. Mineralogy and U-Th-Pb age of a uranium-bearing jasperoid vein, Sunshine Mine, Coeur d'Alene district, Idaho, USA. Chemical Geology, 261(1-2): 185–195. DOI:10.1016/j.chemgeo.2008.09.006
[] Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM, Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdise terrane, Tibet:Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347–1353.
[] Zheng YF. 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55(8): 2299–2307. DOI:10.1016/0016-7037(91)90105-E
[] Zhou R, Chen J, Lü YZ, Dong WW. 2008. The large scale blind multimetallic ore deposit of Jinchanghe, Baoshan. Yunnan Geology, 27(2): 189–196.
[] Zhu BQ. 1998. Theories and Application of Isotopic System in Geoscience:Crustal and Mantle Evolution in China Continent. Beijing: Science Press: 1-330.
[] Zhu GT. 2002. Study on geological character and genesis of Longtoushan gold deposit of Guangxi. Mineral Resources and Geology, 16(5): 266–272.
[] Zuo CH. 2015. Study of the Kangjiawan lead-zinc deposit genesis and relationship with surrounding magmatism in Changning City. Ph. D. Dissertation. Nanjing:Nanjing University, 1-134 (in Chinese)
[] 陈炳蔚, 王铠元, 刘万熹, 等. 1987. 怒江-澜沧江-金沙江地区大地构造. 北京: 地质出版社: 1-206.
[] 陈吉琛. 1991. 滇西花岗岩类Pb、Sr同位素组成特征及其基底时代和性质. 地质科学, 26(2): 174–183.
[] 陈景河. 1999. 紫金山铜(金)矿床成矿模式. 黄金, 20(7): 6–11.
[] 陈明勇. 2014. 云南省镇康县水头山铅锌矿地质特征及找矿标志探讨. 低碳世界(7): 117–118.
[] 成连华, 向洪流, 杨松. 2006. 云南打拢锡多金属矿地质特征及找矿前景分析. 矿产与地质, 20(3): 255–259.
[] 邓必方. 1995. 保山-镇康地区汞、铅锌矿床的成矿模式. 云南地质, 14(4): 355–364.
[] 邓军, 王长明, 李文昌, 杨立强, 王庆飞. 2014. 三江特提斯复合造山与成矿作用研究态势及启示. 地学前缘, 21(1): 52–64.
[] 邓明国, 徐荣, 王朋, 孙柏东, 曾磊, 余海军, 王涛, 沙建泽. 2016. 滇西芦子园Pb-Zn-Fe多金属矿床蔷薇辉石地球化学特征及其成因意义. 岩石学报, 32(8): 2248–2264.
[] 董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 于峻川, 王鹏, 罗微. 2013. 滇西保山地块中-新生代岩浆作用及其构造意义. 岩石学报, 29(11): 3901–3913.
[] 范蔚茗, 王岳军, 郭峰, 彭头平. 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159–169.
[] 韩吟文, 马振东. 2003. 地球化学. 北京: 地质出版社: 1-370.
[] 黄华. 2014. 云南金厂河铁铜铅锌多金属矿床地质特征及成矿作用研究. 硕士学位论文. 北京: 中国地质大学, 52-55
[] 黄华, 张长青, 周云满, 谢华锋, 刘博, 谢永富, 董云涛, 杨春海, 董文伟. 2014. 云南保山金厂河铁铜铅锌多金属矿床Rb-Sr等时线测年及其地质意义. 矿床地质, 33(1): 123–136.
[] 黄勇, 郝家栩, 白龙, 邓贵标, 张国祥, 黄文俊. 2012. 滇西施甸地区晚泛非运动的地层学和岩石学响应. 地质通报, 31(2-3): 306–313.
[] 李开毕, 杨淑胜, 蔡旭. 2012. 高精度磁测在镇康芦子园矿区勘查中的作用及效果. 云南大学学报(自然科学版), 34(增刊2): 157–162.
[] 李龙, 郑永飞, 周建波. 2001. 中国大陆地壳铅同位素演化的动力学模型. 岩石学报, 17(1): 61–68.
[] 李文昌, 潘桂棠, 侯增谦, 等. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社: 134-431.
[] 李志群, 陈耀光, 张泰身, 任治机, 赵重顺, 李伟中. 2005. 云南勐糯铅锌矿的成矿地质特征和资源接替. 地质找矿论丛, 20(2): 123-126–131.
[] 梁业恒, 孙晓明, 翟伟, 马春, 吴志强, 丁存根, 王堂喜, 李爱菊, 梁金龙. 2008. 江苏观山铜铅金矿床成矿流体地球化学和成因. 矿床地质, 27(5): 605–612.
[] 廖世勇, 王冬兵, 唐渊, 尹福光, 孙志明, 孙洁. 2013. "三江"云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 32(4): 450–462.
[] 廖忠礼, 莫宣学, 潘桂棠, 朱弟成, 王立全, 赵志丹, 江新胜. 2006. 初论西藏过铝花岗岩. 地质通报, 25(7): 812–821.
[] 林方成. 2005. 扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因. 地质学报, 79(4): 540–556.
[] 林全胜. 2006. 福建武平悦洋银多金属矿床特征及成因探讨. 福建地质, 25(2): 82–88.
[] 路远发. 2004. Geokit:一个用VBA构建的地球化学工具软件包. 地球化学, 33(5): 459–464.
[] 马玉波, 邢树文, 张增杰, 杜晓慧, 邹跃飞, 王岩, 李斌, 孙景贵. 2013. 辽吉裂谷区铅锌金矿床S、Pb同位素组成特征及其地质意义. 地质学报, 87(9): 1399–1410.
[] 毛景文, 谢桂青, 李晓峰, 张作衡, 王义天, 王志良, 赵财胜, 杨富全, 李厚民. 2005. 大陆动力学演化与成矿研究:历史与现状——兼论华南地区在地质历史演化期间大陆增生与成矿作用. 矿床地质, 24(3): 193–205.
[] 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43–51.
[] 聂飞, 董国臣, 莫宣学, 赵志丹, 王鹏, 崔子良, 范文玉, 刘书生. 2015. 云南保山西邑铅锌矿床硫铅同位素地球化学特征研究. 岩石学报, 31(5): 1327–1334.
[] 上官志冠, 张仲禄. 1991. 滇西实验场区温泉的稳定同位素地球化学研究.见:国家地震局地质研究所编.现代地壳运动研究(5). 北京: 地震出版社: 87-95.
[] 司荣军, 顾雪祥, 肖淳, 于海涛, 王中伟, 陈彦交, 邱宁. 2011. 云南省富乐铅锌矿床闪锌矿中微量元素地球化学特征——兼论深色闪锌矿富集Cd的原因. 矿物岩石, 31(3): 34–40.
[] 陶琰, 胡瑞忠, 朱飞霖, 马言胜, 叶霖, 程增涛. 2010. 云南保山核桃坪铅锌矿成矿年龄及动力学背景分析. 岩石学报, 26(6): 1760–1772.
[] 吾守艾力·肉孜, 梁生贤, 邹光富, 罗茂金. 2015. AMT与重力方法在云南芦子园地区隐伏岩体勘查中的应用. 物探与化探, 39(3): 525–529. DOI:10.11720/wtyht.2015.3.15
[] 夏庆霖, 陈永清, 卢映祥, 蒋成兴, 刘红光, 吕志成. 2005. 云南芦子园铅锌矿床地球化学、流体包裹体及稳定同位素特征. 地球科学-中国地质大学学报, 30(2): 177–186.
[] 肖昌浩. 2013. 三江中南段低温热液矿床成矿系列研究. 博士学位论文. 北京: 中国地质大学, 1-153
[] 徐步台, 夏安宁, 郑淑蕙, 陈成业. 1988. 应用稳定同位素判别治岭头金银矿床的成矿流体性质和来源. 矿床地质, 7(4): 27–32.
[] 徐步台, 李长江, 陈好寿. 1994. 浙江毫石银矿床成矿年代学和同位素地球化学. 矿床地质, 13(3): 271–281.
[] 徐启东, 莫宣学. 2000. 三江中段新特提斯阶段区域流体的性质与状态. 岩石学报, 16(4): 639–648.
[] 薛传东, 韩润生, 杨海林, 杨志明, 田世洪, 刘勇强, 郝百武. 2008. 滇西北保山核桃坪铅锌矿床成矿流体来源的同位素地球化学证据. 矿床地质, 27(2): 243–252.
[] 杨飞. 2015. 云南省镇康县嗡空铅锌矿成矿地质背景及矿床地质特征. 硕士学位论文. 北京: 中国地质大学, 1-59
[] 杨启军, 徐义刚, 黄小龙, 罗震宇. 2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义. 岩石学报, 22(4): 817–834.
[] 杨小峰, 罗刚. 2011. 云南镇康地区芦子园铅锌矿床控矿因素浅析. 地质通报, 30(7): 1137–1146.
[] 杨学俊, 贾小川, 熊昌利, 白宪洲, 黄柏鑫, 罗改, 杨朝碧. 2012. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 31(2-3): 264–276.
[] 杨向荣, 彭建堂, 胡瑞忠, 戚华文, 刘燊. 2009. 新疆塔里木盆地西南缘塔木铅锌矿床矿石管状构造特征与成因. 岩石学报, 25(4): 977–983.
[] 禹丽, 李龚健, 王庆飞, 刘学飞. 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示:全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709–2724.
[] 张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347–1353.
[] 周荣, 陈均, 吕永增, 董文伟. 2008. 保山金厂河大型铜铁多金属隐伏矿床. 云南地质, 27(2): 189–196.
[] 朱炳泉. 1998. 地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化. 北京: 科学出版社: 1-330.
[] 朱桂田. 2002. 广西龙头山金矿床地质特征及成因研究. 矿产与地质, 16(5): 266–272.
[] 左昌虎. 2015. 湖南常宁康家湾铅锌矿床成因及与周边岩浆作用关系研究. 博士学位论文. 南京: 南京大学, 1-134