岩石学报  2017, Vol. 33 Issue (6): 1633-1652   PDF    
东亚原特提斯洋(Ⅴ):北界西段陆缘属性及微陆块拼合
李三忠1,2, 李涛1,2, 赵淑娟1,2, 李玺瑶1,2, 刘鑫1,2, 郭玲莉1,2, 于胜尧1,2, 李少俊1,2    
1. 海底科学与探测技术教育部重点实验室, 中国海洋大学海洋地球科学学院, 青岛 266100;
2. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 青岛 266237
摘要: 早古生代原特提斯洋在祁连造山带的分支本文称为古祁连洋。其洋内及邻区存在中祁连、阿拉善、柴达木、华北、扬子、塔里木等多个陆块、微陆块,处在一个复杂的多岛洋的环境中。祁连地区早古生代经历了较为复杂的俯冲拼合、碰撞造山过程。本文探讨了祁连造山带的几个构造单元构造属性,认为早古生代阿拉善微陆块南缘为被动大陆边缘,中祁连北缘为活动大陆边缘。阿拉善南部与之平行的龙首山构造单元为俯冲造山形成的增生楔体;北祁连构造带为一套俯冲增生杂岩,包含高压变质岩带、蛇绿岩带、岛弧岩浆和部分洋壳残片等,记录了古祁连洋壳从大陆裂解,洋壳形成,俯冲拼合,碰撞造山的造山过程。495Ma左右南祁连南部柴达木微陆块向北俯冲的影响,古祁连洋壳俯冲受阻,俯冲带向北后退,形成大岔大坂岛弧。弧前地区发生洋-洋俯冲事件,堆积增生大岔大坂、白泉门、九个泉等SSZ型北祁连蛇绿岩北带,并伴随第二期清水沟、牛心山、野牛滩等地岩浆事件。460Ma左右阿拉善微陆块和中祁连微陆块开始碰撞拼合,古祁连洋开始闭合。值得注意的是拼合过程不是均一的,存在自西向东斜向"剪刀式"的拼合方式,产生了由西向东年代变新的"S"型同碰撞岩浆岩。约440Ma古祁连洋闭合,进入陆内造山阶段。440Ma之后,拼合陆块处在一种拉伸的构造环境之下,金佛寺、牛心山、老虎山等地产生碰撞后岩浆岩。422~406Ma发生俯冲折返、高压榴辉岩和高压低温蓝片岩退变质作用,形成以紧闭不对褶皱为特征的第二幕变形。根据各陆块、微陆块碎屑锆石年龄谱分析对比,中祁连基底应与华北不同,而可能与扬子有关。Rodinia超大陆聚合之前,中祁连微陆块作为一个独立的微陆块与华北、扬子保持一定距离。1.0~0.8Ga Rodinia超大陆聚合过程中祁连微陆块与冈瓦纳北缘拼贴在一起,而距华北较远。随着Rodinia超大陆裂解,中祁连微陆块远离冈瓦纳,逐渐向华北靠近,500~400Ma原特提斯洋闭合,华北、阿拉善与中祁连拼合,并整体拼合到冈瓦纳大陆北缘。
关键词: 原特提斯     早古生代     构造变形     微陆块     构造演化    
Proto-Tethys Ocean in East Asia (Ⅴ): Attribute of contientnal margin and microcontinental assembly in the west segment of the northern Proto-Tethys Tectonic Domain
LI SanZhong1,2, LI Tao1,2, ZHAO ShuJuan1,2, LI XiYao1,2, LIU Xin1,2, GUO LingLi1,2, YU ShengYao1,2, LI ShaoJun1,2    
1. MOE Key Laboratory of Submarine Geosciences and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
Abstract: The branch of the Proto-Tethys Ocean in the Qilian Orogen is known as the Paleo-Qilian Ocean during the Early Paleozoic. Many continents/microcontinents, such as the Central Qilian, the Alxa, the Qaidam, the North China, the Yangtze and the Tarim blocks, located in and near the Paleo-Qilian Ocean, generating a complex archipelagic ocean. The Qilian area experienced a complex subduction-collision process in the Early Paleozoic. This paper discusses the tectonic attribute of the units in the Qilian Orogen. It is suggested that the southern Alxa Microcontinent was a passive continental margin, while the northern Central Qilian was an active continental margin during the Early Paleozoic. The Longshoushan tectonic unit, resulted from the subduction-collision process, is an accretionary wedge parallel to the southern Alxa. The North Qilian tectonic unit is a subduction accretionary complex composed mostly of high-pressure metamorphic rock, ophiolite, arc magmatite and some oceanic fragments. It records the evolution of the Paleo-Qilian Ocean from continental rifting, oceanic crustal growth, subduction and collision. The subduction zone of the Paleo-Qilian Ocean retreated northward due to the northward subduction of the Qaidam Microcontinent at about 495Ma, forming the Dachadaban Arc. There was a subduction event occurring in the fore-arc area, forming the SSZ-type North Qilian ophiolite belts in the Dachadaban, the Baiquanmen and the Jiugequan, and a second magmatic event in the Qingshuigou, the Niuxinshan and the Yeniutan. The Paleo-Qilian Ocean began to close at 460Ma due to the collision between the Alxa and the Central Qilian microcontinents. The collisional process did not occur at the same time. The "scissor-like" collision model from west to east is more reasonable, accompanied by "S" type collision-related magmatite with the age younging from west to east. The closure of the Paleo-Qilian Ocean terminated at 440Ma. Then the intracontinental orogenic stage started. Under an extensional environment after the collision, the magmatite formed in the Jinfosi, Niuxinshan, Laohushan and other places after 440Ma. The retrograde metamorphism of HP eclogites and HP-LT blueschists occured as a result of the exhumation of the subducted plate during 422~406Ma, forming the second episode of deformation characterized by asymmetric tight fold. According to the analysis of the detrital zircon age spectra of different continents or microcontinents, it could be concluded that the basement of the Central Qilian Microcontinent is different form that of the North China Block, but may be associated with that of the Yangtze Block. The Central Qilian Microcontinent was far away from the North China and the Yangtze blocks as an independent microcontinent before the assembly of the Supercontinent Rodinia. Then the Central Qilian Microcontinent assembled to the Yangtze Block due to the formation of the Supercontinent Rodinia during 1.0~0.8Ga, still far away from the North China Block. After the breakup of the Supercontinent Rodinia, the Central Qilian Microcontinent drifted away from the Gondwana, and gradually approached the North China Block. The Proto-Tethys Ocean closed during 500~400Ma, and the Alxa, the North China and the Central Qilian blocks assembled again to the northern margin of the Gondwana.
Key words: Proto-Tethys Ocean     Early Paleozoic     Deformation     Microcontinent     Tectonic evolution    
1 引言

前人认为早古生代原特提斯洋内有众多陆块、微陆块弥散分布,主要有:扬子、华夏、华北、印支等陆块和阿拉善、北秦岭、中祁连、柴达木等大量微陆块,并据此认为原特提斯洋为一内部复杂的大洋。因此,洋内陆块和微陆块亲缘性的甄别对于分析洋内复杂的洋-陆格局有至关重要的作用。研究区在早古生代主要微陆块为中祁连地块和阿拉善地块,这些微陆块与周缘华北、扬子、塔里木、柴达木等陆块、微陆块之间是相互独立的还是具有一定亲缘关系,目前还存在很大的争论。Rodinia超大陆裂解以来的阿拉善和华北之间亲缘关系一直是争论的焦点,有学者认为阿拉善具备和华北同样的基底,与华北是统一的块体(张宏飞等, 2006);也有学者认为阿拉善和塔里木亲扬子(葛肖虹和刘俊来, 1999, 2000)。近年来,有研究认为阿拉善地块与华北陆块在2.0~1.9Ga可能为统一块体(Zhao et al., 2005),而通过碎屑锆石年龄谱对比发现,阿拉善新元古代和古生代构造事件与华北存在明显的不同,认为两者从新元古代可能有一定距离,可能拼合为一体的时间更晚(黄宝春等, 2000; 张进等, 2012)。

对于中祁连微陆块的亲缘性也存在较大争论,争论在于:中祁连究竟是一个独立的块体(向鼎璞, 1982, 1985),或是具有亲华北的属性(夏林圻等, 1996),还是亲扬子的属性(张宏飞等, 2006; 段吉业和葛肖虹, 2005; 万渝生等, 2003; 辛后田等, 2006)。此外对阿拉善和中祁连之间的关系也有不同观点,有学者认为(中)祁连地块与阿拉善地块可能是统一的块体(葛肖虹和刘俊来, 2000; 段吉业和葛肖虹, 2005),或是为具有不同属性的块体(万渝生等, 2003)。

早古生代原特提斯洋内陆块、微陆块之间相互的亲缘关系,是确定陆块和微陆块相对位置的前提,是研究原特提斯洋-陆格局的关键。对祁连及邻区的中祁连和阿拉善等微陆块亲缘性的判断显得尤为重要。

祁连造山带具有复杂的俯冲极性和强烈的构造变形,尤其是多期次多幕次变形相互叠加,似乎原特提斯洋北部是一个洋-陆间杂、环境多变的地带(杜远生等, 2007),增加了辨识的难度;带内产出的高压变质岩石变质程度有高有低,不利于约束俯冲折返时间;蛇绿岩-蛇绿混杂岩和岩浆岩错综复杂,都给研究工作带来不小的难度,也正是这些原因使得众多地质学者在理解早古生代祁连地区的拼合时序、构造演化时多种多样。

总之,研究区目前存在很多重要的问题尚未解决。主要存在问题有:原特提斯洋北部边界不明;原特提斯洋壳俯冲方向、拼合时序和过程存在争议;洋内微陆块亲缘性未明确;构造演化未达成共识等。

2 区域地质背景

中国中央造山带秦岭-祁连-昆仑造山带中段的祁连造山带,呈北西-南东向延伸,东西长约1200km,南北宽约100~300km。北以固原-龙首山断裂为界与华北陆块、阿拉善微陆块相邻,西以阿尔金大型左行走滑断裂为界,与塔里木陆块相连,南被柴北缘北部边缘断裂分割,与柴达木微陆块、扬子陆块相接(图 1)。

图 1 祁连造山带构造单元划分简图 Fig. 1 Simplified tectonic map of the Qilian Orogen

研究区包括四个构造单元,由北往南为龙首山增生楔、北祁连构造带、中祁连构造带和南祁连构造带,分别以冷龙岭断裂、黑河断裂、拉脊山断裂分割(图 1)。区内发育玉石沟、九个泉两条蛇绿岩-蛇绿混杂岩带(宋述光, 1997; Song et al., 2013; 夏小洪和宋述光, 2010; 夏小洪等, 2012; Xia et al., 2012)、清水沟-百经寺一系列高级蓝片岩和低级蓝片岩带夹低温榴辉岩的高压变质岩带(张建新和许志琴, 1995; 张建新等, 1997; Wu et al., 1993; 宋述光等, 2004; Zhang et al., 2012)及大量岛弧岩浆岩带(张建新和许志琴, 1995; 吴才来等, 2006, 2010; 钱青等, 1998; 王金荣, 2006; 何世平等, 2006),代表了古祁连洋壳俯冲不同阶段的产物,为典型的加里东期板块俯冲缝合带(Xiao et al., 2009; 宋述光, 1997; Song et al., 2013)。

2.1 龙首山增生楔

龙首山增生楔位于祁连造山带北缘(图 1),以固原-龙首山断裂与阿拉善地块相邻。断裂北部为阿拉善下元古界龙首山岩群的石榴二云石英片岩、大理岩和中、上元古界墩子沟群的大理岩、石英岩、绿泥绢云片岩(左国朝等, 1999),为阿拉善地块的前寒武纪基底,属阿拉善地块的南部大陆边缘(宋述光, 1997; 冯益民和何世平, 1996)。断裂以南为寒武系变质的浅海相砂岩、灰岩、硅质岩夹少量火山岩,奥陶系和志留系碳酸盐岩和夹少量火山岩的碎屑岩,下志留统泥质岩等类复理石建造和泥盆系的磨拉石建造(周立发, 1992),有人认为是华北板块南部边缘陆壳拉张发生裂陷而形成的陆源碎屑沉积(左国朝和吴汉泉, 1997),但根据宫江华等(2013)对龙首山寒武系大黄山群碎屑锆石U-Pb年龄分析,认为其寒武系陆缘碎屑沉积来自祁连地块,形成类复理石建造。北祁连和中祁连碎屑锆石U-Pb年龄对比,也发现古元古代和中元古代的碎屑锆石不是来自阿拉善地块,而主要来自祁连地块(董国安等, 2007; 李怀坤等, 2007; 徐旺春等, 2007; 陆松年等, 2009; 何世平等, 2011),可能是古祁连洋壳向南俯冲于中祁连微陆块之下,导致中祁连地块抬升剥蚀并于浅部铲刮下来的产物。另外,据野外地质露头观测,带内早古生代断层多为由南向北逆冲,支持前人古祁连洋向南俯冲观点(宋述光, 1997; 王荃和刘雪亚, 1976; 刘传周等, 2005; 周德进等, 1997; 张旗等, 1997; Sobel and Arnaud, 1999; 汤中立和白云来, 1999, 2001; 尹安, 2001; Gehrels et al., 2003),本文认为位于北祁连构造带以北、阿拉善地块以南的龙首山构造带符合增生楔体特征,可能为早古生代古板块俯冲到中祁连主动大陆边缘形成的增生楔构造。

2.2 北祁连构造带

北祁连构造带位于中祁连地块与龙首山构造带之间(图 1),是加里东期古祁连洋壳俯冲带,带内发育有典型的俯冲杂岩(宋述光, 1997),记录保存了较为完整的俯冲-增生过程。然而对于北祁连的大地构造属性,目前有三种认识:曾是古特提斯洋的一部分(王荃和刘雪亚, 1976);曾是华北板块南缘的一个有限洋盆,陆缘裂谷扩张并大洋化,再拼合而成的造山带(夏林圻等, 1996, 1998; 冯益民和何世平, 1996);属古亚洲洋的一部分(张旗等, 1997)。

Xiao et al. (2009)将其由北到南划分为:奥陶纪-中志留世白泉门弧前蛇绿岩和蓝片岩增生杂岩,奥陶纪大岔大坂-扁马沟岛弧和弧间盆地,奥陶纪-志留纪清水沟蛇绿岩、浊积岩、榴辉岩和蓝片岩增生杂岩,玉石沟蛇绿岩,晚奥陶世-志留纪-早泥盆世弧前盆地。

北祁连构造带内出露高级和低级蓝片岩两条高压变质岩带,即南部出露在清水沟一带的低温榴辉岩伴生高级绿帘石蓝片岩带和北部九个泉一带出露的低级硬柱石蓝片岩带(Song et al., 2013; 林宜慧等, 2010; Wu et al., 1993)。544Ma的蓝片岩变质年龄(左国朝和吴汉泉, 1997)、477Ma和468Ma的榴辉岩锆石U-Pb年龄可能代表了古祁连洋壳开始俯冲的时间(宋述光等, 2004; Zhang et al., 2007),415~413Ma蓝片岩变质年龄可能代表了俯冲板块折返的时间(林宜慧等, 2010)。

带内保存发育完整的蛇绿岩套和蛇绿混杂岩,Song et al. (2013)划分为南带熬油沟-玉石沟蛇绿岩和北带九个泉-大岔大坂蛇绿岩,分列在高压变质岩两侧。南带熬油沟504Ma的辉长岩、501Ma的基性岩和玉石沟522~495Ma基性岩代表了早-中寒武世的古祁连洋壳(夏林圻等, 1996; 夏小洪等, 2012; 相振群等, 2007)。北带蛇绿岩具有俯冲型(SSZ型)蛇绿岩特征,490Ma辉长岩和483Ma枕状熔岩年龄可能代表了古祁连俯冲洋壳时代(夏小洪和宋述光, 2010; 孟繁聪等, 2010)。

另外,北祁连构造带内发育多种不同类型的岩浆岩,赖绍聪等(1997)将其分为三个单元:洋中脊、岛弧和钙碱性-陆缘弧岩浆岩。吴才来等(2010)认为柯柯里、野马咀、民乐窑沟岩体形成时代分别为512~501Ma、508Ma、463Ma,其代表了俯冲开始时代随俯冲深度增加的岩浆产物及板块碰撞产物。Song et al. (2013)按照俯冲碰撞阶段将岩浆岩体分为:520~460Ma的火山弧花岗岩,440~420Ma的同碰撞花岗岩和400Ma之后的碰撞后花岗岩。

尽管众多地质学者对北祁连构造带从多方面作了详尽的研究,但是北祁连构造带在早古生代的的归属和构造演化还依然存在争论,北祁连构造带作为一条加里东重要的缝合带,其研究对认识原特提斯洋北部边界演化有至关重要的意义。

2.3 中祁连微陆块

中祁连微陆块位于北祁连构造带和南祁连构造带之间,为祁连-柴达木微陆块的一部分(左国朝等, 1999),也称为中央祁连隆起(任纪舜等, 1980)。宋述光等(1997)认为其基底与柴达木、塔里木和阿拉善陆块/微陆块相似,而左国朝等(1999)郭进京等(2000)认为其是中元古代早期从华北陆块裂离出来的小板块北缘。中祁连东段主要为新元古界马衔山岩群,为一套深变质岩系,包括片麻岩、斜长角闪岩、片岩、混合岩及大理岩(何世平等, 2008);往西为古元古界湟源群,为一套变质的陆源碎屑岩夹碳酸盐岩、火山岩的陆壳岩石(郭进京等, 2000);最西部出露古元古界北大河岩群,为一套变质变形比较强烈的变质岩系(彭岩等, 2014)。这些变质岩系均显示了早古生代的强烈构造事件。中祁连微陆块内分布有大量早古生代岩浆岩,其中马衔山岩群发育大量早古生代基性岩墙,表明了古祁连洋俯冲、碰撞造山过程(何世平等, 2008);湟源群变质中基性火山岩具有岛弧和活动大陆边缘特征(郭进京等, 1999),也代表了这次俯冲事件;西部野马南山乌尔格拉特埃达克岩也被认为是早古生代古祁连洋向中祁连微陆块俯冲的产物(黄增保等, 2014)。此外,众多学者对早古生代花岗岩体年代测定也证明了古祁连洋俯冲事件(苏建平等, 2004a, b; 贾群子等, 2007; 陈隽璐等, 2007, 2008; 雍拥等, 2008; 李建锋等, 2010; 齐瑞荣, 2012),中祁连微陆块北缘具有活动大陆边缘特性。

总之,中祁连微陆块北缘早古生代为俯冲环境,具有活动大陆边缘特性,可能是一个具元古界基底、早古生代岩浆弧、增生楔的复合块体(Xiao et al., 2009)。

2.4 南祁连构造带

南祁连构造带位于柴北缘高压-超高压变质岩带和中祁连地块之间,主要为寒武纪-奥陶纪海相沉积物、洋壳碎片、溢流玄武岩、火山碎屑岩及深海-半深海沉积,中奥陶世弧火山岩、枕状玄武岩、火山碎屑岩和安山岩等,被泥盆系角度不整合覆盖。志留系复理石沉积建造发育紧闭褶皱,被加里东晚期花岗岩侵入。南祁连被定义为弧-增生体系(Xiao et al., 2009; 潘桂棠等, 2002)。肖序常等(1988)将南祁连作为北祁连俯冲带的弧后盆地。

3 岩浆岩、蛇绿混杂岩的分布3.1 北祁连蛇绿岩分布

在北祁连构造带及其周边,自南东向北西分布有贯穿整个地区、保存较好、产出环境不同的蛇绿岩-蛇绿混杂岩,前人对于本地区蛇绿岩-蛇绿混杂岩已经进行了详细的地球化学及地质年代学研究(肖序常等, 1978; 夏林圻等, 1991, 1995, 1996, 1998, 2001, 2003; 王荃和刘雪亚, 1976; 张旗等, 1997; 冯益民和何世平, 1995; 陈雨等, 1995; 钱青等, 1999, 2001a, b; 韩松等, 2000; 侯青叶等, 2005; 曾建元等, 2007; 宋忠宝等, 2005a, b, 2007)。

王荃和刘雪亚(1976)将北祁连蛇绿岩分为三个亚带:河西走廊蛇绿岩带、北祁连北缘蛇绿岩和北祁连南坡蛇绿岩,形成时期依次为早奥陶世、中寒武世和新元古代;肖序常等(1978)也将北祁连蛇绿岩分为奥陶纪、寒武纪和震旦纪三期;其后众多地质学者分别对北祁连蛇绿岩地区进行了地球化学属性和年代学考证(夏林圻等, 1991, 1995, 1996, 1998, 2001, 2003; 张旗等, 1997; 冯益民和何世平, 1995; 陈雨等, 1995; 钱青等, 1999, 2001a, b; 韩松等, 2000; 侯青叶等, 2005; 曾建元等, 2007)。现今绝大部分学者认为北祁连蛇绿岩主要形成在两个时期:奥陶纪和寒武纪。最近,Song et al. (2013)较为系统的将北祁连蛇绿岩-蛇绿混杂岩总结分为南、北两个带,南带分布在北祁连南缘断裂-黑河断裂附近,而北带则分布在北祁连北缘断裂-冷龙岭断裂附近(图 2),分别代表了MORB型和SSZ型蛇绿岩。空间上,南带从熬油沟向南东延伸,经玉石沟,东草河,到永登县,北带从玉门昌马,经九个泉,大岔大坂,到南东的乌鞘岭和老虎山。

图 2 北祁连各蛇绿岩单元时空分布(参考文献见表 1) Fig. 2 Temperal-spatial distribution of ophiolite units in the North Qilian Orogen (references seen in Table 1)

表 1 北祁连蛇绿岩年龄统计 Table 1 Statistics of ophiolite ages of the North Qilian Orogen

① 青海地质调查院.2005.1:25万门源幅地质调查报告

基于前人对北祁连蛇绿岩的地球化学属性和地质年代学研究,本文系统统计了各蛇绿岩-蛇绿混杂岩单元形成年代的定年数据和构造属性(表 1)。

(1) 南带蛇绿岩形成时间及构造属性

北祁连北西的熬油沟蛇绿岩中辉绿岩曾测得1777±28Ma、1840±2Ma、1784±2Ma等锆石U-Pb年龄(毛景文等, 2000; 张招崇等, 2001),被认为是中国最古老的蛇绿岩,但是相振群等(2007)则认为其辉绿岩极容易从围岩中捕获锆石,分析表明可能是围岩中捕获锆石的年龄。辉长岩经SHRIMP锆石U-Pb测年为503.7±6.4Ma(相振群等, 2007)和501±4Ma(Xia et al., 2003; 夏小洪等, 2012),这才是熬油沟蛇绿岩形成的真实年龄。可能形成环境为大陆裂谷后的初始洋壳(冯益民和何世平, 1995)或洋盆初始扩张时的扩张脊(夏小洪等, 2012; 相振群等, 2007; 张招崇等, 1998, 1999, 2001)。

玉石沟蛇绿岩以其完整的岩石组合一直是本区研究的热点,但对于玉石沟蛇绿岩形成时代存在较大争议,史仁灯等(2004)侯青叶等(2005)据辉长岩锆石U-Pb年龄550±17Ma认为玉石沟蛇绿岩形成在晚震旦世,但是夏林圻等(1996, 1998)、剡晓旭(2014)获得蛇绿岩辉长岩和基性熔岩年龄集中在早寒武世,Song et al. (2013)对辉长岩采用SHRIMP锆石U-Pb定年,同时测得548±9Ma、529±9Ma两组年龄(表 1),可见玉石沟蛇绿岩的形成至少经历了30Myr。玉石沟蛇绿岩单元内基性熔岩形成环境一般为洋中脊-洋岛形成阶段(夏林圻等, 1998; 孟繁聪等, 2010)或者成熟的弧后盆地扩张阶段(侯青叶等, 2005)。邻近的穿刺沟蛇绿岩与玉石沟蛇绿岩形成环境基本一致(夏林圻等, 1998)。

东草河蛇绿岩及周围扎麻什东沟蛇绿岩SHRIMP锆石U-Pb年龄和LA-ICP-MS单颗粒锆石U-Pb年龄分别为497±7Ma(曾建元等, 2007)和499.3±6.2Ma(武鹏等, 2012),年龄基本一致,都形成在晚寒武世。据同位素地球化学分析,它们具有N-MORB洋中脊特征,表明其形成于洋中脊或成熟的弧后盆地形成阶段(Song et al., 2013; 曾建元等, 2007; 武鹏等, 2012)。与玉石沟、穿刺沟蛇绿岩等一起构成了MORB型蛇绿岩带(武鹏等, 2012)。

北祁连南东的水洞峡蛇绿岩中玄武岩Sm-Nd年龄为492.9±22.6Ma(表 1),晚于玉石沟、东草河蛇绿岩年龄(图 2)。其玄武岩地球化学分析表明,其与板内玄武岩具有明显亲缘关系,而与洋中脊、岛弧和洋岛玄武岩有较大差异,可能形成于板内拉张-大陆裂谷阶段,可能代表了古祁连洋早期快速拉张的产物(黄增保等, 2001)。

因此,南带蛇绿岩从熬油沟蛇绿岩到水洞峡蛇绿岩,形成时间上北西早,南东晚,且自西北向南东基本上呈逐渐变新的趋势。通过对南带各蛇绿岩单元的地球化学分析,各单元均有MORB型特征,共同的形成环境基本可确认为洋中脊扩张环境,表明洋壳至少在550Ma就已经存在,且洋中脊可能北西段扩张早,南东段扩张晚,有“剪刀式”张裂的特点,古祁连洋壳扩张时间至少存在为550~492Ma甚至更早。

(2) 北带蛇绿岩形成时间及构造属性

北祁连构造带北缘冷龙岭断裂附近也分布着一条蛇绿岩带,西北部为昌马蛇绿混杂岩(图 2),黄增保等(2001)在庙玉沟蛇绿岩上覆超基性岩片中获得Sm-Nd等时线年龄为480±9Ma,并分析其产出特征及地球化学特征,认为所处环境为低扩张速率、高沉积速率的小型初始洋盆扩张脊环境(王希斌和郝梓国, 1994)。

昌马蛇绿岩南东的九个泉蛇绿岩中,辉长岩SHRIMP锆石U-Pb年龄为490±5.1Ma,代表了九个泉蛇绿岩的形成年龄(夏小洪和宋述光, 2010)。据地球化学分析,夏小洪和宋述光(2010)认为九个泉蛇绿岩可能是北祁连弧后盆地洋中脊扩张的产物;Song et al. (2013)认为该蛇绿岩可能形成在俯冲带或弧后盆地环境。结合本区高温低压变质岩石及大地构造综合分析,认为其极可能为SSZ型蛇绿岩。

白泉门蛇绿混杂岩位于九个泉蛇绿岩和大岔大坂蛇绿岩之间,受强烈的构造剪切作用,多种岩块混杂,可能为板块俯冲作用所形成的岛弧增生杂岩(孙晓猛等, 1997)。辉石玄武岩Sm-Nd等时线年龄为468.8±4.63Ma(夏林圻等, 1996)。

大岔大坂蛇绿混杂岩各单元受构造运动影响,将不同时代、不同属性岩石混杂在一起,因此,对于蛇绿岩的形成时代较难确定(Coleman, 1977; Savelieva et al., 2006)。通过前人测年数据,辉长岩SHRIMP锆石年龄为505±8Ma(孟繁聪等, 2010)、486±7Ma(Xia et al., 2012),玻安岩SHRIMP锆石年龄为484Ma(夏小洪和宋述光, 2009)及岛弧型枕状熔岩年龄483Ma(孟繁聪等, 2010),玄武岩Sm-Nd等时线年龄465±22Ma、469±5Ma(Xia et al., 2012),认为玻安岩地球化学性质表明484Ma是洋壳发生俯冲消亡的时代(孟繁聪等, 2010),这也说明此地蛇绿岩至少存在于505~484Ma,而后发生岛弧岩浆作用。至于Xia et al. (2003)测得玄武岩465±22Ma、469±5Ma的Sm-Nd等时线年龄,可能为之后构造运动将年轻岛弧推覆到蛇绿岩中,并与蛇绿岩混杂在一起,难于辨别。

扁都口蛇绿岩位于北西部大岔大坂蛇绿岩和南东部乌鞘岭、老虎山蛇绿岩之间(图 3),其辉长岩LA-ICP-MS锆石U-Pb年龄为479±2Ma(Song et al., 2013),代表该蛇绿岩形成时代,内部玄武岩地球化学性质为火山弧型玄武岩(Song et al., 2013),火山熔岩中角斑岩的Sm-Nd等时线年龄为464.59±21.89Ma(夏林圻等, 1996)。

图 3 北祁连岩浆岩时空分布(参考文献见表 2) Fig. 3 Temperal-spatial distribution of the plutons in the North Qilian Orogen (references seen in Table 2)

表 2 北祁连岩浆岩年龄统计 Table 2 Statistics of magmatic ages of the North Qilian Orogen

北带蛇绿岩最南东为乌鞘岭和老虎山蛇绿岩(图 2)。乌鞘岭蛇绿岩可能形成于弧后盆地环境,属SSZ型蛇绿岩(汪双双等, 2012),其内玄武岩地球化学特征兼有岛弧和MORB型玄武岩性质(汪双双等, 2009)。老虎山蛇绿岩中辉长岩锆石U-Pb年龄为448.5±4Ma(董云鹏等, 2007);细碧玢岩Sm-Nd等时线年龄为453.6±4.4Ma(Xia et al., 2003)。其中枕状熔岩和块状辉绿岩大多是亚碱性拉斑玄武岩(Song et al., 2013),形成环境可能为岛弧环境。

北带蛇绿岩从昌马蛇绿岩到老虎山蛇绿岩,相比南带形成时间普遍较晚,且多处如九个泉、大岔大坂、老虎山等蛇绿岩单元受到复杂构造运动的影响,与岛弧性质岩石混杂。其蛇绿岩类型多为SSZ俯冲型蛇绿岩,说明在北祁连北缘冷龙岭断裂附近存在一次俯冲事件,发生时间可能在505~448Ma。但若考虑544Ma的蓝片岩变质年龄(左国朝和吴汉泉, 1997),可能为北祁连北带洋壳也可能为早于南带洋壳。仅从各蛇绿岩单元形成时间关系上来看,基本为北西早,南东晚,可能表明古祁连洋在北西部闭合早,南东部闭合晚,呈西早东晚的“剪刀式”闭合方式。

3.2 北祁连岩浆岩时空分布特征

北祁连构造带内部及其周边有广泛的岩浆岩分布,目前已经有众多学者对北祁连岩浆岩做过详细的岩石和地球化学研究,并测定各单元岩体的形成时代。北祁连北缘山前断裂附近金佛寺花岗岩体属构造后侵入体,岩浆来源壳源,形成时代为420Ma左右(张德全等, 1995; 刘晓煌等, 2007; 吴才来等, 2010)。清水沟火山弧形成可能时代为495~466Ma(青海省地质矿产局, 1989; 张建新等, 1997)。柯柯里岩体、野马咀、民乐窑沟形成时代分别为512~501Ma、508Ma、463Ma(吴才来等, 2010),柯柯里石英闪长岩具有埃达克岩类似的地球化学特征,野马咀花岗岩与民乐窑沟花岗闪长岩类似,都具有活动大陆边缘花岗岩特征。

北祁连岩浆岩空间上具有分带性。夏林圻等(2001)根据地理位置和构造部位,把北祁连花岗岩划分为三个带,北带为青石峡-照壁山-黑下老-金佛寺-马良,中带为鹰嘴山-石油河垴-柴达诺山-祁连县东,南带为野牛滩-刃岗沟-北大河-牛心山。毛景文等(1999a, b, 2000)根据岩浆岩形成的俯冲阶段所处地球动力学环境,将北祁连西段花岗质岩体也分为三条带:南部边缘板块俯冲期的花岗闪长岩带,北部边缘碰撞期的黑云母花岗岩带和南部造山后伸展时期的碱性岩带。

本文根据岩浆岩形成时代、构造属性及地球动力学环境(表 2),将其大体划分为四条带:第一,古祁连洋南缘俯冲型中酸性岩浆岩带:野马咀-柯柯里-清水沟、白柳沟;第二,俯冲后退-岛弧型岩浆岩带:野牛滩-清水沟-石灰沟-牛心山-冷龙岭-老虎山-白银矿田;第三,弧-陆、陆-陆碰撞型岩浆岩带:民乐-宁缠河-什川;第四,碰撞后岩浆岩带:昌马-金佛寺-老虎山。由于各带距离较近,部分地区出现两条或几条带交切的现象,部分岩体中可能产出不同时代、不同岩性、不同构造环境的岩浆岩,如清水沟岩体,牛心山岩体等。其中第二条带为大范围岩浆带,覆盖整个北祁连构造带,还可二分为俯冲型岩浆岩带和岛弧型岩浆岩带。

(1) 洋壳南缘俯冲型中酸性岩浆岩带

主要分布在北祁连构造带南缘断裂——黑河断裂附近(图 3),包括活动大陆边缘花岗岩特征的野马咀花岗岩体、地球化学特征与埃达克岩类似的柯柯里石英闪长岩体、柯柯里斜长花岗岩和大陆裂谷环境的清水沟-白柳沟矿田流纹岩。该岩浆岩带以中酸性岩浆为主,形成时代为512~501Ma(吴才来等, 2010; 余吉远等, 2010a)。

在新元古代晚期-早古生代早期,古祁连洋南缘首先发生向南的俯冲,古祁连洋壳俯冲于中祁连微陆块活动大陆边缘之下,首先形成了时代为512Ma的柯柯里斜长花岗岩(吴才来等, 2010)和时代为508Ma的野马咀花岗岩体(吴才来等, 2010),随着俯冲的继续,形成了祁连县清水沟-白柳沟矿田503Ma的流纹岩(余吉远等, 2010a)和501Ma的柯柯里石英闪长岩(吴才来等, 2010)(图 3)。这期岩浆活动代表最早的古祁连洋壳的俯冲活动,并伴随熬油沟-玉石沟蛇绿岩南带的形成。

(2) 俯冲后退-岛弧型岩浆岩带

该岩浆岩带分布广泛(图 3),包含了与俯冲环境和岛弧环境相关的各类岩体,主要包括S型和I型过渡花岗岩、形成于俯冲晚期-碰撞前期的野牛滩花岗闪长岩-黑云母花岗岩(毛景文等, 2000)、与埃达克岩相类似的牛心山石英闪长岩、清水沟酸性火山凝灰熔岩、岛弧火山岩性质的冷龙岭安山岩(余吉远, 2010b)、岛弧环境的老虎山井子川石英闪长岩、白银矿区中酸性-基性岩浆岩。此岩浆岩带酸性-中性-基性岩浆岩均有产出,形成时代为495~440Ma(张建新等, 1997; 吴才来等, 2006; 毛景文等, 2000; 余吉远等, 2010b)。

前人认为,随着南部柴北缘和柴达木地块的向北俯冲影响,古祁连洋壳俯冲受阻,俯冲带向北后撤,形成火山弧,形成了495~481Ma清水沟酸性火山岩(张建新等, 1997)、486Ma的石灰沟基性火山岩、476Ma牛心山的中酸性石英闪长岩(吴才来等, 2006)、464Ma的老虎山井子川石英闪长岩(吴才来等, 2010)、460Ma的野牛滩花岗闪长岩和冷龙岭中基性岩(毛景文等, 2000; 余吉远等, 2010b)、475~440Ma的白银矿田中酸性-基性岩浆(李向民等, 2009; 王焰等, 2001; 尹观等, 1998)。但Li et al.(2017a, b)提出中央造山带东、西部分别存在印支期和加里东期的弯山构造以来,也有可能古祁连洋壳俯冲向北后撤与同俯冲的弯山构造形成过程密切相关。

图 3显示与俯冲相关的岩浆岩,包括中祁连南缘俯冲早期岩浆岩和俯冲后退形成的岛弧型岩浆岩,总体上北西段成岩时代较早、南东段时代较晚,这也表明北西段俯冲时间要早于南东段,俯冲具有自西向东斜向“剪刀式”的特点。

(3) 弧-陆、陆-陆碰撞型岩浆岩带

弧-陆、陆-陆碰撞带主要分布在肃南-民乐-宁缠河-什川一带(图 3),以同碰撞环境的S型花岗岩为特征,形成时代为466~444Ma。该带主要包括了具有活动性大陆边缘特征的民乐窑沟花岗闪长岩(吴才来等, 2006),同碰撞环境的民乐下湾村和海潮坝英云闪长岩(陈化奇, 2007),清阳河英云闪长岩,下池沟、上夹石同碰撞花岗岩钾长花岗岩-二长花岗岩(陈隽璐等, 2007),同碰撞型钾质钙碱性花岗岩特征的什川二长花岗岩(陈隽璐等, 2008)。

随着俯冲向北后撤,古祁连洋壳持续向南俯冲,466Ma开始,岛弧与中祁连微陆块、中祁连与阿拉善相继发生弧-陆、陆-陆碰撞,古祁连洋开始闭合,形成了466~454Ma的民乐岩体(吴才来等, 2006; 许荣科等, 2001)、463~447Ma的清阳河和下池沟、上夹石花岗岩(陈化奇, 2007)、444Ma的什川二长花岗岩(陈隽璐等, 2008)和黑沟梁子二长花岗岩(苏建平等, 2004b)等。约444Ma古祁连洋最终闭合。

(4) 碰撞后岩浆岩带

碰撞后岩浆岩带主要沿北祁连构造带北缘断裂-冷龙岭断裂一线,沿昌马-金佛寺-老虎山分布(图 3),自西向东主要包括昌马附近岩浆岩、牛心山石英闪长岩、金佛寺花岗岩体、老虎山闪长岩等,形成时代为435~404Ma,到383~370Ma有可能发生小范围的岩浆活动,以金佛寺岩体为代表。张德全等(1995)吴才来等(2004)认为金佛寺侵入体构造环境为碰撞后环境。钱青等(1998)认为老虎山闪长岩的成因可能与板块碰撞之后岩石圈的拆沉作用有关。中祁连微陆块和阿拉善地块碰撞后,435~404Ma,造山带根部岩石圈发生拆沉,地幔上涌,造山带发生拉张,形成了碰撞后板内花岗岩类(吴才来等, 2010; 钱青等, 1998; Turner et al., 1992; Tseng et al., 2009)。

4 微陆块的亲缘性

近年来,国内外众多地质学者对北祁连构造带及周缘陆块、微陆块进行了碎屑锆石U-Pb测年工作,得到了大量碎屑锆石数据(图 4)。本文详细收集了北祁连构造带、中祁连微陆块、龙首山增生楔及周缘阿拉善微陆块、华北陆块、扬子陆块,塔里木陆块等碎屑锆石数据,采用发表年限较新、可靠的锆石U-Pb数据,进行陆块、微陆块亲缘性对比(图 4)。

图 4 陆块、微陆块碎屑锆石年龄谱对比 阿拉善微陆块数据来自张进等(2012)统计646个锆石数据和Yuan et al. (2015)的568个锆石数据.华北陆块数据来自Xu et al. (2010a)统计325个锆石数据和Shi et al. (2013)统计685个锆石数据及Xu et al. (2010b)统计1308个锆石数据.扬子陆块数据来自He et al. (2014)统计1185个锆石数据、Xu et al. (2010a)统计475个锆石数据及Shi et al. (2013)统计2083个北扬子锆石数据和西扬子2400个锆石数据.塔里木陆块数据来自Ma et al. (2012)统计353个锆石数据和Xu et al. (2010a)统计134个锆石数据.龙首山增生楔数据来自Cai et al. (2015)统计1278个锆石数据和Xu et al. (2010a)统计95个锆石数据.北祁连造山带数据来自Xu et al. (2010b)的325个锆石数据和Zhang et al. (2012)的325个锆石数据。中祁连微陆块数据来自Yang et al. (2009)统计243个锆石数据和Xu et al. (2010a)统计234个锆石数据. HN196、HN210为项目组未发表数据 Fig. 4 Comparison of detrital zircon spectra among continents and microcontinents

中祁连前寒武纪基底的碎屑锆石年龄谱(图 4f),与阿拉善(图 4c)、华北(图 4g)、扬子(图 4h)、塔里木的碎屑锆石年龄谱(图 4i)对比显示,2.5~2.4Ga为华北和阿拉善的重要构造事件时期-吕梁运动,可能空间上具有相连性,但也可能阿拉善与此时的Kenorland超大陆的其它块体相关,而与华北无关;中祁连、塔里木和扬子与其表现出一定的差异性,此时中祁连微陆块可能与华北、阿拉善不靠近。而在2.0~1.8Ga各陆块、微陆块则表现出共同的沉积特征,可能说明均参与了Columbia超大陆的集结(Yu et al., 2017)。1.0~0.8Ga Rodinia超大陆形成时期,中祁连与扬子、阿拉善、塔里木经历了相似的构造事件,具有相似的亲缘性,而华北则没有此时期的构造事件,可能华北与它们相隔较远。进入早古生代中奥陶世,华北与阿拉善表现出一定的亲缘性,说明此时期华北和阿拉善在逐渐靠近(许淑梅等, 2016)。由此可见,中祁连微陆块基底形成可能与华北无关,自2.5Ga到早古生代,中祁连为相对独立于扬子、华北之外的微陆块,但可能随不同超大陆聚散而与不同陆块曾经亲近。

北祁连样品HN210(另文发表)碎屑锆石年龄谱(图 4d)和前人的北祁连年龄谱(图 4e)与中祁连微陆块基底的碎屑锆石年龄谱(图 4f)、阿拉善微陆块的碎屑锆石年龄谱(图 4c)相比,在0.5Ga之前基本具有相同的峰值年龄,说明北祁连的沉积物源基本来自于中祁连微陆块和阿拉善微陆块。图 4d图 4e显示,0.4~0.5Ga的峰值可能表明,此阶段为北祁连主要沉积期,此时期发生了重大的构造事件,说明在0.5Ga之后原特提斯洋俯冲消减阶段,北祁连与中祁连和阿拉善逐渐靠近。

龙首山样品HN196(另文发表)碎屑锆石年龄谱(图 4a)和前人的龙首山年龄谱(图 4b)显示,样品HN196缺少0.5~0.4Ga的峰值年龄,是因为碎屑岩样品的沉积年龄早于500Ma,总体上,龙首山增生楔最大峰值年龄段为0.5~0.4Ga和1.0~0.8Ga,说明此时构造活动强烈。与中祁连基底碎屑锆石年龄谱(图 4f)、阿拉善碎屑锆石年龄谱(图 4c)相比,在0.5Ga之前也基本具有相同的峰值年龄,说明了在0.5Ga之后龙首山沉积物源主要为中祁连和阿拉善。

根据各陆块、微陆块碎屑锆石年龄谱(图 4)对比可知,中祁连基底应与华北不同,而可能与冈瓦纳陆块某处,也可能是扬子地块西缘有关。2.0~1.8Ga随着Columbia超大陆的形成,中祁连、华北、扬子可能都集结到该超大陆的不同部位,随后各自裂离。直到1.2Ga Rodinia超大陆聚合之前,中祁连微陆块与华北、扬子依然保持无关联状态。1.0~0.8Ga Rodinia超大陆聚合,中祁连微陆块、扬子、阿拉善可能距华北较远。随着Rodinia超大陆裂解,中祁连、阿拉善微陆块远离冈瓦纳陆块,逐渐向华北靠近,但是随着0.5~0.4Ga原特提斯洋闭合,中祁连、阿拉善与华北可能都俯冲拼合到冈瓦纳古陆北缘(李三忠等, 2016a, b, c, d; Li et al., 2017b),并由中祁连和阿拉善微陆块的沉积物源供应,形成北祁连、龙首山构造单元。

5 原特提斯北部边界西段微陆块构造演化

李三忠等(2017)通过对北祁连及其周边构造带内精细的构造变形和构造带边缘断裂特征研究,确定了古祁连洋壳向南的俯冲极性;从统计的榴辉岩和蓝片岩变质年龄得出了三幕变形时间及俯冲时限。本文进一步据蛇绿岩南、北两带分布,确定了俯冲位置、岩浆岩时代和构造分带,确定了碰撞前、同碰撞、碰撞后三个阶段的时限;通过北祁连、龙首山碎屑锆石年龄谱和各陆块微陆块碎屑锆石年龄谱对比,确定陆块、微陆块之间不同时期的亲缘性。由以上研究,本文提出原特提斯北界西段的构造演化模式如下(图 5)。

图 5 北祁连早古生代构造演化模式 Fig. 5 Paleozoic tectonic evolution of the North Qilian Orogen

自0.8Ga Rodinia超大陆裂解,华北、扬子等陆块及中祁连、阿拉善、柴达木等微陆块开始裂离,古祁连洋逐渐打开,540Ma洋壳已初具规模。

540Ma左右中祁连微陆块北缘为活动大陆边缘,首先古祁连洋向南的俯冲,540~492Ma俯冲形成玉石沟蛇绿岩、熬油沟蛇绿岩、东草河蛇绿岩组成的MOR型蛇绿岩南带,并在512~501Ma形成柯柯里、野马咀等俯冲型岩浆岩。

505~495Ma可能因弯山构造逐步形成,南部柴北缘和柴达木微陆块转为向北俯冲(李三忠等, 2016a, b, c, d),中祁连微陆块北缘的俯冲带向北后撤,形成大岔大坂岛弧,在大岔大坂岛弧弧前盆地发生一次俯冲跃迁事件,俯冲方式为洋-洋俯冲,俯冲方向依然是向南俯冲。

495~462Ma在大岔大坂岛弧弧前俯冲区形成了大岔大坂、白泉门、九个泉、老虎山蛇绿混杂岩等典型的SSZ型蛇绿岩北带。并在495~440Ma伴随着清水沟花岗岩、牛心山闪长岩类、野牛滩闪长岩、白银矿田基性岩浆等与俯冲相关的岛弧岩浆的产生。

462Ma随着古祁连洋壳的持续俯冲,洋壳消减殆尽,大岔大坂岛弧逐渐与中祁连微陆块碰撞,紧接着中祁连微陆块与阿拉善微陆块对接发生陆-陆碰撞,产生了大量同碰撞花岗岩,如民乐、宁缠河等花岗岩-花岗闪长岩。在陆块浅部发育由南往北逆冲的逆冲推覆构造,并发生第一幕变形D1,深部发生高压低温矿物的冷却封闭。440Ma左右古祁连洋最终闭合。

440Ma后北祁连地区开始进入碰撞后陆内造山阶段,或可能处于商丹洋西延段落向北俯冲的弧后伸展背景,拼合的陆块短时期内再次处于弧内伸展的构造环境之下,形成了435~404Ma金佛寺花岗岩体、牛心山闪长岩体、老虎山闪长岩体等碰撞后岩浆岩带。422~406Ma高压榴辉岩,高压低温蓝片岩发生折返退变质,浅部发生第二幕变形D2(422~406Ma)。400Ma之后俯冲洋壳发生拆沉。

6 结论

(1) 据蛇绿岩位置、形成年龄和构造属性,将北祁连蛇绿岩分为南、北两带:南带熬油沟-玉石沟为MOR型蛇绿岩,形成时代略早,为550~492Ma;北带九个泉-大岔大坂为SSZ型蛇绿岩,形成时代略晚,为505~453Ma。据此可推断古祁连洋早古生代存在多期俯冲,或俯冲带可能发生了由南向北的跃迁或后撤。同时,南、北两带自西向东时代均有逐渐变新的趋势,总体上西边俯冲早、东边俯冲晚,呈自西向东“剪刀式”拼合的特点。

(2) 本文据北祁连构造带内早古生代大量岩浆岩形成年龄统计和对比分析,综合形成时代、构造属性及地球动力学环境,将其分为四个阶段:第一,512~501Ma古祁连洋南缘俯冲形成的中酸性岩浆岩带;第二,495~440Ma俯冲后退阶段形成的岛弧型岩浆岩带;第三,466~444Ma弧-陆、陆-陆碰撞造山阶段岩浆岩带;第四,435~404Ma碰撞后岩浆岩带。俯冲过程形成的岩浆岩基本为北西成岩时代较早、南东时代较晚,也说明了自西向东“剪刀式”拼合的特征。

(3) 根据各陆块、微陆块碎屑锆石年龄谱分析对比,中祁连基底应与华北不同,而可能与冈瓦纳有关,且更接近扬子地块。Rodinia超大陆聚合之前,中祁连微陆块作为一个独立的微陆块与华北、扬子保持一定距离。1.0~0.8Ga Rodinia超大陆聚合期间,中祁连微陆块可能与冈瓦纳拼贴在一起,且距华北较远。早古生代末期,中祁连微陆块远离冈瓦纳,逐渐向阿拉善靠近。碎屑锆石年龄谱也显示,北祁连、龙首山与中祁连和阿拉善均有相似的沉积物源,北祁连、龙首山由于古祁连洋壳的俯冲接受了洋壳两侧陆块沉积物源。

致谢 感谢主编及两位匿名审稿人提出的宝贵修改意见!
参考文献
[] Bureau of Geology and Mineral Resources of Qinghai Province. 1989. Regional Geology of Qinghai Province. Beijing: Geological Publishing House.
[] Cai SH, Wang QF, Liu XF, Feng YW, Zhang Y. 2015. Petrography and detrital zircon study of Late Carboniferous sequences in the southwestern North China Craton: Implications for the regional tectonic evolution and bauxite genesis. Journal of Asian Earth Sciences, 98: 421–435. DOI:10.1016/j.jseaes.2014.11.002
[] Coleman RG. 1977. Ophiolites Anceint Oceanic Lithosphere. New York: Springer Verlag: 1-229.
[] Chen JL, Li HB, Wang HL, He SP, Zeng ZX, Xu XY, Li XM. 2007. LA-ICPMS zircon U-Pb dating of a quartz diorite pluton from Wangjiacha, the junction area between the Qinling and Qilian orogenic belts and its tectonic significance. Journal of Jilin University (Earth Science Edition), 37(3): 423–431.
[] Chen JL, Xu XY, Zeng ZX, Xiao L, Wang HL, Wang ZQ, Xiao SW. 2008. Geochemical characters and LA-ICPMS zircon U-Pb dating constraints on the petrogenesis and tectonic setting of the Shichuan intrusion, east segment of the Central Qilian, NW China. Acta Petrologica Sinica, 24(4): 841–854.
[] Chen HQ. 2007. Geochemical features of Ningchanhe granite body and its tectonic significance in Lenglongling of North Qilian. Gansu Geology, 16(4): 37–42.
[] Chen Y, Zhou DJ, Wang EQ, Li XY. 1995. Geochemical characteristics of boninite series rocks found in Dachadaban ophiolite (DDO) Sunan County, North Qilian Mountain. Acta Petrologica Sinica, 11(Suppl.): 147–153.
[] Dong YP, Zhang GW, Yang Z, Zhao X, Ma HY, Yao AP. 2007. West Qinling Mountains Wushan E-MORB type of ophiolite and its volcano rock geochemistry. Science in China (Series D), 50(Suppl.2): 234–245.
[] Du YS, Zhu J, Gu SZ, Xu YJ, Yang JH. 2007. Sedimentary geochemistry of the Cambrian-Ordovician cherts: Implication on archipelagic ocean of North Qilian orogenic belt. Science in China (Series D), 50(11): 1628–1644. DOI:10.1007/s11430-007-0111-z
[] Duan JY, Ge XH. 2005. Stratigraphic and paleobiogeographic affinities between different tectonic units in northwestern China: With a discussion of the tectonic framework of northwestern China. Geological Bulletin of China, 24(6): 558–563.
[] Feng YM, He SP. 1995. Research for geology and geochemistry of several ophiolites in the North Qilian Mountains, China. Acta Petrologica Sinica, 11((Suppl.): 125–140.
[] Feng YM, He SP. 1996. Geotectonics and Orogeny of the Qilian Morntains, China. Beijing: Geological Publishing House: 1-135.
[] Ge XH, Liu JL. 1999. Formation and tectonic background of the northern Qilian Orogenic Belt. Earth Science Frontiers, 6(4): 223–230.
[] Ge XH, Liu JL. 2000. Broken "Western China Craton". Acta Petrologica Sinica, 16(1): 59–66.
[] Gehrels GE, Yin A, Wang XF. 2003. Magmatic history of the Northeastern Tibetan Plateau. Journal of Geophysical Research, 108(B9): 2423.
[] Gong JH, Zhang JX, Yu SY. 2013. Redefinition of the "Longshoushan Group" outcropped in the eastern segment of Longshoushan on the southern margin of Alxa Block: Evidence from detrital zircon U-Pb dating results. Acta Petrologica et Mineralogica, 32(1): 1–22.
[] Guo JJ, Zhang GW, Lu SN, Zhao FQ, Li HK, Zheng JK. 1999. Analysis for sedimentary-tectonic setting of the Huangyuan Group in the eastern Mid-Qilian Massif, Qilian Orogenic Belt. Journal of Northwest University (Natural Science Edition), 29(4): 343–347.
[] Guo JJ, Zhao FQ, Li HK, Li HM, Zuo YC. 2000. New chronological evidence of the age of Huangyuan Group in the eastern segment of Mid-Qilian massif and its geological significance. Regional Geology of China, 19(1): 26–31.
[] He JW, Zhu WB, Ge RF, Zheng BH, Wu H. 2014. Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: Implications forsupercontinent reconstruction and crustal evolution. Precambrian Research, 254: 194–209. DOI:10.1016/j.precamres.2014.08.016
[] Han S, Jia XQ, Qian Q, Zhang Q, Wang Y. 2000. Geological and geochemical characteristics of two types of Gabbro in Dachadaban, North Qilian and its tectonic environment. Acta Petrologica et Mineralogica, 19(2): 106–112.
[] He SP, Wang HL, Chen JL, Xu XY, Zhang HF, Ren GM, Yu JY. 2006. A LA-ICP-MS U-Pb chronological study of zircons from meta-acidic volcanics in Baiyin orefield, Gansu Province: New evidence for metallogenic age of Baiyin type massive sulfide deposits. Mineral Deposits, 25(4): 401–411.
[] He SP, Wang HL, Chen JL, Xu XY, Zhang HF, Ren GM, Yu JY. 2008. LA-ICP-MS U-Pb zircon geochronology of basic dikes within Maxianshan Rock Group in the Central Qilian Mountains and its tectonic implications. Earth Science, 33(1): 35–45.
[] He SP, Li RS, Wang C, Zhang HF, Ji WH, Yu PS, Gu PY, Shi C. 2011. Discovery of ~4.0Ga detrital zircons in the Changdu Block, North Qiangtang, Tibetan Plateau. Chinese Science Bulletin, 56(7): 647–658.
[] Hou QY, Zhao ZD, Zhang HF, Zhang BR, Chen YL. 2006. Indian Ocean-MORB-type isotopic signature of Yushigou ophiolite in North Qilian Mountains and its implications. Science in China (Series D), 49(6): 561–572. DOI:10.1007/s11430-006-0561-8
[] Huang BC, Otofuji YI, Yang ZY, Zhu RX. 2000. Preliminary result and its tectonic implications of Middle Cambrian paleomagnetism in the Alashan and Hexi Corridor Terrane. Chinese Journal of Geophysics, 43(3): 393–401.
[] Huang ZB, Xu RK, Zhang YJ, Jin X. 2001. Geological characteristics of ophiolitic mixtite in Changma region Yumen, Gansu. Acta Geologica Gansu, 10(2): 12–22.
[] Huang ZB, Zheng JP, Li BH, Wei ZJ, Qi W, Xu YL. 2014. The discovery of Late Cambrian adakite in the western Central Qilian Mountain and its geological implications. Acta Petrologica et Mineralogica, 33(6): 1008–1018.
[] Jia QZ, Yang ZT, Xiao CY, Quan SC, Zou RH, Xiao EY. 2007. Metallogenic Regularity and Prediction of the Copper Gold Tungsten Lead Zinc Deposits in the Qilian Mountains. Beijing: Geological Publishing House: 1-313.
[] Lai SC, Deng JF, Zhao HL. 1997. Petrologic restrictions on the Ordovician ocean basin scale and spreading rate in the Qilian area. Journal of Mineralogy and Petrology, 17(1): 35–39.
[] Li HK, Lu SN, Xiang ZQ, Zhou HY, Li HM, Liu DY, Song B, Zheng JK, Gu Y. 2007. SHRIMP U-Pb geochronological research on detrital zircons from the Beidahe complex-group in the western segment of the North Qilian Mountains, Northwest China. Geological Review, 53(1): 132–140.
[] Li JF, Zhang ZC, Han BF. 2010. Geochronology and geochemistry of Early Paleozoic granitic plutons from Subei and Shibaocheng areas, the western segment of Central Qilian and their geological implications. Acta Petrologica Sinica, 26(8): 2431–2444.
[] Li SZ, Yang Z, Zhao SJ, Li XY, Guo LL, Yu S, Liu X, Suo YH, Lan HY. 2016a. Global Early Paleozoic orogens (Ⅰ): Collision-Type orogeny. Journal of Jilin University (Earth Science Edition), 46(4): 945–967.
[] Li SZ, Yang Z, Zhao SJ, Li XY, Suo YH, Guo LL, Yu S, Dai LM, Li SJ, Mu DL. 2016b. Global Early Paleozoic orogens (Ⅱ): Subduction-Accretionary-Type orogeny. Journal of Jilin University (Earth Science Edition), 46(4): 968–1004.
[] Li SZ, Li XY, Zhao SJ, Yang Z, Liu X, Guo LL, Wang YM, Hao Y, Zhang J, Hu MY. 2016c. Global Early Paleozoic orogens (Ⅲ): Intracontinental orogen in South China. Journal of Jilin University (Earth Science Edition), 46(4): 1005–1025.
[] Li SZ, Yang Z, Zhao SJ, Liu X, Yu S, Li XY, Guo LL, Suo YH, Dai LM, Guo RH, Zhang GW. 2016d. Global Early Paleozoic Orogens (Ⅳ): Plate reconstruction and supercontinent Carolina. Journal of Jilin University (Earth Science Edition), 46(4): 1026–1041.
[] Li SZ, Jahn BM, Zhao SJ, Dai LM, Li XY, Suo YH, Guo LL, Wang YM, Liu XC, Lan HY, Zhou ZZ, Zheng QL, Wang PC. 2017a. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270–285. DOI:10.1016/j.earscirev.2017.01.009
[] Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY, Suo YH. 2017b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews. DOI:10.1016/j.earscirev.2017.01.011
[] Li SZ, Li T, Zhao SJ, Li XY, Liu X, Guo LL, Yu SY, Li SJ. 2017. Proto-Tethys Ocean in East Asia (Ⅳ): Deformation and evolution of microcontinents in the west segment of the northern Proto-Tethys Tectonic Domain. Acta Petrologica Sinica, 33(6): 1615–1632.
[] Li XM, Ma ZP, Sun JM, Yu JY. 2009. LA-ICP-MS chronological study of basic volcanics in Baiyin orefield, Gansu, China. Geological bulletin of China, 28(7): 901–906.
[] Lin YH, Zhang LF, Ji JQ, Wang QJ, Song SG. 2010. 40Ar/39Ar isochron ages of lawsonite blueschists from Jiuquan in the Northern Qilian Mountain, NW China, and their tectonic implications. Chinese Science Bulletin, 55(19): 2021–2027. DOI:10.1007/s11434-010-3239-8
[] Liu CZ, Xiao WJ, Yuan C, Yan Z. 2005. The petrological and geochemical characteristics of the Zhamashi mafic complex, Qilian Mountain and their tectonic implications. Acta Petrologica Sinica, 21(1): 57–64.
[] Liu XH, Sun BN, Qu WJ, Kang HJ, Wu JY. 2007. Re-Os dating of molybdenite in Xiliugou W-Mo deposit in western part of North Qilian Mountains and its geological significance. Acta Petrologica Sinica, 23(10): 2434–2442.
[] Lu SN, Li HK, Wang HC, Chen ZH, Zheng JK, Xiao ZQ. 2009. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrologica Sinica, 25(9): 2195–2208.
[] Ma XX, Shu LS, Santosh M, Li JY. 2012. Detrital zircon U-Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: Implications on Proterozoic supercontinent history. Precambrian Research, 206-207: 1–16. DOI:10.1016/j.precamres.2012.02.015
[] Mao JW, Zhang ZC, Ren FS, Zuo GC, Zhang ZH, Yang JM, Wang ZL, Ye DJ. 1999a. Temporal and spatial distribution and evolution of ore deposits in the west sector of the Northern Qilian Mountains. Acta Geologica Sinica, 73(1): 73–82.
[] Mao JW, Zhang ZH, Zhang ZC, Yang JM, Wang ZL, Du AD. 1999b. Re-Os age dating of mylobdenites in the Xiaoliugou tungsten deposit in the Northern Qilian Mountains and its significance. Geological Review, 45(4): 412–417.
[] Mao JW, Zhang ZH, Jian P, Wang ZL, Yang JM, Zhang ZC. 2000. U-Pb zircon dating of the Yeniutan granitic intrusion in the western part of the North Qilian Mountains. Geological Review, 46(6): 616–620.
[] Meng FC, Zhang JX, Guo CM, Li JP. 2010. Constraints on the evolution of the North Qilian ocean basin: MOR-type and SSZ-type ophiolites from Dachadaban. Acta Petrologica et Mineralogica, 29(5): 453–466.
[] Pan GT, Li XZ, Wang LQ, Ding J, Chen ZL. 2002. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions. Geological Bulletin of China, 21(11): 701–707.
[] Peng Y, Li RS, Ji WH, Wang C, Li M, Zhang HS, Wu ZN. 2014. SHRMP U-Pb geochronological verification on the identification of Early Paleozoic volcanic clasolite zircons from the Beidahe Complex-Group in the western segment of the Middle Qilian Mountains, China. Northwestern Geology, 47(4): 178–186.
[] Qi RR. 2012. LA-ICP-MS zircon U-Pb ages and geological implications for the Bagadeerji granitic plutons in the central Qilian Mountains, Gansu. Sedimentary Geology and Tethyan Geology, 32(4): 86–93.
[] Qian Q, Wang YM, Li HM, Jia XQ, Han S, Zhang Q. 1998. Geochemical characteristics and genesis of diorites from Laohushan, Gansu Province. Acta Petrologica Sinica, 14(4): 520–528.
[] Qian Q, Sun XM, Zhang Q, Han S, Jia XQ. 1999. Lithogeochemical characteristics of Jiugequan ophiolite and its overlying rock suites, North Qilian: The geodynamic significance. Geological Review, 45(7): 1038–1046.
[] Qian Q, Zhang Q, Sun XM. 2001a. Tectonic setting and mantle source characteristics of Jiugequan basalts, North Qilian: Constraints from trace elements and Nd-isotopes. Acta Petrologica Sinica, 17(3): 385–394.
[] Qian Q, Zhang Q, Sun XM, Wang YM. 2001b. Geochemical features and tectonic setting for basalts and cherts from Laohushan, North Qilian. Chinese Journal of Geology, 36(4): 444–453.
[] Ren JS, Jiang CF, Zhang ZK, Qin DY. 1980. Tectonics and Its Evolution in China. Beijing: Science Press: 1-124.
[] Savelieva GN, Suslov PV, Larionov AN, Berezhnaya NG. 2006. Age of zircons from chromites in the residual ophiolitic rocks as a reflection of upper mantle magmatic events. Doklady Earth Sciences, 411A(9): 1401–1406.
[] Shi RD, Yang JS, Wu CL, Iizuka T, Hirata T. 2004. Island arc volcanic rocks in the North Qaidam UHP metamorphic belt. Acta Geologica Sinica, 2004, 78(1): 52–64.
[] Shi Y, Yu JH, Santoshc M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231: 19–60. DOI:10.1016/j.precamres.2013.03.001
[] Sobel ER, Arnaud N. 1999. A possible Middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 18(1): 64–74. DOI:10.1029/1998TC900023
[] Song SG. 1997. Tectonic evolution of subductive complex belts in the North Qilian Mountains. Advance in Earth Sciences, 12(4): 351–365.
[] Song SG, Zhang LF, Niu Y, Song B, Liu DY. 2004. Early Paleozoic plate-tectonic evolution and deep continental subduction on the northern margin of the Qinghai-Tibet Plateau. Geological Bulletin of China, 23(9): 918–925.
[] Song SG, Niu YL, Su L, Xia XH. 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378–1401. DOI:10.1016/j.gr.2012.02.004
[] Song ZB, Li ZP, Ren YX, Yang JG, Li YZ, Xie CL. 2005a. Chronology and geological significance of Chelugou dacite porphyry in North Qilian Mountains. Geological Science and Technology Information, 24(3): 15–19.
[] Song ZB, Ren YX, Li ZP, Yang JG, Li YZ, Wang W. 2005b. A preliminary study of the petrogenic age of granodiorite in Baishanzi, North Qilian Mountains. Acta Geoscientica Sinica, 26(Suppl.): 84–86.
[] Song ZB, Li WY, Li HK, Li HM, Li YZ, Li CA, Zhang JH, Wang W, Li L, Chen B. 2007. Isotopic age of Shijuli gabbro in North Qilian Mountain and its geological significance. Acta Geoscientica Sinica, 28(1): 7–10.
[] Su JP, Zhang XH, Hu NG, Fu GM, Zhang HF. 2004a. Geochemical characteristics and genesis of adakite-like granites at Yema Nanshan in the western segment of the Central Qilian Mountains. Geology in China, 31(4): 365–371.
[] Su JP, Hu NG, Zhang HF, Feng BZ. 2004b. U-Pb zircon dating and genesis of the Heigouliangzi granitic intrusion in the western segment of the Middle Qilian Mountains. Geoscience, 18(1): 70–74.
[] Sun XM, Zhang Q, Qian Q. 1997. The Geologcial and geochemical features of the ophiolitic mélange in Baiquanmen area from Sunan County, Gansu Province. Advance in Earth Sciences, 12(4): 340–350.
[] Tang ZL, Bai YL. 1999. Geotectonic framework and metallogenic system in the southwest margin of North China Paleocontinent. Earth Science Frontiers, 6(2): 271–283.
[] Tang ZL, Bai YL. 2001. The two types of the tectonic foundation block and its metallogenic systems in the Northern Qilianshan Orogenic Belt. Acta Geologica Gansu, 10(2): 1–11.
[] Tseng CY, Yang HJ, Yang HY, Liu DY, Tsai CL, Wu HQ, Zuo GC. 2007. The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo-Qilian Ocean. Chinese Science Bulletin, 52(17): 2390–2401. DOI:10.1007/s11434-007-0300-3
[] Tseng CY, Yang HJ, Yang HY, Liu DY, Wu CL, Cheng CK, Chen CH, Ker CM. 2009. Continuity of the North Qilian and North Qinling orogenic belts, central orogenic system of China: Evidence from newly discovered Paleozoic adakitic rocks. Gondwana Research, 16: 285–293. DOI:10.1016/j.gr.2009.04.003
[] Tung GA, Yang HY, Liu DY, Zhang JX, Zeng JY, Wan YS. 2007. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance. Chinese Science Bulletin, 52(10): 1414–1425. DOI:10.1007/s11434-007-0189-x
[] Turner S, Sandiford M, Foden J. 1992. Some geodynamic and compositional constraints on 'postorogenic' magmatism. Geology, 20: 931–934. DOI:10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2
[] Wan YS, Xu ZQ, Yang JS, Zhang JX. 2003. The Precambrian high-grade basement of the Qilian Terrane and neighboring areas: Its ages and compositions. Acta Geoscientia Sinica, 24(4): 319–324.
[] Wang JR. 2006. Early paleaozoic tectono-magmatism and mineralization of the eastern section in the North Qilian Orogenic Belt. Ph. D. Dissertation. Lanzhou: Lanzhou University, 1-151 (in Chinese with English summary)
[] Wang Q, Liu XY. 1976. Paleo-oceanic crust of the Chilienshan region, western China and its tectonic significance. Scientia Geologica Sinica, 11(1): 42–55.
[] Wang SS. 2009. Geochemical characetristics of Wushaoling ophiolites in North Qilian and their tectonic significance. Master Degree Thesis. Lanzhou: Lanzhou University, 1-65 (in Chinese)
[] Wang SS, Liu MQ, Liu YQ, Ou J. 2012. Geochemical features and tectonic setting of the Wushaoling ophiolite mélanges, North Qilian Mountain. Geology and Exploration, 48(5): 1000–1008.
[] Wang XB, Hao ZG. 1994. Temporal-spatial distribution and tectonic types of ophiolites in orogenic belts of China. Regional Geology of China, 3: 193–204.
[] Wang Y, Liu L, Zhang HP, Liu XM. 2001. Geochemical evidence for tectonic environment of volcanic rocks in Baiyin ore field. Advances in Natural Science, 11(7): 715–720.
[] Wu CL, Yang JS, Yang HY, Wooden JL, Shi RD, Chen SY, Zheng QG. 2004. Dating of two types of granite from North Qilian, China. Acta Petrologica Sinica, 20(3): 425–432.
[] Wu CL, Yao SZ, Yang JS, Zeng LS, Chen SY, Li HB, Qi XX, Wooden JL, Mazdab FK. 2006. Double subduction of the Early Paleozoic North Qilian oceanic Plate: Evidence from granites in the central segment of North Qilian, NW China. Geology in China, 33(6): 1197–1208.
[] Wu CL, Xu XY, Gao QM, Li XM, Lei M, Gao YH, Frost RB, Wooden JL. 2010. Early Palaezoic grranitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4): 1027–1044.
[] Wu HQ, Feng YM, Song SG. 1993. Metamorphism and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology, 11(4): 523–536. DOI:10.1111/jmg.1993.11.issue-4
[] Wu P, Li XM, Xu XY, Yu JY, Sun JM, Tang Z, Wang GQ. 2012. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of Donggou ohpiolites in Zamashi area of northern Qilian Mountain. Geological Bulletin of China, 31(6): 896–906.
[] Xia LQ, Xia ZC, Peng LG, Ren YX, Yang JH, Zhang C, Li ZP, Wang XA. 1991. Determination of magmatic nature of Ordovician island arc volcanic series in the Shihuigou area in the Northern Qilian Mountains. Acta Petrologica et Mineralogica, 10(1): 1–10.
[] Xia LQ, Xia ZC, Xu XY. 1995. Dynamics of tectono-volcano-magmatic evolution from North Qilian Mountains, China. Northwest Geoscience, 16(1): 1–28.
[] Xia LQ, Xia ZC, Xu XY. 1996. Origin of Marine Volcanic Rocks in Northern Qilian. Beijing: Geological Publishing House: 1-129.
[] Xia LQ, Xia ZC, Xu XY. 1998. Early Palaeozoic Mid-Ocean Ridge-Ocean Island and Back-Arc Basin volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301–312.
[] Xia LQ, Xia ZC, Ren YX, Xu XY, Yang HQ, Li ZP, Yang JG, Li WY, Zhao DH, Song ZB, Li XM, Yu PS. 2001. Tectonic-Volcanic Magma-Mineralization Dynamics in the North Qilian Mountains. Beijing: China University of Geosciences Publishing House: 26-33.
[] Xia LQ, Xia ZC, Xu XY. 2003. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. Geological Society of America Bulletin, 115(12): 1510–1522. DOI:10.1130/B25269.1
[] Xia LQ, Xia ZC, Xu XY. 2003. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains. Geology in China, 30(1): 48–60.
[] Xia XH and Song SG. 2009. Evolution of the initial island arc of the North Qilian during the middle-late Cambriam: Constraints on the petrology, geochemistry and chronology of boninite and ophiolite in backarc basin. Proceedings of the National Symposium on petrology and geodynamics, 471 (in Chinese)
[] Xia XH, Song SG. 2010. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China. Chinese Science Bulletin, 55(18): 1899–1907. DOI:10.1007/s11434-010-3207-3
[] Xia XH, Song SG, Niu YL. 2012. Tholeiite-boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development. Chemical Geology, 328: 259–277. DOI:10.1016/j.chemgeo.2011.12.001
[] Xia XH, Sun N, Song XG, Xiao XC. 2012. Age and tectonic setting of the Aoyougou-Erzhihaladaban ophiolite in the western North Qilian Mountains, NW China. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(5): 757–769.
[] Xiang DP. 1982. The characteristics of geological structures in the Chilienshan region, China. Scientia Geologica Sinica(4): 364–370.
[] Xiang DP. 1985. The main geological characteristics in Qinlianshan region. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 17: 61–79.
[] Xiang ZQ, Lu SN, Li HC, Li HM, Song B, Zheng JK. 2007. SHRIMP U-Pb zircon age of gabbro in Aoyougou in the western segment of the North Qilian Mountains, China and its geological implications. Geological Bulletin of China, 26(12): 1686–1691.
[] Xiao WJ, Windley BF, Yong Y, Yan Z, Yuan C, Liu CZ, Li JL. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323–333. DOI:10.1016/j.jseaes.2008.10.001
[] Xiao XC, Chen GM, Zhu ZZ. 1978. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China. Acta Geologica Sinica, 52(4): 281–295.
[] Xiao XC, Li TT, Li GZ, Chang CF, Yuan XC. 1988. Pandect of the Lithosphere Tectonic Evolution of Himalaya. Beijing: Geological Publishing House: 1-206.
[] Xin HT, Wang HC, Zhou SJ. 2006. Geological events and tectonic evolution of the north margin of the Qaidam Basin. Geological Survey and Research, 29(4): 311–320.
[] Xu WC, Zhang HF, Liu XM. 2007. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications. Chinese Science Bulletin, 52(4): 531–538. DOI:10.1007/s11434-007-0082-7
[] Xu RK, Chai SZ, Liag JW, Huang ZB. 2001. Geoglogycal features and tectonic evolution of the Dahonggou ophiolite complex in Qilian County, Qinghai Province. Geology and Mineral Resources of South, 4: 28–35.
[] Xu SM, Feng HW, Li SZ, Li M. 2016. On Caledonian Orogeny in the Helanshan and its adjacent area. Acta Petrologica Sinica, 32(7): 2137–2150.
[] Xu YJ, Du YS, Cawood PA, Guo H, Huang H, An ZH. 2010a. Detrital zircon record of continental collision: Assembly of the Qilian Orogen, China. Sedimentary Geology, 230: 35–45. DOI:10.1016/j.sedgeo.2010.06.020
[] Xu YJ, Du YS, Cawood PA, Yang JH. 2010b. Provenance record of a foreland basin: Detrital zircon U-Pb ages from Devonian strata in the North Qilian Orogenic Belt, China. Tectonophysics, 495: 337–347. DOI:10.1016/j.tecto.2010.10.001
[] Yan XX. 2014. The petrological charactersiticcs, chronology and tectonic implications of the Yushigou ophiolite suite, Qinhai Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-50 (in Chinese with English summary)
[] Yang JH, Du YS, Cawood PA, Xu YJ. 2009. Silurian collisional suturing onto the southern margin of the North China craton: Detrital zircon geochronology constraints from the Qilian Orogen. Sedimentary Geology, 220: 95–104. DOI:10.1016/j.sedgeo.2009.07.001
[] Yin A. 2001. Geologic evolution of the Himalayan-Tibetan orogen in the context of Phanerozoic continental growth of Asia. Acta Geoscientia Sinica, 22(3): 193–230.
[] Yin G, Zhang SF, Fan LM, Wan YW. 1998. Isotope geochronogy studies of the main geological events on the sulfide ore deposits and neighborhood in Baiyin, Gansu. Geology-Geochemistry, 1: 6–14.
[] Yong Y, Xiao WJ, Yuan C, Yan Z, Li JL. 2008. Geochronology and geochemistry of Paleozoic granitic plutons from the eastern Central Qilian and their tectonic implications. Acta Petrologica Sinica, 24(4): 855–866.
[] Yu JY, Li XM, Ma ZP, Sun JM, Wang JQ. 2010a. Chronological study of meta-acidic volcanics in Qingshuigou-Bailiugou ore field, Qilian County of Qinhai Province. Advances in Earth Science, 25(1): 55–60.
[] Yu JY, Li XM, Ma ZP, Wang GQ, Wu P. 2010b. Geochemical characters and LA-ICP-MS zircon U-Pb dating of the Lenglongling volcanic rocks, tectonic belt of the North Qilian. Geological Science and Technology Information, 29(4): 6–13.
[] Yu SY, Zhang JX, Li SZ, Li YS, Sun DY, Liu X, Guo LL, Suo YH, Peng YB, Zhao XL. 2017. Late Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Response to assembly of Supercontinent Columbia. Precambrian Research, 291: 42–62. DOI:10.1016/j.precamres.2017.01.016
[] Yuan W, Yang ZY. 2015. The Alashan Terrane was not part of North China by the Late Devonian: Evidence from detrital zircon U-Pb geochronology and Hf isotopes. Gondwana Research, 27: 1270–1282. DOI:10.1016/j.gr.2013.12.009
[] Zhang DQ, Sun GY, Xu HL. 1995. Petrology and isotope chronology of the Jinfosi pluton, Qilian Mts, Gansu. Acta Geoscientia Sinica, 4: 375–385.
[] Zhang HF, Jin LL, Zhang L, Yuan HL, Zhou L, Zhang BR. 2006. Pb and Nd isotopic compositions of basement and granitoid in the Qilianshan: Constraints on tectonic affinity. Earth Science, 31(1): 57–65.
[] Zhang J, Li JY, Liu JF, Li YF, Qu JF, Feng QW. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912–2934.
[] Zhang JX, Xu ZQ. 1995. Caledonian subduction-accretionary conplec/volcanic arc zone and its deformation features in the middle sector of North Qilian Mountains. Acta Geologica Sinica, 16(2): 153–163.
[] Zhang JX, Xu ZQ, Chen W, Xu HF. 1997. A tentative discussion on the ages of the subduction-accretionary complex/volcanic arcs in the middle sector of North Qilian Mountain. Acta Petrologica et Mineralogica, 16(2): 112–119.
[] Zhang JX, Meng FC, Wan YS. 2007. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology, 25(3): 285–304. DOI:10.1111/jmg.2007.25.issue-3
[] Zhang JX, Li JP, Yu SY, Meng FC, Mattinson CG, Yang HJ, Ker CM. 2012. Provenance of eclogitic metasediments in the North Qilian HP/LT metamorphic terrane, western China: Geodynamic implications for Early Paleozoic subduction-erosion. Tectonophysics, 570-571: 78–101. DOI:10.1016/j.tecto.2012.08.018
[] Zhang Q, Sun XM, Zhou DJ, Qian Q, Chen Y, Wang YM, Jia XQ, Han S. 1997. The characteristics of North Qilian ophiolites, forming settings and their tectonic significance. Advances in Earth Sciences, 12(4): 366–393.
[] Zhang ZC, Mao JW, Yang JM, Wu MB, Zuo GC. 1998. Geochemical evidences on the petrogenesis of the Aoyougou ophiolite in North Qilian Mountains. Acta Geologica Sinica, 72(1): 42–51.
[] Zhang ZC, Mao JW, Zuo GC, Yang JM, Wu BM, Wang ZL, Zhang ZH. 1999. Mineralogical studies on the Aoyougou ophiolite in the western part of Northern Qilian Mountains. Acta Mineralogica Sinica, 19(1): 77–82.
[] Zhang ZC, Zhou FM, Robinson PT, Mao JW, Yang JM, Zuo GC. 2001. SHRIMP dating of the Aoyougou ophiolite in the west sector of the North Qilian Mountains and its geological significance. Acta Petrologica Sinica, 17(2): 222–226.
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhou DJ, Chen Y, Zhang Q, Li XY. 1997. The founding of Alaska-Type mafic-ultramafic complex from Qilian County and constraints on Qilian Mt.tectonic evolution. Scientia Geologica Sinica, 32(1): 122–127.
[] Zhou LF. 1992. Early Paleozoic tectonic features and evolutions in the southern margin of Alaxa Massif. Journal of Northwest University, 22(1): 107–115.
[] Zuo GC, Wu HQ. 1997. A bisubduction-collision orogenic model of Early-Paleozoic in the middle part of North Qilian area. Advances in Earth Sciences, 12(4): 315–323.
[] Zuo GC, Wu MB, Mao JW, Zhang ZC. 1999. Structural evolution of Early Paleozoic tectonic belt in the west section of Northern Qilian area. Acta Geologica Gansu, 8(1): 6–13.
[] 陈隽璐, 李好斌, 王洪亮, 何世平, 曾佐勋, 徐学义, 李向民. 2007. 秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义. 吉林大学学报(地球科学版), 37(3): 423–431.
[] 陈隽璐, 徐学义, 曾佐勋, 肖林, 王洪亮, 王宗起, 肖绍文. 2008. 中祁连东段什川杂岩基的岩石化学特征及年代学研究. 岩石学报, 24(4): 841–854.
[] 陈化奇. 2007. 北祁连冷龙岭地区宁缠河花岗岩体的地球化学特征及大地构造意义. 甘肃地质, 16(4): 37–42.
[] 陈雨, 周德进, 王二七, 李秀云. 1995. 北祁连肃南县大岔大坂蛇绿岩中玻安岩系岩石的发现及其地球化学特征. 岩石学报, 11(增): 147–153.
[] 董国安, 杨宏仪, 刘敦一, 刘建新, 曾建元, 万渝生. 2007. 龙首山岩群碎屑锆石SHRIMP U-Pb年代学及其地质意义. 科学通报, 52(6): 688–697.
[] 董云鹏, 张国伟, 杨钊, 赵霞, 马海勇, 姚安平. 2007. 西秦岭武山E-MORB型蛇绿岩及相关火山岩地球化学. 中国科学(D辑), 37(Suppl.1): 199–208.
[] 杜远生, 朱杰, 顾松竹, 徐亚军, 杨江海. 2007. 北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示. 中国科学(D辑), 37(10): 1314–1329. DOI:10.3321/j.issn:1006-9267.2007.10.004
[] 段吉业, 葛肖虹. 2005. 中国西北地区各构造单元之间地层和生物古地理的亲缘关系——兼论西北地区构造格局. 地质通报, 24(6): 558–563.
[] 冯益民, 何世平. 1995. 北祁连蛇绿岩的地质地球化学研究. 岩石学报, 11(Suppl.): 125–140.
[] 冯益民, 何世平. 1996. 祁连山大地构造与造山作用. 北京: 地质出版社: 1-135.
[] 葛肖虹, 刘俊来. 1999. 北祁连造山带的形成与背景. 地学前缘, 6(4): 223–230.
[] 葛肖虹, 刘俊来. 2000. 被肢解的"西域克拉通". 岩石学报, 16(1): 59–66.
[] 宫江华, 张建新, 于胜尧. 2013. 阿拉善地块南缘龙首山东段"龙首山岩群"的再厘定——来自碎屑锆石U-Pb定年的证据. 岩石矿物学杂志, 32(1): 1–22.
[] 郭进京, 张国伟, 陆松年, 赵凤清, 李怀坤, 郑健康. 1999. 中祁连地块东段元古宙基底湟源群沉积构造环境. 西北大学学报(自然科学版), 29(4): 343–347.
[] 郭进京, 赵凤清, 李怀坤, 李惠民, 左义成. 2000. 中祁连东段湟源群的年代学新证据及其地质意义. 中国区域地质, 19(1): 26–31.
[] 韩松, 贾秀琴, 钱青, 张旗, 王焰. 2000. 北祁连大岔大坂两类辉长岩的地质地球化学特征及其构造环境. 岩石矿物学杂志, 19(2): 106–112.
[] 何世平, 王洪亮, 陈隽璐, 徐学义, 张宏飞, 任光明, 余吉远. 2006. 甘肃白银矿田变酸性火山岩锆石LA-ICP-MS测年——白银式块状硫化物矿床形成时代新证据. 矿床地质, 25(4): 401–411.
[] 何世平, 王洪亮, 陈隽璐, 徐学义, 张宏飞, 任光明, 余吉远. 2008. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义. 地球科学, 33(1): 35–45.
[] 何世平, 李荣社, 王超, 张宏飞, 计文化, 于浦生, 辜平阳, 时超. 2011. 青藏高原北羌塘昌都地块发现~4.0Ga碎屑锆石. 科学通报, 56(8): 573–582.
[] 侯青叶, 赵志丹, 张宏飞, 张本仁, 陈岳龙. 2005. 北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义. 中国科学(D辑), 35(8): 710–719.
[] 黄宝春, OtofujiYI, 杨振宇, 朱日祥. 2000. 河西走廊和阿拉善东缘地区中寒武世古地磁研究的初步结果. 地球物理学报, 43(3): 393–401.
[] 黄增保, 许荣科, 张彦杰, 金霞. 2001. 甘肃玉门昌马地区蛇绿混杂岩地质特征. 甘肃地质学报, 10(2): 12–22.
[] 黄增保, 郑建平, 李葆华, 魏志军, 漆玮, 许延龙. 2014. 中祁连西段晚寒武世埃达克岩的发现及地质意义. 岩石矿物学杂志, 33(6): 1008–1018.
[] 贾群子, 杨忠堂, 肖朝阳, 全守村, 邹润华, 肖恩云. 2007. 祁连山铜金钨铅锌矿床成矿规律和成矿预测. 北京: 地质出版社: 1-313.
[] 赖绍聪, 邓晋福, 赵海铃. 1997. 北祁连奥陶纪洋脊扩张速率及古洋盆规模的岩石学约束. 矿物岩石, 17(1): 35–39.
[] 李怀坤, 陆松年, 相振群, 周红英, 李惠民, 刘敦一, 宋彪, 郑健康, 顾瑛. 2007. 北祁连山西段北大河岩群碎屑锆石SHRIMP U-Pb年代学研究. 地质论评, 53(1): 132–140.
[] 李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 26(8): 2431–2444.
[] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 郭玲莉, 余珊, 刘鑫, 索艳慧, 兰浩圆. 2016a. 全球早古生代造山带(Ⅰ):碰撞型造山. 吉林大学学报(地球科学版), 46(4): 945–967.
[] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲. 2016b. 全球早古生代造山带(Ⅱ):俯冲-增生型造山. 吉林大学学报(地球科学版), 46(4): 968–1004.
[] 李三忠, 李玺瑶, 赵淑娟, 杨朝, 刘鑫, 郭玲莉, 王永明, 郝义, 张剑, 胡梦颖. 2016c. 全球早古生代造山带(Ⅲ):华南陆内造山. 吉林大学学报(地球科学版), 46(4): 1005–1025.
[] 李三忠, 杨朝, 赵淑娟, 刘鑫, 余珊, 李玺瑶, 郭玲莉, 索艳慧, 戴黎明, 郭润华, 张国伟. 2016d. 全球早古生代造山带(Ⅳ):板块重建与Carolina超大陆. 吉林大学学报(地球科学版), 46(4): 1026–1041.
[] 李三忠, 李涛, 赵淑娟, 李玺瑶, 刘鑫, 郭玲莉, 于胜尧, 李少俊. 2017. 东亚原特提斯洋(Ⅳ):北界西段早古生代构造变形. 岩石学报, 33(6): 1615–1632.
[] 李向民, 马中平, 孙吉明, 余吉远. 2009. 甘肃白银矿田基性火山岩的LA-ICP-MS同位素年代学. 地质通报, 28(7): 901–906.
[] 林宜慧, 张立飞, 季建清, 王乾杰, 宋述光. 2010. 北祁连山九个泉硬柱石蓝片岩40Ar-39Ar年龄及其地质意义. 科学通报, 55(17): 1710–1716.
[] 刘传周, 肖文交, 袁朝, 闫臻. 2005. 祁连山扎麻什基性杂岩体岩石地球化学特征及其大地构造意义. 岩石学报, 21(1): 57–64.
[] 刘晓煌, 孙柏年, 屈文俊, 康鸿杰, 吴靖宇. 2007. 北祁连山西段西柳沟钨钼矿的Re-Os定年及地质意义. 岩石学报, 23(10): 2434–2442. DOI:10.3969/j.issn.1000-0569.2007.10.012
[] 陆松年, 李怀坤, 王惠初, 陈志宏, 郑健康, 相振群. 2009. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究. 岩石学报, 25(9): 2195–2208.
[] 毛景文, 张招崇, 任丰寿, 左国朝, 张作衡, 杨建民, 王志良, 叶得金. 1999a. 北祁连山西段金属矿床时空分布和生成演化. 地质学报, 73(1): 73–82.
[] 毛景文, 张作衡, 张招崇, 杨建民, 王志良, 杜安道. 1999b. 北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义. 地质论评, 45(4): 412–417.
[] 毛景文, 张作衡, 简平, 王志良, 杨建民, 张招崇. 2000. 北祁连西段花岗质岩体的锆石U-Pb年龄报道. 地质论评, 46(6): 616–620.
[] 孟繁聪, 张建新, 郭春满, 李金平. 2010. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约. 岩石矿物学杂志, 29(5): 453–466.
[] 潘桂棠, 李兴振, 王立全, 丁俊, 陈智粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, 21(11): 701–707.
[] 彭岩, 李荣社, 计文化, 王超, 李猛, 张辉善, 吴中楠. 2014. 中祁连西段北大河岩群中早古生代火山碎屑岩的识别——来自锆石U-Pb年代学的证据. 西北地质, 47(4): 178–186.
[] 齐瑞荣. 2012. 中祁连西段巴嘎德尔基岩体LA-ICP-MS锆石U-Pb年龄及地质意义. 沉积与特提斯地质, 32(4): 86–93.
[] 钱青, 王岳明, 李惠民, 贾秀琴, 韩松, 张旗. 1998. 甘肃老虎山闪长岩的地球化学特征及其成因. 岩石学报, 14(4): 520–528.
[] 钱青, 孙晓猛, 张旗, 韩松, 贾秀琴. 1999. 北祁连九个泉蛇绿岩及其上覆岩系的岩石地球化学特征和地球动力学意义. 地质论评, 45(7): 1038–1046.
[] 钱青, 张旗, 孙晓猛. 2001a. 北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约. 岩石学报, 17(3): 385–394.
[] 钱青, 张旗, 孙晓猛, 王岳明. 2001b. 北祁连老虎山玄武岩和硅岩的地球化学特征及形成环境. 地质科学, 36(4): 444–453.
[] 青海省地质矿产局. 1989. 甘肃省区域地质志. 北京: 地质出版社.
[] 任纪舜, 姜春发, 张正坤, 秦德余. 1980. 中国大地构造及其演化: 1:400万中国大地构造图简要说明. 北京: 科学出版社: 1-124.
[] 史仁灯, 杨经绥, 吴才来, IizukaT, HirataT. 2004. 柴达木北缘超高压变质带中的岛弧火山岩. 地质学报, 78(1): 52–64.
[] 宋述光. 1997. 北祁连山俯冲杂岩带的构造演化. 地球科学进展, 12(4): 351–365.
[] 宋述光, 张立飞, NiuY, 宋彪, 刘敦一. 2004. 青藏高原北缘早古生代板块构造演化和大陆深俯冲. 地质通报, 23(9): 918–925.
[] 宋忠宝, 李智佩, 任有祥, 杨建国, 栗亚芝, 谢春林. 2005a. 北祁连山车路沟英安斑岩的年代学及地质意义. 地质科技情报, 24(3): 15–19.
[] 宋忠宝, 任有祥, 李智佩, 杨建国, 栗亚芝, 王伟. 2005b. 北祁连山白山子花岗闪长岩成岩时代. 地球学报, 26(增刊): 84–86.
[] 宋忠宝, 李文渊, 李怀坤, 李惠民, 栗亚芝, 李长安, 张江华, 王伟, 李丽, 陈博. 2007. 北祁连山石居里辉长岩的同位素年龄及其地质意义. 28(1): 7-10
[] 苏建平, 张新虎, 胡能高, 付国民, 张海峰. 2004a. 中祁连西段野马南山埃达克质花岗岩的地球化学特征及成因. 中国地质, 31(4): 365–371.
[] 苏建平, 胡能高, 张海峰, 冯备战. 2004b. 中祁连西段黑沟梁子花岗岩的锆石U-Pb同位素年龄及成因. 现代地质, 18(1): 70–74.
[] 孙晓猛, 张旗, 钱青. 1997. 甘肃肃南白泉门地区蛇绿混杂岩地质特征. 地球科学进展, 12(4): 340–350.
[] 汤中立, 白云来. 1999. 华北古大陆西南边缘构造格架与成矿系统. 地学前缘, 6(2): 271–283.
[] 汤中立, 白云来. 2001. 北祁连造山带两种构造基底岩块及成矿系统. 甘肃地质学报, 10(2): 1–11.
[] 万渝生, 许志琴, 杨经绥, 张建新. 2003. 祁连造山带及邻区前寒武纪深变质基底的时代和组成. 地球学报, 24(4): 319–324.
[] 王金荣. 2006. 北祁连造山带东段早古生代构造岩浆作用及成矿的研究. 博士学位论文. 兰州: 兰州大学, 1-151
[] 王荃, 刘雪亚. 1976. 我国西部祁连山区的古海洋地壳及其大地构造意义. 地质科学, 11(1): 42–55.
[] 汪双双. 2009. 北祁连乌鞘岭蛇绿岩地球化学特征及其构造意义. 兰州: 兰州大学, 1-65
[] 汪双双, 刘明强, 柳益群, 欧健. 2012. 北祁连乌鞘岭蛇绿混杂岩地球化学特征及其构造环境. 地质与勘探, 48(5): 1000–1008.
[] 王希斌, 郝梓国. 1994. 中国造山带蛇绿岩的时空分布及构造类型. 中国区域地质, 3: 193–204.
[] 王焰, 刘良, 张洪培, 刘小明. 2001. 白银矿田火山岩构造环境对地球化学证据. 自然科学进展, 11(7): 715–720.
[] 吴才来, 杨经绥, 杨宏仪, WoodenJL, 史仁灯, 陈松永, 郑秋光. 2004. 北祁连东部两I型录花岗岩定年及其地质意义. 岩石学报, 20(3): 0425–0432.
[] 吴才来, 姚尚志, 杨经绥, 曾令森, 陈松永, 李海兵, 戚学祥, WoodenJL, MazdabFK. 2006. 北祁连洋早古生代双向俯冲的花岗岩证据. 中国地质, 33(6): 1197–1208.
[] 吴才来, 徐学义, 高前明, 李向民, 雷敏, 郜源红, FrostRB, WoodenJL. 2010. 北祁连早古生代花岗质岩浆作用及构造演化. 岩石学报, 26(4): 1027–1044.
[] 武鹏, 李向民, 徐学义, 余吉远, 孙吉明, 唐卓, 王国强. 2012. 北祁连山扎麻什地区东沟蛇绿岩LA-ICP-MS锆石U-Pb测年及其地球化学特征. 地质通报, 31(6): 896–906.
[] 夏林圻, 夏祖春, 彭礼贵, 任有祥, 杨静华, 张诚, 李智佩, 王兴安. 1991. 北祁连山石灰沟奥陶纪岛弧火山岩系岩浆性质的确定. 岩石矿物学杂志, 10(1): 1–10.
[] 夏林圻, 夏祖春, 徐学义. 1995. 北祁连山构造-火山岩浆演化动力学. 西北地质科学, 16(1): 1–28.
[] 夏林圻, 夏祖春, 徐学义. 1996. 北祁连山海相火山岩岩石成因. 北京: 地质出版社: 1-129.
[] 夏林圻, 夏祖春, 徐学义. 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用. 地质学报, 72(4): 301–312.
[] 夏林圻, 夏祖春, 任有祥, 徐学义, 杨合群, 李智佩, 杨建国, 李文渊, 赵东宏, 宋忠宝, 李向民, 于浦生. 2001. 北祁连山构造-火山岩浆-成矿动力学. 北京: 中国大地出版社: 26-33.
[] 夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48–60.
[] 夏小洪, 宋述光. 2009. 北祁连中-晚寒武世初始岛弧演化历史: 来自玻安岩和弧后盆地蛇绿岩岩石学、地球化学和年代学方面的约束. 2009年全国岩石学与地球动力研讨会论文集, 471
[] 夏小洪, 宋述光. 2010. 北祁连山肃南九个泉蛇绿岩形成年龄和构造环境. 科学通报, 55(15): 1465–1473.
[] 夏小洪, 孙楠, 宋述光, 肖序常. 2012. 北祁连西段熬油沟-二只哈拉达坂蛇绿岩的形成环境和时代. 北京大学学报(自然科学版), 48(5): 757–769.
[] 向鼎璞. 1982. 祁连山地质构造特征. 地质科学(4): 364–370.
[] 向鼎璞. 1985. 祁连山主要地质特征. 青藏高原地质文集, 17: 61–79.
[] 相振群, 陆松年, 李怀坤, 李惠民, 宋彪, 郑健康. 2007. 北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义. 地质通报, 26(12): 1686–1691. DOI:10.3969/j.issn.1671-2552.2007.12.023
[] 肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩带的地质构造意义. 地质学报, 52(4): 281–295.
[] 肖序常, 李廷栋, 李光岑, 常承法, 袁学诚. 1988. 喜马拉雅岩石圈构造演化总论. 北京: 地质出版社.
[] 辛后田, 王惠初, 周世军. 2006. 柴北缘的大地构造演化及其地质事件群. 地质调查与研究, 29(4): 311–320.
[] 徐旺春, 张宏飞, 柳小明. 2007. 锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义. 科学通报, 52(10): 1174–1180. DOI:10.3321/j.issn:0023-074X.2007.10.014
[] 许荣科, 柴世泽, 梁积伟, 黄增宝. 2001. 青海祁连县大红沟蛇绿混杂岩特征及形成机制. 华南地质与矿产, 4: 28–35. DOI:10.3969/j.issn.1007-3701.2001.02.005
[] 许淑梅, 冯怀伟, 李三忠, 李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32(7): 2137–2150.
[] 剡晓旭. 2014. 青海省玉石沟蛇绿岩套岩石学年代学特征及其构造意义. 硕士学位论文. 北京: 中国地质大学, 1-50
[] 尹安. 2001. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193–230.
[] 尹观, 张树发, 范良明, 万永文. 1998. 甘肃白银金属硫化物矿床及其矿区主要地质事件的同位素地质年代学研究. 地质地球化学, 1: 6–14.
[] 雍拥, 肖文交, 袁超, 闫臻, 李继亮. 2008. 中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义. 岩石学报, 24(4): 855–866.
[] 余吉远, 李向民, 马中平, 孙吉明, 王建强. 2010a. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究. 地球科学进展, 25(1): 55–60.
[] 余吉远, 李向民, 马中平, 王国强, 武鹏. 2010b. 北祁连构造带冷龙岭地区火山岩地球化学特征及年代学. 地质科技情报, 29(4): 6–13.
[] 曾建元, 杨怀仁, 杨宏仪, 刘敦一, 蔡金郎, 吴汉泉, 左国朝. 2007. 北祁连东草河蛇绿岩:一个早古生代的洋壳残片. 科学通报, 52(7): 825–835.
[] 张德全, 孙桂英, 徐洪林. 1995. 祁连山金佛寺岩体的岩石学和同位素年代学研究. 地球学报, 4: 375–385.
[] 张宏飞, 靳兰兰, 张利, 袁洪林, 周炼, 张本仁. 2006. 基底岩系和花岗岩类Pb-Nd同位素组成限制祁连山带的构造属性. 地球科学, 31(1): 57–65.
[] 张进, 李锦轶, 刘建峰, 李岩峰, 曲军峰, 冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28(9): 2912–2934.
[] 张建新, 许志琴. 1995. 北祁连中段加里东俯冲-增生杂岩/火山弧带及其变形特征. 地球学报, 16(2): 153–163.
[] 张建新, 许志琴, 陈文, 徐惠芬. 1997. 北祁连中段俯冲-增生杂岩/火山弧的时代探讨. 岩石矿物学杂志, 16(2): 112–119.
[] 张旗, 孙晓猛, 周德进, 钱青, 陈雨, 王岳明, 贾秀琴, 韩松. 1997. 北祁连蛇绿岩的特征、形成环境及其构造意义. 地球科学进展, 12(4): 366–393.
[] 张招崇, 毛景文, 杨建民, 吴茂炳, 左国朝. 1998. 北祁连熬油沟蛇绿岩岩石成因的地球化学证据. 地质学报, 72(1): 42–51.
[] 张招崇, 毛景文, 左国朝, 杨建民, 吴茂炳, 王志良, 张作衡. 1999. 北祁连西段熬油沟蛇绿岩的矿物学研究. 矿物学报, 19(1): 77–82.
[] 张招崇, 周美付, RobinsonPT, 毛景文, 杨建民, 左国朝. 2001. 北祁连山西段熬油沟蛇绿岩SHRIMP分析结果及其地质意义. 岩石学报, 17(2): 222–226.
[] 周德进, 陈雨, 张旗, 李秀云. 1997. 北祁连山南侧阿拉斯加型岩体的发现及地质意义. 地质科学, 32(1): 122–127.
[] 周立发. 1992. 阿拉善地块南缘早古生代大地构造特征和演化. 西北大学学报, 22(1): 107–115.
[] 左国朝, 吴汉泉. 1997. 北祁连中段早古生代双向俯冲-碰撞造山模式剖析. 地球科学进展, 12(4): 315–323.
[] 左国朝, 吴茂炳, 毛景文, 张招崇. 1999. 北祁连西段早古生代构造演化史. 甘肃地质学报, 8(1): 6–13.