岩石学报  2017, Vol. 33 Issue (5): 1541-1553   PDF    
花岗质岩浆和矿化之间的关系:重要概念和关键特征
ZUREVINSKI Shannon1, HOLLINGS Pete1,2, 周涛发2, 王世伟2     
1. 湖首大学, 奥利弗路955号, 安大略省 P7C2E5;
2. 合肥工业大学资源与环境工程学院, 合肥 230009
摘要: 最近对与花岗岩相关的锂、稀土金属和贱金属(例如Cu和Mo)矿产需求重新激发了人们对其成矿作用研究的兴趣。本文综述了不同类型花岗质岩石及与其相关的矿床:1)与高分异花岗岩有关的浸染状稀有金属矿化;2)热液型锡和钨矿化(如:矽卡岩型矿床);3)伟晶岩型稀有元素矿化;4)斑岩型矿化。虽然花岗岩和相关矿化作用之间(特别是斑岩系统相对于稀有金属)的联系还没有明确,但最近这些成矿系统的相关研究进展为探讨两者之间的关系提供了条件。本文重点回顾了与花岗岩相关成矿作用的主要特征,以及与不同类型矿化有关的花岗质岩浆的多样性,并论述了不同类型矿床的成矿模式。尽管长英质侵入岩浆系统复杂多样,但近来与这些矿化系统有关的研究进展可望能够作为找矿勘探的指示。地球化学特征可以揭示岩浆系统的氧化还原状态,进而可以判断斑岩系统的成矿潜力,它还可以与其他找矿勘探指标如矿物的同位素和微量元素分析联合使用。本文还讨论了通过熔融包裹体分析,研究微量元素在硅酸盐岩浆与挥发分体系中的行为。
关键词: 花岗岩     成矿作用     稀有金属     伟晶岩     斑岩    
Exploring the links between granitic magmas and mineralization: Key concepts and critical features
ZUREVINSKI Shannon1, HOLLINGS Pete1,2, ZHOU TaoFa2, WANG ShiWei2     
1. Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario P7C;
2. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Abstract: The recent demand for Li, rare earth metals and base metals (e.g. Cu and Mo) has renewed the interest in granite-associated mineralization. This review reflects on the diversity of granitic rocks, which are associated with a variety of ore deposits. A summary of different deposit types is presented, specifically: 1) Disseminated rare metal mineralization associated with highly evolved granites; 2) Hydrothermal-type tin and tungsten mineralization (i.e. skarn-type); 3) Rare element pegmatites; and 4) Porphyry-style mineralization. Although the link between granitoids and associated mineralization is not always clear, especially for porphyry systems rather than rare metal deposits, recent advances in the studies of these systems allow these links to be explored. This paper reviews the critical features of their formation, as well as the variations in the granitic magmas associated with mineralization, and presents key genetic models for the different deposits. Although felsic intrusive systems are diverse and complex, recent advances in the research associated with these systems have the potential to be utilized as exploration tools. Geochemical signatures can help to unravel the oxidation states of magmatic systems and ultimately assess the ore-forming potential of a porphyry system, and can be used in conjunction with other exploration tools, such as isotopic trace analyses on mineral separates. Trace element studies on the silicate-volatile systems from melt inclusion work are also discussed.
Key words: Granites     Mineralization     Rare metal     Pegmatite     Porphyry    
1 引言

广义上的花岗岩所包含的岩石类型丰富,大致上可定义为由石英、钾长石和斜长石组成的侵入岩(Le Maître, 1989)。Barbarin (1990)综述了花岗岩的分类方法,并提出了一个综合矿物组合、野外地质、岩相学特征、岩石化学及同位素化学特征的新分类方案。然而这个方案并没有被广泛运用,大部分学者仍采用国际地科联(IUGS)分类法( Maître, 1989):I型和S型分类法(Chappell and White, 1974; White and Chappell, 1983)或者准铝/过铝分类法(Shand, 1943)。另外,徐克勤等(1982, 1983)提出华南地区的花岗岩可以根据其物质来源、主导方式、大地构造部位、岩石学和花岗岩成矿作用分成三种形成系列:(1) 陆壳改造系列;(2) 过渡性地壳同熔型系列;(3) 幔源系列。

花岗岩和多种矿床相关,包括斑岩铜矿床、侵入岩相关的金矿床、矽卡岩矿床、铀矿床、稀有金属矿床、热液矿床(脉型和云英岩型),以及岩浆结晶晚期富稀有金属的伟晶岩矿床等(图 1; Černý et al., 2005)。高分异花岗岩与斑岩型矿化和稀有金属矿化密切相关,普遍认为花岗岩体为成矿热液循环的热源,而对于斑岩型矿床的金属来源(从岩浆或围岩)的认识还存在分歧(Černý et al., 2005; Seedorf et al., 2005; Cooke et al., 2014)。可见,花岗岩的成岩作用与Li、Rb、Cs、Cu、Mo、Sn、Zr、Th、U、Nb、Ta、W、Au和稀土元素矿化关系密切,但两者之间是否存在成因联系尚不清楚(Černý et al., 2005)。

图 1 花岗岩相关矿床地质剖面特征简图(a)和同源花岗岩和伟晶岩矿化分带图(b)(据Poulsen et al., 2000; Robert, 2004; Selway et al., 2005修改) Fig. 1 Schematic cross section showing the key geologic elements of the principal mineralized granite systems and their crustal depths of emplacement (a) and schematic representation of regional zoning in a cogenetic parent granite + pegmatite group (b) (modified after Poulsen et al., 2000; Robert, 2004; Selway et al., 2005)

花岗岩发育广泛,在大陆内部、岛弧、陆缘弧和洋内环境都有产出。Černý et al. (2005) 提出多数花岗岩型岩浆是源自中-下地壳,为水不饱和状态下含白云母、黑云母和角闪石源区部分熔融的产物,部分熔融的程度主要由源区水含量、温度以及石英和长石含量所控制。花岗岩通常形成于较氧化的环境条件下(fO2: FMQ±2-3; 图 2; Carmichael, 1991; Černý et al., 2005)。Ishihara(1977, 1981)把花岗岩分成磁铁矿系列和钛铁矿系列,这两个系列花岗岩是在不同氧逸度(fO2)条件下形成,它们的岩浆源区物质氧化程度和同化混染机制也存在差异;两个系列花岗岩在地球化学特征类似,磁铁矿含量(磁铁矿系列:0.2~1.5modal%,钛铁矿系列:低于0.2) 和Fe2+/Fe3+比值有所不同(Ishihara, 1977, 1981)。硫在磁铁矿系列岩浆熔体中主要以S6+形式存在,常形成富金属硫化物(Cu、Pb-Zn、Mo)矿床;而硫在还原状态的钛铁矿系列岩浆中主要以S2-形式存在,这常常导致早期硫化物的饱和熔离作用和钨锡矿床的形成(Ishihara, 1981; Černý et al., 2005)。也有学者基于花岗岩的I型和S型分类进行研究,指出与斑岩型铜金矿化相关的I型花岗岩体则倾向于在高温和高fO2值条件下形成。与钨锡矿床矿相关的S型则在相对较低温和低fO2值环境下形成(图 2)。可见,前人对花岗岩和成矿作用之间的关系存在很多不同的认识(Ishihara, 1981; Černý et al., 2005; Dill, 2015; Seedorf et al., 2005; Meinert et al., 2005; Goldfarb et al., 2005; 徐克勤等, 1982, 1983)。本文将侧重于综述与稀有金属矿床和斑岩型矿化相关的花岗岩类岩浆的主要特征,详细总结最新的研究成果,并为找矿勘探工作提供指示。

图 2 花岗岩相关矿床氧逸度-温度分布图解 I型和S型花岗岩、斑岩型矿床的范围参考Černý et al. (2005);矿物的沉淀条件参考Ohmoto and Goldhaber (1997) Fig. 2 Oxygen fugacity-temperature relationships for granites -related mineral deposits Shown are the redox fields for I-and S-type granites and the principal porphyry deposit types (modified after Černý et al., 2005). Depositional conditions for mineral deposits are modified after Ohmoto and Goldhaber (1997). Buffers shown are quartz-fayalite-magnetite (FMQ); hematite-magnetite (HM); pyrrhotite-pyrite (Po, Py); CO2-CH4, and SO2-H2S-HSO
2 矿化类型和特征 2.1 与高分异花岗岩相关的浸染状稀有金属矿化

富集稀有金属Li、Rb、Cs、Be、Sn、Zr、Th、U、Nb、Ta、W、Au和稀土元素(REEs)的花岗岩均为高分异的岩体,通常呈浸染状矿化形式产出(Jahns, 1982; Norton, 1983; Clark and Černý, 1987; London, 1990; Černý, 1991; Černý et al., 2005)。与稀有金属矿化有关的花岗岩可以根据其地球化学和矿物学特征分为三类:1) 过碱性花岗岩[(Na+K)/Al > 1],常具有低P和高Zr、REE、Y、Nb、F、Th、Sn、Be、Rb和U特征,通常为非造山期的产物,具有形成Zr、Nb、REE、U和Th矿化的潜力;2) 准铝质花岗岩[1 < Al/(Na+K) < 1.15],具高P、极低REE和低Th、Y、Zr、Sc和Pb特征,在造山期后或非造山环境都有发育, 具有Nb、Ta和Sn矿化的潜力; 3) 过铝质花岗岩[1 < Al/(Na+K) > 1.15],具高P、极低REE和低Th、Y、Zr、Sc和Pb特征,主要产于陆陆碰撞带(如中欧华力西造山带),具有Ta、Sn和Li矿化的潜力(Černý et al., 2005)。

Černý et al. (2005) 通过研究富稀有金属岩浆的分异机制,提出结晶分异作用是导致稀有金属从岩浆中分离并富集的重要机制,但在花岗岩系统中低分异岩相常不发育(如Tanco伟晶岩, Bernic Lake, Manitoba加拿大; Černý, 1982a; Černý et al., 1998),这可能是其他机制取代了结晶分异作用或者存在结晶分异作用和其他机制联合作用的结果。Černý et al. (2005) 总结的其他稀有金属富集机制包括:1) 中-下地壳(之前产出过普通花岗岩质熔体)部分熔融的程度(如英国西南的锡铜多金属矿化的S型黑云母花岗岩基;Manning and Hill, 1990);2) 源区性质(如华力西碰撞带的矿化作用与在岩石圈拆沉作用中发生的富集稀有金属源区部分熔融相关; Marignac and Cuney, 1999);3) 部分熔融和结晶分异联合作用(如Topaz流纹岩与非造山A型花岗岩成分相同, Spor Mountain, 美国犹他州; Burt et al., 1982)。Dingwell (1988)通过实验研究认为助熔元素如F、Li、B和P具有降低岩浆粘度和固相线温度,从而改变硅酸盐熔体的物理化学性质,导致晶体-熔体的分离和分异作用并促使稀有金属在残余的熔体中富集(Dingwell, 1988)。花岗岩质熔体的结晶晚阶段发生的流体饱和岀溶作用也会促进某些元素向低密度超临界流体相迁移,之后上升到达花岗岩体顶部,热液流体在花岗岩体顶部的不混溶作用会进一步促进稀有金属的极端富集(如俄罗斯的Orlovka Ta矿床; Reyf et al., 2000; Badanina et al., 2004; 范宏瑞等, 2006)。Veksler (2004)通过实验研究表明在过碱性成分和F-、Cl-、CO32-和BO33-存在时,岩浆-热液过渡阶段流体不混溶作用有所增强,而在富水系统中相分离作用更为强烈。同时,花岗岩浆可以出溶多种不同化学性质的流体,这对花岗岩稀有金属矿化有着重要的作用(Veksler, 2004)。

2.2 与花岗岩有关的热液锡钨矿床

锡钨型矿化类型主要有云英岩型、网脉或脉型,较少量产出于角砾岩筒中或交代矽卡岩(Chicharro et al., 2016; 华仁民等, 2010)。单矿脉或网脉系统可以赋存于花岗岩内或者延伸至围岩里(Černý et al., 2005; Hua et al., 2010)。位于伊比利亚半岛葡萄牙中部的Panasqueira矿床是世界上最大的锡钨脉型矿床之一,是一个典型的脉型锡钨矿床,其成矿与S型花岗岩相关(Polya, 1989; Noronha et al., 1992)。Dill(Dill, 2015; Dill et al., 2008)描述了锡钨花岗伟晶岩与云英岩和脉型矿床之间的联系,特别是在德国的Erzgebirge锡钨矿区。王汝成等(2008)通过钨锡花岗岩矿物学研究表明黑云母、榍石、锡石、金红石、黑钨矿、白钨矿和铌钨矿是区分花岗岩成矿潜力的重要矿物。锡钨矿床的矿石矿物主要是呈浸染状产出的锡石、黑钨矿和白钨矿,热液蚀变普遍发育,主要表现为石英和白云母替代花岗岩中的原生矿物(如长石等)(Černý et al., 2005;毛景文等, 2014)。基于在中国华南钨锡矿床不同深度的热液蚀变组合和矿化类型,近年提出了“五层楼+地下室”的新模型(许建祥等, 2008; 王登红等, 2010)。另外,虽然锡钨矿化和卤水流体的关系已经确立,但成矿流体来源(岩浆流体,变质流体或大气降水)和富锡钨流体的运移以及沉淀机制还是存在争议(Polya, 1989; Heinrich, 1990; 蒋少涌等, 2006)。

近年来通过对非洲、巴西和欧洲华力西造山带锡钨矿矿床进行了详细的研究(Dill, 2015),发现大多数矿化主要赋存于花岗伟晶岩中,主要为云英岩型、脉型和矽卡岩型矿床。Dill (2015)研究认为花岗伟晶岩中钨锡矿床与碰撞环境(以欧洲华力西造山带为例)下的S型深源花岗岩相关,而脉型锡钨矿床则和裂谷环境(以中南美和西非为例子)A-型花岗岩相关。Chicharro et al. (2016)通过研究Logrosán锡(钨)矿床地球化学和矿物学特征,利用Ar-Ar定年、流体包裹体和同位素等地球化学手段,明确了该矿床与Logrosán花岗岩(形成于308Ma)之间的关系,该项研究还揭示了花岗岩和围岩的长期接触变质作用是导致热液与附近变质沉积岩的相互作用的主要原因(证据是N2和CH4的存在),在此基础上提出一个新的成矿模式,认为围岩混染作用以及变质流体和岩浆流体混合使成矿系统的氧化还原条件发生改变,从而导致含锡矿物的沉淀(Chicharro et al., 2016)。

2.3 稀有元素伟晶岩:晚期岩浆分异作用和花岗伟晶岩分类

伟晶岩质岩石在结构上不均匀,通常含有粗大的长石、石英和云母晶体。花岗伟晶岩可以赋存各种稀有金属,如Li、Rb、Cs、Be、Ga、Sc、Y、REE、Sn、Nb、Ta、U、Th、Zr和Hf(Černý, 1991)。除了具有稀有金属矿化潜力以外,高纯度的工业矿物如长石、光学石英、透锂长石和萤石也是具有开采价值的副产品,这使得伟晶岩的勘探变得更加可行(Černý, 1991;张辉和刘丛强, 2001; 周起凤等, 2013)。基于全岩和副矿物的地球化学特征、内部结构和结晶温压条件,早期的分类法把稀有元素伟晶岩分为三大类(LCT型,NYF型和混合型)(Černý, 1982b, 1991)。LCT伟晶岩是富Li、Cs和Ta岩浆熔体结晶的产物,片岩、片麻岩和早期花岗岩体是LCT型稀有金属矿化伟晶岩最主要的围岩(Černý, 1991)。LCT型伟晶岩有较高的经济潜力(与NYF伟晶岩相比),特别是钠长石-锂辉石类型(Černý and Ercit, 2005),其产出有多种形状:透镜状、蘑菇状和岩墙状。NYF型伟晶岩是富Nb、Y、和F岩浆熔体结晶的产物。大多数NYF型花岗伟晶岩的SiO2含量比较低,铝质到准铝质系列都有发育,NYF型伟晶岩通常被认为是没有经济价值的(Černý, 1991; Dill, 2015)。近年来,有几个关于稀有元素伟晶岩分类方案的问题被提出(Pezzotta, 2001; Ercit, 2004; Tkachev, 2011; Dill, 2015),最主要的问题是所有稀有元素伟晶岩都可归属到这两类伟晶岩(LCT, NYF)中,然而在世界上很多例子不符合这个分类方案(Novák et al., 2012)。比如,Dill (2015)描述德国东南的Hagendorf-Pleystein伟晶岩区,锂主要赋存于岩株状伟晶岩石中,而不是在细晶岩或伟晶岩中。此外,铯的含量比较低,岩石化学显示富铌。因此,Hagendorf-Pleystein被分类为LCT型稀有金属伟晶岩,而附近富集Nb-(Ti、Zr、Y和Th)和稀土的细晶岩则被归类为NYF型。Dill (2015)也论述了稀有元素伟晶岩错误分类的例子,如上述的Hagendorf-Pleystein伟晶岩区两种临近的伟晶岩分别被归类为LCT和NYF型。基于LCT-NYF分类方案,S型造山型花岗岩可与非造山A型花岗岩相邻产出。另外,很多伟晶岩具有与LCT和NYF型二者都相似的地球化学特征。为了解决上述的一些问题,Dill (2015)提出了新的稀有元素伟晶岩分类法,命名为伟晶和细晶类岩石的“CMS”分类法,为一个描述性的方案,联合伟晶类岩石的化学成分(C)、矿物组合(M)和构造地质(S)联合起来分类,Dill (2015)认为CMS是稀有元素伟晶岩系统的三个重要控矿因素,该分类法在其描述性的本质和避免成因判读上占有优势,但大部分的伟晶岩文献还是沿用Černý (1991) 的LCT和NYF型分类法。或许Dill (2015)的新分类法在将来的研究中会被更广泛的运用。

世界上伟晶岩矿床最集中的阿尔泰地区从加里东期到海西期、印支期、燕山期(王登红等, 2003)均有伟晶岩和伟晶岩型矿床形成,并具有从早到晚矿床规模越来越大、元素组合和矿物组合越来越多、伟晶岩分带越来越完善的特征,主要的成矿阶段发生在各造山运动之后相对宁静的时期(王登红等, 2004)。矿物学研究表明伟晶岩中磷灰石的稀土元素具有明显的“四分组效应”,并指示稀土元素“四分组效应”是形成伟晶岩熔体的一个基本特征(张辉和刘丛强, 2001)。

太古代和元古代LCT型伟晶岩为高分异的侵入体(Selway et al., 2005)。富矿花岗岩表现为从弱到强过铝的性质,以及富Li、Rb、Cs、Be、Sn、Ga、Ta > Nb(B、P、F)的特征,其中在晚期伟晶岩质相的岩石中更为富集(Černý et al., 2005)。LCT型稀有元素伟晶岩是高分异的陆相火成岩,Li、B、F、P和H2O的富集会使岩浆的聚合作用减低、流体流动性和活动性增高,而伟晶质熔体的稳定性随着温度下降而降低,这有利于富挥发物和稀有元素的熔体运移,从而在母花岗岩周围发育稀有元素伟晶岩环带(London, 1987; London and Burt, 1982; Černý and Ercit, 2005; Černý et al., 2005)。加拿大曼尼托巴省西南2640Ma的Tanco伟晶为一个LCT型伟晶岩杂岩体,属于太古代加拿大地盾的Superior Province,为一个高分异和富集Li、REE和Ta的伟晶岩,主要赋存在晚期次火山变质辉长岩体中(Černý et al., 1998)。Tanco地区伟晶岩为近于水平的透镜状,具有内部分带和分层(图 3)。Černý et al. (1998) 指出该区太古代花岗岩是世界上最富集伟晶岩型矿床的区域之一,在Tanco地区的经济矿物有褐帘石、独居石、钽铁矿、绿柱石、铯榴石、锂云母和锂辉石,以及各种工业矿物如石英、长石和云母,Ta和Ce在距离较远伟晶岩的含量较高,富矿母花岗岩则没有出露,推测可能埋藏在深处(Černý et al., 1998)。另一个LCT型伟晶岩杂岩体的例子是加拿大安大略省晚太古代Ghost Lake岩基中的Mavis Lake伟晶岩组,其中过铝质富矿S型花岗岩体中的矿物主要有堇青石、矽线石、镁石榴子石、电气石、绿柱石和少量蓝线石(一种硼矽酸盐)。Ghost Lake岩基显示了地球化学分异作用具有不断加强的趋势,发育多个稀有矿化金属伟晶岩,如Mavis Lake伟晶岩组。当富矿花岗岩中未发育伟晶岩时,稀有金属矿化伟晶岩中亲石元素的源区和富集过程则难以鉴别。另外,熔体在上升和侵位时会有地壳物质的混入,会形成具有复杂地球化学的和矿物学特征的杂岩浆。Ghost Lake岩基和其相关的Mavis Lake伟晶岩产出在同一个侵入杂岩体里,其中的稀有金属伟晶岩相和过铝质母花岗岩为同一源区演化的产物(Breaks and Moore, 1992)。

图 3 加拿大曼尼托巴省西南Tanco地区伟晶岩剖面地质简图(据Van Lichtervelde et al., 2007) Fig. 3 Schematic cross-section showing the diverse internal zoning of the Tanco pegmatite, Manitoba, Canada (modified after Van Lichtervelde et al., 2007)
2.4 与花岗质岩石有关的斑岩型矿床

斑岩矿床一般赋存在多相花岗质岩体的内部或者接触带(图 4),以筒状(“铅笔状”斑岩)、岩墙和岩株状等形式产出。围绕侵入体的热液蚀变分带一般以钾硅酸盐化蚀变为核心(为热液系统早阶段演化的产物),外围发育青磐岩化蚀变晕(图 4)。以矿化类型分类,斑岩矿床可以分为五种,其中斑岩铜和钼矿床最为常见,斑岩锡、钨和金矿床也有产出(Seedorf et al., 2005)。

图 4 斑岩矿床矿化蚀变分带图解(据Holliday and Cooke, 2007; Cooke et al., 2014修改) Fig. 4 Schematic illustration of alteration zoning and overprinting relationships in a porphyry system (modified after Holliday and Cooke, 2007; Cooke et al., 2014)

斑岩铜-金-钼矿床主要产于第三纪和第四纪的岩浆弧环境(如环太平洋带),也产于陆内环境(Cooke et al., 2005; Richards, 2009; Sillitoe, 2002; Hou et al., 2011; 毛景文等, 2014; Zhou et al., 2015; Pirajno and Zhou, 2015)。与斑岩矿化相关的钙碱性岩浆活动也可以在弧后盆地、拉张性环境,以及后碰撞环境下产生(Hollings et al., 2011a; Wolfe and Cooke, 2011)。世界上,斑岩铜矿床的地质特征大致上都是类似的,这可能暗示着它们都是通过相似的地质过程形成的(没有独特的成矿过程或岩浆作用),一般的钙碱性岩浆都有斑岩铜成矿潜力(Dilles, 1987; Cline and Bodnar, 1991; Richards, 2002)。这些矿床的大小和品位不同可能是源自一系列因素的综合作用,如构造状态、热液出溶和其后的成矿物质沉淀机制(Cline and Bodnar, 1991; Clark, 1993; Richards, 2002)。

许多论述斑岩铜矿床相关的岩浆作用成果已经发表(Burnham, 1997; Cline and Bodnar, 1991; Hedenquist and Lowenstern, 1994; 张旗等, 2002; Richards, 2003, 2011; 翟明国, 2004; Seedorff et al., 2005; Sillitoe, 2010; Simon and Ripley, 2011; Cooke et al., 2014),在此本文暂不重复。

斑岩锡钨矿床较少产出,其形成通常与S型花岗岩的深熔作用有关。大多数世界有名的斑岩型钨锡矿床主要产于中生代/晚白垩纪的华南地区。如,位于中国广东省西部的三个斑岩锡(钨)矿床,包括银岩矿床(Zheng et al., 2015)。在银岩矿区,斑岩型和脉型矿床都有产出,主要的矿石矿物为锡石和黑钨矿(Zheng et al., 2015),热液蚀变以钾化、硅化为主。Zheng et al. (2015)利用辉钼矿Re-Os同位素厘定了矿床的形成年龄,并指出银岩斑岩锡矿床的成矿物质一部分来自地壳。

斑岩矿床和花岗斑岩体之间的关系很早就已经被发现(Lindgren, 1905)。斑岩型矿化通常与深部中性到长英质斑岩侵入体有关(如花岗闪长岩、石英闪长岩和石英二长岩, 图 5; Kesler et al., 1975; Audétat and Simon, 2012),成矿物质通常认为可能是来自深部的富矿镁铁质岩浆(Audétat and Simon, 2012; Hou et al., 2011)。Richards (2003)提出地幔楔部分熔融形成富水、硫和高氧逸度的玄武质岩浆(图 6; Cooke et al., 2005; Sun et al., 2010)与上覆地壳相互作用,经过同化混染、分离结晶和混合作用,从而形成更富硅(安山质到英安质)的斑岩矿床成矿岩浆(图 6)。前人也提出过这种相互作用发生在壳幔过渡带区域,玄武质岩浆底垫到下地壳底部储存并导致其发生部分熔融,并与之产生的岩浆发生同化和均一化作用(MASH),从而形成更富硅的中酸性岩浆(Annen et al., 2006; DePaolo, 1981; Hildreth and Moorbath, 1988)。另外,这些镁铁质岩浆也可能上升到较冷的上地壳(5~15km),由于两者的密度差使其储存堆积在上地壳,并形成成分上具有分层性的岩浆房,随后新的镁铁质岩浆再次侵入会激活整个系统,从而在上地壳形成一个巨大的、持久的岩浆房(Bachmann and Bergantz, 2008; Rutherford, 2008; 周涛发等, 2016)。底侵的镁铁质岩浆将向中酸性岩浆房输送富金属和硫挥发性流体,从而使上覆中酸性岩浆更富硫并有硬石膏形成(Hattori, 1993),这种镁铁质和长英质岩浆相互作用导致部分熔融、混合和挥发份的岀溶作用,有可能形成大量岩浆硫化物(Keith et al., 1997; Hattori and Keith, 2001; Maughan et al., 2002; Halter et al., 2005; Lickfold et al., 2007; Sillitoe, 2010; Audétat and Simon, 2012; Hollings et al., 2013; Hou et al., 2013; Wang et al., 2015, 2016)。

图 5 不同矿化类型斑岩矿床成矿岩石分类图解(数据据Seedorff et al., 2005; 底图据Le Maître, 1989) Fig. 5 Porphyry deposit types after Seedorff et al. (2005) plotted by rock type (Fields from Le Maître, 1989)

图 6 斑岩矿床深部过程图解(据Richards, 2003 and Cooke et al., 2014修改) (a)下地壳岩浆房中的熔体由于压力作用发生上涌底辟作用;(b)由于中性岩浆密度较小,沿着岩浆通道上升到地壳浅部,如果岩浆通道直达地表,则会发生火山喷发作用;若未直达地壳,则会形成浅部岩浆房 Fig. 6 Schematic cross-section of a translithospheric shear zone with associated porphyry mineralization (modified after Richards, 2003; Cooke et al., 2014) (a) migmatitic zone in the lower crust where low melt fractions result in melts migration by percolation to regions of lower pressure; (b) magma migrates up dikes to its neutral buoyancy level in the upper crust. Magmas may erupt if dikes connect to the surface (shown here as a red-colored dacite dome) or they will accumulate within shallow magma chamber

与斑岩矿化密切相关的侵入体通常含有55%~78%的SiO2(Seedorf et al., 2005),岩石类型包括闪长岩、英云闪长岩、花岗闪长岩、二长岩、花岗岩、正长岩和奥长花岗岩。斑岩铜矿床通常赋存在二长岩,花岗岩和正长岩中,斑岩金矿床常与闪长岩相关,斑岩钼矿床常与二长岩、花岗岩和奥长花岗岩相关,斑岩锡钨矿床则与花岗岩和花岗闪长岩相关(图 5; Seedorf et al., 2005)。此外,碱性岩浆作用和富金斑岩系统关系密切,比如澳大利亚的Cadia(Holliday et al., 2002),Dinkidi(Hollings et al., 2011; Wolfe and Cooke, 2011),Northparkes(Heithersay and Walshe, 1995; Lickfold et al., 2007; Müller and Groves, 2000),以及加拿大不列颠哥伦比亚的矿床(如Galore Creek、Mt Milligan、Mt Polley、Afton、Ajax、Lorraine; Lang et al., 1995)。Pettke et al. (2010)通过对Bingham(美国)斑岩矿床内流体包裹体的铅同位素特征研究发现,该矿床的形成与源自变质的交代次大陆岩石圈幔源有关,并认为西藏冈底斯成矿带内与高钾钙碱性岩浆作用相关的斑岩铜钼矿床也是类似的成矿过程的产物,该高钾钙碱性岩浆作用比区内弧岩浆作用晚约50Myr(Hou and Cook, 2009)。

Seedorf et al. (2005)研究指出在高温环境下,与斑岩相关的岩浆硫化态在斑岩铜-金、钼、锡、钨矿床中不断降低(图 2),这主要是由于斑岩铜岩浆较斑岩钼、锡和钨岩浆的氧逸度高(Seedorf et al., 2005),弧岩浆的高氧逸度( > FMQ+2; Brandon and Draper, 1996)被认为对斑岩矿床的形成至关重要,这使硫主要呈硫酸盐的形式存在(Carroll and Rutherford, 1985),继而使亲铜元素(如铜和金)以不相容元素的形式保留在岩浆熔体中(Bornhorst and Rose, 1986; Richards et al., 1991; Spooner, 1993; Richards, 1995; Cooke et al., 2014)。Mungall (2002)提出俯冲洋壳部分熔融会产生埃达克质熔体是特别有效的地幔氧化剂,主要是由于海底玄武岩为其提供了大量三价铁离子。由于洋壳板片熔融作用不太常见,Richards (2005)提出洋壳部分熔融对斑岩铜矿床的形成作用不大,但可能在岛弧折返和弧碰撞环境,滞留深部的洋壳板片部分熔融对形成富金斑岩型矿床有一定作用(Solomon, 1990; Richards, 1995; Sillitoe, 1997; Hollings et al., 2005)。Fiorentini and Garwin (2010)指出印尼松巴哇岛以南密度较小的Roo Rise海底高原的俯冲是导致俯冲大洋板片发生撕裂的主要原因,从而使产生的幔源熔体侵位地壳浅部,形成火山弧以及Batu Hijau矿床的形成(Garwin, 2002)。并且,与Batu Hijau矿床有关的安山岩和英云闪长岩中角闪石含有极低的硼和锂,这可能表明源区有非俯冲板片脱水衍生的流体参与(Fiorentini and Garwin, 2010)。

地幔中的水在斑岩矿床富矿岩浆的形成过程具有重要作用。Richards (2011)认为在地壳深部,岩浆富水( > 4%)会诱发角闪石(±石榴子石)结晶抑制斜长石结晶,从而形成具有高Sr/Y和La/Yb比值的岩浆。在陆内环境,前人提出角闪石的分解会释放斑岩矿床形成所需要的水(如西藏;Hou et al., 2013)。Loucks(2000, 2012)和Loucks and Ballard (2002)的研究显示世界上超过80个斑岩铜矿床的形成可能与Sr/Y > 35的长英质侵入体有关,认为形成这些长英质侵入体的岩浆可能源自莫霍面层次的岩浆房内玄武岩浆结晶分异作用的产物,并且,岩浆房中连续的分离结晶作用和间歇性的岩浆充填会导致残余熔体有大量的溶解水积累。Loucks (2012)认为斑岩铜(金钼)矿床的成矿流体来自中酸性岩浆,这些中酸性岩浆具有较低的Zr、Y和Yb,较高的Sr和Eu,以及较高的Sr/Zr、Sr/Y和Eu/Yb比值,它们可能是压力约6~13kbar岩浆房中含水拉斑玄武质岩浆的结晶分异的产物,这也与Richards (2011)的研究一致。岩浆房中存在角闪石结晶而无斜长石和磁铁矿结晶可能是导致富矿岩浆具有埃达克岩质岩浆地球化学特征的主要原因(Loucks, 2012)。

Loucks (2014)研究认为控制岩浆能否成矿并非独立的岩浆中心源,而可能是绵延几百公里范围的岩浆弧。Rohrlach and Loucks (2005)用斜长石/熔体化学地热温标显示菲律宾棉兰老岛上巨型Tampakan斑岩铜(金)矿床的成矿英安岩浆含水~8%,这可能是多级岩浆房的补充和多次分离结晶作用的结果。Loucks (2014)Zhang et al. (2015)研究认为在含水较多的镁铁质到长英质岩浆演化系列中,全岩Al2O3/TiO2和Sr/Y的比值会随着SiO2增加而上升;但在含水较少或干燥的系统中,比值将会保持不变或者降低。同样地,由于角闪石会比钛磁铁矿更早发生分离结晶,熔体中的Fe3+和Fe2+被损耗从而抑制磁铁矿结晶,V/Sc比值也会随着SiO2增加而上升。Williamson et al. (2016)研究认为在富矿斑岩系统的斜长石比在贫矿系统的要富铝,这可能是由于熔体的富水导致了过多的铝产生,从而有利于铜呈不相容元素的形式(Si4O8和H2O替代AlAl3SiO8会把铜排除在斜长石M-sites外)在晚期演化的熔体中富集。

3 结论和勘探启示

表 1总结了在本文讨论的各个赋存于花岗岩中稀有金属矿床的特征。通过综述可见,花岗岩成矿系统具有多样性和复杂性的特征,致使勘探工作极具挑战。近年来对于斑岩成矿系统研究也为勘探工作提供了部分有效的工具。Loucks (2014)Richards (2011)的研究显示地球化学数据(如Sr/Y和V/Sc比值)可以判定岩浆的氧化还原状态和斑岩的成矿潜力。可是,这些方法在区域范围内(而非单个矿床)会比较有效,因为具经济价值的矿床的形成取决于(除岩浆源以外的)一系列因素。Williamson et al. (2016)的斜长石研究结果可以用在评估单个侵入体的成矿潜力,帮助解决勘探问题,但仍需要更多的个案研究来优化。

表 1 花岗岩相关稀有金属矿床总结 Table 1 Summary of rare metal-hosted granite deposits

在斑岩系统的研究中,LA-ICPMS和扫描电子显微镜技术被用来测试分析矿物微量元素成分,这些技术在近年来应用越来越广泛(如硫化物微量元素分布, Pašava et al., 2016; 周涛发等, 2010)。Pašava et al. (2016)通过对捷克Bohemian Massif矿区(云英岩金矿、贱金属矿和贫矿花岗岩)和乌兹别克斯坦的斑岩铜钼金矿床中辉钼矿的微量元素分析发现,这些辉钼矿样品的微量元素成分具有一定的差异。此外,辉钼矿中铼的含量多少可以辨别成矿物质是来自于地壳(云英岩型、贱金属等矿床),还是壳幔混合(金矿床和大多数花岗岩相关矿床)(毛景文等, 2004)。这是一个新的研究领域,对于阐明稀有金属花岗岩系统中不同矿化类型的形成可能很有帮助。

虽然稀有金属伟晶岩的成因和成矿作用还存在争议,但可明确的是伟晶岩的成矿作用是地壳源区(熔体的产生)和局部演化(独特的物理化学成矿作用)联合作用的结果(Deveaud et al., 2015)。纵使我们知道稀有金属伟晶岩是高度分异的产物,但伟晶岩的形成机制仍不明确。近年来,矿物的锂同位素分析研究在解释花岗岩和伟晶岩的形成方面得到了广泛应用(如加拿大Little Nahanni伟晶岩组的稀土伟晶岩演化, Barnes et al., 2012; 美国加州San Diego伟晶岩中电气石锂同位素, Maloney et al., 2008)。Deveaud et al. (2015)通过综合研究发现Monts d’Ambazac(法国中央高原)伟晶岩中云母的δ7Li值局限在很小的范围内,这可能是由于伟晶岩是富集稀有金属矿物(如云母和石榴子石)源区的部分熔融的产物,此过程中锂的扩散作用或伟晶岩岩浆分离结晶作用较弱。该研究有助于阐明伟晶岩岩浆的成因和稀有金属的富集作用。可以预见不久的将来会有更多关于不同类型伟晶岩和不同矿物的同位素示踪研究工作发表。

另一个有趣的研究方向是通过测试分析伟晶岩石英中熔体包裹体的水和主微量元素含量研究稀有金属伟晶岩的成因,尤其是近年来LA-ICP-QMS和SXRF的技术开发利用更促进该方面研究的进行(Thomas and Davidson, 2016)。Thomas and Davidson (2016)通过研究发现形成伟晶岩熔体中水的含量可高达33.3%,并认为伟晶岩为高温的超临界流体阶段的产物,而超临界流体可被界定为硅酸熔体向热液过渡的中间产物,熔体包裹体研究显示具有低粘度、高活动性和高不相容元素溶解度的特性,推测熔体包裹体的成分可能为超临界流体,并指出超临界流体的这些特性能够更好地分离长英质花岗岩浆中的不相容元素。因此,熔体包裹体的微量元素研究有助于进一步阐明稀有金属花岗岩、伟晶岩及与其有关矿床的成因。

致谢 两位匿名审稿人对于本文提出的很多宝贵意见,在此表示衷心感谢!
参考文献
[] Annen C, Blundy JD, Sparks RSJ. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505–539.
[] Audétat A and Simon A. 2012. Magmatic controls on porphyry copper genesis. In: Hedenquist JW, Harris M and Camus F (eds.). Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Lancaster: Society of Economic Geologists, Special Publication, 16: 553-572
[] Bachmann O, Bergantz GW. 2008. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Reviews in Mineralogy and Geochemistry, 69(1): 651–674. DOI:10.2138/rmg.2008.69.17
[] Badanina EV, Veksler IV, Thomas R, Syritso LF, Trumbull RB. 2004. Magmatic evolution of Li-F, rare-metal granites: A case study of melt inclusions in the Khangilay complex, eastern Transbaikalia (Russia). Chemical Geology, 210(1-4): 113–133. DOI:10.1016/j.chemgeo.2004.06.006
[] Barbarin B. 1990. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal, 25(3-4): 227–238. DOI:10.1002/(ISSN)1099-1034
[] Barnes EM, Weis D, Groat LA. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21–36. DOI:10.1016/j.lithos.2011.11.014
[] Bornhorst TJ, Rose WI Jr. 1986. Partitioning of gold in young calc-alkalic volcanic rocks from Guatemala. The Journal of Geology, 94(3): 412–418. DOI:10.1086/629039
[] Brandon AD, Draper DS. 1996. Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739–1749. DOI:10.1016/0016-7037(96)00056-7
[] Breaks FW, Moore JM. 1992. The ghost lake batholith, superior province of northwestern Ontario: A fertile, S-type, peraluminous granite-rare-element pegmatite system. The Canadian Mineralogist, 30(3): 835–875.
[] Burnham CW. 1997. Magmas and hydrothermal fluids. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York: John Wiley and Sons, 63-124
[] Burt DM, Sheridan MF, Bikun JV, Christiansen EH. 1982. Topaz rhyolites; distribution, origin, and significance for exploration. Economic Geology, 77(8): 1818–1836. DOI:10.2113/gsecongeo.77.8.1818
[] Carmichael ISE. 1991. The redox states of basic and silicic magmas: A reflection of their source regions?. Contributions to Mineralogy and Petrology, 106(2): 129–141. DOI:10.1007/BF00306429
[] Carroll MR, Rutherford MJ. 1985. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research, 90(S02): C601–C602. DOI:10.1029/JB090iS02p0C601
[] Černý P. 1982a. The Tanco pegmatite at Bernic Lake, southeastern Manitoba. In: Černý P (ed.). Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Short Course Handbook, 8: 527-543
[] Černý P. 1982b. Anatomy and classification of granitic pegmatites. In: Černý P (ed.). Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Short Course Handbook, 8: 1-39
[] Černý P. 1991. Rare-element granitic pegmatites. Part Ⅰ: Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18(2): 49–67.
[] Černý P, Ercit TS and Vanstone PJ. 1998. Mineralogy and petrology of the Tanco rare-element pegmatite deposit, southeastern Manitoba. In: Proceedings of the 17th General Meeting. Toronto: International Mineralogical Association
[] Černý P, Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43: 2005–2026. DOI:10.2113/gscanmin.43.6.2005
[] Černý P, Blevin PL, Cuney M and Nicolescu S. 2005. Granite-related ore deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology, 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, Inc., 337-370
[] Chappell BW, White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174.
[] Chicharro E, Oiron MC, López-García Já, Barfod DN, Villaseca C. 2016. Origin, ore forming fluid evolution and timing of the Logrosan Sn-(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews, 72: 896–913. DOI:10.1016/j.oregeorev.2015.09.020
[] Clark AH. 1993. Are outsize porphyry copper deposits either anatomically or environmentally distinctive? In: Whiting BH, Hodgson CJ and Mason R (eds). Giant Ore Deposits. Society of Economic Geologists Special Publication, 2: 213–283.
[] Clark GS, Černý P. 1987. Radiogenic 87Sr, its mobility, and the interpretation of Rb-Sr fractionation trends in rare-element granitic pegmatites. Geochimica et Cosmochimica Acta, 51(4): 1011–1018. DOI:10.1016/0016-7037(87)90112-8
[] Cline JS, Bodnar RJ. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?. Journal of Geophysical Research, 96(B5): 8113–8126. DOI:10.1029/91JB00053
[] Cooke DR, Hollings P, Walshe JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801–818. DOI:10.2113/gsecongeo.100.5.801
[] Cooke DR, Baker M, Hollings P, Sweet G, Chang Z, Danyushevsky L, Gilbert S, Zhou T, White NC, Gemmell JB and Inglis S. 2014. New advances in detecting the distal geochemical footprints of porphyry systems: Epidote mineral chemistry as a tool for vectoring and fertility assessments. In: Kelley KD and Golden HC (ed.). Building Exploration Capability for the 21st Century. Colorado, USA: Society of Economic Geologists, Special Publication, 18: 127-152
[] DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2): 189–202. DOI:10.1016/0012-821X(81)90153-9
[] Deveaud S, Millot R, Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chemical Geology, 411: 97–111. DOI:10.1016/j.chemgeo.2015.06.029
[] Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštaric S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D and Schulz HM. 2008. Fossil fuels, ore and industrial minerals. In: McCann T. (ed.). The Geology of Central Europe. Geological Society, London, Special Publications, 1341-1449
[] Dill HG. 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews, 69: 417–561. DOI:10.1016/j.oregeorev.2015.02.022
[] Dilles JH. 1987. Petrology of the Yerington batholith, Nevada; evidence for evolution of porphyry copper ore fluids. Economic Geology, 82(7): 1750–1789. DOI:10.2113/gsecongeo.82.7.1750
[] Dingwell DB. 1988. The structures and properties of fluorine-rich magmas: A review of experimental studies. In: Taylor RP and Strong DF (eds.). Recent Advances in the Geology of Granite-Related Mineral Deposits: Proceedings of the CIM Conference on Granite-Related Mineral Deposits. Montreal: Canadian Institute of Mining and Metallurgy, 39: 1-12
[] Ercit TS. 2004. REE-enriched granitic pegmatites. In: Linnen RL and Samson IM (eds.). Rare-element Geochemistry and Ore Deposits. Geological Association of Canada Short Course Notes: 257–296.
[] Fan HR, Hu FF, Yang KF, Liu S, Wang KY. 2006. Fluid unmixing/immiscibility as an ore-forming process in the superlarge REE-Nb-Fe deposit, Inner Mongolian, China. Mineral Deposits, 25(Suppl.1): 163–166.
[] Fiorentini ML, Garwin SL. 2010. Evidence of a mantle contribution in the genesis of magmatic rocks from the Neogene Batu Hijau district in the Sunda Arc, South Western Sumbawa, Indonesia. Contributions to Mineralogy and Petrology, 159(6): 819–837. DOI:10.1007/s00410-009-0457-7
[] Garwin S. 2002. The geologic setting of intrusion-related hydrothermal systems near the Batu Hijau porphyry copper-gold deposit, Sumbawa, Indonesia. In: Goldfarb RJ and Nielsen RL (eds.). Global Exploration 2002: Integrated Methods for Discovery. Colorado, USA: Society of Economic Geologists, Special Publication, 9: 333-366
[] Goldfarb R, Baker T, Dube B, Groves D, Hart C and Robert F. 2005. Epigenetic lode gold deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, Inc., 407-450
[] Halter WE, Heinrich CA, Pettke T. 2005. Magma evolution and the formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 39(8): 845–863. DOI:10.1007/s00126-004-0457-5
[] Hattori K. 1993. High-sulfur magma, a product of fluid discharge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines. Geology, 21(12): 1083–1086. DOI:10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2
[] Hattori KH, Keith JD. 2001. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Mineralium Deposita, 36(8): 799–806. DOI:10.1007/s001260100209
[] Hedenquist JW, Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519–527. DOI:10.1038/370519a0
[] Heinrich CA. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology, 85(3): 457–481. DOI:10.2113/gsecongeo.85.3.457
[] Heithersay PS, Walshe JL. 1995. Endeavour 26 North: A porphyry copper-gold deposit in the Late Ordovician, shoshonitic Goonumbla volcanic complex, New South Wales, Australia. Economic Geology, 90(6): 1506–1532. DOI:10.2113/gsecongeo.90.6.1506
[] Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98(4): 455–489. DOI:10.1007/BF00372365
[] Holliday JR, Wilson AJ, Blevin PL, Tedder IJ, Dunham PD, Pfitzner M. 2002. Porphyry gold-copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism. Mineralium Deposita, 37(1): 100–116. DOI:10.1007/s00126-001-0233-8
[] Holliday JR and Cooke DR. 2007. Advances in geological models and exploration methods for copper + or -gold porphyry deposits. Proceedings-Decennial International Conference on Mineral Exploration 5, 791-809. Toronto, Canada
[] Hollings P, Cooke D, Clark A. 2005. Regional geochemistry of Tertiary igneous rocks in Central Chile: Implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Economic Geology, 100(5): 887–904. DOI:10.2113/gsecongeo.100.5.887
[] Hollings P, Wolfe R, Cooke DR, Waters PJ. 2011. Geochemistry of tertiary igneous rocks of northern Luzon, Philippines: Evidence for a back-arc setting for alkalic porphyry copper-gold deposits and a case for slab roll-back?. Economic Geology, 106(8): 1257–1277. DOI:10.2113/econgeo.106.8.1257
[] Hollings P, Sweet G, Baker MJ, Cooke DR and Fiedman R. 2013. Tectonomagmatic controls on porphyry mineralization: Geochemical evidence from the Black Mountain porphyry system, Philippines. In: Colpron M, Bissig T, Rusk BG and Thompson JFH (eds.). Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Denver, USA: Society of Economic Geologists, Special Publication, 17: 301-335
[] Hou ZQ, Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2–24. DOI:10.1016/j.oregeorev.2009.05.001
[] Hou ZQ, Zhang HR, Pan XF, Yang ZM. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1-2): 21–45. DOI:10.1016/j.oregeorev.2010.09.002
[] Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM, Sun QZ. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 48(2): 173–192. DOI:10.1007/s00126-012-0415-6
[] Hua RM, Li GL, Zhang WL, Hu DQ, Chen PR, Chen WF, Wang XD. 2010. A tentative discussion on differences between large-scale tungsten and tin mineralizations in South China. Mineral Deposits, 29(1): 9–23.
[] Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27(145): 293–305.
[] Ishihara I. 1981. The granitoid series and mineralization. In: Skinner BJ (ed.). Economic Geology, 75th Anniversary Volume. The Economic Geology Publishing Company Library of Congress: 458–484.
[] Jahns RH. 1982. Internal evolution of pegmatite bodies. In: Černý P (ed.). Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Short Course Handbook, 8: 293-346
[] Jiang SY, Zhao KD, Jiang YH, Ling HF, Ni P. 2006. New type of tin mineralization related to granite in South China: Evidence from mineral chemistry, element and isotope geochemistry. Acta Petrologica Sinica, 22(10): 2509–2516.
[] Keith J, Waite K, Christiansen E, Deino A, Ballantyne G. 1997. Contributions of mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo system, Utah. Geological Society of America, Abstracts with Programs, 29(6): 282.
[] Kesler SE, Jones LM, Walker RL. 1975. Intrusive rocks associated with porphyry copper mineralization in island arc areas. Economic Geology, 70(3): 515–526. DOI:10.2113/gsecongeo.70.3.515
[] Lang JR, Stanley CR, Thompson JFH and Dunne KPE. 1995. Na-K-Ca magmatic hydrothermal alteration in alkalic porphyry Cu-Au deposits, British Columbia. In: Thompson JFH (ed.). Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada Short Course, 23: 339-366
[] Le MaÎtre RWE. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell Scientific Publications, 1-193
[] Lickfold V, Cooke DR, Crawford AJ, Fanning CM. 2007. Shoshonitic magmatism and the formation of the Northparkes porphyry Cu-Au deposits, New South Wales. Australian Journal of Earth Sciences, 54(2-3): 417–444. DOI:10.1080/08120090601175754
[] Lindgren W. 1905. The copper deposits of the Clifton-Morenci district, Arizona. Washington: Washington Government Printing Office, 43: 375
[] London D and Burt DM. 1982. Lithium minerals in pegmatites. In: Černý P (ed.). Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Short Course Handbook, 8: 99-133
[] London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51(2): 403–420.
[] London D. 1990. Internal differentiation of rare-element pegmatites: A synthesis of recent research. Geological Society of America Special Paper, 246: 35–50. DOI:10.1130/SPE246
[] Loucks RR. 2000. Report 1: Development of petrochemical discriminants of metallogenically fertile calc-alkalic igneous suites and their application to regional assessments of gold and copper prospectivity of Neogene and Quaternary volcano-plutonic centers througout Chile and in southwestern Bolivia. Unpublished Report for Industry-sponsored Research Project: Predictive Guides to Copper and Gold Mineralization at Circum-Pacific Convergent Plate Margins, 73
[] Loucks RR and Ballard JR. 2002. Report 2A: Correlated variation of tectonic stress with chemical composition of arc volcanism. Unpublished Report for Industry-sponsored Research Project: Predictive Guides to Copper and Gold Mineralization at Circum-Pacific Convergent Plate Margins, 99
[] Loucks R. 2012. Chemical characteristics, geodynamic settings, and petrogenesis of copper ore-forming arc magmas. Centre for Exploration Targeting Quarterly Newsletter, 19: 1–10.
[] Loucks RR. 2014. Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1): 5–16. DOI:10.1080/08120099.2013.865676
[] Maloney JS, Nabelek PI, Sirbescu MC, Halama R. 2008. Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905–916. DOI:10.1127/0935-1221/2008/0020-1823
[] Manning DAC, Hill PI. 1990. The petrogenetic and metallogenetic significance of topaz granite from the southwest England orefield. Geological Society of America Special Paper, 246: 51–70. DOI:10.1130/SPE246
[] Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS, Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1): 121–131.
[] Mao JW, Chen MH, Yuan SD, Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636–658.
[] Mao JW, Luo MC, Xie GQ, Liu J, Wu SH. 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits. Acta Geologica Sinica, 88(12): 2153–2175.
[] Marignac C, Cuney M. 1999. Ore deposits of the French Massif Central: Insight into the metallogenesis of the variscan collision belt. Mineralium Deposita, 34(5-6): 472–504. DOI:10.1007/s001260050216
[] Maughan DT, Keith JD, Christiansen EH, Pulsipher T, Hattori K, Evans NJ. 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineralium Deposita, 37(1): 14–37. DOI:10.1007/s00126-001-0228-5
[] Meinert LD, Dipple GM and Nicolescu S. 2005. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, Inc., 299-336
[] Müller D, Groves DI. 2000. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Berlin Heidelberg: Springer-Verlag: 1-238.
[] Mungall JE. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915–918. DOI:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
[] Noronha F, Doria A, Dubessy J, Charoy B. 1992. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita, 27(1): 72–79.
[] Norton JJ. 1983. Sequence of mineral assemblages in differentiated granitic pegmatites. Economic Geology, 78(5): 854–874. DOI:10.2113/gsecongeo.78.5.854
[] Novák M, Škoda R, Gadas P, Krmíčk L, Černý P. 2012. Contrasting origins of the Mixed (NYF+LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 50(4): 1077–1094. DOI:10.3749/canmin.50.4.1077
[] Ohmoto H and Goldhaber MB. 1997. Sulfur and carbon isotopes. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York: John Wiley, 517-611
[] Pašava J, Svojtka M, Veselovsky F, Ďurišová J, Ackerma L, Pour O, Drábek M, Halodová P, Haluzová E. 2016. Laser ablation ICPMS study of trace element chemistry in molybdenite coupled with scanning electron microscopy (SEM): An important tool for identification of different types of mineralization. Ore Geology Reviews, 72: 874–895. DOI:10.1016/j.oregeorev.2015.09.007
[] Pettke T, Oberli F, Heinrich CA. 2010. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters, 296(3-4): 267–277. DOI:10.1016/j.epsl.2010.05.007
[] Pezzotta F. 2001. Madagascar's rich pegmatite districts: A general classification. In: ExtraLapis English No.1, Madagascar. East Hampton, CT: Lapis International, 34-35
[] Pirajno F, Zhou TF. 2015. Intracontinental porphyry and porphyry-skarn mineral systems in eastern China: Scrutiny of a special case "made-in-China". Economic Geology, 110(3): 603–629. DOI:10.2113/econgeo.110.3.603
[] Polya DA. 1989. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal: Implications for models of ore genesis. Economic Geology, 84(5): 1134–1152. DOI:10.2113/gsecongeo.84.5.1134
[] Poulsen KH, Robert F and Dubé B. 2000. Geological classification of Canadian gold deposits. M42-540E, Geological Survey of Canada
[] Reyf FG, Seltmann R, Zaraisky GP. 2000. The role of magmatic processes in the formation of banded Li, F-enriched granites from the Orlovka tantalum deposit, Transbaikalia, Russia: Microthermometric evidence. Canadian Mineralogist, 38(4): 915–936. DOI:10.2113/gscanmin.38.4.915
[] Richards JP, McCulloch MT, Chappell BW, Kerrich R. 1991. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry. Geochimica et Cosmochimica Acta, 55(2): 565–580. DOI:10.1016/0016-7037(91)90013-U
[] Richards JP. 1995. Alkalic-type epithermal gold deposits: A review. In: Thompson JFH (ed.). Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada, Short Course Series, 23: 367-400
[] Richards JP. 2002. Discussion of "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001). Mineralium Deposita, 37: 788-790
[] Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515–1533. DOI:10.2113/gsecongeo.98.8.1515
[] Richards JP. 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. In: Porter TM (ed.). Super Porphyry Copper and Gold Deposits: A Global Perspective. V. 1. Linden Park, South Australia: Porter Geoscience Consulting Publishing, 7-25
[] Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247–250. DOI:10.1130/G25451A.1
[] Richards JP. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26. DOI:10.1016/j.oregeorev.2011.05.006
[] Robert F. 2004. Geologic footprints of gold systems. In: Muhling J (ed.). SEG 2004: Predictive Mineral Discovery Under Cover, Extended Abstracts: Centre for Global Metallogeny. The University of Western Australia Publication, 33: 97–101.
[] Rohrlach BD and Loucks RR. 2005. Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In: Porter TM (ed.). Super Porphyry Copper & Gold Deposits: A Global Perspective. Adelaide: PGC Publishing, 2: 369-407
[] Rutherford MJ. 2008. Magma ascent rates. Reviews in Mineralogy and Geochemistry, 69(1): 241–271. DOI:10.2138/rmg.2008.69.7
[] Seedorff E, Dilles JH, Proffett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MC. 2005. Porphyry deposits: Characteristics and origin of hypogene features. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds). Economic Geology 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, Inc., 251-298
[] Selway JB, Breaks FW, Tindle AG. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the superior Province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1–30. DOI:10.2113/gsemg.14.1-4.1
[] Shand SJ. 1943. Eruptive rocks. Their Genesis, Composition, Classification, and their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley & Sons, 444
[] Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3): 373–388. DOI:10.1080/08120099708728318
[] Sillitoe RH. 2002. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Mineralium Deposita, 37(1): 4–13. DOI:10.1007/s00126-001-0227-6
[] Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. DOI:10.2113/gsecongeo.105.1.3
[] Simon AC, Ripley EM. 2011. The role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy and Geochemistry, 73(1): 513–578. DOI:10.2138/rmg.2011.73.16
[] Solomon M. 1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology, 18(7): 630–633. DOI:10.1130/0091-7613(1990)018<0630:SARATO>2.3.CO;2
[] Spooner ETC. 1993. Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element enriched, Archean Au-quartz, epithermal Au-Ag and Au skarn hydrothermal ore fluids. Ore Geology Reviews, 7(5): 359–379. DOI:10.1016/0169-1368(93)90001-F
[] Sun WD, Ling MX, Yang XY, Fan WM, Ding X, Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China (Earth Science), 53(4): 475–484. DOI:10.1007/s11430-010-0024-0
[] Thomas R, Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state: Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088–1101. DOI:10.1016/j.oregeorev.2015.10.004
[] Tkachev AV. 2011. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geologic time. In: Sial AN, Bettencourt JS, de Campos CP and Ferreira VP (eds.). Granite-related Ore Deposits. Geological Society, London, Special Publications, 350: 7-23
[] Van Lichtervelde M, Salvi S, Béziat D. 2007. Textural features and chemical evolution in Tantalum Oxides: Magmatic versus hydrothermal origins for Ta mineralization in the Tanco lower pegmatite, Manitoba, Canada. Economic Geology, 102(2): 257–276. DOI:10.2113/gsecongeo.102.2.257
[] Veksler IV. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210(1-4): 7–31. DOI:10.1016/j.chemgeo.2004.06.002
[] Wang DH, Chen YC, Xu ZG. 2003. 40Ar/39Ar isotope dating on muscovites from Indosinian raremetal deposits in Central Altay, northwestern China. Bulletin of Mineralogy, Petrology and Geochemistry, 22(1): 14–17.
[] Wang DH, Zou TR, Xu ZG, Yu JJ, Fu XF. 2004. Advance in the study of using pegmatite deposits as the tracer of orogenic process. Advances in Earth Science, 19(4): 614–620.
[] Wang DH, Tang JX, Ying LJ, Chen ZH, Xu JX, Zhang JJ, Li SR, Zeng ZL. 2010. Application of "Five levels+Basement" model for prospecting deposits into depth. Journal of Jilin University (Earth Science Edition), 40(4): 733–738.
[] Wang RC, Zhu JC, Zhang WL, Xie L, Yu AP, Che XD. 2008. Ore-forming mineralogy of W-Sn granites in the Nanling Range: Concept and case study. Geological Journal of China Universities, 14(4): 485–495.
[] Wang SW, Zhou TF, Yuan F, Fan Y, Yu CH, Ge LH, Shi C, Chi YY. 2014. Emplacement sequences and geochronology of the Shaxi porphyry copper-gold deposit, Anhui Province, East China. Acta Petrologica Sinica, 30(4): 979–994.
[] Wang SW, Zhou TF, Yuan F, Fan Y, Zhang LJ, Song YL. 2015. Petrogenesis of Dongguashan skarn-porphyry Cu-Au deposit related intrusion in the Tongling district, eastern China: Geochronological, mineralogical, geochemical and Hf isotopic evidence. Ore Geology Reviews, 64: 53–70. DOI:10.1016/j.oregeorev.2014.06.012
[] Wang SW, Zhou TF, Yuan F, Fan Y, Cooke D, Zhang LJ, Fu B, White NC. 2016. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the Middle-Lower Yangtze River Valley metallogenic belt, eastern China. Lithos, 252-253: 185–199. DOI:10.1016/j.lithos.2016.02.013
[] White AJR, Chappell BW. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoirs, 159: 21–34. DOI:10.1130/MEM159
[] Williamson BJ, Herrington RJ, Morris A. 2016. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nature Geoscience, 9(3): 237–241. DOI:10.1038/ngeo2651
[] Wolfe R, Cooke DR. 2011. Geology of the Didipio region and genesis of the Dinkidi alkalic porphyry Cu-Au deposit and related pegmatites, northern Luzon, Philippines. Economic Geology, 106(8): 1279–1315. DOI:10.2113/econgeo.106.8.1279
[] Xu JX, Zeng ZL, Wang DH, Chen ZH, Liu SB, Wang CH, Ying LJ. 2008. A new type of tungsten deposit in southern Jiangxi and the new model of "Five Floors+Basement" for prospecting. Acta Geologica Sinica, 82(7): 880–887.
[] Xu KQ, Hu SX, Sun MZ, Ye J. 1982. On the two genetic series of granites in south-eastern China and their metallogenetic characteristics. Mineral Deposits, 1(2): 1–14.
[] Xu KQ, Hu SX, Sun MZ, Zhang JR, Ye J. 1983. On the genetic series of granites, as exemplified by the Mesozoic granites of South China. Acta Geologica Sinica, 57(2): 107–118.
[] Zhai MG. 2004. Adakite and related granitoids from partial melting of continental lower crust. Acta Petrologica Sinica, 20(2): 193–194.
[] Zhang DY, Zhou TF, Yuan F, Xiao WJ, White NC, Deng YF, Lu WW, Deng G. 2015. Petrogenesis and mineralization potential of a granite porphyry intrusion beneath the Baishan Mo deposit, Eastern Tianshan, NW China. Journal of Asian Earth Sciences, 113: 254–265. DOI:10.1016/j.jseaes.2015.05.002
[] Zhang H, Liu CQ. 2001. Tetrad effect of REE in apatites from pegmatite No.3, Altay, Xinjiang and its implications. Geochimica, 30(4): 323–334.
[] Zhang Q, Wang YL, Zhang FQ, Wang Q, Wang Y. 2002. Adakite and porphyry copper deposit. Geology and Mineral Resources of South China(3): 85–90.
[] Zheng W, Mao JW, Zhao CS, Ouyang HG, Wang XY. 2015. Re-Os geochronology of molybdenite from Yinyan porphyry Sn deposit in South China. Resource Geology, 66(1): 63–70.
[] Zhou QF, Qin KZ, Tang DM, Ding JG, Guo ZL. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No.3 pegmatitic rare-element deposit, Altai. Acta Petrologica Sinica, 29(9): 3004–3022.
[] Zhou TF, Zhang LJ, Yuan F, Fan Y, Cooke DR. 2010. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Science Frontiers, 17(2): 306–319.
[] Zhou TF, Wang SW, Fan Y, Yuan F, Zhang DY, White NC. 2015. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, eastern China. Ore Geology Reviews, 65: 433–456. DOI:10.1016/j.oregeorev.2014.10.002
[] Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF, White N. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 32(2): 271–288.
[] 范宏瑞, 胡芳芳, 杨奎锋, 刘爽, 王凯怡. 2006. 白云鄂博超大型稀土-铌-铁矿床成矿过程中的流体不混溶作用. 矿床地质, 25(S1): 163–166.
[] 华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29(1): 9–23.
[] 蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 倪培. 2006. 华南与花岗岩有关的一种新类型的锡成矿作用:矿物化学、元素和同位素地球化学证据. 岩石学报, 22(10): 2509–2516. DOI:10.3969/j.issn.1000-0569.2006.10.011
[] 毛景文, SteinH, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1): 121–131.
[] 毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 矿床地质, 85(5): 636–658.
[] 毛景文, 罗茂澄, 谢桂青, 刘军, 吴胜华. 2014. 斑岩铜矿床的基本特征和研究勘查新进展. 地质学报, 88(12): 2153–2175.
[] 王登红, 陈毓川, 徐志刚. 2003. 新疆阿尔泰印支期伟晶岩的成矿年代学研究. 矿物岩石地球化学通报, 22(1): 14–17.
[] 王登红, 邹天人, 徐志刚, 余金杰, 付小方. 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614–620.
[] 王登红, 唐菊兴, 应立娟, 陈郑辉, 许建祥, 张家菁, 李水如, 曾载淋. 2010. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义. 吉林大学学报(地球科学版), 40(4): 733–738.
[] 王汝成, 朱金初, 张文兰, 谢磊, 于阿朋, 车旭东. 2008. 南岭地区钨锡花岗岩的成矿矿物学:概念与实例. 高校地质学报, 14(4): 485–495.
[] 王世伟, 周涛发, 袁峰, 范裕, 俞沧海, 葛岭虹, 石诚, 池月余. 2014. 安徽沙溪斑岩型铜金矿床成岩序列及成岩成矿年代学研究. 岩石学报, 30(4): 979–994.
[] 许建祥, 曾载淋, 王登红, 陈郑辉, 刘善宝, 王成辉, 应立娟. 2008. 赣南钨矿新类型及"五层楼+地下室"找矿模型. 地质学报, 82(7): 880–887.
[] 徐克勤, 胡受奚, 孙明志, 叶俊. 1982. 华南两个成因系列花岗岩及其成矿特征. 矿床地质, 1(2): 1–14.
[] 徐克勤, 胡受奚, 孙明志, 张景荣, 叶俊. 1983. 论花岗岩的成因系列——以华南中生代花岗岩为例. 地质学报, 57(2): 107–118.
[] 翟明国. 2004. 埃达克岩和大陆下地壳重熔的花岗岩类. 岩石学报, 20(2): 193–194.
[] 张辉, 刘丛强. 2001. 新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素"四分组效应"及其意义. 地球化学, 30(4): 323–334.
[] 张旗, 王元龙, 张福勤, 王强, 王焰. 2002. 埃达克岩与斑岩铜矿. 华南地质与矿产(3): 85–90.
[] 周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004–3022.
[] 周涛发, 张乐骏, 袁峰, 范裕, CookeDR. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2): 306–319.
[] 周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, WhiteNC. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271–288.