岩石学报  2017, Vol. 33 Issue (4): 1073-1093   PDF    
华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌
梅冥相1,2, 张瑞1, 李屹尧1, 接雷1     
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质大学生物地质与环境地质国家重点实验室, 北京 100083
摘要: 华北地台东北缘的芙蓉统,大致为长山组和凤山组所组成,可以进一步划分为3个三级沉积层序;层序划分主要基于沉积相序列的旋回性所代表的沉积趋势,较深水的陆棚相钙质泥岩和深缓坡相条带状泥晶灰岩和泥灰岩组成的凝缩作用序列、与高水位体系域和强迫型海退体系域的中至浅缓坡相碳酸盐岩组成的总体向上变浅序列,是这些三级沉积层序的基本构成,从而形成了较为典型的淹没不整合型层序。那些典型的叠层石生物丘,类似于微生物礁,主要发育在长山组和凤山组下部构成的三级层序的强迫型海退体系域之中,代表了缓坡型台地中相对海平面下降阶段的沉积记录。这些叠层石生物丘中的叠层石,泥晶和微亮晶是其基本构成,最为特征的是发育着一些典型的钙化蓝细菌化石,表明了这些寒武纪芙蓉世的叠层石生长于蓝细菌主导的微生物席的钙化作用之中。最为重要的是,在构成叠层石生物丘的粗糙纹层柱状和穹窿状叠层石中,较为普遍地发育着"石松藻(Lithocodium)";这种谜一样的钙化蓝细菌化石,与其他的钙化蓝细菌化石一起,表明了寒武纪叠层石形成过程中复杂的微生物沉淀作用,成为窥视叠层石生长和石化过程中重要的微生物作用信号。就像其名称所蕴含着的高级绿藻中的松藻(Codium)的涵义一样,"石松藻(Lithocodium)"状的钙化蓝细菌,多描述于中生代的微生物碳酸盐岩中,而且还常常被解释为结壳状有孔虫或"海绵骨针的网状物",其生物亲和性还存在着剧烈的争论。因此,华北地台东北缘寒武系芙蓉统中的叠层石生物丘,特殊的层序地层位置代表了较为典型的强迫型海退沉积记录,特别的钙化微生物构成代表着叠层石生长和石化过程中复杂的微生物作用信号,成为深入了解"寒武纪-早奥陶世微生物碳酸盐岩复苏期"和"显生宙早期第一幕蓝细菌钙化作用事件"中的微生物造礁和成丘作用的典型实例。
关键词: 沉积组构     叠层石生物丘     寒武系芙蓉统     华北地台东北缘    
Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform
MEI MingXiang1,2, ZHANG Rui1, LI QiYao1, JIE Lei1     
1. School of Earth Sciences and Natural Resources, China University of Geosciences, Beijing 100083, China;
2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
Abstract: The Furongian Series in the northestern margin of the North-China Platform can be subdivided into the Changshan and Fengshan formations, in which three third-order depositional sequences can be discerned on the basis of the depositional trend reflected by the cyclicity of sedimentary-facies successions. These third-order sequences make up of the depositional sequence belonging to the type of a drowned-unconformity, which are constituted by a generally upward shoaling succession from a condensational succession of deeper-water fine deposits made up by both calcareous mudstones of the shallow-shelf facies and marls of the deep-ramp facies in the lower part to a shallow-water carbonate succession belonging to the mid-and shallow-ramp facies in the upper part. Stromatolitic bioherms that are similar to the microbial reef are typically developed in the forced-regressive system tract of third-order sequence made up of both the Changshan Formation and the lower part of the Fengshan Formation, which represent the typical depositional record that is the response to the third-order relative sea-level falling. Furthermore, micrites and microspars are the fundamental composition for stromatolites making up the stromatolitic bioherm, and some calcified cyanobacteria fossils within these stromatolites are resulted from the calcification of microbial mats that are dominated by cyanobacterias. Importantly, there are lots of "Lithocodium" within those column and domical stromatolites composed by rough lamina, which become an important singles of microbial activities and demonstrate that these stromatolites might be resulted from a sophisticated microbial precipitation together with other calcified cyanobacteria fossils. Lithocodium, one enigmatic cyanobacteria fossil that had been frequently described in Mesozoic microbial carbonates and had been grouped into the Codium belonging to a high-grade green algal, or had been interpreted as a kind of encrust foraminiferas as well as the sponge spicule network, which reflect that its biological affinity have strongly been debated. Therefore, stromatolitic bioherms of the Furongian in the northwestern margin of the North-China Platform provide an important example for the further understand of the building action of microbial reefs or bioherms during "a resuscitate period of microbial carbonate from Cambrian to the Early Ordovician" or "the first episode of the Cyanobacteria Calcification Events in the Phanerozoic", since their particular sequence-stratigraphic position might delegate a record of the forced-regression and their composition of specially calcified microbes might represent an important signal of complex microbial activities during both the growth and forming process of stromatolites.
Key words: Sedimentary fabfic     Stromatolitic bioherm     Cambrian Furongian     Northeastern margin of North-China Platform    
1 引言

矿化骨骼后生动物的出现、全球性温暖的气候 (温室效应条件)、生物多样性和差异性的“爆发”、沉积底质中底内动物的潜穴和扰动作用,代表了从前寒武纪到寒武纪生物作用和沉积作用的重要转变 (梅冥相, 2012; Johnston et al., 2012; Peng et al., 2012; Mei and Khaing, 2016),造成了沉积物表面从席底转变成混合底 (梅冥相等, 2006; 梅冥相, 2011a; Noffke et al., 2013) 而被誉称为“寒武纪底质革命 (Bottjer et al., 2000; Bottjer, 2005)”;所有这些特征不但将寒武纪这个地质时代特征化,而且也将寒武纪的沉积作用样式特征化,主要表现在以下几个方面:1) 由于骨骼还没有成为全球持续性的碳酸盐沉积物的重要来源,所以,寒武纪的海洋是一个“贫乏骨骼的海洋”(Pruss et al., 2010);2) 由于在全球范围的大部分寒武纪地层之中普遍发育竹叶状砾屑灰岩所代表的风暴沉积 (孟祥化等, 1986; Meng et al., 1997; 梅冥相等, 1997; 梅冥相, 2011b; 景宇轩等, 2015),所以寒武纪的海洋还被誉称为特殊的“风暴海”(Myrow et al., 2004; Pratt and Bordonar, 2007);3) 由于随着后生动物在寒武纪期间的辐射而微生物碳酸盐岩在寒武纪也在增加 (韩作振等, 2009; 梅冥相, 2011b; 梅冥相等, 2011, 2015),所以构成了一个特别的微生物碳酸盐岩“寒武纪-早奥陶世复苏期”(Riding and Liang, 2005; Riding, 2006, 2011a);4) 寒武纪至早奥陶世还被定义为“显生宙早期第一幕蓝细菌钙化作用事件”的发生时期 (Riding, 2000, 2011b, 2012),表现在寒武纪的鲕粒和核形石 (Han et al., 2015; 代明月等, 2014; 齐永安等, 2014a; 张文浩等, 2014; Liu and Zhang, 2012, 2015)、叠层石和凝块石 (Woo et al., 2008; Woo and Chough, 2010; 韩作振等, 2009; Adachi et al., 2014, 2015; Chen et al., 2014; Kruse and Reitner, 2014; 齐永安等, 2014b; Lee et al., 2010, 2014a, 2015) 等沉积中钙化蓝细菌化石的普遍发育;5) 与微生物活动相关的灰泥的大量生产,曾经将寒武纪碳酸盐台地特征化,包括缓坡状的形态以及边缘鲕粒沙滩和微生物礁的镶嵌边缘,还形成了特别的球粒主导的台地 (Pratt et al., 2012),甚至形成鲕粒所主导的台地 (梅冥相和梅仕龙, 1997; 柳永清等, 1999; 冯增昭等, 2004; 梅冥相, 2011b; 陈小炜等, 2013)。

华北地台的寒武系芙蓉统,大致包括长山组和凤山组 (Mei et al., 2005; 梅冥相, 2011b),或者归为炒米店组 (Woo et al., 2008; Woo and Chough, 2010; 韩作振等, 2009; Chen et al., 2014; Lee et al., 2010, 2014a, 2015),构成一个碳酸盐泥所主导的碳酸盐台地 (Pratt et al., 2012);其基本特征是,靠近古陆边缘为白云石化的潮坪,碳酸盐泥主导着浅海台地,向海一侧为发育着大大小小的叠层石和凝块石生物丘 (或微生物礁) 的缓坡边缘,从而与下伏寒武纪第三世鲕粒浅滩主导的碳酸盐台地 (梅冥相和梅仕龙, 1997; 柳永清等, 1999; 冯增昭等, 2004; 梅冥相, 2011b; 陈小炜等, 2013) 形成明显的差异。最为特征的是,在华北地台芙蓉统中,从潮坪相、经中到浅缓坡 (浅海台地) 相、一直延伸到较深水的浅海陆棚相的地层中,均生长和发育着大大小小的微生物碳酸盐岩构成的生物丘 (梅冥相, 2011b; 梅冥相等, 2011, 2015);这些生物丘,还被描述和定义为“微生物礁”(Riding, 2000, 2002, 2011a, b; Pratt et al., 2012; Chen et al., 2014; Lee et al., 2010, 2014b, 2015),形成了较为壮观的沉积学现象。

在华北地台东北缘的河北省东北部和辽宁省西部地区,就像高建平和朱士兴 (1998)对晋西北地区寒武纪微生物岩的研究那样,前人曾经对寒武纪的叠层石及其沉积环境进行过较为深入的研究 (崔智林等, 1993; 杜汝霖等, 1993),这些富有成果的研究为我们的深入研究奠定了良好的基础。该地区芙蓉统中的叠层石,就像华北地台其他地区寒武系第三统 (沙庆安和江茂生, 1998; Woo and Chough, 2010; Woo et al., 2008; 韩作振等, 2009; 梅冥相, 2011b; 梅冥相等, 2011; 赫云兰等, 2012)、以及芙蓉统中的叠层石和凝块石生物丘 (梅冥相, 2011b; Chen et al., 2014; Lee et al., 2010, 2014b, 2015; 梅冥相等, 2015) 那样,常常发育成大型生物丘,类似于许多学者所定义的“微生物礁”(Riding, 2000, 2002, 2011a, b; Rowland and Shapiro, 2002; Pratt and Bordonar, 2007; Pratt et al., 2012; Chen et al., 2014; Kruse and Reitner, 2014; Lee et al., 2010, 2014a, 2015),以冀东北承德路通沟剖面、辽西凌源郭家店剖面和辽宁本溪城北剖面最为典型,较为集中地产出在长山组以及凤山组下部地层构成的淹没不整合型三级层序的强迫型海退体系域中,特殊的层序地层位置以及特别的钙化微生物构成,尤其是叠层石中普遍发育的“石松藻 (Lithocodium)”状的钙化蓝细菌和其他类型的钙化蓝细菌、及其与之相关的微生物沉淀作用,成为了解寒武纪叠层石造礁和成丘作用的典型实例。

2 地质背景

华北地台泛指华北克拉通基础上发育而成的一个古老的稳定地台,因为华北克拉通是在大约1900Ma至1800Ma期间、随着哥伦比亚超大陆汇聚而最终克拉通化所形成的一个大型克拉通 (李江海等, 2000, 2001; Rogers and Santosh, 2002; Zhao et al., 2002; 翟明国和彭澎, 2007; 梅冥相, 2010a)。寒武纪芙蓉世期间,发生在寒武纪第3世与芙蓉世过渡时期的“怀远运动”第一幕构造抬升 (王志浩等, 2016),造成了华北地台南缘芙蓉统残留不全而形成一个特别的潮坪相带 (潮间至潮上白云石化潮坪体系; Meng et al., 1997; 梅冥相等, 1997; 冯增昭等, 2004; Mei et al., 2005)、并与华北地台西北部围绕着小型古陆的局限潮坪相带遥相对应 (图 1所示),围绕着潮坪相带的大片区域,则形成一个大片分布的、而且为碳酸盐泥所主导的缓坡型台地,从而与下伏寒武纪第三世鲕粒主导的碳酸盐台地 (梅冥相和梅仕龙, 1997; 柳永清等, 1999; 冯增昭等, 2004; 梅冥相, 2011b; 陈小炜等, 2013) 形成明显的差异。最为引人注目的是,在图 1所示的华北地台芙蓉世的沉积格局中,从潮坪相白云岩、经缓坡 (浅海台地) 相灰岩一直到较深水的浅海陆棚相泥岩地层中,均生长和发育着大大小小的叠层石和凝块石生物丘 (梅冥相, 2011b; 梅冥相等, 2011, 2015),而且这些微生物碳酸盐岩构成的生物丘,类似于许多学者描述和定义为“微生物礁”(Riding, 2000, 2002, 2011a, b; Pratt et al., 2012; Chen et al., 2014; Lee et al., 2010, 2014a, 2015),构成了较为壮观的沉积学现象,从而成为近年来关注与研究的焦点。

图 1 寒武纪芙蓉世华北地台的沉积格局 (据冯增昭等, 2004修改) 图中1-3表示本文将要涉及到的研究剖面位置:1-河北承德路通沟剖面; 2-辽宁省西部的凌源郭家店剖面; 3-辽宁本溪城北剖面.图例:(1) 古陆; (2) 局限潮坪相; (3) 中至浅缓坡相; (4) 深缓坡至陆棚相; (5) 相界线; (6) 城市 Fig. 1 Map showing the sedimentary situation for the Cambrian Furongian in the North-China Platform (modified after Feng et al., 2004) In the figure, 1 to 3 represent the position of logged sections: 1-refers to the Lutonggou section in Chengde County of Hebei Province; 2-represents the Guojiadian section in Lingyuan County of Liaoning Province; 3-delegates the North-City section in Benxi City of Liaoning Province. Legends: (1) oldland; (2) restricted tidal-flat facies; (3) middle to shallow ramp facies; (4) deep ramp to shelf facies; (5) facies boundary; (6) city

华北地台东北缘的芙蓉统,包括长山组和凤山组,大致相当于鲁西地区的“炒米店组”(Woo and Chough, 2010; Woo et al., 2008; 韩作振等, 2009; Chen et al., 2014; Lee et al., 2010, 2014a, 2015),而且可以识别出3个三级沉积序 (图 2中的DS1至DS3所示; 梅冥相, 2011b; 梅冥相等, 2011, 2015),这些三级沉积序的底界面均为淹没不整合型层序界面 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010b, 2011b, 2014a, 2015);寒武纪末期的三级层序DS3的顶界面,界面之下明显的白云石化现象代表的环境变浅乃至暴露,不但代表了寒武纪与奥陶纪过渡时期的海平面下降过程产生的陆上不整合面 (如图 2中的河北承德路通沟剖面为例),而且表明了较为明显的地层间断而类似于Exxon层序地层学模式中的类型1层序界面 (Vail et al., 1977; Van Wagoner et al., 1990; Catuneanu, 2006; Catuneanu et al., 2011)。

图 2 华北地台东北缘芙蓉统实测剖面以及叠层石生物丘发育的层序地层位置 图中三条剖面的分布位置见图 1;DS1至DS3代表在芙蓉统中识别出的3个三级沉积层序,SB1代表陆上不整合面形成的层序界面,SB3代表淹没不整合型层序界面,CS代表凝缩段,HST代表高水位体系域,FRST代表强迫型海退体系域;图例:(1) 生物潜穴,(2) 冲刷面,(3) 交错层理,(4) 生物丘,(5) 叠层石,(6) 层序界面,(7) 灰质白云岩和白云质灰岩,(8) 鲕粒灰岩,(9) 灰岩,(10) 泥质条带泥晶灰岩,(11) 泥晶灰岩透镜体,(12) 竹叶状砾屑灰岩构成的风暴沉积,(13) 泥灰岩,(14) 钙质泥岩 Fig. 2 Diagrams showing both the logged section and the sequence-stratigraphic position of stromatolitic bioherms for the Cambrian Furongian in the northeastern margin of the North-China Platform In the figure, the spatial position of three logged sections ("1" refers to the Lutonggou section in Chengde County of Hebei Province, "2" represents the Guojiadian section in Lingyuan County of Liaoning Province and "3" delegates the North-City section in Benxi City of Liaoning Province) is same to those as shown in Fig. 1; DS1 to DS3 represent three depositional sequences, SB1 refers to the sequence boundary that is formed by the subaerial unconformity, SB3 delegates the sequence boundary that is marked by the drown-unconformity, CS is the condensed section, HST means the high-stand system tract and FRST delegates the forced-regressive system tract; legends: (1) burrow, (2) scouring surface, (3) cross bedding, (4) bioherm, (5) stromatolite, (6) sequence boundary, (7) lime dolomite and dolomitic limestone, (8) oolitic grainstone, (9) limestone, (10) banded muddy limestone, (11) len of limestone, (12) storm deposit made up of edgewise cobglomerates, (13) marl, (14) calcareous mudstone

最为重要的是,在华北地台东北缘的3个典型的寒武系芙蓉统剖面中 (图 1图 2所示),柱状和穹窿状叠层石组成的生物丘,较为集中产出在长山组和凤山组下部地层构成的淹没不整合型三级层序 (DS1与DS2) 的强迫型海退体系域中,可以作为碳酸盐沉积体系中强迫型海退沉积的典型实例和特别类型 (Schlager and Warrlichw, 2009),因为在标准或经典的层序地层学模式中 (Vail et al., 1977; Van Wagoner et al., 1990; Catuneanu, 2006; Catuneanu et al., 2011),沉积作用主要发生在相对海平面上升和停滞阶段,一个连续的侵蚀作用不整合面将形成在海平面下降期;但是,在下降阶段体系域 (FSST,或定义为强迫型海退体系域 (FRST)) 模型中,沉积作用将发生在相对海平面下降阶段 (Schlager and Warrlichw, 2009; Desjardins et al., 2012; Samanta et al., 2016),所以说,较高的生产作用、较慢的侵蚀作用以及较慢的海平面下降速率将有利于FRST的发育,这些作用特征较好地反映在图 2所示的寒武系芙蓉统层序地层序列之中。综上所述,这些叠层石生物丘,不但代表较为壮观的沉积学现象而成为本文关注的焦点,而且成为了解寒武纪叠层石造礁和成丘作用的典型实例。

3 路通沟剖面的叠层石生物丘 3.1 宏观特征

河北承德路通沟寒武系芙蓉统剖面,位于河北省承德市南部大约40公里的路通沟村附近 (图 1所示);在该剖面,芙蓉统出露较全,包括长山组和凤山组,组成3个三级沉积层序DS1至DS3(图 2图 3所示),就像上文所提及的那样,除了三级层序DS3的顶界面为陆上暴露不整合面构成的层序界面 (图 3e所示) 以外,这些三级层序的底界面均为较为典型的淹没不整合型层序界面 (图 3所示; Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010b, 2011b),具有凝缩作用性质的陆棚相钙质泥岩和深缓坡相条带状泥灰岩直接覆盖在下伏层序强迫型海退体系域的浅水生物丘灰岩或鲕粒颗粒灰岩之上,是其基本特征;所以,叠层石生物丘灰岩主要发育在层序DS1与DS2的强迫型海退体系域中,而与相对海平面下降造成的环境变浅相响应 (Schlager and Warrlichw, 2009; Desjardins et al., 2012; Samanta et al., 2016),尤其是凤山组下部构成的三级层序DS2的强迫型海退体系域 (图 2图 3c所示) 厚度最大而且最为典型。

图 3 河北承德路通沟剖面寒武系芙蓉统三级层序的层序界面 (a) 三级层序DS1的底界面 (箭头所指);(b) 三级层序DS2的底界面 (箭头所指);(c) 三级层序DS2的底界面 (箭头所指),以及该三级层序的宏观构成,从厚层泥晶生物丘灰岩向上演变为块状叠层石生物丘灰岩;(d) 三级层序DS3的底界面 (粗箭头所指),虚线箭头表示陆棚相钙质泥岩与厚层鲕粒灰岩组成的潮下型米级旋回;(e) 三级层序DS3的顶界面 (粗箭头所指),虚线箭头表示中厚层泥晶灰岩与厚层纹层状白云岩构成的环潮坪型米级旋回 Fig. 3 Images showing sequence boundaries for third-order depositional sequences of the Furongian Series at the Lutonggou section in Chengda County of Hebei Province (a) the bottom boundary of the third-order sequence DS1 (the arrowed); (b) the bottom boundary of the third-order sequence DS2 (the arrowed); (c) the bottom boundary of the third-order sequence DS2 (the arrowed) and a upward thickening succession makes up the DS2 from mid-and thick-bedded limestones of the micritic bioherm to massive limestones of the stromatolitic bioherm; (d) the bottom boundary of the third-order sequence DS3 (the coarse arrow), and the carbonate meter-scale cycle belonging to the subtidal-type (the dashed-line arrow) that is composed of both the thin-bedded marls and the thick-bedded oolitic grainstone; (e) the top boundary of the third-order sequence DS3 (the coarse arrow), and the carbonate meter-scale cycle belonging to the peritidal-type (the dashed-line arrow) that is composed of both the mid-and thick-bedded micirite and the thick-bedded dolostone

路通沟剖面芙蓉统中的叠层石生物丘,主要发育长山组构成的三级层序DS1的强迫型海退体系域的顶部 (图 2图 3b所示)、以及凤山组下部地层组成的三级层序DS2的强迫型海退体系域上部 (图 3c所示)。这些叠层石生物丘,主要为穹窿状和柱状叠层石所组成 (图 4所示),叠层石纹层较为粗糙或不明显,叠层石柱体和柱体之间局部白云石化,尤其是柱体之间常常沿着生物潜穴发生选择性白云石化作用,表明了粗糙的叠层石纹层或多或少受到生物扰动的特点;这些叠层石柱体,宽为5~10cm,高度最大可以达到2m,表明了在与相对海平面下降相响应的环境变浅过程之中较为明显的加积作用特征,也表现出“高处变得更高 (the tall get taller)”的叠层石生长机制 (Bosak et al., 2013);如图 3c所示,凤山组下部的三级层序DS2的强迫型海退体系域中的叠层石生物丘的总厚度,可以达到40m左右,与DS1顶部厚度不到2m的叠层石生物丘形成鲜明的对照。明显的层序地层位置,不同于北京西郊下苇甸剖面寒武系第3统崮山组鲕粒滩相灰岩中的叠层石生物丘 (梅冥相等, 2011),也与北京西郊下苇甸剖面凤山组下部的较深水背景中的叠层石生物层 (梅冥相等, 2015) 存在着较大的产出环境差异。

图 4 河北承德路通沟剖面寒武系芙蓉统叠层石生物丘中的叠层石的宏观特征 (a) 三级层序DS1顶部的穹窿状叠层石;(b) 三级层序DS2顶部的穹窿状和柱状叠层石;(c) 三级层序DS2顶部的大型柱状叠层石;(d) 三级层序DS2顶部的大型柱状叠层石中的粗糙纹层 Fig. 4 Images shouwing the fundamental feature for stromatolites making up the stromatolitic bioherm of the Furongian Series at the the Lutonggou section in Chengda County of Hebei Province (a) domal stromatolites in the top part of the DS1; (b) domal and column stromatolites in the top part of the DS2; (c) large stromatolites in the top part of the DS2; (d) rough lamina of stromatolites in the top part of the DS2

厚度可达40m的凤山组下部的叠层石生物丘 (图 3c) 所示,其顶部还发育厚度接近2m左右的鲕粒滩相灰岩披盖层 (图 3d所示),这些鲕粒灰岩层常常与陆棚相至深缓坡相泥质条带泥晶灰岩薄层一起组成潮下型碳酸盐米级旋回 (Osleger, 1991; Mei et al., 2000),代表了鲕粒砂坝的基本沉积作用样式,就像今天的巴哈马鲕粒滩那样 (Rankey et al., 2006),从而符合滩相沉积 (沙庆安, 1999) 的基本特征。更为特别的是,如图 5所示,这一套叠层石生物丘的鲕粒滩灰岩披盖层中的鲕粒,实际上属于假鲕粒,为微小的方解石晶体 (5~15μm) 被暗色泥晶薄膜 (可能的生物膜) 粘聚而成,有时候见到放射纤维状方解石纹层所包覆,这些微小的方解石晶体可能为超微浮游蓝细菌复杂的细胞内 (Couradeau et al., 2012; Riding, 2012; Benzerara et al., 2014) 和细胞外 (Obst et al., 2009a, b; Riding, 2011a, b, 2012)“白垩化过程”的产物,进一步说明了寒武纪时期的高能浅海环境中蓝细菌繁荣的基本特点,尽管这种鲕粒的确切成因机制还有待于进一步研究才能得到合理的阐释。

3.2 微观特征

路通沟剖面芙蓉统中的叠层石生物丘,在图 2所示的DS1的顶部,为穹窿状叠层石 (图 3b图 4a所示) 组成,厚度不超过2m;在凤山组下部构成的DS2的强迫型海退体系域中,大型柱状和穹窿状叠层石 (图 4b-d所示) 构成了厚度超过40m的叠层石块状体,与其顶部的鲕粒滩披盖层 (图 2图 5所示) 一起,形成极为壮观的沉积学现象,而且进一步说明了这些叠层石生物丘生长和发育在中高能正常浅海环境之中,类似于今天巴哈马的裂须菌 (Schizothrix) 主导的蓝细菌微生物席所形成的叠层石 (Reid et al., 2011; 梅冥相和孟庆芬, 2016)。由于寒武纪处在微生物碳酸盐岩“寒武纪-早奥陶世复苏期”(Riding and Liang, 2005; Riding, 2006, 2011a)、以及“显生宙早期第一幕蓝细菌钙化作用事件”的发生时期 (Riding, 2000, 2011b, 2012),图 4所示的穹窿状和柱状叠层石,可能发育钙化蓝细菌之类的微生物。

图 6所示,这些穹窿状和大型的柱状叠层石均为致密泥晶以及少量的微亮晶所构成,反映了叠层石形成过程中的复杂的微生物沉淀作用过程 (Riding, 2000, 2011a, b),间接地说明了这些叠层石形成的微生物成因,尽管叠层石纹层较为粗糙 (图 5所示),也较为充分地说明了这些叠层石是微生物席的建造物 (Riding, 2000, 2011a, b; Reid et al., 2011; 梅冥相和孟庆芬, 2016);这种特别的细粒泥晶和微亮晶基质组成的叠层石,又与现代巴哈马叠层石中生物席和生物膜粘聚鲕粒形成粗颗粒聚合叠层石 (Reid et al., 2011; 梅冥相和孟庆芬, 2016) 形成明显的差异。

图 5 河北路通沟剖面芙蓉统凤山组叠层石生物丘的“鲕粒滩相灰岩披盖层”中的特殊的鲕粒 (a) 为低倍照片;(b) 为高倍照片;均为单偏光照片,表明了鲕粒为暗色有机质泥晶薄膜 (可能的生物膜) 粘聚微小方解石晶体而成 Fig. 5 Images showing particular ooids making up the oolitic-bank cap of the stromatolitic bioherm within the Furongian Fengshan Formation at the the Lutonggou section in Chengda County of Hebei Province (a) low-power image; (b) high-power image. Both of images are plane-polarized light, which show that these ooids are resulted from a special agglutination of small calcite crystals by dark micritic films (possibly bacteria biofilm) enriched with organic matters

图 6 河北承德路通沟剖面芙蓉统叠层石的微观特征 (a) 暗色泥晶基质中产有三叶虫碎片以及可能的饼状菌 (Tarthinia);(b) 在不均一的泥晶基质中,可见到生长洞穴“a”和“石松藻 (Lithocodium)”状钙化蓝细菌的残余物“b”,为暗色泥晶包裹的不规则丝状体的网状物 (见放大的照片);(c) 含少量三叶虫碎屑的球粒和微凝块,凤山组下部泥晶生物丘的微组构;(d) 小型生长洞穴以及较为典型的“石松藻 (Lithocodium)”状钙化蓝细菌的残余物;(e) 叠层石纹层的显微组构,放射状的暗色部分为可能的波托菌 (Botomaella);(f) 不均一暗色泥晶基质中的“石松藻 (Lithocodium)”状钙化蓝细菌的残余物 (箭头所指),与饼状菌 (Tarthinia) 共生在一起;(g) 不均一暗色泥晶和微亮晶基质中的“石松藻 (Lithocodium)”状钙化蓝细菌的残余物,粘聚着较多的三叶虫碎片.照片 (a) 和 (b) 为图 4a所示的长山组穹窿状叠层石的微观特征,照片 (c) 至照片 (g) 均为图 4b至4d中所示的凤山组柱状叠层石的微观特征.所有照片均为单偏光显微照片 Fig. 6 Images showing the microscipic feature for the stromatolite in the Furongian Series at the the Lutonggou section in Chengda County of Hebei Province (a) bioclasts of the trilobite and possible Tarthinia within dark micritic matrix; (b) the growth cavity "a" and the possibly Lithocodium-like calcified cyanobacteria "b" within heterogeneous dark micritic matrix, and the inset photo shows that the possibly Lithocodium-like calcified cyanobacteria "b" that is made up by irregular filament-interwork network; (c) the microscopic fabric that is marked by both the peloid and the microclot for the micritic biherm in the lower part of the Fengshan Formation; (d) the typical residue of the possibly Lithocodium-like calcified cyanobacteria with small growth cavities fill by sparites; (e) microstromatolites, and the darker part might be Botomaella; (f) the possibly Lithocodium-like calcified cyanobacteria (the arrowed) within heterogeneous dark micritic matrix, which is intergrowth with Tarthinia; (g) the possibly Lithocodium-like calcified cyanobacteria (the arrowed) within heterogeneous dark micritic and light sparitic matrix with few trilobite bioclastics. Images (a) and (b) show the microscopic feature of the domal stromatolite of the Changshan Formation as shown in Fig. 4a, and those images from (c) to (g) show the microscopic feature of the column stromatolite of the Fengshan Formation as shown in Fig. 4b to Fig. 4d. All photos are petrographic images under the plane-polarized light

河北承德路通沟剖面芙蓉统叠层石生物丘中的叠层石的微观组构,表现出一些较为典型的钙化蓝细菌菌落的残余物,表明了叠层石形成于蓝细菌所主导的微生物席 (Riding, 2000, 2011a, b; Reid et al., 2011; Bosak et al., 2013; Vasconcelos et al., 2014; 梅冥相和孟庆芬, 2016) 之中,这些可能的钙化蓝细菌包括:1) 饼状菌 (Tarthinia),是指那些具有较厚的纤维状微亮晶壁的葡萄状和房室状构造 (图 6a6f所示),而且具有一个粗粒亮晶的中心,每一个房室的直径为50~350μm,常常以一个较薄的泥晶和亮晶区域将房室彼此隔开,饼状菌 (Tarthinia) 还曾经被认为是原生构成为泥晶的钙化微生物菌落的成岩改造的产物 (Ezaki et al., 2003; Lee et al., 2014b);2)“石松藻 (Lithocodium)”状的钙化蓝细菌残余物 (图 6b, d, f, g所示),就像其名称所蕴含的含义那样,这种谜一样的丝状体网状物的化石,曾经被认为是绿藻中的一种能够分泌碳酸盐骨骼的松藻,还曾经被解释为“结壳状有孔虫”,最终被确定为钙化蓝细菌菌落 (Cherchi and Schroeder, 2006),而且与胞网菌 (Bacinella; 一种细线式的丝状蓝细菌) 一起在瑞士牛津期灰岩形成一种多孔网状的核形石皮层 (Védrine et al., 2007) 而进一步得到确定,所以在本文被称为“石松藻 (Lithocodium) 状的钙化蓝细菌”,类似于现代湖泊中能够分泌大量细胞外聚合物质的颤菌 (Oscillatoria) 和蓆菌 (Phormidium) 等丝状蓝细菌所主导的微生物席的钙化作用产物 (Voorhies et al., 2012),由于近年来一些学者将类似的组构解释为“海绵骨针的网状物”(Chen et al., 2014; Kruse and Reitner, 2014; Adachi et al., 2014, 2015; Lee et al., 2010, 2014a, 2015),从而对其生物亲和性产生了一些争议;3) 波托菌 (Botomaella) 以具有较薄的壁的放射状和线性丝状体的束状体为特征 (图 6e所示),在纵向切片中表现为扇形和卵圆形的丝状体菌落生长形式,丝状体的直径平均为20μm,表现出稀少的分叉而且彼此致密填积,所以在显微镜下丝状体表现得较为模糊,由于这种蓝细菌的发育形成了较为典型的微叠层石。

4 郭家店剖面的叠层石生物丘

辽西凌源郭家店剖面 (图 1中的“2”所示),位于凌源市南部大约40km的郭家店村附近。该剖面的寒武系芙蓉统,除了顶部被覆盖而出露不全以外,露头发育较好,分别在芙蓉统三级层序DS1和DS2的顶部强迫型海退体系域中见到厚度为1~2m的叠层石生物丘灰岩 (图 2所示),尤其是DS2顶部的叠层石生物丘灰岩厚度明显小于图 3c所示的承德路通沟剖面中的叠层石生物丘灰岩。在该剖面,类似于上文所述的河北承德路通沟剖面,芙蓉统中的3个三级层序的底界面均为“淹没不整合型层序界面”(图 7所示; Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010b, 2011b, 2014a),三级层序DS1和DS2顶部强迫型海退体系域中的叠层石生物丘代表了较为典型的相对海平面下降期的沉积记录 (Schlager and Warrlichw, 2009; Desjardins et al., 2012; Samanta et al., 2016)。

图 7 辽西凌源郭家店剖面芙蓉统中的淹没不整合型层序界面 (a) 崮山组与长山组的分界面,三级层序DS1的底界面,界面之下为鲕粒滩灰岩,之上为陆棚相钙质泥岩;(b) 长山组的宏观特征,表现为泥晶生物丘灰岩向上加厚的特点;(c) 长山组与凤山组的分界面,三级层序DS2的底界面,界面之下为块状发育叠层石的泥晶生物丘灰岩,界面之上为陆棚相钙质泥岩;(d) 三级层序DS2的顶界面,界面之下为具有鲕粒灰岩披盖层 (大约20cm厚) 的叠层石生物丘灰岩,界面之上为陆棚相至深缓坡相条带状泥灰岩 Fig. 7 Images showing the sequence boundary belonging to the drown-unconformity type of the Furongian Series at the Guojiadian section in the western Liaoning Province (a) the bottom boundary of the DS1 that is used as the dividing boundary between the Gushan and the Changshan Formations, under which are massive oolitic-bank grainstones and above which are mudstones of the shelf facies; (b) a upward-thickening succession making up the Changshan Formation; (c) the bottom boundary of the DS2 that is used as the dividing boundary between the Changshan and the Fengshan Formations, under which are thick-bedded to massive micritic-boherm limstones with development of strmatolites and above which are mudstones of the shelf facies; (d) the top boundary of the third-order sequence DS2, under which are massive stromatolitic bioherm with the cap oolitic grainstones (20cm thick) and above are banded marls from shelf to deep-ramp facies
4.1 宏观特征

郭家店剖面芙蓉统中的叠层石生物丘,在长山组构成的三级层序DS1的顶部主要为穹窿状叠层石组成 (图 8a所示),在凤山组下部构成的三级层序DS2的顶部发育厚层块状柱状叠层石生物丘 (图 8b-e所示),局部相变为块状生物潜穴泥晶生物丘灰岩 (图 8c所示)。这些叠层石,总体上以较为粗糙的叠层石纹层为特征;DS2顶部发育的厚层块状柱状叠层石生物丘,主要为大型的柱状叠层石所组成,叠层石生物丘灰岩的厚度为1.5~2.0m,叠层石柱体的宽度为6~8cm,叠层石柱体间主要为泥晶填充,选择性的白云石化作用特征表明在叠层石柱体间的泥晶曾经发育过生物潜穴和生物扰动构造,这些叠层石柱体之间的不均匀白云石化泥晶的宽度为5~10cm不等。这些叠层石生物丘,类似于许多学者描述和定义的“微生物礁”(Riding, 2000, 2002, 2011a, b; Rowland and Shapiro, 2002; Pratt and Bordonar, 2007; Pratt et al., 2012; Chen et al., 2014; Kruse and Reitner, 2014; Lee et al., 2010, 2014a, 2015),表现出形成在潮下中高能环境中的泥晶相叠层石的特点,为微生物席内复杂的微生物沉淀作用的建造物 (Riding, 2000, 2011a; Bosak et al., 2013; 梅冥相和孟庆芬, 2016)。

图 8 辽西凌源郭家店剖面芙蓉统叠层石生物丘中的叠层石 (a) 长山组构成的三级层序DS1顶部的穹窿状叠层石;(b) 厚层柱状叠层石生物丘,与条带状泥晶灰岩一起组成潮下型米级旋回;(c) 叠层石柱体间的生物潜穴泥晶灰岩,沿着生物潜穴局部白云石化;(d) 粗糙的波状纹层组成的穹窿状叠层石;(e) 大型柱状叠层石以及叠层石柱体间填充的局部白云石化的泥晶,这些选择性的白云石化作用与生物潜穴或生物扰动存在关联;照片 (b) 至 (e) 为凤山组下部构成的三级层序DS2顶部的叠层石生物丘中的叠层石 Fig. 8 Images showing the stromatolites making up the stromatolitic bioherm for the Furongian Series at the Guojiadian section in the western Liaoning Province (a) domal stromatolites making up the stromatolitic bioherm in the top part of the Changshan Formation that constitutes the third-order sequence DS1; (b) thick-bedded stromatolitic bioherm that is composed by column stromatolites, which make up the carbonate subtidal meter-scale cycle together with the banded micrites; (c) micrites with burrows that are marked by dolomitization; (d) domal stromatolites that are formed by rough lamina; (e) large-scale column stromatolites, micrites between stromatolitic columns with burrows that are marked by the selective dolomitization; Images from (b) to (e) represent stromatolites making up stromatolitic bioherms in the top part of the third-order sequence DS2 that is composed of the lower part of the Fengshan Formation
4.2 微观特征

辽西郭家店剖面芙蓉统中的叠层石生物丘,集中发育在三级层序DS1和DS2的强迫型海退体系域中,其产出特征和层序地层位置类似于河北承德路通沟剖面,但是发育的规模和厚度明显小于路通沟剖面。如图 8所示,这些叠层石生长和发育的正常浅海环境,类似于今天的巴哈马鲕粒聚合的叠层石 (Reid et al., 2011),但是,明显的细粒泥晶组构,又与现代巴西东南部海湾 (Vasconcelos et al., 2006, 2014) 和澳大利亚鲨鱼湾 (Allen et al., 2009) 高盐度海水环境中的细粒泥晶叠层石较为相似。

长山组构成的三级层序DS1顶部的叠层石生物丘中的穹窿状叠层石 (图 2图 8a所示),尽管规模较小,叠层石生物丘的厚度不足两米。致密细粒泥晶是这些叠层石的基本构成,但是,一些较为典型的钙化蓝细菌菌落的残余物 (图 9所示),表明了这些穹窿状叠层石 (图 8a所示) 形成于蓝细菌所主导的微生物席 (Allen et al., 2009; Reid et al., 2011; Vasconcelos et al., 2006, 2014; 梅冥相和孟庆芬, 2016),主要包括:1)“石松藻 (Lithocodium)”状的钙化蓝细菌残余物 (图 9a, d, g, h所示),为暗色泥晶基质中的方解石亮晶斑点和管状物所构成,从而组成不规则的网状物,就像上文所提及的那样,近年来许多学者将类似的组构解释为“海绵骨针的网状物”(Chen et al., 2014; Kruse and Reitner, 2014; Adachi et al., 2014, 2015; Lee et al., 2010, 2014a, 2015),但是,在其中还发现其它类型的钙化蓝细菌菌落,如葡萄状和树枝状的塔林亚菌 (Taninia) 等 (图 9b, c, e, f所示),进一步表明了这些被亮晶方解石交代的丝状体网状物本身应该是较粗的丝状蓝细菌的铸模或残余物,类似于现代湖泊中能够分泌大量细胞外聚合物质的颤菌 (Oscillatoria) 和蓆菌 (Phormidium) 等丝状蓝细菌 (Voorhies et al., 2012) 所主导的微生物席的钙化作用产物;2) 塔林亚菌 (Taninia),最早为Korde在1973年命名,在命名的时候被当作红藻,后来被进一步归为钙化蓝细菌 (Riding, 2011b; Kruse and Reitner, 2014),这是一种葡萄状和树枝状的钙化微生物,属于肾形菌 (Renalcis) 和附枝菌 (Epiphyton) 之间的一个变种,在分支点之间表现为向外发散的趋势 (图 9b, c, e, f所示),可能球形蓝细菌 (如色球菌 (Chroococcus)、皮果菌 (Dermocarpa) 之类的蓝细菌) 群体鞘形成的房室状菌落的钙化残余物,表明丝状蓝细菌主导的微生物席中也发育着球形蓝细菌菌落,可以类比于北极湖泊中的微生物席的蓝细菌构成 (De los Ríos et al., 2015);3) 胞网菌 (Bacinella),是一种谜一样的微结壳生物,具有不规则的泥晶网状物和被亮晶填充的间隙 (图 9d, f; Védrine et al., 2007),而且常常被塔林亚菌 (Taninia) 结壳;4) 管状菌 (Tubomorphophyton),为特征性的具有泥晶壁的而且是空的管所组成,其管状体的直径为30~50μm (图 9h) 所示,为不规则网状分布的丝状蓝细菌的钙化残余物,而且产在“石松藻 (Lithocodium)”状的钙化蓝细菌残余物 (图 9g所示) 之中,可以类比于现代微生物席中发育公共鞘的念珠菌 (Nostoc) 菌落的钙化残余物 (De los Ríos et al., 2015)。

图 9 辽西凌源郭家店剖面长山组构成的三级层序DS1顶部叠层石生物丘中的穹窿状叠层石的微观特征 (a) 发育在“石松藻 (Lithocodium)”状钙化蓝细菌残余物中的泥晶团块,以及在泥晶团块中的可能的塔林亚菌 (Taninia);(b、c) 照片 (a) 中的葡萄状塔林亚菌 (Taninia) 的放大;(d) 不规则网状物的“石松藻 (Lithocodium)”状钙化蓝细菌残余物,以及其中发育的葡萄状和树枝状的塔林亚菌 (Taninia);(e) 照片 (d) 中的树枝状和葡萄状的塔林亚菌 (Taninia) 的放大;(f) 照片 (c) 中的树枝状和葡萄状的塔林亚菌 (Taninia) 的放大,结壳在可能的胞网菌 (Bacinella) 之上;(g) 以不规则网状物为特征的“石松藻 (Lithocodium)”状钙化蓝细菌残余物,其中发育管状菌 (Tubomorphophyton) 构成的团块;(h) 照片 (g) 中管状菌 (Tubomorphophyton) 构成的团块的放大,以及已经被方解石亮晶交代的不规则分布的丝状蓝细菌的残余物或铸模.所有照片均为单偏光显微照片 Fig. 9 Images showing the microscopic features of stromatolites making up the stromatolitic bioherm in the top part of the third-order sequence DS1 that is composed by the Changshan Formation at the Guojiadian section in the western Liaoning Province (a) dark micritic clump with the development of the possible Taninia within the possibly Lithocodium-like calcified cyanobacteria; (b and c) enlarges of the botryoidal Taninia in the image (a); (d) the possibly Lithocodium-like calcified cyanobacteria that is marked by an irregular network; (e) the possibly dendritical and botryoidal Taninia in the image (d); (f) the possibly botryoidal Taninia that is encrusted on the possible Bacinella in the image (d); (g) the possibly Lithocodium-like calcified cyanobacteria that is marked by an irregular network, in which are developed micritic clump composed of the possible Tubomorphophyton; (h) enlarges of the micritic clump composed of the possible Tubomorphophyton as well as the possible residue or mold of the cyanobacteria filaments that had been displaced by calcite spars. All photos are petrographic images under the plane-polarized light

在辽西郭家店剖面的凤山组下部地层组成的三级层序的强迫型海退体系域中 (图 2所示),那些构成叠层石生物丘的穹窿状 (图 8d所示) 和柱状叠层石 (图 8b, e所示),在构成叠层石的致密泥晶中常常发育“石松藻 (Lithocodium)”状的钙化蓝细菌残余物 (图 10所示),较为明显地说明了这些叠层石为蓝细菌所主导的微生物席内复杂的微生物沉淀作用的建造物 (Riding, 2000, 2011a; Bosak et al., 2013; 梅冥相和孟庆芬, 2016);就像上文多次提及到的那样,这些已经被方解石亮晶所交代的直径为5~20μm的蓝细菌丝状体铸模或残余物构成的网状物,虽然被解释为“硅质海绵骨针的网状物”(Adachi et al., 2014, 2015; Chen et al., 2014; Kruse and Reitner, 2014; Lee et al., 2010, 2014a, 2015),而且还被进一步解释为在寒武纪第二世末期的古杯主导的后生动物生物礁灭绝之后,海绵动物参与造礁而形成特别的海绵-微生物礁 (Chen et al., 2014; Lee et al., 2014a, 2015),从而进一步解释为硅质海绵在构筑那些发育在寒武纪第2世末期的生物灭绝事件之后、以及与奥陶纪生物多样性事件之间的迷宫状微生物礁的过程中起着重要的作用而具有后生动物生物礁 (范嘉松和张维, 1985; 吴亚生, 1994; Riding, 2002; Kiessling et al., 2010; 赵俊兴等, 2014) 的特点,但是,产在暗色致密泥晶中的蓝细菌丝状体铸模或残余物构成的网状物组成的“石松藻 (Lithocodium)”状的钙化蓝细菌残余物,表现出明显的丝状蓝细菌所主导的微生物席复杂的微生物沉淀作用的特点 (Riding, 2000, 2002, 2011a, b),这样的微生物沉淀作用,实际上是发生在异养细菌造成的泥晶沉淀作用或钙化作用过程之中,而且发生在微生物席的细胞外聚合物质降解作用过程之中 (Bosak et al., 2013; Vasconcelos et al., 2014; Kruse and Reitner, 2014),类似于现代湖泊中能够分泌大量细胞外聚合物质的颤菌 (Oscillatoria) 和蓆菌 (Phormidium) 等丝状蓝细菌所主导的微生物席的钙化作用特点 (Voorhies et al., 2012),更有可能类比于现代湖泊微生物席中的那些鞘较薄的薄鞘丝菌 (Leptolyngbya) 或假鱼腥菌 (Pseudanabaena) 之类的丝状蓝细菌铸模或残余物 (Voorhies et al., 2012; De los Ríos et al., 2015)。更为重要的是,如图 10b所示的可能的硫酸盐还原细菌 (Spadafora et al., 2010) 以及图 10c所示的可能的蓝细菌丝状体菌落,进一步说明了图 10a所示的“石松藻 (Lithocodium)”状的钙化蓝细菌残余物网状体中复杂的微生物构成。

图 10 辽西凌源郭家店剖面凤山组下部地层构成的三级层序DS2顶部叠层石生物丘中的柱状和穹窿状叠层石的微观特征 (a) 较为典型的“石松藻 (Lithocodium)”状的钙化蓝细菌网状物;(b) 照片 (a) 中局部见到的而且是有疑问的微细丝状微生物菌落的钙化物,可能为硫酸盐还原细菌的菌落;(c) 照片 (a) 中局部可见的丝状蓝细菌菌落,类似于葛万菌 (Girvanella).所有照片均为单偏光显微照片 Fig. 10 Images showing the microscopic features of domal and column stromatolites making up the stromatolitic bioherm in the top part of the third-order sequence DS2 that is composed by the lower part of the Fengshan Formation at the Guojiadian section in the western Liaoning Province (a) typically possible Lithocodium-like calcified cyanobacteria network; (b) an uncertain calcified microbial colony made up of fine filaments, one possible sulfate-reducing bacteria within the possible Lithocodium-like calcified cyanobacteria network in image (a); (c) a colony constituted by cyanobacteria filaments that is similar to the Girvanella within the possible Lithocodium-like calcified cyanobacteria network in image (a). All photos are petrographic images under the plane-polarized light
5 本溪城北剖面的叠层石生物丘

在辽宁本溪城北约5km的一个采石场中,较好地出露了芙蓉统凤山组下部地层所组成的三级层序DS2(图 2图 11a所示),与上文所述的其它剖面一样,该三级层序表现为一个从陆棚相钙质泥岩到块状叠层石生物丘灰岩的沉积序列,构成一个较为典型的淹没不整合型层序 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010b, 2011b),组成一个“凝缩段 (CS)+高水位体系域 (HST)+强迫型海退体系域 (FRST)”序列 (图 2所示),从而符合海平面变化层序的概念 (Boulila et al., 2011; 梅冥相, 2014a, 2015)。在该三级层序顶部厚度为20余米的强迫型海退体系域中,发育多层柱状叠层石生物丘,叠层石生物丘的单层厚度从2m到10m不等 (图 11b-d所示),多为大型柱状叠层石所构成。这些大型的柱状叠层石,叠层石柱体为上凸的波状纹层所组成,纹层较为粗糙,叠层石柱体的宽度为10~20cm不等,表现出较为典型的正常高能浅海环境中泥晶相叠层石的基本特征 (Allen et al., 2009; Spadafora et al., 2010; Reid et al., 2011; Vasconcelos et al., 2006, 2014; 梅冥相和孟庆芬, 2016)。

在本溪城北剖面芙蓉统凤山组的叠层石生物丘中的大型柱状叠层石中,特别的钙化微生物构成 (图 12图 13所示) 表明了这些柱状叠层石为特别的蓝细菌所主导的微生物席所建造 (Bosak et al., 2013; 梅冥相, 2011a, 2014b),而且是发生在微生物席中复杂的微生物沉淀作用或钙化作用的产物 (Allen et al., 2009; Spadafora et al., 2010; Reid et al., 2011; Riding, 2011a, b; Voorhies et al., 2012; Vasconcelos et al., 2006, 2014; Kruse and Reitner, 2014; 梅冥相和孟庆芬, 2016)。

图 11 辽宁本溪城北剖面凤山组下部地层组成的三级层序DS2及其强迫型海退体系域中的叠层石生物丘的宏观特征 (a) 三级层序DS2的宏观特征,为一个向上变厚的沉积序列,箭头所指为淹没不整合型层序界面;(b) 层序顶部的块状叠层石生物丘灰岩,为大型柱状叠层石构成;(c) 新鲜面上的大型柱状叠层石;(d) 风化面上的大型柱状叠层石 Fig. 11 Images showing both the megascopic features for the third-order sequence DS2 made up of the lower part of the Fengshan Formation and the stromatolitic bioherms in the forced-regressive system tract of the DS2 at the North-Benxi section in Liaoning Province (a) one upward-thickening succession making up the third-order sequence DS2 that is marked by a drown-unconformity sequence, and the arrowed refer to sequence boundaries; (b) massive stromatolitic bioherm that is constituted by large-scale column stromatolites; (c) large-scale column stromatolites in the fresh surface; (d) large-scale column stromatolites in the weathered surface

图 12所示,类似于河北承德路通沟剖面 (图 6d) 以及辽西凌源郭家店剖面 (图 9图 10) 中的叠层石,本溪城北剖面凤山组中的柱状叠层石,也见到较为普遍的而且为暗色泥晶包裹的“石松藻 (Lithocodium)”状的钙化蓝细菌残余物 (图 12a所示; Cherchi and Schroeder, 2006; Védrine et al., 2007),这些类似于现代湖泊中能够分泌大量细胞外聚合物质的颤菌 (Oscillatoria) 和蓆菌 (Phormidium) 等丝状蓝细菌所主导的微生物席钙化作用产物 (Voorhies et al., 2012) 的钙化蓝细菌网状物,由于与可能的微细丝状蓝细菌的网状物胞网菌 (Bacinella) 互层 (图 12b所示),从而产生叠层石的粗糙纹层 (图 12a所示),再加上其中还发育着很多可能的管状菌 (Tubomorphophyton) 和葛万菌 (Girvanella) 组成的暗色泥晶团块 (图 12c, d所示),从而排除了近年来一些学者将类似的组构解释为“海绵骨针的网状物”(Chen et al., 2014; Kruse and Reitner, 2014; Adachi et al., 2014, 2015; Lee et al., 2010, 2014a, 2015) 的可能性。

图 12 辽宁本溪城北剖面凤山组下部地层构成的三级层序DS2顶部叠层石生物丘中的柱状叠层石的微观特征 (a) 较为典型的“石松藻 (Lithocodium)”状的钙化蓝细菌网状物,与可能的胞网菌 (Bacinella) 互层产出而形成粗糙的叠层石纹层;(b) 照片 (a) 中可能的胞网菌 (Bacinella) 的放大;(c)“石松藻 (Lithocodium)”状的钙化蓝细菌网状物和可能的胞网菌 (Bacinella),以及其中普遍发育的为管状菌 (Tubomorphophyton) 和葛万菌 (Girvanella) 组成的暗色泥晶团块;(d) 照片 (c) 中可能的管状菌 (Tubomorphophyton) 和葛万菌 (Girvanella) 组成的暗色泥晶团块的放大.所有照片均为单偏光显微照片 Fig. 12 Images showing the microscopic features of column stromatolites making up the stromatolitic bioherm in the top part of the third-order sequence DS2 that is composed by the lower part of the Fengshan Formation at the North-Benxi section in Liaoning Province (a) typically possible Lithocodium-like calcified cyanobacteria network interbedded the possible Bacinella, which demonstrate that stromatolitic lamina are resulted from the intebedding of these two distinct cailacified cyanobacteria colony; (b) enlarge of the Bacinella in the image (a); (c) possible Lithocodium-like calcified cyanobacteria network and the possible Bacinella, in which lots of dark micritic clumps are made up of both the Tubomorphophyton and the Girvanella; (d) enlarge of the dark dark micritic clumps that are made up of both the Tubomorphophyton and the Girvanella in image (c). All photos are petrographic images under the plane-polarized light

更为特征的是,在本溪城北剖面凤山组的大型柱状叠层石中 (图 11所示),还见到较为典型的附枝菌 (Epiphyton; 图 13所示),为一些二分叉的丝状体或棒状物构成房室状、团块状和扇形菌落而密集发育在致密泥晶之中,类似于鲁西地区寒武系第三统张夏组树形石与凝块石生物丘 (或微生物礁) 中的类型1附枝菌 (沙庆安和江茂生, 1998; Woo et al., 2008; 韩作振等, 2009; Woo and Chough, 2010),这些二分叉的丝状体或棒状物的直径为50~70μm,主流认识是将附枝菌归为钙化蓝细菌 (Woo et al., 2008; Woo and Chough, 2010; Riding, 2011a, b, 2012; Săsăran et al., 2014);但是,对于这种特别引人注目的钙化微生物的生物亲和性,一直到现在还存在着争议而具有不同的认识,包括:1) 归为红藻 (Luchinina and Terleev, 2008);2) 不能与葛万菌 (Girvanella) 一样归为蓝细菌 (Adachi et al., 2014);3) 与肾形菌 (Renalcis) 一样属于钙质红藻 (Luchinina, 2009);4) 与肾形菌 (Renalcis) 一样,附枝菌 (Epiphyton) 是细菌诱发的沉淀物,不应该是光合蓝细菌菌落 (Chafetz and Guidry, 1999)。即使也归为钙化蓝细菌,Pratt (1984)还假设到,附枝菌和肾形菌均为球形蓝细菌所构成;基于现代湖泊相的微生物岩中较为典型的灌木丛状组构的研究 (Laval et al., 2000),认为附枝菌 (Epiphyton) 是由于异养细菌造成丝状蓝细菌 (如颤菌 (Oscillatoria) 和眉菌 (Calothrix)) 菌落在微生物席内而不是在微生物席表面的钙化作用结果,尽管还不知道究竟是丝状蓝细菌鞘的活体主动钙化、还是死亡后的被动钙化作用结果。因此,附枝菌归为丝状蓝细菌钙化菌落的解释,应该是一个较为合理的解释,而且为那些具有二分叉特点的较粗的丝状蓝细菌 (如飞氏菌 (Fischerella) 等) 所形成。

图 13 辽宁本溪城北剖面凤山组下部地层构成的三级层序DS2顶部叠层石生物丘中的柱状叠层石的附枝菌 (a) 房室状菌落为特征的附枝菌;(b) 照片 (a) 的局部放大,表现出附枝菌菌落为棒状体和丝状体所组成,这些棒状体或丝状体的直径为50μm左右;(c) 形成团块状菌落的附枝菌;(d) 照片 (a) 的局部放大,表现出棒状体和丝状体的直径为50~70μm,局部见二分叉的特点,可以类比于现代较粗的丝状蓝细菌如飞氏菌 (Fischerella) 等.所有照片均为单偏光显微照片 Fig. 13 Images showing the Epiphyton within column stromatolites making up the stromatolitic bioherm in the top part of the third-order sequence DS2 that is composed by the lower part of the Fengshan Formation at the the North-Benxi section in Liaoning Province (a) Epiphyton that is marked by the chamber-like colony; (b) the enlarge of the part of image (a), expressing that the Epiphyto is made up of rods or filaments with the diameter of ca. 50μm; (c) Epiphyton that is marked by the clump-like colony; (d) the enlarge of the part of image (c), expressing that the Epiphyto is made up of rods or filaments with the diameter of ca. 50~70μm and a dichotomy character that could be analogy to the modern Fischerella. All photos are petrographic images under the plane-polarized light
6 讨论

在华北地台东北缘寒武系芙蓉统中,发育在三级层序强迫型海退体系域中的叠层石生物丘 (图 2图 3图 7图 11a所示),以及构成这些叠层石生物丘的穹窿状和柱状叠层石 (图 4图 8图 11b-d所示),由于发育较为特殊的钙化蓝细菌化石,尤其是叠层石中普遍发育的“石松藻 (Lithocodium)”状的钙化蓝细菌 (Cherchi and Schroeder, 2006) 及其与之相共生的葛万菌、附枝菌、胞网菌、管状菌、塔林亚菌 (Taninia) 等 (图 6图 9图 10图 12图 13),充分说明了这些叠层石是发生在微生物席内的复杂的微生物沉淀作用的建造物 (Riding, 2011a),而且这样的微生物席无疑为蓝细菌所主导,类似于今天巴哈马台地 (Reid et al., 2011; Casaburi et al., 2016)、澳大利亚鲨鱼湾 (Allen et al., 2009) 以及巴西东南部海湾中 (Spadafora et al., 2010; Vasconcelos et al., 2006, 2014) 形成海相碳酸盐叠层石的蓝细菌所主导的微生物席,也类似于现代湖泊相微生物席中具有不同生物学行为的复杂的蓝细菌构成 (Voorhies et al., 2012; De los Ríos et al., 2015)。现代碳酸盐叠层石的研究表明,叠层石的形成,最为关键的是早期石化作用,因为早期石化作用为矿物的原地沉淀作用所产生,这将有助于叠层石的保存 (Dupraz et al., 2009, 2011)。在微生物席内,两个关键和紧密耦合的因素,卷入了碳酸盐矿物的原地沉淀作用 (Dupraz et al., 2009, 2011):1) 碱度发动机;2) 细胞外聚合物质 (EPS) 构成的有机基质。碱度发动机,将有效地改变饱和作用指数,当微生物新陈代谢活动是主要的产生碳酸盐矿物沉淀作用的作用过程的时候,这个发动机就是内在驱动的;当宏观环境造成了微生物席的石化作用的时候,这个发动机就是外在的。在两种情况下,细胞外聚合物质 (EPS) 构成的有机基质,嵌入了微生物群落,将成为碳酸盐矿物成核和生长的天然地点或场所。新鲜的EPS含有负价键的酸性基团,将结合大量的阳离子 (如二价钙离子),从而阻碍碳酸钙的沉淀作用;为了促进碳酸盐矿物的沉淀,这个阻碍作用将通过EPS的降解或通过结合阳离子能力的过饱和作用的降低而得以实现。微生物活动最终造成了EPS的生产作用,而且EPS的异养细菌 (如硫酸盐还原细菌) 降解作用又造成了矿物的沉淀作用。这些基于现代碳酸盐叠层石研究得出的重要认识,可以较为有效地运用到华北地台东北缘芙蓉统的叠层石形成作用之中,而且主导着这些寒武纪叠层石形成的蓝细菌主导的微生物席,其特别的钙化蓝细菌构成还表现出以下最为重要的特征。

首先,叠层石中普遍发育的“石松藻 (Lithocodium)”状的钙化蓝细菌 (图 6图 9图 10图 12; Cherchi and Schroeder, 2006),就像其名称所蕴含的含义那样,曾经被认为是绿藻中的一种能够分泌碳酸盐骨骼的松藻 (Elliott, 1956),后来还被解释为结壳状有孔虫 (Schmid and Leinfelder, 1996),最后被进一步确定为蓝细菌菌落的钙化残余物 (Cherchi and Schroeder, 2006),而且多发育在中生代的叠层石、凝块石和核形石中 (Cherchi and Schroeder, 2006; Védrine et al., 2007; Săsăran et al., 2014);最为特征的是,与胞网菌 (Bacinella; 一种细线式的丝状蓝细菌) 一起,在瑞士牛津期灰岩形成一种多孔网状的低能核形石皮层 (Védrine et al., 2007),从而进一步证明了将其解释为钙化蓝细菌菌落残余物的相对合理性,在考虑到这种特别的钙化蓝细菌菌落常常共生着其他类型的钙化蓝细菌如葛万菌、附枝菌、胞网菌、管状菌、塔林亚菌 (Taninia) 等 (图 6图 9图 10图 12图 13),所以,在本文被称为“石松藻 (Lithocodium) 状的钙化蓝细菌”,类似于现代湖泊中能够分泌大量细胞外聚合物质的颤菌 (Oscillatoria) 和蓆菌 (Phormidium) 等丝状蓝细菌所主导的微生物席的钙化作用产物 (Voorhies et al., 2012),或者更有可能类比于现代湖泊微生物席中的的那些鞘较薄的薄鞘丝菌 (Leptolyngbya) 或假鱼腥菌 (Pseudanabaena) 之类的丝状蓝细菌 (Voorhies et al., 2012; De los Ríos et al., 2015; bKaźmierczak2015 et al., 2015) 铸模或残余物。需要强调的是,近年来许多学者针对寒武纪微生物岩或微生物礁的研究,更多将类似的沉积组构解释为“海绵骨针的网状物”(Chen et al., 2014; Kruse and Reitner, 2014; Adachi et al., 2014, 2015; Lee et al., 2010, 2014a, 2015),并产生了“芙蓉统海绵-迷宫状微生物礁”而区别于寒武纪第3世的“附枝菌微生物礁”的结论性认识,并进一步认为上述变化造成了从寒武纪第3世到芙蓉世的生物礁造礁样式的变化 (Chen et al., 2014; Lee et al., 2010, 2014a, 2015);但是,这些结论性认识还需要进一步研究才能得到合理的阐释,因为明显与本文所描述的芙蓉统叠层石生物丘中叠层石多样化的钙化微生物构成相悖。

其次,如图 13所示,在华北地台东北缘的本溪城北剖面的芙蓉统凤山组叠层石生物丘中的大型柱状叠层石中,与“石松藻 (Lithocodium)”状的钙化蓝细菌共生的附枝菌的现象,还进一步说明了附枝菌在寒武纪第3世末期灭绝并造成了从寒武纪第3世到芙蓉世发生了生物礁造礁样式变化的结论性认识 (Chen et al., 2014; Lee et al., 2010, 2014a, 2015),还难以得到肯定。

第三,华北地台东北缘寒武纪芙蓉世的叠层石中普遍发育的“石松藻 (Lithocodium)”状的钙化蓝细菌 (Cherchi and Schroeder, 2006) 及其与之相共生的葛万菌、附枝菌、胞网菌、管状菌、塔林亚菌 (Taninia) 等 (图 6图 9图 10图 12图 13),充分说明了形成这些穹窿状和柱状叠层石 (图 4图 8图 11b-d所示) 的微生物席是蓝细菌所主导的微生物席,从而表现出明显的微生物作用与活动信号,但是,还是不能理解为这些叠层石就完全是蓝细菌所主导的微生物席的直接钙化作用产物。因为叠层石的形成,最为关键的是早期石化作用 (Dupraz et al., 2009, 2011) 或微生物沉淀作用 (Riding, 2011a),而且在微生物席内,碱度发动机和细胞外聚合物质 (EPS; Decho, 2010, 2011) 构成的有机基质这两个关键要素的紧密耦合,卷入了碳酸盐矿物的原地沉淀作用 (Dupraz et al., 2009, 2011)。就像叠层石纹层形成的“聚合作用模式”(Vasconcelos et al., 2014) 所得出的结论那样,在微生物席内的EPS或生物量中,异养微生物 (如硫酸盐还原细菌等) 诱发的碳酸盐沉淀作用,似乎是叠层石纹层形成的第一步,最终导致一个孤立纹层的聚合作用而形成石化的叠层石构造;再者,微生物纹层聚合作用带,以及产生的纹层建隆,多局限在缺氧微环境中,说明了硫酸盐还原细菌之类的异养细菌的新陈代谢活动、以及由此产生的EPS的降解作用,是叠层石纹层形成的关键性因素。如上文的图 6图 9图 10图 12图 13所示,华北地台东北缘芙蓉统中的叠层石,主体为致密泥晶所构成,表明了形成这些叠层石的复杂的微生物沉淀作用 (Riding, 2011a) 或早期石化作用 (Dupraz et al., 2009, 2011),可能发生得较早,类似于Kaźmierczak et al. (2015)所描述的多层状蓝细菌生物席中的碳酸钙沉淀作用中的“细粒泥晶纹层”的沉淀作用,即发生在活着的蓝细菌主导的微生物席底部的微生物沉淀作用的结果,而且泥晶碳酸盐的成核作用最有可能是形成于蓝细菌对二氧化碳和重碳酸根离子的光合吸收所诱发的较高的pH值相关联的同生过程之中,这个过程会造成碳酸盐离子的增加因此造成了较高的碳酸钙饱和作用水平而促进泥晶方解石的沉淀作用;随后,在蓝细菌所主导的微生物席的EPS基质的异养细菌腐烂过程之中,硫酸盐还原反应与硫化物氧化反应的的耦合作用会产生一些亮晶纹层或团块,从而增强了构成叠层石的致密泥晶的非均质性,这也可能是图 4图 8图 11所示的叠层石粗糙纹层的主要原因。

7 结语

华北地台东北缘寒武系芙蓉统中的叠层石生物丘,以较大的厚度变化发育在三级层序的强迫型海退体系域中,形成典型的相对海平面下降阶段的沉积记录,从而不符合经典和标准的层序地层学模式,也不符合标准的威尔逊碳酸盐台地模式。更为重要的是,构成这些叠层石生物丘的穹窿状和柱状叠层石,发育着各种各样的钙化蓝细菌及其菌落的残余物,说明了形成这些叠层石的微生物席是较为典型的蓝细菌所主导的微生物席,从而进一步说明了这些粗糙纹层的碳酸盐叠层石是复杂的、而且与异养细菌的微生物新陈代谢活动相关联的微生物沉淀作用的产物,符合叠层石形成的“聚合作用模式”,成为了解寒武纪芙蓉世较为典型的微生物造礁和成丘作用的典型实例,并进一步证明了一些针对寒武纪微生物礁的造礁样式的结论性认识,需要进一步研究才能得到合理的阐释,原因包括:1)“海绵骨针的网状物”更有可能是“石松藻 (Lithocodium)”状的钙化蓝细菌;2) 寒武纪第3世末期可能的附枝菌灭绝事件没有得到实际材料的支持;3) 寒武纪芙蓉世的“硅质海绵-微生物礁”可能没有那么普遍,主要是硅质海绵立足于“海绵骨针网状物”的推论没有得到实际材料的支持。因此,希望我们的发现和研究,能够为今后的深入研究提供有益的思考途径和研究线索。

参考文献
[] Adachi N, Nakai T, Ezaki Y, Liu JB. 2014. Late Early Cambrian archaeocyath reefs in Hubei Province, South China: Modes of construction during their period of demise. Facies, 60: 703–717. DOI:10.1007/s10347-013-0376-y
[] Adachi N, Kotani A, Ezaki Y, Liu JB. 2015. Cambrian Series 3 lithistid sponge-microbial reefs in Shandong Province, North China: Reef development after the disappearance of archaeocyaths. Lethaia, 48(3): 405–416. DOI:10.1111/let.12118
[] Allen MA, Goh F, Burns BP, Neilan BA. 2009. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 7(1): 82–96. DOI:10.1111/gbi.2009.7.issue-1
[] Benzerara K, Skouri-Panet F, Li JH, Férard C, Gugger M, Laurent T, Couradeau E, Ragon M, Cosmidis J, Menguy N, Margaret-Oliver I, Tavera R, López-García P, Moreira D. 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proceedings of the National Academy of Sciences of the Uinted States of America, 111(30): 10933–10938. DOI:10.1073/pnas.1403510111
[] Bosak T, Knoll AH, Petroff AP. 2013. The meaning of stromatolites. Annual Review of Earth and Planetary Sciences, 41(1): 21–44. DOI:10.1146/annurev-earth-042711-105327
[] Bottjer DJ, Hagadorn JW, Dornbos SQ. 2000. The Cambrian substrate revolution. GSA Today, 10(9): 1–7.
[] Bottjer DJ. 2005. Geobiology and the fossil record: Eukaryotes, microbes, and their interactions. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 5–21. DOI:10.1016/j.palaeo.2004.10.011
[] Boulila S, Galbrun B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD. 2011. On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences. Earth-Science Reviews, 109(3-4): 94–112. DOI:10.1016/j.earscirev.2011.09.003
[] Casaburi G, Duscher AA, Reid RP, Foster JS. 2016. Characterization of the stromatolite microbiome from Little Darby Island, the Bahamas using predictive and whole shotgun metagenomic analysis. Environmental Microbiology, 18(5): 1452–1469. DOI:10.1111/1462-2920.13094
[] Catuneanu O. 2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier, 1-375
[] Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier, H W, Strasser A, Tucker ME. 2011. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3): 173–245. DOI:10.1127/0078-0421/2011/0011
[] Chafetz HS, Guidry SA. 1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: Bacterial vs. abiotic precipitation. Sedimentary Geology, 126(1-4): 57–74. DOI:10.1016/S0037-0738(99)00032-9
[] Chen JT, Lee JH, Woo J. 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (Late Cambrian) reefs in the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 414: 246–259. DOI:10.1016/j.palaeo.2014.09.004
[] Chen XW, Mou CL, Ge XY, Kang JW, Zhou KK. 2013. Distributing characteristics and controlling factors foe oolitic shoal of the Third Series of Cambrian in North China. Journal of Oil and Gas Techology, 34(11): 8–14.
[] Cherchi A, Schroeder R. 2006. Remarks on the systematic position of Lithocodium Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm. Facies, 52(3): 435–440. DOI:10.1007/s10347-006-0045-5
[] Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown Jr GE, López-García P. 2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science, 336(6080): 459–462. DOI:10.1126/science.1216171
[] Cui ZL, Hua H, Qiu SY. 1993. Palaeoenvironment of the Upper Cambrian stromatolites from Fuzhouwan, eastern Liaoning. In: Zhu SX (ed.). The Stromatolites of China. Tianjin: Tianjin University Press, 101-107 (in Chinese)
[] Dai MY, Qi YA, Chen Y, Li D. 2014. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area, western Henan Province. Journal of Palaeogeography, 16(5): 726–734.
[] De los Ríos A, Ascaso C, Wierzchos J, Vincent WF, Quesada A. 2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodiversity and Conservation, 24(4): 841–863. DOI:10.1007/s10531-015-0907-7
[] Decho AW. 2010. Overview of biopolymer-induced mineralization: What goes on in biofilms. Ecological Engineering, 36(2): 137–144. DOI:10.1016/j.ecoleng.2009.01.003
[] Decho AW. 2011. Extracellular polymeric substances (EPS). In: Reitner J and Thiel V (eds.). Encyclopedia of Geobiology. Netherlands: Springer, 359-362
[] Desjardins PR, Buatois LA, Pratt BR, Mángano MG. 2012. Forced regressive tidal flats: Response to falling sea level in tide-dominated settings. Journal of Sedimentary Research, 82(3): 149–162. DOI:10.2110/jsr.2012.18
[] Du RL, Hu HB, Tian LF. 1993. The Early Paleozoic stromatolites in North China. In: Zhu SX (ed.). The Stromatolites of China. Tianjin: Tianjin University Press: 15-19.
[] Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141–162. DOI:10.1016/j.earscirev.2008.10.005
[] Dupraz C, Reid RP, Visscher PT. 2011. Microbialites, modern. In: Reitner J and Thiel V (eds.). Encyclopedia of Geobiology. Netherlands: Springer, 617-635
[] Elliott GF. 1956. Further records of fossil calcareous algae from the Middle East. Micropaleontology, 2(4): 327–334. DOI:10.2307/1484348
[] Ezaki Y, Liu JB, Adachi N. 2003. Earliest Triassic microbialite micro-to megastructures in the Huaying area of Sichuan Province, South China: Implications for the nature of oceanic conditions after the End-Permian extinction. Palaios, 18(4-5): 388–402. DOI:10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2
[] Fan JS, Zhang W. 1985. On the basic concept and classification of organic reefs and their main identifying criteria. Acta Petrologica Sinica, 1(3): 45–59.
[] Feng ZZ, Peng YM, Jin ZK, Bao ZD. 2004. Lithofacies Palaeogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press: 112-121.
[] Gao JP, Zhu SX. 1998. Cambrian microbialites from the northeastern Shanxi Province and their relation to sedimentary environments. Acta Micropalaeontologica Sinica, 15(2): 166–177.
[] Gómez JJ, Fernández-López S. 1994. Condensation processes in shallow platforms. Sedimentary Geology, 92(3-4): 147–159. DOI:10.1016/0037-0738(94)90103-1
[] Han ZZ, Chen JT, Zhang XL, Yu XF. 2009. Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong Province. Acta Geologica Sinica, 83(8): 1097–1103.
[] Han ZZ, Zhang XL, Chi NJ, Han M, Woo J, Lee HS, Chen JT. 2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporites, 30(4): 373–386. DOI:10.1007/s13146-014-0209-2
[] He YL, Liu B, Qin S, Zhao PY. 2012. The bioherm and geological significance of Middle Zhangxia Formation at Xiaweidian Profile in West Hill, Beijing, China. Geological Science and Technology Information, 31(1): 1–15.
[] Jing YX, Liu JB, Yan Z, Sun YC, Xu ZQ. 2015. Reconstructing sea-level changes from types of storm deposits: An example of the Middle and Late Cambrian at Xiaweidian section of Western Hills, Beijing. Journal of Palaeogeography, 17(5): 653–668.
[] Johnston DT, Poulton SW, Goldberg T, Sergeev VN, Podkovyrov V, Vorob'eva NG, Bekker A, Knoll AH. 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters, 335-336: 25–35. DOI:10.1016/j.epsl.2012.05.010
[] Kaźmierczak J, Fenchel T, Küh M, Kempe S, Kremer B, Łącka B, Małkowski K. 2015. CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life, 5(1): 744–769. DOI:10.3390/life5010744
[] Kiessling W, Simpson C, Foote M. 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science, 327(5962): 196–198. DOI:10.1126/science.1182241
[] Kruse PD, Reitner JR. 2014. Northern Australian microbial-metazoan reefs after the Mid-Cambrian mass extinction. Memoirs of the Association of Australasian Palaeontologists, 45: 31–53.
[] Laval B, Cady SL, Pollack JC, McKay CP, Bird JS, Grotzinger JP, Ford DC, Bohm HR. 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407(6804): 626–629. DOI:10.1038/35036579
[] Lee JH, Chen JT, Chough SK. 2010. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(3-4): 621–632. DOI:10.1016/j.palaeo.2010.09.012
[] Lee JH, Chen JT, Choh SJ, Lee DJ, Han ZZ, Chough SK. 2014a. Furongian (late Cambrian) sponge-microbial maze-like reefs in the North China Platform. Palaios, 29(1): 27–37. DOI:10.2110/palo.2013.050
[] Lee JH, Lee HS, Chen JT, Woo J, Chough SK. 2014b. Calcified microbial reefs in the Cambrian Series 2, North China Platform: Implications for the evolution of Cambrian calcified microbes. Palaeogeography, Palaeoclimatology, Palaeoecology, 403: 30–42. DOI:10.1016/j.palaeo.2014.03.020
[] Lee JH, Chen JT, Chough SK. 2015. The middle-late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145: 66–84. DOI:10.1016/j.earscirev.2015.03.002
[] Li JH, Qian XL, Huang XN, Liu SW. 2000. Tectonic framework of North China Block and its cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1–10.
[] Li JH, Hou GT, Huang XN, Zhang ZQ, Qian XL. 2001. The constraint for the supercontinental cycles: Evidence from Precambrian geology of North China Block. Acta Petrologica Sinica, 17(2): 177–186.
[] Liu W, Zhang XL. 2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58(4): 779–787. DOI:10.1007/s10347-012-0294-4
[] Liu W, Zhang XL. 2015. Calcified biofilms from Cambrian oolitic limestones in China. Acta Geologica Sinica, 89(1): 70–76. DOI:10.1111/1755-6724.12395
[] Liu YQ, Meng XH, Ge M. 1999. The sea-level change forcing cycles of oolitic carbonate and cyclochrological applications. Scientia Geologica Sinica, 34(4): 442–450.
[] Lu YH, Zhang WT, Zhu ZL, Xiang LW, Lin HL, Zhou ZY, Yuan JL, Peng SC, Qian Y, Zhang SG, Li SJ, Guo JH, Luo HL. 1994. Suggestions for the establishment of the Cambrian Stages in China. Journal of Stratigraphy, 18(4): 318–328.
[] Luchinina VA, Terleev AA. 2008. The morphology of the genus Epiphyton Bornemann. Geologia Croatica, 61(2-3): 105–111.
[] Luchinina VA. 2009. Remalcis and Epiphyton as different stages in the life cycle of calcareous algae. Paleontological Journal, 43(4): 463–468. DOI:10.1134/S0031030109040169
[] Mei MX. 1996. The third-order carbonate cyclic sequences of drowned unconformity type with discussions on "condensation" of carbonate platform. Sedimentary Facies and Palaeogeography, 16(6): 24–33.
[] Mei MX, Mei SL. 1997. Cyclic-sequences of Composite sea-level change developed in Zhangxia Formation of Middle-Cambrian in North-China. Acta Sedimentologica Sinica, 15(4): 5–10.
[] Mei MX, Ma YS, Mei SL, Hu JZ. 1997. Framwork of cambrian sedimentary sequence and evolution of carbonate platform in North China. Geoscience, 11(3): 275–282.
[] Mei MX, Xu DB, Zhou HR. 2000. Genetic types of meter-scale cyclic sequences and fabric natures of facies succession. Journal of China University of Geosciences, 11(4): 375–382.
[] Mei MX, Ma YS, Deng J, Chen HJ. 2005. From cycles to sequences: Sequence stratigraphy and relative sea level change for the Late Cambrian of the North China Platform. Acta Geologica Sinica, 79(3): 372–383. DOI:10.1111/acgs.2005.79.issue-3
[] Mei MX, Gao JH, Meng QF. 2006. From matground structures to the primary sedimentary structures of a fifth category: Significant concepts on sedimentology. Geoscience, 20(3): 413–422.
[] Mei MX. 2010a. Research on forming mechanism of long-term sequences: The second advance in sequence stratigraphy. Journal of Palaeogeography, 12(6): 711–728.
[] Mei MX. 2010b. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography, 12(5): 549–564.
[] Mei MX. 2011a. Microbial-mat sedimentology: A youth branch in sedimentology. Advances in Earth Science, 26(6): 586–597.
[] Mei MX. 2011b. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the Western Suburb of Beijing. Geology in China, 38(2): 317–337.
[] Mei MX, Guo RT, Hu Y. 2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the Western Suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473–2486.
[] Mei MX. 2012. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937–951.
[] Mei MX. 2014a. Three misreadings during the developing course of sequence stratigraphy. Earth Science Frontiers, 21(2): 67–80.
[] Mei MX. 2014b. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography, 16(3): 285–304.
[] Mei MX. 2015. Conceptual change from depositional sequences to eustatic sequences: An important development in sequence stratigraphy. Journal of Stratigraphy, 39(1): 58–73.
[] Mei MX, Liu L, Hu Y. 2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the Western Suburb of Beijing, North China. Acta Geologica Sinica, 89(2): 440–460.
[] Mei MX, Khaing KK. 2016. A new progress of the Proterozoic chronostratigraphical division. Acta Geologica Sinica, 90(4): 1097–1121. DOI:10.1111/acgs.2016.90.issue-4
[] Mei MX, Meng QF. 2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography, 18(2): 127–146.
[] Meng XH, Qiao XF, Ge M. 1986. Study on ancient shallow sea carbonate storm deposits (tempestite) in North China and Dingjiatan model of facies sequences. Acta Sedimentologia Sinica, 4(2): 1–18.
[] Meng XH, Ge M, Tucker ME. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1-4): 189–222. DOI:10.1016/S0037-0738(97)00073-0
[] Myrow PM, Tice L, Archuleta B, Clark B, Taylor JF, Ripperdan RL. 2004. Flat-pebble conglomerate: Its multiple origins and relationship to metre-scale depositional cycles. Sedimentology, 51(5): 973–996. DOI:10.1111/sed.2004.51.issue-5
[] Noffke N, Decho AW, Stoodley P. 2013. Slime through time: The fossil record of prokaryote evolution. Palaios, 28(1): 1–5. DOI:10.2110/palo.2013.SO1
[] Obst M, Wehrli B, Dittrich M. 2009a. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology, 7(3): 324–347. DOI:10.1111/gbi.2009.7.issue-3
[] Obst M, Dynes JJ, Lawrence JR, Swerhone GDW, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock AP. 2009b. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14): 4180–4198. DOI:10.1016/j.gca.2009.04.013
[] Osleger D. 1991. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls. Geology, 19(9): 917–920.
[] Peng SC, Babcock LE, Cooper RA. 2012. The cambrian period (Chapter 19). In: Gradstein FM, Ogg JG, Schmitz MD and Ogg G (eds.). The Geologic Time Scale 2012. Amsterdam: Elsevier, 437-488
[] Pratt BR. 1984. Epiphyton and Renalcis: Diagenetic microfossils from calcification of coccoid blue-green algae. Journal of Sedimentary Research, 54(3): 948–971.
[] Pratt BR, Bordonar OL. 2007. Tsunamis in a stormy sea: Middle Cambrian inner-shelf limestones of western Argentina. Journal of Sedimentary Research, 77(4): 256–262. DOI:10.2110/jsr.2007.032
[] Pratt BR, Raviolo MM, Bordonaro OL. 2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera, San Juan, Argentina. Sedimentology, 59(3): 843–866. DOI:10.1111/sed.2012.59.issue-3
[] Pruss SB, Finnegan S, Fischer WW, Knoll AH. 2010. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia. Palaios, 25(2): 73–84. DOI:10.2110/palo.2009.p09-101r
[] Qi YA, Yang XW, Dai MY, Li D, Wang M, Xing ZF. 2014a. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area, western Henan Province. Journal of Palaeogeography, 16(1): 55–64.
[] Qi YA, Wang YP, Dai MY, Li D. 2014b. Thrombolites and controlling factors from the Zhangxia Formation of Cambrian Series 3 in Dengfeng, western Henan Province. Acta Micropalaeontologica Sinica, 31(3): 243–255.
[] Rankey EC, Riegl B, Steffen K. 2006. Form, function, and feedbacks in a tidally dominated ooid shoal, Bahamas. Sedimentology, 53(6): 1191–1210. DOI:10.1111/sed.2006.53.issue-6
[] Reid RP, Foster JS, Radtke G, Golubic S. 2011. Modern marine stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: Environmental setting, accretion mechanisms and role of euendoliths. In: Reitner J, Quéric NV and Arp G (eds.). Advances in Stromatolite Geobiology. Berlin Heidelberg: Springer-Verlag: 77-89.
[] Riding R. 2000. Microbial Carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47(S1): 179–214.
[] Riding R. 2002. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Science Reviews, 58(1-2): 163–231. DOI:10.1016/S0012-8252(01)00089-7
[] Riding R, Liang LY. 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 101–115. DOI:10.1016/j.palaeo.2004.11.018
[] Riding R. 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185(3-4): 229–238. DOI:10.1016/j.sedgeo.2005.12.015
[] Riding R. 2011a. Microbialites, stromatolites, and thrombolites. In: Reitner J and Thiel V (eds.). Encyclopedia of Geobiology. Netherlands: Springer, 635-654
[] Riding R. 2011b. Calcified cyanobacteria. In: Reitner J and Thiel V (eds.). Encyclopedia of Geobiology. Netherlands: Springer, 211-223
[] Riding R. 2012. A hard life for cyanobacteria. Science, 336(6080): 427–428. DOI:10.1126/science.1221055
[] Rogers JJW, Santosh M. 2002. Configuration of Columbia: A Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5–22. DOI:10.1016/S1342-937X(05)70883-2
[] Rowland SM, Shapiro RS. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Kiessling W, Flügel E and Golonka J (eds.). Phanerozoic Reef Patterns. Society of Economic Paleontologists and Mineralogists, SEPM Special Publication, 72: 95–128.
[] Samanta P, Mukhopadhyay S, Eriksson PG. 2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale, Vindhyan basin, Son valley, central India. Marine and Petroleum Geology, 71: 329–343. DOI:10.1016/j.marpetgeo.2016.01.001
[] Săsăran E, Bucur Ⅱ, Pleş G, Riding R. 2014. Late Jurassic Epiphyton-like cyanobacteria: Indicators of long-term episodic variation in marine bioinduced microbial calcification. Palaeogeography, Palaeoclimatology, Palaeoecology, 401: 122–131. DOI:10.1016/j.palaeo.2014.02.026
[] Schlager W. 1989. Drowning unconformities on carbonate platforms. In: Crevello PD, Wilson JL, Sarg JF and Read JF (eds.). Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44: 15–25.
[] Schlager W. 1998. Exposure, drowning and sequence boundaries on carbonate platforms. In: Camoin GF and Davies PJ (eds.). Reefs and Carbonate Platforms in the Pacific and Indian Oceans. International Association of Sedimentologists, Special Publication, 25: 3–21.
[] Schlager W. 1999. Type 3 sequence boundaries. In: Harris P and Simo A (eds.). Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models. SEPM Special Publication, 63: 35–45.
[] Schlager W, Warrlichw G. 2009. Record of sea-level fall in tropical carbonates. Basin Research, 21(2): 209–224. DOI:10.1111/bre.2009.21.issue-2
[] Schmid DU, Leinfelder RR. 1996. The Jurassic Lithocodium aggregatum-Troglotella incrustans foraminiferal consortium. Palaeontology, 39(1): 21–52.
[] Sha QA, Jiang MS. 1998. The deposits of oolitic shoal facies and algal flat facies: Dissect of the Zhangxia Formation of the Middle Cambrian, western Shandong Province. Acta Sedimentologica Sinica, 16(4): 62–70.
[] Sha QA. 1999. Study on shoal facies deposit. Journal of Palaeogeography, 1(3): 8–12.
[] Spadafora A, Perri E, Mckenzie JA, Vasconcelos C. 2010. Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology, 57(1): 27–40. DOI:10.1111/sed.2009.57.issue-1
[] Vail PR, Mitchum Jr RM, Thompson Ⅲ S. 1977. Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap. In: Payton CE (ed.). Seismic Stratigraphy-Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 63–81.
[] Van Wagoner JC, Mitchum RM, Campion KM, Rahmanian VD. 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Cores and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. AAPG Methods in Exploration No.7. Tulsa, OK: American Association of Petroleum Geologists, 1-55
[] Vasconcelos C, Warthmann R, McKenzie JA, Visscher PT, Bittermann AG and van Lith Y. 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics. Sedimentary Geology, 185(3-4): 175–183. DOI:10.1016/j.sedgeo.2005.12.022
[] Vasconcelos C, Dittrich M, McKenzie JA. 2014. Evidence of microbiocoenosis in the formation of laminae in modern stromatolites. Facies, 60(1): 3–13. DOI:10.1007/s10347-013-0371-3
[] Védrine S, Strasser A, Hug W. 2007. Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies, 53(4): 535–552. DOI:10.1007/s10347-007-0114-4
[] Voorhies AA, Biddanda BA, Kendall ST, Jain S, Marcus DN, Nold SC, Sheldon ND, Dick GJ. 2012. Cyanobacterial life at low O2: Community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology, 10(3): 250–267. DOI:10.1111/gbi.2012.10.issue-3
[] Wang ZH, Zhen YY, Zhang YD, Wu RC. 2016. Review of the Ordovician conodont biostratigraphy in the different facies of North China. Journal of Stratigraphy, 40(1): 1–16.
[] Woo J, Chough SK, Han ZZ. 2008. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China. Palaios, 23(1): 55–64. DOI:10.2110/palo.2006.p06-103r
[] Woo J, Chough SK. 2010. Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton. Sedimentary Geology, 229(1-2): 1–8. DOI:10.1016/j.sedgeo.2010.05.006
[] Wu YS. 1994. The community facies of reefs. Acta Petrologica Sinica, 10(2): 218–222.
[] Zhai MG, Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665–2682.
[] Zhang WH, Shi XY, Tang DJ, Wang XQ. 2014. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform: A response of microbial community to shallow marine anoxia. Journal of Palaeogeography, 16(3): 305–318.
[] Zhao GC, Cawood PA, Wilde SA, Sun M. 2002. Review of global 2. 1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth Science Reviews, 59(1-4): 125–162.
[] Zhao JX, Li FJ, Zhu GS, Su ZT, Zou M, Wang YP, Zhou JL. 2014. The basic characteristics, spatial-temporal distribution, and building model of reefs in the western margin of the Ordos Basin of Ordovician. Acta Petrologica Sinica, 30(3): 747–756.
[] 陈小炜, 牟传龙, 葛祥英, 康健威, 周恳恳. 2013. 华北地区寒武系第三统鲕粒滩的展布特征及其控制因素. 石油天然气学报, 34(11): 8–14.
[] 崔智林, 华洪, 秋树玉. 1993. 辽东复州湾上寒武统叠层石和古环境. 见: 朱士兴编. 中国叠层石. 天津: 天津大学出版社, 101-107
[] 代明月, 齐永安, 陈尧, 李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726–734. DOI:10.7605/gdlxb.2014.05.58
[] 杜汝霖, 胡华宾, 田立富. 1993. 华北的早古生代叠层石. 见: 朱士兴编. 中国叠层石. 天津: 天津大学出版社, 15-19
[] 范嘉松, 张维. 1985. 生物礁的基本概念、分类及识别特征. 岩石学报, 1(3): 45–59.
[] 冯增昭, 彭永民, 金振奎, 鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社: 112-121.
[] 高建平, 朱士兴. 1998. 晋东北地区寒武系微生物岩及其与沉积环境的关系. 微体古生物学报, 15(2): 166–177.
[] 韩作振, 陈吉涛, 张晓蕾, 于学峰. 2009. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究. 地质学报, 83(8): 1097–1103.
[] 赫云兰, 刘波, 秦善, 赵鹏沄. 2012. 北京西山下苇甸中寒武统张夏组生物丘发育特征及其地质意义. 地质科技情报, 31(1): 9–15.
[] 景宇轩, 刘建波, 闫振, 孙永超, 许振清. 2015. 利用风暴沉积类型恢复海平面变化:以北京西山下苇甸剖面寒武纪中晚期风暴沉积为例. 古地理学报, 17(5): 653–668. DOI:10.7605/gdlxb.2015.05.054
[] 李江海, 钱祥麟, 黄雄南, 刘树文. 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1–10.
[] 李江海, 侯贵廷, 黄雄南, 张志强, 钱祥麟. 2001. 华北克拉通对前寒武纪超大陆旋回的基本制约. 岩石学报, 17(2): 177–186.
[] 柳永清, 孟祥化, 葛铭. 1999. 华北地台中寒武世鲕滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究. 地质科学, 34(4): 442–450.
[] 卢衍豪, 张文堂, 朱兆玲, 项礼文, 林焕令, 周志毅, 袁金良, 彭善池, 钱逸, 章森桂, 李善姬, 郭鸿俊, 罗惠麟. 1994. 关于我国寒武系建阶的建议. 地层学杂志, 18(4): 318–328.
[] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序:兼论碳酸盐台地的凝缩作用. 岩相古地理, 16(6): 24–33.
[] 梅冥相, 梅仕龙. 1997. 华北中寒武世张夏组复合海平面变化旋回层序. 沉积学报, 15(4): 5–10.
[] 梅冥相, 马永生, 梅仕龙, 胡建中. 1997. 华北寒武系层序地层格架及碳酸盐台地演化. 现代地质, 11(3): 275–282.
[] 梅冥相, 高金汉, 孟庆芬. 2006. 从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念. 现代地质, 20(3): 413–422.
[] 梅冥相. 2010a. 长周期层序形成机制的探索:层序地层学的进展之二. 古地理学报, 12(6): 711–728.
[] 梅冥相. 2010b. 从正常海退与强迫型海退的辨别进行层序界面对比:层序地层学的进展之一. 古地理学报, 12(5): 549–564.
[] 梅冥相. 2011a. 微生物席沉积学:一个年轻的沉积学分支. 地球科学进展, 26(6): 586–597.
[] 梅冥相. 2011b. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例. 中国地质, 38(2): 317–337.
[] 梅冥相, 郭荣涛, 胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473–2486.
[] 梅冥相. 2012. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题. 地质论评, 58(5): 937–951.
[] 梅冥相. 2014a. 层序地层学发展历程中的三个误判. 地学前缘, 21(2): 67–80.
[] 梅冥相. 2014b. 微生物席的特征和属性:微生物席沉积学的理论基础. 古地理学报, 16(3): 285–304.
[] 梅冥相. 2015. 从沉积层序到海平面变化层序:层序地层学一个重要的新进展. 地层学杂志, 39(1): 58–73.
[] 梅冥相, 刘丽, 胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440–460.
[] 梅冥相, 孟庆芬. 2016. 现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口. 古地理学报, 18(2): 127–146. DOI:10.7605/gdlxb.2016.02.010
[] 孟祥化, 乔秀夫, 葛铭. 1986. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式. 沉积学报, 4(2): 1–18.
[] 齐永安, 杨小伟, 代明月, 李妲, 王敏, 刑智峰. 2014a. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55–64.
[] 齐永安, 王艳鹏, 代明月, 李妲. 2014b. 豫西登封寒武系第三统张夏组凝块石灰岩及其控制因素. 微体古生物学报, 31(3): 243–255.
[] 沙庆安, 江茂生. 1998. 鲕粒滩相与藻坪相沉积:鲁西地区中寒武统张夏组剖析. 沉积学报, 16(4): 62–70.
[] 沙庆安. 1999. 关于滩相沉积. 古地理学报, 1(3): 8–12.
[] 王志浩, 甄勇毅, 张元动, 吴荣昌. 2016. 中国华北不同相区奥陶纪牙形刺生物地层的再认识. 地层学杂志, 40(1): 1–16.
[] 吴亚生. 1994. 生物礁的群落相. 岩石学报, 10(2): 218–222.
[] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665–2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
[] 张文浩, 史晓颖, 汤冬杰, 王新强. 2014. 华北地台西缘早-中寒武世过渡期核形石:微生物群落对浅海缺氧环境的响应. 古地理学报, 16(3): 305–318. DOI:10.7605/gdlxb.2014.03.027
[] 赵俊兴, 李凤杰, 朱广社, 苏中堂, 邹敏, 王玉萍, 周俊烈. 2014. 鄂尔多斯盆地西缘奥陶纪生物礁基本特征、分布规律及成礁模式. 岩石学报, 30(3): 747–756.