岩石学报  2017, Vol. 33 Issue (4): 1021-1036   PDF    
层序地层框架下的鲕粒滩形成样式:以北京西郊下苇甸剖面寒武系第三统为例
马永生1, 梅冥相2, 周润轩2, 杨文2     
1. 中国石油化工集团, 北京 100728;
2. 中国地质大学地球科学与资源学院, 北京 100083
摘要: 华北地台寒武系第三统,大致包括毛庄组、徐庄组、张夏组和崮山组,在其中上部大面积发育鲕粒滩相灰岩,从而不符合标准的威尔逊碳酸盐相带中"台地边缘颗粒滩相"的概念。在北京西郊下苇甸剖面,基于沉积相序列的层序地层划分表明,这些鲕粒滩相地层,常常构成层序的晚期高水位体系域或强迫型海退体系域,表现出层序地层框架下特别的鲕粒滩形成样式,成为相对快速沉降背景下的相对海平面缓慢下降的沉积响应,从而不符合标准的层序地层学模式,因为在标准的层序地层学模式中沉积作用主要发生在相对海平面上升和停滞阶段,而且在海平面下降期将形成一个连续的侵蚀作用不整合面。再者,与海侵作用期的陆棚相钙质泥岩和深缓坡相条带状泥晶灰岩、及其所代表的泥质碳酸盐沉积物主导的浅海陆架型台地相对应,强迫型海退过程之中发育的大面积分布的鲕粒滩,代表着寒武纪类型多样的碳酸盐台地类型中的一种新的碳酸盐台地类型,即鲕粒砂所主导的浅海碳酸盐陆架为特征的一种特别的碳酸盐台地,即浅海陆架被颗粒质的鲕粒沉积物大面积覆盖,向海一侧为缓坡、向陆一侧为潮坪。所以说,北京西郊下苇甸剖面的寒武系第三统,鲕粒滩的层序地层位置所代表的特别的形成样式,以及所蕴含的寒武纪碳酸盐台地的类型,将为更大区域的追索和对比、以及华北地台第三世的古地理重建提供重要的线索和思考途径。
关键词: 鲕粒滩     强迫型海退     形成样式     寒武系第三统     下苇甸剖面     北京    
Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the Western Suburb of Beijing
MA YongSheng1, MEI MingXiang2, ZHOU RunXuan2, YANG Wen2     
1. China Petrochemical Corporation, Beijing 100728, China;
2. School of Earth Sciences and Natural Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Cambrian Series 3 in North-China Platform is approximately made up of the Maozhuang, Xuzhuang, Zhangxia and Gushang formations, and the mid-and upper parts of the Series 3 are marked by the large-area development of grainstones of the oolitic-grain bank facies that does not conform to the concept of "the platform-margin grain bank" in the standard Wilson model of carbonate facies belts. The sequence-stratigraphic division that is on the basis of the sedimentary-facies successions demonstrates that these strata belonging to the oolitic-grain bank facies generally constitute the late-stage high-stand system tract of the forced-regressive system tract of the third-order depositional sequence and express a particular forming pattern that is responded to the relative sea-level fall; further, this forming pattern of the oolitic-grain bank facies does not fit to the standard model of sequence stratigraphy, in which deposition occurs principally during rise and stillstands of relative sea level and a continuous erosional unconformity develops during sea-level fall. Moreover, in contrast with mudstones and banded micrites belonging to the shelf facies that are formed during the transgressive stage, the oolitic-grain bank with the large-area development formed in the forced-regressive process might represent a new type of diversified Cambrian carbonate platforms, i.e. a carbonate platform that is characteristic of following features: the shallow shelf is mantled by grainy oolitic sediment, flanked seaward by a ramp and landward by tidal flats. Therefore, a particular forming pattern of oolitic-grain banks delegated by the sequence-stratigraphic position within the Cambrian Series 3 at the Xiaweidian section in the Western Suburb of Beijing might implicate a new type of diversified Cambrian carbonate platforms, which will provide an important clue and a thinking approach for the regional tracing and correction, as well as the palaeogeographical reconstruction for the Cambrian Series 3 in the North-China Platform.
Key words: Oolitic-grain bank     Forced-regression     Forming pattern     Series 3 of Cambrian     Xiaweidian section     Beijing    
1 引言

在中奥陶世生物大辐射事件 (Sepkoski, 1997) 之前的寒武纪,灰泥的大量生产曾经将其碳酸盐台地内部特征化,台地边缘生物礁的不发育常常产生缓坡状的台地形态 (Pratt et al., 2012)。寒武纪时期的热带碳酸盐沉积的特征还表现出以下特殊性:1)“贫乏骨骼的海洋”(Pruss et al., 2010),因为骨骼还没有成为全球持续性的碳酸盐沉积物的重要来源;2) 特殊的“风暴海”(Myrow et al., 2004; Pratt and Bordonar, 2007),因为该时期在全球范围的大部分地层之中总是发育特殊的以竹叶状砾屑灰岩为代表的风暴沉积 (孟祥化等, 1986; 梅冥相和梅仕龙, 1997; 梅冥相等, 1997, 2011; 景宇轩等, 2015);3) 微生物碳酸盐岩的“寒武纪-早奥陶世复苏期”(Riding and Liang, 2005; Riding, 2006),因为随着后生动物在寒武纪期间的辐射而微生物碳酸盐岩也在增加 (韩作振等, 2009; 梅冥相, 2011; 梅冥相等, 2011, 2015)。

华北地台寒武系第三统 (安太庠等, 1983; 卢衍豪等, 1994; 项礼文等, 1999; 彭善池和Babcock, 2005; 彭善池, 2006),包括毛庄组、徐庄组、张夏组和崮山组,在徐庄组至崮山组以发育较为丰富的鲕粒灰岩为特征,吸引了许多学者的长期研究与关注 (王英华等, 1989; 乔秀夫和高林志, 1990; 王成述等, 1990; 冯增昭等, 1990, 2004; 梅冥相和梅仕龙, 1997; 梅冥相等, 1997, 2011; 史晓颖等, 1997; 沙庆安和江茂生, 1998; 柳永清等, 1999; 韩作振等, 2009; 张旭等, 2009; 朱传庆等, 2009; 陈金勇等, 2014; 陈小炜等, 2012; 杨俊才和马飞宙, 2014; 齐永安等, 2014a, b; 邢延路和冯李强, 2015)。立足于颗粒滩的概念 (沙庆安, 1999),尤其是对鲕粒滩的发育和分布特征的研究 (陈小炜等, 2012; 代明月等, 2014),以及鲕粒灰岩中的微生物碳酸盐的研究 (韩作振等, 2009; 赫云兰等, 2012; 陈金勇等, 2014; 张文浩等, 2014; 梅冥相等, 2011, 2015),成为近年来关注的焦点。

北京西郊下苇甸寒武系剖面,是华北地台寒武系沉积现象较为丰富的地层剖面之一,对该剖面运用现代沉积学观念进行的开创性研究,典型代表包括:1)孟祥化等 (1986)对风暴沉积的详细描述和相序模式的建立;2)冯增昭等 (1990)以及王英华等 (1989)对沉积相的系统分析;3)乔秀夫和高林志 (1990)率先开展的层序地层研究;4)王成述等 (1990)对张夏组鲕粒灰岩的形成环境分析;5)马永生 (1994)率先开展的晚寒武世沉积旋回分析等等。这些开创性的研究,成为近年来持续性研究的强大推动力,涉及到以下多方面:1) 微相分析 (张旭等, 2009);2) 鲕粒滩的沉积构成与空间展布 (陈小炜等, 2012; 邢延路和冯李强, 2015);3) 层序地层 (梅冥相, 2011; 陈小炜等, 2012; 杨俊才和马飞宙, 2014);4) 生物丘 (赫云兰等, 2012; 梅冥相等, 2011, 2015) 等。立足于这些丰硕的研究成果,本文将以北京西郊下苇甸剖面为例,系统阐释鲕粒滩相灰岩的层序地层位置和形成样式,分析这些鲕粒滩相灰岩所代表的寒武纪特殊的台地类型,即不符合标准的威尔逊模式的碳酸盐台地类型,为今后的进一步研究提供有益的思考途径和线索。

2 寒武系层序划分

北京西郊下苇甸剖面的寒武系,在新的寒武系年代地层划分框架内 (彭善池和Babcock, 2005; 彭善池, 2006),从下而上可以划分为 (图 1):1) 大致属于寒武系第二统上部的昌平组和馒头组;2) 大致属于第三统的毛庄组、徐庄组、张夏组和崮山组;3) 大致属于芙蓉统的长山组和凤山组。大致相当于纽芬兰统 (包括幸运阶和第二阶) 以及第二统第三阶的地层在该剖面缺失,大致属于第二统第四阶下部的昌平组平行不整合覆盖在新元古界景儿峪组之上,二者之间的蓟县运动平行不整合面所代表的地层间断时限超过300Ma (项礼文等, 1999; 高林志和乔秀夫, 2001)。

图 1 北京西郊下苇甸剖面寒武系层序地层划分 图中DS1至DS9分别代表9个三级层序;SB1和SB2代表类型1界面与代表类型2界面,SB3代表淹没不整合型层序界面 Fig. 1 Sequence-stratigraphic division for the Cambrian at the Xiaweidian section in Western Suburb of Beijing In the figure, DS1 to DS9 refer to 9 third-order sequences; SB1 to SB3 respectively delegate the sequence boundary belonging to different types, i.e. the type 1, the type 2 sequence boundaries, and the type 3 that is formed by a drowning unconformity

从根本上讲,层序地层学主要研究地层叠置关系以及它们在年代格架内的变化,具体来讲就是识别与基准面 (相对海平面) 上升与下降过程相关联的沉积相的叠加形式 (Catuneanu, 2006; Catuneanu et al., 2011; 梅冥相, 2010, 2011, 2012, 2014, 2015),这个理念,从“沉积层序”(Vail et al., 1977; Van Wagoner et al., 1990; Catuneanu, 2006; Catuneanu et al., 2011) 向“海平面变化层序”(Boulila et al., 2011; 梅冥相, 2014, 2015) 的概念转变中,得到了更加充分的强调和运用。根据沉积相序列特征所代表的旋回性或沉积趋势,可以将该剖面的寒武系划分为9个三级层序 (图 1所示),大致以徐庄组构成的三级层序的凝缩段所代表的海侵事件为界,这些三级层序大致代表了碳酸盐台地演化的两个阶段,即发展阶段和成熟阶段 (梅冥相等, 1997; Meng et al., 1997)。

在台地发展阶段形成的层序,即图 1所示的层序DS1至DS3,凝缩段及其相关的沉积不发育是其基本特征,层序的高水位期发育潮坪相白云岩,层序界面多为暴露间断面而与强迫型海退过程相响应;在台地的成熟阶段形成和发育的层序,即层序DS5至DS9,凝缩段或凝缩序列的较深水沉积如陆棚相钙质泥岩及深缓坡相条带状泥晶灰岩,直接覆盖在下伏层序的高能鲕粒滩相灰岩或浅缓坡相厚层块状生物丘灰岩之上,形成明显的“调相”现象所代表的淹没不整合型层序界面 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010, 2011),成为在台地基地快速沉降背景下的快速海侵和慢速海退过程的沉积学响应。

徐庄组构成的三级层序DS4,潮间坪至潮上坪相紫红色粉砂质泥岩地层代表相对海平面上升期间环境加深过程的沉积响应,中部的灰绿色浅海陆棚粉砂质钙质泥岩代表最大海侵期的凝缩段单元,浅缓坡相中厚层鲕粒灰岩到颗粒滩相厚层块状鲕粒灰岩代表海平面高水位期至强迫型海退期的产物,并且形成寒武系第一套与强迫型海退过程相响应的鲕粒滩相灰岩地层。所以说,该层序中部的浅海陆棚相灰绿色返砂质钙质泥岩所构成的凝缩段单元所对应的最大海侵期的沉积,就成为华北地台大规模发育碳酸盐台地的开启点。

最为特别的是,在寒武系第三统的三级层序中,分别在三级层序DS4至DS6的顶部,集中发育较为典型的鲕粒滩相灰岩,这些颗粒滩相鲕粒灰岩的层序地层意义及其所代表沉积作用样式,由于不符合威尔逊模式,也不符合标准的层序地层模式,所以成为本文关注的焦点。

3 第三统鲕粒滩的层序地层位置

图 1图 2所示,北京西郊下苇甸剖面的寒武系第三统,发育较为完整,包括毛庄组、徐庄组、张夏组和崮山组,它们分别构成4个三级沉积层序即DS3至DS6。这些三级沉积层序均为各具特色的沉积相序列所构成,成为相对海平面上升造成的环境加深、以及相对海平面下降造成的环境变浅过程的沉积学响应 (Catuneanu, 2006; Boulila et al., 2011; Catuneanu et al., 2011; 梅冥相, 2010, 2011, 2012, 2014, 2015)。

图 2 下苇甸剖面寒武系第三统层序划分 DS3至DS6分别代表 4个三级层序,CS为凝缩段,TST为海侵体系域,HST为高水位体系域,FRST代表强迫型海退体系域 Fig. 2 Sequence-stratigraphic division for the Series 3 of the Cambrian at the Xiaweidian section DS3 to DS6 refer to 4 third-order sequences, CS delegates the condensed section, TST is the thransgressive system tract, HST marks the high-stand system tract FRST represent the forced-regressive system tract

毛庄组构成的三级层序DS3,中下部为厚度超过30m的蒸发潮坪相块状紫红色白云质泥岩 (图 3a所示),自下而上泥质白云岩透镜体变为透镜层并且具有增多的趋势,反映了沉积环境逐渐加深的特点,这套地层组成三级层序DS3的TST单元 (图 2所示);一套厚度10m左右的清水潮坪相白云岩地层,构成三级层序DS3的HST单元 (图 2图 3b所示),反映了相对海平处于高水位期和停滞期海岸线相对稳定或回落,潮汐回流带向沉积区的陆缘细粒物质减少而变成清水潮坪的特征。因此,三级层序DS3的顶界面 (图 3c所示) 和底界面均具有相似性,为下伏地层向上变浅、上覆地层逐渐加深的沉积相转换面,由此产生的地层间断与强迫型海退过程相响应。

图 3 北京西郊下苇甸剖面毛庄组的沉积特征 (a) 构成海三级层序侵体系域的蒸发潮坪相块状紫红色泥岩;(b) 构成高水位体系域的潮坪相白云岩;(c) 毛庄组构成的三级层序DS3的顶界面 (箭头所指) Fig. 3 Images showing the depositional features for the Maozhuang Formation at the Xiaweidian section in Western Suburb of Beijing (a) purple and red massive mudstones belonging the evaporated tidal-flat facies that make up the transgressive system of the third-order sequence; (b) dolomites of clear-water tidal-flat facies that constitute the high-stand system tract; (c) the top sequence boundary of the third-order sequence that is made up of the Maozhuang Formation

徐庄组构成的三级层序DS4,下部为一套潮上坪至潮间坪相的细粒碎屑岩红层沉积,这套地层构成该三级层序的TST单元 (图 2所示),在其中夹有较多的白云岩透镜体或透镜层而表明其沉积环境相对于毛庄组构成的三级层序DS3的TST单元要深一些。在徐庄组中部发育一套厚度为2~3m的灰绿色粉砂质钙质泥岩,这种属于陆棚相的相对较深水的沉积组成了三级层序DS4的凝缩段 (CS) 单元 (图 2图 4a所示),代表了一个较大幅度的海侵作用过程,在该最大海侵事件之后,华北地台进入了一个碳酸盐台地的大面积分布期 (冯增昭等, 1990, 2004; 梅冥相等, 1997; 陈小炜等, 2012)。在该三级层序的HST单元之中,类似凝缩段沉积的中薄层粉砂质钙质泥岩与厚层块状鲕粒灰岩一起组成若干潮下型厚基底类碳酸盐岩米级旋回 (图 4b所示; Osleger, 1991; Mei et al., 2000),频繁的加深淹没节拍是这种类型的米级旋回的基本特点;随着海平面相对下降产生的环境变浅过程,厚层块状高能鲕粒灰岩与薄层条带状泥晶灰岩一起构成潮下型薄基底类米级旋回 (Osleger, 1991; Mei et al., 2000),代表了一个高能鲕粒滩的发育,组成该三级层序的强迫型海退体系域,代表了海平面相对下降期的沉积特征,即在一个碳酸盐泥质底质上的鲕粒滩加积和进积作用过程。如图 4c所示,徐庄组顶部的鲕粒滩相灰岩,与张夏组底部的大套陆棚相钙质泥岩之间的突然相变面,代表了一次明显的台地淹没事件,形成一个较为典型的淹没不整合型层序界面 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010, 2011)。

图 4 徐庄组中、上部的岩石学特征 (a) 徐庄组中部的厚层块状陆棚相粉砂质钙质泥岩a,构成三级层序DS4凝缩段单元,其上为鲕粒灰岩b;(b) 徐庄组上部中薄层陆棚相粉砂质钙质泥岩a与厚层块状颗粒滩相鲕粒灰岩b组成的潮下型碳酸盐岩米级旋回 (箭头所示);(c) 徐庄组构成的三级层序的顶界面 Fig. 4 Images showing petrological features in the middle and upper parts of the Xuzhuang Formation in Western Suburb of Beijing (a) thick-bedded to massive silty mudstones of shelf facies a of the middle part of the Xuzhuang Formation making up the condensed section of the DS4, deposits overlying silty mudstones a are oolitic grainstons b; (b) subtidal meter-scale cycle (the arrowed) that are made up of both the silty mudstone of shelf facies a and the thick-bedded oolitic grainstone b in the upper part of the Xuzhuang Formation; (c) the top sequence boundary of the third-order sequence that is made up of the Xuzhuang Formation

北京西郊下苇甸剖面的寒武系张夏组,构成三级层序DS5(图 2),包含三个四级亚层序,形成一个较为典型的复合海平面变化层序,四级亚层序均为总体向上变浅的沉积相序列组成,表现为从陆棚相钙质泥岩 (图 5a) 到缓坡相鲕粒灰岩地层 (图 5d-f) 的变化序列 (梅冥相和梅仕龙, 1997; 梅冥相, 2011);在其中部发育竹叶状砾屑灰岩构成的风暴沉积 (图 5c),还见小型泥晶生物丘灰岩 (图 5b; 梅冥相, 2011; 赫云兰等, 2012)。更为有趣的是,构成张夏组三级层序以及四级亚层序的界面 (图 2图 5f),类似于Exxon层序地层学模式中的“海泛面”(Vail et al., 1977; Van Wagoner et al., 1990),这些界面从表现形式上讲,与每一个潮下型米级旋回的界面 (图 5e) 没有太大的区别,均表现为一个向上突然加深的沉积间断面,只是厚度和规模上存在明显差异,所以,三级层序和四级亚层序均构成较为典型的淹没不整合型层序 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010, 2011)。旋回的岩相序列特征与三级层序或四级亚层序的沉积相序列属性具有相似性,从而表明了“旋回含旋回”(Miall, 1995; 梅冥相和梅仕龙, 1997; 梅冥相, 2011) 的特点,也表明了旋回性沉积记录明显的层次性 (马永生, 1994)。

图 5 北京西山下苇甸剖面张夏组主要岩性特征 (a) 张夏组底部的陆棚相钙质泥岩;(b) 张夏组中部发育在陆棚相钙质泥岩中的深水生物丘灰岩,在箭头所指出泥晶生物丘灰岩尖灭在陆棚钙质泥岩之中;(c) 张夏组中部中缓坡相泥质条带泥晶灰岩中的风暴竹叶状砾屑灰岩;(d) 鲕粒灰岩,张夏组顶部;(e) 张夏组顶部的潮下型碳酸盐岩米级旋回 (箭头所指),由厚度只有5~10cm的深缓坡相泥质条带泥灰岩与厚度超过5m的块状鲕粒滩相灰岩所组成;(f) 张夏组组成的三级层序的顶界面 (箭头所指) Fig. 5 Images showing the main petrological compoeition for the Cambrian Zhangxia Formation at the Xiaweidian section in Western Suburb of Beijing (a) mudstones of the shelf facies in the bottom part of the Zhangxia Formation; (b) deep-water bioherm that pinchs out (the arrowed) within mudstones of the shelf facies in the middle part of the Zhangxia Formation; (c) storm deposits that are marked by flat-pebble conglomerites in the middle part of the Zhangxia Formation; (d) oolitic grainstones in the top part of the Zhangxia Formation; (e) subtidal carbonate meter-scale cycle (the arrowed) constituted by both the deep-ramp muddy banded marls with the thickness of 5~10cm and the massive oolitic grainstones with the thickness of about 5m; (f) top sequence-boundary of the third-order sequence made up of the Zhangxia Formation (the arrowed)

属于寒武系第三统上部的崮山组,组成三级层序DS6,与张夏组构成的三级层序DS5类似,下部为陆棚相至深缓坡相泥灰岩夹钙质泥岩地层,其中夹深水泥晶生物丘灰岩 (图 6a) 和具有凝缩性质的竹叶状砾屑灰岩透镜体 (图 6b所示),向上逐渐变浅为浅缓坡至颗粒滩相厚层鲕粒灰岩为主的地层,这些厚层鲕粒灰岩与薄层泥质条带泥晶灰岩组成潮下型米级旋回 (图 6c, d; Osleger, 1991; Mei et al., 2000),而且在厚层块状颗粒滩相鲕粒灰岩中发育柱状叠层石生物丘灰岩 (图 6e; 沙庆安和江茂生, 1998; 梅冥相, 2011; 梅冥相等, 2011; 赫云兰等, 2012),这种具有一定抗浪性和明显的地势起伏的块状碳酸盐岩构造还可以归为“微生物礁”(Riding, 2002a; Pratt and Bordonar, 2007; Pratt et al., 2012; Chen et al., 2014; Lee et al., 2015) 而与图 6a所示的小型深水泥晶生物丘形成鲜明的对照,从而表现出这些可以归为“碳酸盐泥丘”的特殊沉积构造的产出环境和发育形态的多样性,这些生物丘的确切的沉积学意义还有待于今后进一步研究。如图 6c所示,崮山组顶部的层序界面,表现为较深水的陆棚相钙质泥岩与深缓坡相薄层和条带状泥灰岩与泥晶灰岩构成的凝缩性质的沉积直接覆盖在厚层块状鲕粒滩相灰岩之上,类似于图 4c所示的徐庄组构成的DS4的顶界面,也类似于图 5f所示的张夏组构成的DS5的顶界面,形成较为典型的淹没不整合型层序界面 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010, 2011),说明了下伏地层与相对海平面下降相响应的向上变浅过程变浅到浅海高能环境,上覆的较深水细粒沉积代表了一个快速加深而终止了高能鲕粒滩发育的快速海侵过程。

图 6 下苇甸剖面崮山组的基本特征 (a) 崮山组底部的产在陆棚相钙质泥岩中的小型泥晶生物丘 (箭头所指);(b) 崮山组底部产在陆棚相钙质泥岩中的竹叶状砾屑灰岩透镜体 (箭头所指);(c) 崮山组顶部的淹没不整合型层序界面 (箭头所指);(d) 崮山组上部的潮下型碳酸盐米级旋回 (箭头所指),由深缓坡相泥质条带薄层泥晶灰岩a与厚层颗粒滩相鲕粒灰岩b组成;(e) 崮山组上部块状颗粒滩相鲕粒灰岩中的浅水柱状叠层石生物丘灰岩 (箭头所指) Fig. 6 Images showing the sedimentological features for the Gushan Formation at the Xiaweidian section (a) small micritic bioberm (the arrowed) developed within shelf calcareous mudstones in the bottom part of the Gushan Formation; (b) lens of edgewise conglomerates (the arrowed) developed within shelf calcareous mudstones in the bottom part of the Gushan Formation; (c) sequence-boundary of the drowning unconformity type (the arrowed) in the top of the Gushan Formation; (d) subtidal meter-scale cycle (the arrowed) developed in the upper part of the Gushan Formation, which is composed of both the thin-bedded deep-ramp micrite with muddy bands a and the thick-bedded oolitic grainstone b; (e) shallow-water bioherms (the arrowed) made up of column stromatolites within massive oolitic grainstones in the upper part of the Gushan Formation

综上所述,北京西郊下苇甸剖面的寒武系第三统,代表了从以发育红层沉积为特征的潮坪沉积体系 (毛庄组至徐庄组下部)、到以发育颗粒滩相鲕粒灰岩为特征的缓坡型台地地层序列 (徐庄组上部至崮山组),前者代表了碳酸盐台地的发展阶段,后者代表了碳酸盐台地的成熟阶段 (梅冥相等, 1997; 梅冥相, 2011)。在碳酸盐台地的成熟阶段,三套高能鲕粒滩相沉积,主要发育在三级层序的相对海平面下降期相响应的强迫型海退过程之中,形成了三级层序DS4至DS6的强迫型海退体系域 (FRST) 单元 (图 2图 4c图 5f图 6c所示; 梅冥相和杨欣德, 2000; Schlager and Warrlich, 2009; 梅冥相, 2011; Li et al., 2011; Desjardins et al., 2012; Samanta et al., 2016),这种还不能简单地归为威尔逊模式中的“台地边缘滩相”的概念体系中,成为研究区域寒武系第三统的一个引人注目的沉积学现象。再者,鲕粒滩灰岩特别的层序地层位置,代表一种较为特殊的碳酸盐台地中的强迫型海退的沉积记录,这些大面积 (超过百万平方千米) 分布的鲕粒滩 (冯增昭等, 1990, 2004; 梅冥相和梅仕龙, 1997; 沙庆安, 1999; 陈小炜等, 2012),在多样的寒武纪碳酸盐台地类型 (Pratt et al., 2012) 中,还可能代表了一种新的寒武纪碳酸盐台地类型。

4 鲕粒滩的沉积构成

作为一种包覆颗粒,鲕粒以其在岩石记录中的密集产出、显眼的宏观形态、简单的组分特征和复杂的沉积组构备受沉积学家的长期关注和持续研究,但是,这种颗粒的成因一直是一个谜一样的沉积学难题 (梅冥相, 2012)。两种对立的主流性认识,代表了地质学家们对鲕粒成因这一古老的沉积学问题的持续性追逐:1) 将鲕粒的形成与叠层石的形成进行类比,是一个特殊的球状微生物膜 (或微生物席) 的产物,从而将鲕粒归为微生物成因 (Brehm et al., 2006);2) 来自于巴哈马现代鲕粒的研究表明,鲕粒形成与微生物活动不存在一个直接的关系,重新强调了鲕粒形成的化学过程 (Duguid et al., 2010)。但是,后来对巴哈马现代鲕粒的持续研究,更加支持了鲕粒形成复杂的微生物过程,表现在:1) 基于巴哈马现代鲕粒与更新世鲕粒的电子显微镜观察和对比,所提出的鲕粒形成的“细菌生物膜”模式 (Kahle, 2007),与Brehm et al.(2006)的实验室培养的结果具有异曲同工之妙,该模式认为,鲕粒中的纹层最初为棒状细菌所主导的细菌生物膜所形成,而且在这样的生物膜中的细菌随后通过文石而矿化,每一个纹层应该内在地代表了单个的生物膜,生物膜的序列式生长最终形成鲕粒;2) 在巴哈马的现代海相鲕粒中,已经检测到细菌总体的多样性,尤其是蓝细菌的多样性,表明了鲕粒形成过程中复杂多样的微生物活动的卷入 (Edgcomb et al., 2013);3) 巴哈马和澳大利亚鲨鱼湾的现代和近代鲕粒的研究表明,鲕粒为固定的微生物群落所繁殖,而且鲕粒中的微生物调节着钙化作用 (Summons et al., 2013);4) 在现代海相鲕粒中,生物膜的碳酸盐沉淀作用在时空上受控于一个复杂的而且具有多样化生理学特征的微生物聚生体,包括光合自养细菌、异养细菌、脱氮菌、硫酸盐还原菌和氨化菌 (Diaz et al., 2014);5) 对巴哈马现代鲕粒的地球化学深入研究表明,一个依赖于微生物基团的氧化-还原状态可能影响了鲕粒增生作用形式中的碳酸钙沉淀作用,包括鲕粒的胶结作用和泥晶化作用 (Diaz et al., 2015)。上述鲕粒成因研究的进展和新认识,对于深入了解和认识华北地台第三统形成在相对海平面下降期的强迫型海退过程中的鲕粒滩,提供了许多重要线索和思考途径,虽然鲕粒成因的沉积学问题已经超出了本文所涉及的范围。就像沙庆安 (1999)所强调的那样,滩包括颗粒滩和生物滩,鲕粒滩不仅仅发育在台地边缘,也发育在海岸带,而且为多样化的沙脊、沙坝、沙洲、沙席及其相关沉积所组成。Rankey et al.(2006)的研究表明,在巴哈马现代鲕粒浅滩中,砂坝、沙波和沉积物的属性紧密与水动力和水深相联系,而且可以类比于硅质碎屑体系,这些结果表明,水动力-水深-沉积物之间的联系在鲕粒浅滩的海域尺度范围中的主导性作用,而且形成类似于上文所描述的寒武纪鲕粒滩中的薄基底类潮下型碳酸盐岩米级旋回 (图 4b图 5e图 6d所示; Osleger, 1991; Mei et al., 2000),这正是我们将这种类型的米级旋回作为识别鲕粒滩的标志的原因所在。

4.1 徐庄组鲕粒滩

发育在徐庄组顶部的鲕粒滩相灰岩,与陆棚相粉砂质钙质泥岩一起组成潮下型米旋回 (图 4b所示; Osleger, 1991; Mei et al., 2000),表明了鲕粒沙滩或砂坝旋回性加积和进积在泥质陆架中的基本沉积特征。块状鲕粒滩相灰岩中的大型鱼骨状交错层理 (图 7a所示),说明了鲕粒沙滩与鲕粒沙坝为潮汐流所主导的特点;亮晶含球粒鲕粒颗粒灰岩 (图 7b所示) 反应了一个高能的沉积环境。两种类型的鲕粒,泥晶-放射鲕粒 (图 7c) 以及反映了钙化生物膜残余物的泥晶套 (毕义泉等, 2001; Riding, 2002b) 所包裹的放射鲕,表明了鲕粒形成与复杂的微生物作用过程之间可能的成因联系 (侯奎和陈延成, 1990)。

图 7 徐庄组鲕粒滩灰岩的基本特征 (a) 块状鲕粒灰岩中的鱼骨状交错层理,表明鲕粒滩为潮汐作用主要的鲕粒滩;(b) 含球粒亮晶鲕粒灰岩,表现出高能沉积的特点;(c) 为同心泥晶纹层与放射纤维状方解石纹层交互形成鲕粒的皮层,表现出生物膜钙化作用的特征;(d) 以泥晶球粒为核心,被泥晶套代表的钙化生物膜包裹的放射鲕 Fig. 7 Images showing the fundamental features for the oolitic-grain bank in the top part of the Xuzhuang Formation (a) large-scale herringbone cross-bedding within massive oolitic grainstones that demonstrate a feature a tidal dominated oolitic-grain bank; (b) oolitic grainstone that are cemented by sparites as well as are constituted by ooids and few pellets, showing a basic feature forming in the high-energy environment; (c) ooid that is made up by the micritic and radio-fiber calcite layers, which reflects that the origin of the ooids is genetically related to the calcification of bacteria films; (d) radio-ooid with a pelletic nucleus enclosed by dark miciritic envelope that is genetically related to the calcification of bacteria films
4.2 张夏组鲕粒滩

图 5e所示,发育在张夏组顶部的鲕粒滩相灰岩,与陆棚相至深缓坡相薄层泥质灰岩一起组成潮下型米旋回 (Osleger, 1991; Mei et al., 2000),表明了类似于现代巴哈马鲕粒滩中的鲕粒沙滩或砂坝旋回性加积和进积在泥质深缓坡和陆架中的基本沉积特征 (Rankey et al., 2006)。在这样的高能鲕粒滩灰岩中,发育小型柱状叠层石生物丘 (图 8a) 所示,这样的沉积现象曾经被沙庆安和江茂生 (1998)描述为鲕粒滩中的“藻坪”,这样的生物丘还可以描述为“微生物礁”(Riding, 2002a; Pratt and Bordonar, 2007; Pratt et al., 2012; Chen et al., 2014; Lee et al., 2015),因为叠层石是底栖微生物席的建造物而区别于后生动物形成的生物礁 (范嘉松和张维, 1985; 吴亚生, 1994; Riding, 2002a; Kiessling et al., 2010; 赵俊兴等, 2014)。更为重要的是,张夏组顶部的高能鲕粒滩相灰岩,多为亮晶鲕粒灰岩 (图 8b, c所示),暗色泥晶纹层与放射状纤维方解石组成的同心放射鲕粒中的暗色泥晶纹层 (图 8b),实际上类似于Kahle (2007)所描述的钙化生物膜的残余物;再者,暗色泥晶薄膜 (可能的钙化生物膜; Riding, 2002b) 所粘聚的微小方解石晶体所形成的假鲕粒 (图 8c所示),类似于侯奎和陈延成 (1990)所描述的“藻鲕”,成为鲕粒形成的细菌生物膜模式 (Brehm et al., 2006; Kahle, 2007; Liu and Zhang, 2012, 2015) 的间接证据,说明了鲕粒滩的大面积发育多代表了蓝细菌繁荣的特殊浅海环境的基本沉积作用特征 (Swart et al., 2014)。

图 8 张夏组鲕粒滩灰岩的基本特征 (a) 张夏组顶部块状鲕粒灰岩中的小型叠层石生物丘;(b) 亮晶鲕粒灰岩,表现出高能沉积的特点;(c) 为许多细粒的方解石晶体粘聚而成的假鲕粒,为钙化生物膜粘聚而成 Fig. 8 Images showing the fundamental features for the oolitic-grain bank in the top part of the Zhangxia Formation (a) small-scale stromatolitic bioherm within massive oolitic grainstones in the top part of the Zhangxia Formation; (b) oolitic grainstone that is constituted by ooids and cemented by sparites, showing a basic feature forming in the high-energy environment; (c) oolitic grainstone that is constituted by pseudo-ooids and cemented by sparites, and this type of pseudo-ooids could be interpreted by lots small calcite crystals agglomerated by the calcified bacteria-films
4.3 崮山组鲕粒滩

崮山组顶部的鲕粒滩相灰岩,也为薄层深缓坡相泥质条带泥晶灰岩与厚层块状鲕粒灰岩所构成的薄基地类潮下型碳酸盐米级旋回 (图 6d所示; Osleger, 1991; Mei et al., 2000) 所构成,反应了鲕粒砂坝加积和进积在泥质深缓坡上的基本特点,就像今天的巴哈马鲕粒滩那样 (Rankey et al., 2006),从而符合滩相沉积 (沙庆安, 1999) 的基本特征。崮山组顶部的亮晶鲕粒灰岩 (图 9a所示),表现出高能沉积的基本特点;其中的鲕粒,鲕粒皮层为暗色泥晶薄膜与放射纤维状方解石构成,表现出同心-放射鲕的特点 (图 9b所示),也表现出细菌生物膜形成的鲕粒特征 (Brehm et al., 2006; Kahle, 2007; Liu and Zhang, 2012, 2015)。更为特别的是,暗色泥晶薄膜粘聚方解石晶体或生物碎屑破碎物形成的假鲕粒 (图 9c所示),不但代表着一种特别的钙化生物膜粘聚而成的颗粒类型,而且也成为崮山组顶部的鲕粒滩中的一种特别的颗粒类型。

图 9 崮山组鲕粒滩灰岩的基本特征 (a) 崮山组顶部的亮晶鲕粒灰岩,表现出高能沉积的特点;(b) 为同心泥晶纹层与放射纤维状方解石纹层交互形成鲕粒的皮层,表现出生物膜钙化作用的特征;(c) 为许多细粒的方解石晶体 (可能的生物碎屑破碎物) 粘聚而成的假鲕粒,为钙化生物膜粘聚而成 Fig. 9 Images showing the fundamental features for the oolitic-grain bank in the top part of the Zhangxia Formation (a) oolitic grainstone that is constituted by ooids and cemented by sparites, showing a basic feature forming in the high-energy environment; (b) ooid that is made up by the micritic and radio-fiber calcite layers, which reflects that the origin of the ooids is genetically related to the calcification of bacteria films; (c) pseudo-ooid that could be interpreted as the result formed by lots small calcite crystals (possibly bioclasts fragments) agglomerated by the calcified bacteria-films
5 讨论

图 1图 2所示,北京西郊下苇甸剖面第三统3套鲕粒滩灰岩的层序地层位置和有规律的产出特征,较为清楚地表明鲕粒滩的发育过程与三级相对海平面下降过程相对应,代表着强迫型海退过程的产物,这个现象与潮坪沉积体系中的局限潮坪与泻湖沉积 (Desjardins et al., 2012)、泥质陆架中的滨岸相砂岩的进积作用 (Samanta et al., 2016) 所代表的强迫型海退沉积具有相似性,而且可以作为碳酸盐岩沉积体系中强迫型海退沉积的一个重要实例 (Schlager and Warrlich, 2009) 和特别的类型,因而不符合标准或经典的层序地层学模式 (Vail et al., 1977; Van Wagoner et al., 1990; Catuneanu, 2006; Catuneanu et al., 2011)。进一步讲,在碳酸盐岩层序地层学的概念体系中,相对海平面下降的沉积学响应存在着两个概念模式 (Schlager and Warrlich, 2009):1) 在标准或经典的模式中 (Vail et al., 1977; Van Wagoner et al., 1990; Catuneanu, 2006; Catuneanu et al., 2011),沉积作用主要发生在相对海平面上升和停滞阶段,一个连续的侵蚀作用不整合面将发生在海平面下降期;2) 在下降阶段体系域 (FSST,或定义为强迫型海退体系域 (FRST)) 模型中 (Schlager and Warrlich, 2009),沉积作用将发生在相对海平面下降阶段,因为沉积学原理、数值模拟和已经出版的热带碳酸盐岩研究实例表明,FRST的存在或缺乏,不是海平面下降速率的一个简单的函数,而是取决于侵蚀作用、海平面下降与碳酸盐生产速率之间的平衡,所以说,较高的生产作用、较慢的侵蚀作用以及较慢的海平面下降速率有利于FRST的发育,这些作用特征较好地反映在图 1图 2所示的寒武系第3统层序地层序列之中。

在徐庄组构成的三级层序DS6的凝缩段 (图 4a所示) 代表的快速海侵事件之后,张夏组构成的DS5和崮山组构成的DS6,较厚的深水细粒沉积 (陆棚钙质泥岩和深缓坡相条带状泥晶灰岩和泥灰岩) 直接覆盖在强迫型海退体系域的鲕粒滩相灰岩之上 (图 5f图 6c所示),形成较为典型的淹没不整合型层序界面,不但代表了一种特别的碳酸盐岩层序类型,即淹没不整合型层序 (Gómez and Fernández-López, 1994; Schlager, 1989, 1998, 1999; 梅冥相, 1996, 2010, 2011),而且进一步表明了一种鲕粒砂所主导的碳酸盐台地有规律地发育在华北地台的第三统之中;类似于Pratt et al.(2012)新发现的球粒所主导的寒武纪碳酸盐台地,向陆一侧发育潮坪体系,向海一侧为缓坡体系,在大面积分布的浅水高能陆架或浅缓坡上发育鲕粒滩,而且在高能鲕粒砂坝中局部发育类似于“藻坪”(沙庆安和江茂生, 1998) 或“微生物礁”(Riding, 2002a; Pratt and Bordonar, 2007; Pratt et al., 2012; Chen et al., 2014; Lee et al., 2015) 的叠层石和凝块石生物丘 (图 6e图 8a所示),表明了华北地台寒武纪第三世的形成在三级层序DS4至DS6的海平面相对下降阶段的高能鲕粒滩大面积分布和发育的特点,从而不符合标准的威尔逊模式中的“台地边缘滩相”的概念。

更加引人注目的是,在图 7图 9所示的高能鲕粒滩相灰岩中,那些类似于“藻坪”(沙庆安和江茂生, 1998) 或“微生物礁”(Riding, 2002a; Pratt and Bordonar, 2007; Pratt et al., 2012; Chen et al., 2014; Lee et al., 2015) 的叠层石和凝块石生物丘 (图 6e图 8a所示),从宏观上代表了鲕粒滩生长和发育过程中与复杂的微生物活动相关的沉积记录,间接地说明了寒武纪时期的高能浅海环境不但是一个贫乏骨骼的风暴海 (Myrow et al., 2004; Pratt and Bordonar, 2007; Pruss et al., 2010; Prat et al., 2012),而且还是一个蓝细菌繁荣的浅海环境。构成高能鲕粒滩的放射-同心鲕粒特殊的鲕粒皮层 (图 7b, c图 8图 9b),包括可能的钙化生物膜残余物 (Brehm et al., 2006; Kahle, 2007; Liu and Zhang, 2012, 2015) 形成的同心状暗色泥晶纹层、以及与生物膜钙化作用相关的幕式结壳作用形成的放射纤维状方解石,尤其是那些钙化生物膜粘聚方解石晶体或生物碎屑破碎物形成的假鲕粒 (图 8c图 9c所示),不但映证了这些浮游鲕粒形成的“细菌生物膜”假说 (Brehm et al., 2006; Kahle, 2007; Liu and Zhang, 2012, 2015)、以及与复杂的微生物新陈代谢活动相关的钙化作用过程 (Edgcomb et al., 2013; Summons et al., 2013; Diaz et al., 2014, 2015),就像今天的巴哈马鲕粒滩 (Swart et al., 2014) 一样,也间接地说明了华北地台第三世浅海海洋中蓝细菌繁荣的基本特点。

6 结语

北京西郊下苇甸剖面寒武系第三统中、上部有规律发育和产出的鲕粒滩相灰岩,形成了在相对快速沉降背景下的三级相对海平面下降阶段的沉积记录,不符合标准或经典的层序地层学模式,而且进一步表明了在这个时期华北地台曾经有规律地大面积发育着大面积分布的鲕粒滩,这种大面积分布的高能鲕粒滩代表着一个潮汐主导的碳酸盐台地,从而不符合标准的威尔逊碳酸盐台地模式中的“台地边缘颗粒滩相”的概念体系。特殊的地层学现象和有趣的沉积记录,以及这些现象所代表的碳酸盐沉积作用的复杂性、和鲕粒形成复杂的微生物过程,为今后的深入研究和大范围追索提供了重要的研究线索和思考途径。

参考文献
[] An TX, Zhang F, Xiang WD, Zhang YQ, Xu WH, Zhang HJ, Jiang DB, Yang CS, Lin LD, Cui ZT, Yang XC. 1983. Conodonts in North China and Its Adjacent Areas. Beijing: Science Press: 1-223.
[] Bi YQ, Tian HQ, Zhao YS, Ma YX, Yu WQ, Hu SY. 2001. On the micrite envelope to restoration of primary texture character of secondary dolomites and its significance. Acta Petrologica Sinica, 17(3): 491–496.
[] Boulila S, Galbrun B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD. 2011. On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences. Earth-Science Reviews, 109(3-4): 94–112. DOI:10.1016/j.earscirev.2011.09.003
[] Brehm U, Krumbein WE, Palinska KA. 2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23(7): 545–550. DOI:10.1080/01490450600897302
[] Catuneanu O. 2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier, 1-375
[] Catuneanu O, Galloway WE, Kendall, CG SC, Miall AD, Posamentier HW, Strasser A, Tucker ME. 2011. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3): 173–245. DOI:10.1127/0078-0421/2011/0011
[] Chen JT, Lee JH, Woo J. 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (Late Cambrian) reefs in the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 414: 246–259. DOI:10.1016/j.palaeo.2014.09.004
[] Chen JY, Han ZZ, Fan HH, Chi NJ. 2014. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong Province. Acta Sedimentologica Sinica, 32(3): 494–502.
[] Chen XW, Mu CL, Ge XY, Kang JW, Zhou KK. 2012. Distributing characteristics and controlling factors for oolitic shoal of the Third Series of Cambrian in North China. Journal of Oil and Gas Technology, 34(11): 8–14.
[] Dai MY, Qi YA, Chen Y, Li D. 2014. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area, western Henan Province. Journal of Palaeogeography, 16(5): 726–734.
[] Desjardins PR, Buatois LA, Pratt BR, Mángano MG. 2012. Forced regressive tidal flats: Response to falling sea level in tide-dominated settings. Journal of Sedimentary Research, 82(3): 149–162. DOI:10.2110/jsr.2012.18
[] Diaz MR, Van Norstrand JD, Eberli GP, Piggot AM, Zhou J, Klaus JS. 2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12(3): 231–249. DOI:10.1111/gbi.2014.12.issue-3
[] Diaz MR, Swart PK, Eberli GP, Oehlert AM, Devlin Q, Saeid A, Altabet MA. 2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62(7): 2090–2112. DOI:10.1111/sed.12218
[] Duguid SMA, Kyser TK, James NP, Rankey EC. 2010. Microbes and ooids. Journal of Sedimentary Research, 80(3): 236–251. DOI:10.2110/jsr.2010.027
[] Edgcomb VP, Bernhard JM, Beaudoin D, Pruss S, Welander PV, Schubotz F, Mehay S, Gillespie AL, Summons RE. 2013. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas. Geobiology, 11(3): 234–251. DOI:10.1111/gbi.2013.11.issue-3
[] Fan JS, Zhang W. 1985. On the basic concept and classification of organic reefs and their main identifying criteria. Acta Petrologica Sinica, 1(3): 45–59.
[] Feng ZZ, Wang YH, Zhang JS, Zuo WQ, Zhang XL, Hong GL, Chen JX, Wu SH, Chen YT, Chi YL. 1990. Lithofacies Paleogeography of Early Paleozoic of North China Platform. Beijing: Geological Publishing House: 3-49.
[] Feng ZZ, Peng YM, Jin ZK, Bao ZD. 2004. Lithofacies Palaeogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press: 112-121.
[] Gómez JJ, Fernández-López S. 1994. Condensation processes in shallow platforms. Sedimentary Geology, 92(3-4): 147–159. DOI:10.1016/0037-0738(94)90103-1
[] Gao LZ, Qiao XF. 2001. Cambrian Xiaweidian Formation: A newly established Formation in Western Hills, Beijing. Journal of Stratigraphy, 25(3): 188–192.
[] Han ZZ, Chen JT, Zhang XL, Yu XF. 2009. Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong Province. Acta Geologica Sinica, 83(8): 1097–1103.
[] He YL, Liu B, Qin S, Zhao PY. 2012. The bioherm and geological significance of Middle Cambrian Zhangxia Formation at Xiaweidian profile in Western Hill, Beijing, China. Geological Science and Technology Information, 31(1): 9–15.
[] Hou K, Chen YC. 1990. Skeletal Girvanella oolites and its petrological significance in Lower Cambrean of Xiushan, Sichuan Province. Acta Petrologica Sinica, 6(4): 85–91.
[] Jing YX, Liu JB, Yan Z, Sun YC, Xu ZQ. 2015. Reconstructing sea-level changes from types of storm deposits: An example of the Middle and Late Cambrian at Xiaweidian section of Western Hills, Beijing. Journal of Palaeogeography, 17(5): 653–668.
[] Kahle CFJ. 2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria, nannobacteria (?), and biofilms. Carbonates and Evaporites, 22(1): 10–22. DOI:10.1007/BF03175842
[] Kiessling W, Simpson C, Foote M. 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science, 327(5962): 196–198. DOI:10.1126/science.1182241
[] Lee JH, Chen JT, Chough SK. 2015. The Middle-Late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145: 66–84. DOI:10.1016/j.earscirev.2015.03.002
[] Li WG, Bhattacharya J, Zhu YJ. 2011. Architecture of a forced regressive systems tract in the Turonian ferron "Notom Delta", southern Utah, U.S.A. Mar. Marine and Petroleum Geology, 28(8): 1517–1529. DOI:10.1016/j.marpetgeo.2011.05.004
[] Liu W, Zhang XL. 2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58(4): 779–787. DOI:10.1007/s10347-012-0294-4
[] Liu W, Zhang XL. 2015. Calcified biofilms from Cambrian oolitic limestones in China. Acta Geologica Sinica, 89(1): 70–76. DOI:10.1111/1755-6724.12395
[] Liu YQ, Meng XH, Ge M. 1999. The sea-level change forcing cycles of oolitic carbonate and cycloc-hrological applications. Scientia Geologica Sinica. 1999, 34(4): 442–450.
[] Lu YH, Zhang WT, Zhu ZL, Xiang LW, Lin HL, Zhou ZY, Yuan JL, Peng SC, Qian Y, Zhang SG, Li SJ, Guo HJ, Luo HL. 1994. Suggestions for the establishment of the Cambrian Stages in China. Journal of Stratigraphy, 18(4): 318–328.
[] Ma YS. 1994. Late Cambrian sedimentary cycles in the north part of the North China platform. Geological Review, 40(2): 165–172.
[] Mei MX. 1996. The third-order carbonate cyclic sequences of drowned unconformity type with discussion on "condensation" of carbonate platforms. Sedimentary Facies and Palaeogeography, 16(6): 24–33.
[] Mei MX, Mei SL. 1997. Cyclic-sequences of Composite sea-level change developed in Zhangxia Formation of Middle-Cambrian in North-China. Acta Sedimentologica Sinica, 15(4): 5–10.
[] Mei MX, Ma YS, Mei SL, Hu JZ. 1997. Lithofacies palaeogeography from late period of Early Permian to early period of Late Permian in Jiangxi Province. Geosciences, 11(3): 275–282.
[] Mei MX, Yang XD. 2000. Forced regression and forced regressive wedge system tract: Revision on traditional Exxon model of sequence stratigraphy. Geological Science and Technology Information, 19(2): 17–21.
[] Mei MX, Xu DB, Zhou HR. 2000. Genetic types of meter-scale cyclic sequences and fabric natures of facies succession. Journal of China University of Geosciences, 11(4): 375–382.
[] Mei MX. 2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography, 12(5): 549–564.
[] Mei MX. 2011. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing. Geology in China, 38(2): 317–337.
[] Mei MX, Guo RT, Hu Y. 2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473–2486.
[] Mei MX. 2012. Brief introduction on new advances on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20–32.
[] Mei MX. 2014. Three misreadings during the developing course of sequence stratigraphy. Earth Science Frontiers, 21(2): 67–80.
[] Mei MX. 2015. Conceptual change from depositional sequences to eustatic sequences: An important development in sequence stratigraphy. Journal of Stratigraphy, 39(1): 58–73.
[] Mei MX, Liu L, Hu Y. 2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the Western Suburb of Beijing, North China. Acta Geologica Sinica, 89(2): 440–460.
[] Meng XH, Qiao XF, Ge M. 1986. Study on ancient shallow sea carbonate storm deposits (tempestite) in North China and Dingjiatan model of facies sequences. Acta Sedimentologica Sinica, 4(2): 1–18.
[] Meng XH, Ge M, Tucker ME. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1-4): 189–222. DOI:10.1016/S0037-0738(97)00073-0
[] Miall AD. 1995. Whither stratigraphy?. Sedimentary Geology, 100(1-4): 5–20. DOI:10.1016/0037-0738(95)00100-X
[] Myrow PM, Tice L, Archuleta B, Clark B, Taylor JF, Ripperdan RL. 2004. Flat-pebble conglomerate: Its multiple origins and relationship to metre-scale depositional cycles. Sedimentology, 51(5): 973–996. DOI:10.1111/sed.2004.51.issue-5
[] Osleger D. 1991. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls. Geology, 19(9): 917–920.
[] Peng SC, Babcock LE. 2005. Newly proposed global chronostatigraphic subdivision on Cambrian system. Journal of Stratigraphy, 29(1): 92–93.
[] Peng SC. 2006. A new global framework with four series for Cambrian system. Journal of Stratigraphy, 30(2): 147–148.
[] Pratt BR, Bordonar OL. 2007. Tsunamis in a stormy sea: Middle Cambrian inner-shelf limestones of western Argentina. Journal of Sedimentary Research, 77(4): 256–262. DOI:10.2110/jsr.2007.032
[] Pratt BR, Raviolo MM, Bordonaro OL. 2012. arbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera, San Juan, Argentina. Sedimentolog, 59(3): 843–866. DOI:10.1111/sed.2012.59.issue-3
[] Pruss SB, Finnegan S, Fischer WW, Knoll AH. 2010. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia. Palaios, 25(1-2): 73–84.
[] Qi YA, Yang XW, Dai MY, Li D, Wang M, Xing ZF. 2014a. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area, western Henan Province. Journal of Palaeogeography, 16(1): 55–64.
[] Qi YA, Wang YP, Dai MY, Li D. 2014b. Thrombolites and controlling factors from the Zhangxia Formation of Cambrian Series 3 in Dengfeng, western Henan Province. Acta Micropalaeontologica Sinica, 31(3): 243–255.
[] Qiao XF, Gao LZ. 1990. On study of the sequence stratigraphy of Cambrian, Western Hills, Beijing. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences, 22: 1–7.
[] Rankey EC, Riegl B, Steffen K. 2006. Form, function and feedbacks in a tidally dominated ooid shoal, Bahamas. Sedimentology, 53(6): 1191–1210. DOI:10.1111/sed.2006.53.issue-6
[] Riding R. 2002a. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Science Reviews, 58(1-2): 163–231. DOI:10.1016/S0012-8252(01)00089-7
[] Riding R. 2002b. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30(1): 31–34. DOI:10.1130/0091-7613(2002)030<0031:BAOPCC>2.0.CO;2
[] Riding R, Liang LY. 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 101–115. DOI:10.1016/j.palaeo.2004.11.018
[] Riding R. 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185(3-4): 229–238. DOI:10.1016/j.sedgeo.2005.12.015
[] Samanta P, Mukhopadhyay S, Eriksson PG. 2016. Forced regressive wedge in the Mesoproterozoic Koldaha shale, Vindhyan basin, Son valley, central India. Marine and Petroleum Geology, 71: 329–343. DOI:10.1016/j.marpetgeo.2016.01.001
[] Schlager W. 1989. Drowning unconformities on carbonate platforms. In: Crevello PD, Wilson JL and Sarg JF et al. (eds.). Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44: 15–25.
[] Schlager W. 1998. Exposure, drowning and sequence boundaries on carbonate platforms. In: Camoin G and Davies P (eds.). Reefs and Carbonate Platforms of the W Pacific and Indian Oceans. International Association of Sedimentologists, Special Publication, 25: 3–21.
[] Schlager W. 1999. Type 3 sequence boundaries. In: Harris PM, Saller AH and Simo JA (eds.). Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrop, and Models. SEPM Special Publication, 63: 35–46.
[] Schlager W, Warrlich G. 2009. Record of sea-level fall in tropical carbonates. Basin Research, 21(2): 209–224. DOI:10.1111/bre.2009.21.issue-2
[] Sepkoski JJ. 1997. Biodiversity: Past, present, and future. Journal of Paleontology, 71(4): 533–539. DOI:10.1017/S0022336000040026
[] Sha QA, Jiang MS. 1998. The deposits of oolitic shoal facies and algal flat facies: Dissect of the Zhangxia Formation of the Middle Cambrian, western Shandong Province. Acta Sedimentologica Sinica, 16(4): 62–70.
[] Sha QA. 1999. Study on shoal facies deposit. Journal of Palaeogeography, 1(3): 8–12.
[] Shi XY, Chen JQ, Mei SL. 1997. Cambrian sequence chronostratigraphic frame work of the North China platform. Earth Science Frontiers, 4(3-4): 161–173.
[] Summons RE, Bird LR, Gillespie AL, Pruss SB, Roberts M, Sessions AL. 2013. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora. Geobiology, 11(5): 420–436. DOI:10.1111/gbi.2013.11.issue-5
[] Swart PK, Oehlert AM, Mackenzie GJ, Eberli GP, Reijmer JJG. 2014. The Fertilization of the Bahamas by Saharan Dust: A trigger for carbonate precipitation?. Geology, 42(8): 671–674. DOI:10.1130/G35744.1
[] Vail PR, Mitchum RM Jr and Thompson S Ⅲ. 1977. Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap. In: Payton CE (ed.). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. Tulsa: AAPG, 26: 63–81.
[] Van Wagoner JC, Mitchum RM, Campion KMJ, Rahmanian VD. 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. Tulsa: AAPG, 1-55
[] Wang CS, Fan KQ, Yin ZG. 1990. Features of ooids in the Middle Cambrian Zhangxia Formation in the Western Hills, Beijing, and their environmental significance. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences, 22: 39–55.
[] Wang YH, Zhang XL, Yang CY. 1989. Carbonate Rocks for the Early Paleozoic of the North China Platform. Beijing: Seismological Press: 1-133.
[] Wu YS. 1994. The community facies of reefs. Acta Petrologica Sinica, 10(2): 218–222.
[] Xiang LW, Zhu ZL, Li SJ, Zhou ZQ. 1999. Stratigraphycal Lexicon of China: Cambrian. Beijing: Geological Publishing House: 1-95.
[] Xing YL, Feng LQ. 2015. A study on ooids in limestones of the Cambrian Xuzhuang Formation at Xiaweidian outcrop in Western Hill of Beijing. Journal of Palaeogeography, 17(4): 517–528.
[] Yang JC, Ma FZ. 2014. Single-lithology meter-scale cycles in cyclic stratigraphy: A case study of the Cambrian Zhangxia Formation in Xishan, Beijing. Journal of Stratigraphy, 38(3): 311–316.
[] Zhang WH, Shi XY, Tang DJ, Wang XQ. 2014. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform: A response of microbial community to shallow marine anoxia. Journal of Palaeogeography, 16(3): 305–318.
[] Zhang X, Zhang N, Yang ZH, Bao ZY, Xia WC. 2009. Carbonate microfacies and sedimentary facies of Middle Cambrian Formation at Xiaweidian profile in Western Hills, Beijing, China. Geological Science and Technology Information, 28(6): 25–30.
[] Zhao JX, Li FJ, Zhu GS, Su ZT, Zou M, Wang YP, Zhou JL. 2014. The basic characteristics, spatial-temporal distribution, and building model of reefs in the western margin of the Ordos Basin of Ordovician. Acta Petrologica Sinica, 30(3): 747–756.
[] Zhu CQ, Luo Y, Yang S, Li JW, Chen JQ. 2009. Sequence stratigraphy of Cambrian in Western Hills, Beijing. Geology in China, 36(1): 120–130.
[] 安太庠, 张放, 向维达, 张又秋, 徐文豪, 张慧娟, 姜德标, 杨长生, 蔺连弟, 崔占堂, 杨新昌. 1983. 华北及邻区牙形石. 北京: 科学出版社: 1-223.
[] 毕义泉, 田海芹, 赵勇生, 马玉新, 于文芹, 胡书毅. 2001. 论泥晶套与次生白云岩原岩结构特征的恢复及意义. 岩石学报, 17(3): 491–496.
[] 陈金勇, 韩作振, 范洪海, 迟乃杰. 2014. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究. 沉积学报, 32(3): 494–502.
[] 陈小炜, 牟传龙, 葛祥英, 康建威, 周恳恳. 2012. 华北地区寒武系第三统鲕粒滩的展布特征及其控制因素. 石油天然气学报, 34(11): 8–14. DOI:10.3969/j.issn.1000-9752.2012.11.002
[] 代明月, 齐永安, 陈尧, 李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726–734. DOI:10.7605/gdlxb.2014.05.58
[] 范嘉松, 张维. 1985. 生物礁的基本概念、分类及识别特征. 岩石学报, 1(3): 45–59.
[] 冯增昭, 王英华, 张吉森, 左文歧, 张秀莲, 洪国梁, 陈继新, 吴胜和, 陈玉田, 迟元苓. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社: 3-49.
[] 冯增昭, 彭勇民, 金振奎, 鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社: 112-121.
[] 高林志, 乔秀夫. 2001. 北京西山寒武系下苇甸组——一个新建议的组. 地层学杂志, 25(3): 188–192.
[] 韩作振, 陈吉涛, 张晓蕾, 于学峰. 2009. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究. 地质学报, 83(8): 1097–1103.
[] 赫云兰, 刘波, 秦善, 赵鹏沄. 2012. 北京西山下苇甸中寒武统张夏组生物丘发育特征及其地质意义. 地质科技情报, 31(1): 9–15.
[] 侯奎, 陈延成. 1990. 四川秀山下寒武统清虚洞组的骨骼葛万藻藻鲕及岩石学意义. 岩石学报, 6(4): 85–91.
[] 景宇轩, 刘建波, 闫振, 孙永超, 许振清. 2015. 利用风暴沉积类型恢复海平面变化:以北京西山下苇甸剖面寒武纪中晚期风暴沉积为例. 古地理学报, 17(5): 653–668. DOI:10.7605/gdlxb.2015.05.054
[] 柳永清, 孟祥化, 葛铭. 1999. 华北地台中寒武世鲕滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究. 地质学报, 34(4): 442–450.
[] 卢衍豪, 张文堂, 朱兆玲, 项礼文, 林焕令, 周志毅, 袁金良, 彭善池, 钱逸, 章森桂, 李善姬, 郭鸿俊, 罗惠麟. 1994. 关于我国寒武系建阶的建议. 地层学杂志, 18(4): 318–328.
[] 马永生. 1994. 华北北部晚寒武世沉积旋回分析. 地质论评, 40(2): 165–172.
[] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序——兼论碳酸盐台地的"凝缩作用". 岩相古地理, 16(6): 24–33.
[] 梅冥相, 梅仕龙. 1997. 华北中寒武世张夏组复合海平面变化旋回层序. 沉积学报, 15(4): 5–10.
[] 梅冥相, 马永生, 梅仕龙, 胡建中. 1997. 华北寒武系层序地层格架及碳酸盐台地演化. 现代地质, 11(3): 275–282.
[] 梅冥相, 杨欣德. 2000. 强迫型海退及强迫型海退楔体系域——对传统Exxon层序地层学模式的修正. 地质科技情报, 19(2): 17–21.
[] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比:层序地层学进展之一. 古地理学报, 12(5): 549–564. DOI:10.7605/gdlxb.2010.05.005
[] 梅冥相. 2011. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例. 中国地质, 38(2): 317–337.
[] 梅冥相, 郭荣涛, 胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473–2486.
[] 梅冥相. 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20–32.
[] 梅冥相. 2014. 层序地层学发展历程中的三个误判. 地学前缘, 21(2): 67–80.
[] 梅冥相. 2015. 从沉积层序到海平面变化层序——层序地层学一个重要的新进展. 地层学杂志, 39(1): 58–73.
[] 梅冥相, 刘丽, 胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440–460.
[] 孟祥化, 乔秀夫, 葛铭. 1986. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式. 沉积学报, 4(2): 1–18.
[] 彭善池, BabcockLE. 2005. 全球寒武系年代地层再划分的新建议. 地层学杂志, 29(1): 92–93.
[] 彭善池. 2006. 全球寒武系四统划分框架正式确立. 地层学杂志, 30(2): 147–148.
[] 齐永安, 杨小伟, 代明月, 李妲, 王敏, 刑智峰. 2014a. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55–64.
[] 齐永安, 王艳鹏, 代明月, 李妲. 2014b. 豫西登封寒武系第三统张夏组凝块石灰岩及其控制因素. 微体古生物学报, 31(3): 243–255.
[] 乔秀夫, 高林志. 1990. 北京西山寒武系层序地层. 中国地质科学院地质研究所所刊, 22: 1–7.
[] 沙庆安, 江茂生. 1998. 鲕粒滩相与藻坪相沉积——鲁西地区中寒武统张夏组剖析. 沉积学报, 16(4): 62–70.
[] 沙庆安. 1999. 关于滩相沉积. 古地理学报, 1(3): 8–12.
[] 史晓颖, 陈建强, 梅仕龙. 1997. 华北地台东部寒武系层序地层年代格架. 地学前缘, 4(3-4): 161–173.
[] 王成述, 范开强, 尹占国. 1990. 北京西山中寒武统张夏组鲕粒特征及其环境意义. 中国地质科学院地质研究所所刊, 22: 39–55.
[] 王英华, 张秀莲, 杨承运. 1989. 华北地台早古生代碳酸盐岩岩石学. 北京: 地震出版社: 1-133.
[] 吴亚生. 1994. 生物礁的群落相. 岩石学报, 10(2): 218–222.
[] 项礼文, 朱兆玲, 李善姬, 周志强. 1999. 中国地层典·寒武系. 北京: 地质出版社: 1-95.
[] 邢延路, 冯李强. 2015. 北京西山下苇甸剖面寒武系徐庄组鲕粒研究. 古地理学报, 17(4): 517–528. DOI:10.7605/gdlxb.2015.04.042
[] 杨俊才, 马飞宙. 2014. 单岩性米级旋回在旋回地层划分中识别——以北京西山张夏组为例. 地层学杂志, 38(3): 311–316.
[] 张文浩, 史晓颖, 汤冬杰, 王新强. 2014. 华北地台西缘早-中寒武世过渡期核形石:微生物群落对浅海缺氧环境的响应. 古地理学报, 16(3): 305–318. DOI:10.7605/gdlxb.2014.03.027
[] 张旭, 张宁, 杨振鸿, 鲍征宇, 夏文臣. 2009. 北京西山下苇甸中寒武统碳酸盐岩微相及沉积相研究. 地质科技情报, 28(6): 25–30.
[] 赵俊兴, 李凤杰, 朱广社, 苏中堂, 邹敏, 王玉萍, 周俊烈. 2014. 鄂尔多斯盆地西缘奥陶纪生物礁基本特征、分布规律及成礁模式. 岩石学报, 30(3): 747–756.
[] 朱传庆, 罗杨, 杨帅, 李金武, 陈建强. 2009. 北京西山寒武系层序地层. 中国地质, 36(1): 120–130.