岩石学报  2017, Vol. 33 Issue (2): 515-528   PDF    
藏南彭措林埃达克质岩脉的岩石成因及对区域成矿作用的启示
裴英茹1,2,3, 杨竹森3, 郑远川2, 侯增谦4, 田世洪3, 刘英超4, 赵晓燕3, 周金胜4     
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 中国地质大学地球科学与资源学院, 北京 100083;
3. 中国地质科学院矿产资源研究所, 北京 100037;
4. 中国地质科学院地质研究所, 北京 100037
摘要: 彭措林岩脉群位于藏南冈底斯斑岩铜矿带中段的西侧,宽约3~5m,呈近南北向穿截冈底斯岩基。两组样品的锆石U-Pb定年结果为9.7±0.2Ma和9.9±0.3Ma。岩石地球化学研究显示,岩石以高SiO2(67.05%~69.96%)、K2O(6.05%~6.88%)和低MgO(0.47%~1.27%)为特征,高度富集轻稀土元素(LREE)和大离子亲石元素(LILE),亏损高场强元素(HFSE),具有高Sr/Y和La/Yb比值,表现出埃达克岩地球化学亲合性。相对冈底斯中新世埃达克质斑岩而言,该岩脉更加富集放射性成因Sr、Pb同位素(87Sr/86Sr(i)=0.7120~0.7123,206Pb/204Pb=18.812~18.844,207Pb/204Pb=15.705~15.728,208Pb/204Pb=39.424~39.523)、具更低的Nd同位素值(εNdt)=-10.9~-9.8)和更为古老的Nd模式年龄(tDM=1.36~1.43Ga)。以上地球化学分析表明,彭措林岩脉很可能起源于加厚的古老下地壳,相较于冈底斯斑岩铜矿带内其他的中新世斑岩而言,其岩浆源区含有更少的幔源组分和更多的古老地壳组分。锆石微量元素结果显示,岩脉的氧逸度较低(ΔFMQ=-6.7~+2.1,平均值为-1.4)。故而,彭措林埃达克质岩脉不具备区域成矿潜力的原因可以归结如下:(1)下地壳岩浆源区中新生幔源组分含量较少,指示了古老下地壳中岛弧幔源岩浆注入量较少,因而岛弧期堆晶至下地壳的金属硫化物极为有限;(2)较低的氧逸度导致岩浆萃取金属的能力相对较弱。结合前人研究可知,下地壳中新生幔源组分的贡献率是影响冈底斯斑岩铜矿带后碰撞埃达克岩能否成矿的关键因素。
关键词: 埃达克质岩脉     中新世     岩石成因     成矿作用     藏南彭措林    
The geochemical characteristics of the Pengcuolin adakitic dykes, southern Tibet: Petrogenesis and implications for regional metallogenesis
PEI YingRu1,2,3, YANG ZhuSen3, ZHENG YuanChuan2, HOU ZengQian4, TIAN ShiHong3, LIU YingChao4, ZHAO XiaoYan3, ZHOU JinSheng4     
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 10008;
3. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Pengcuolin dykes are located in the west part of the central Gangdese porphyry copper belt, southern Tibet, and they intruded into the Gangdese batholith with width of 3~5m. LA-ICP-MS U-Pb dating of zircons from two dyke samples yield ages of 9.7±0.2Ma and 9.9±0.3Ma. Geochemical analyses indicate that they are characterized by high SiO2 contents (67.05%~69.96%), K2O ranging from 6.05% to 6.88%, MgO from 0.47% to 1.27%, enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) but depleted in high field strength elements (HFSE), relatively high Sr/Y (45.5~80.0) and La/Yb (75.7~110) ratios, showing adakitic affinities. Compared with the Miocene porphyries in the Gangdese porphyry copper belt, the dykes have higher initial 87Sr/86Sr(i) (0.7120~0.7123), 206Pb/204Pb (18.812~18.844), 207Pb/204Pb (15.705~15.728), 208Pb/204Pb (39.424~39.523) ratios, but lower εNd(t) values (-10.9~-9.8) and older Nd model ages (tDM=1.36~1.43Ga). The above geochemical data indicates that the dykes were probably derived from an overthickened lower crust with minor mantle material, and more old crust material have been involved than the Miocene porphyries in the same belt. Meanwhile, the zircon trace element analysis show that they possess low fO2 values (ΔFMQ=-6.7~+2.1, average=-1.4). Thus the absence of regional metallogenesis is likely attributed to:(1) the limited sulfide cumulated in the lower crust as a result of the underplating of former arc basalitic magmas; (2) the low fO2 that are not favor to ore-forming metal. Combining with previous study, it suggests that contribution of juvenile mantle components to the lower crust beneath the south Tibet is the key factor for mineralization in the Gangdese porphyry Cu belt.
Key words: Adakitic dykes     Miocene     Petrogenesis     Metallogenesis     Pengcuolin, southern Tibet    
1 引言

近年来的研究表明斑岩型矿床除了可以产出于岛弧及陆缘弧环境外 (Sillitoe, 1972, 2010),也可产出于陆内碰撞造山带,并以青藏高原后碰撞伸展环境产出的冈底斯斑岩铜矿带最为典型 (侯增谦等, 2001; 郑有业等, 2004a, b; Qu et al., 2007; Hou et al., 2004; Hou and Cook, 2009; Zheng et al., 2012a; 秦克章等, 2014; Yang et al., 2016)。冈底斯斑岩铜矿带位于雅鲁藏布江缝合带北侧、拉萨地体南缘的冈底斯构造-岩浆带中,被分为东、中、西三段 (侯增谦等, 2006a, b; Zheng et al., 2012b; Hou et al., 2013)。在冈底斯斑岩铜矿带中段 (87°30′E~92°10′E, Hou et al., 2013),典型斑岩铜矿床驱龙、厅宫、冲江、甲马、南木等的埃达克质含矿斑岩年龄为17~14Ma (侯增谦, 2003; Chung et al., 2003; 郑有业等, 2004a, b; 芮宗瑶等, 2004; Hou et al., 2004; Hou and Cook, 2009; Qu et al., 2007; Xu et al., 2010; Li et al., 2011; Yang et al., 2016);而与成矿密切相关的埃达克质岩浆作用从30Ma持续到13Ma,并在16Ma达到高峰期 (Chung et al., 2003; Hou et al., 2004, 2013; Qu et al., 2007; Zheng et al., 2012a)。相对的,冈底斯中新世不含矿斑岩的年龄为25~14Ma (Hou et al., 2015a)。作为冈底斯斑岩铜矿带中段最西缘的斑岩型铜矿床,朱诺 (29°39′N,87°28′E) 含矿斑岩成岩年龄为15.6Ma、成矿年龄为13.7Ma,它的发现将传统意义上的冈底斯斑岩铜矿带向西延伸了100km (郑有业等, 2007; 黄勇等, 2015)。相较于冈底斯斑岩铜矿带中新世埃达克质含矿斑岩起源于加厚的新生铁镁质下地壳 (Hou et al., 2013; Yang et al., 2016),朱诺花岗岩富集Hf同位素 (εHf(t)=-9.87~0.21),并具有古老二阶段模式年龄 (1.08~1.73Ga),可能指示古老拉萨地体的印迹 (黄勇等, 2015)。通过对比冈底斯斑岩铜矿带中新世含矿斑岩与不含矿斑岩,发现幔源组分的贡献对中新世埃达克质斑岩是否成矿起着至关重要的作用 (Hou et al., 2013)。

在冈底斯斑岩铜矿带中段,关于14Ma之后是否还存在埃达克质斑岩的问题尚未报道。同时,除了朱诺矿床,南拉萨地体87°E以东的新生下地壳 (Hou et al., 2015b) 是否还存在局部地壳基底组成的不均一性等问题值得开展更多的研究。本文对彭措林 (29°24′N、88°00′E) 埃达克质岩脉进行了细致的锆石LA-ICP-MS U-Pb年龄、岩石地球化学和Sr-Nd-Pb同位素特征研究,通过与冈底斯斑岩铜矿带中段埃达克质含矿斑岩、不含矿斑岩的对比,探讨了彭措林岩脉的岩石成因和对区域成矿作用的启示,并初步揭示冈底斯斑岩铜矿带中段地壳基底组成的不均一性。

2 地质背景与样品特征

因印-亚陆陆碰撞产生的喜马拉雅-西藏造山带从北向南依次由松潘-甘孜地体、羌塘地体和拉萨地体组成,其构造界线分别为金沙江缝合带、班公湖怒江缝合带和雅鲁藏布江缝合带 (Yin and Harrison, 2000)。其中,拉萨地体以雅鲁藏布江缝合带 (IYZSZ) 和班公湖怒江缝合带 (BNSZ) 为南、北构造界线,被狮泉河-纳木错蛇绿岩带 (SNMZ) 和洛巴堆-米拉山断裂 (LMF) 分为北拉萨地体、中拉萨地体和南拉萨地体等三个构造单元 (图 1a, Zhu et al., 2011)。冈底斯斑岩铜矿带主要分布在南拉萨地体的南缘、雅鲁藏布江缝合带北侧 (侯增谦等, 2006a),其含矿斑岩体侵位受近EW向展布的冈底斯弧花岗岩基和近NS向正断层系统控制 (侯增谦等, 2004);成矿岩体以高钾钙碱性为主,岩石组合以花岗闪长岩-二长花岗岩-花岗斑岩为主,富集大离子亲石元素 (LILE),亏损高场强元素 (HFSE),成岩成矿时代主要集中在中新世 (侯增谦等, 2012)。在成矿最有利的冈底斯斑岩铜矿带中段 (87°30′E~92°10′E, Hou et al., 2013) 存在驱龙、厅宫、冲江、甲马、南木等典型斑岩铜矿床。其中,朱诺斑岩型矿床位于冈底斯斑岩铜矿带中段最西缘,为冈底斯斑岩铜矿带中段含矿斑岩年龄、岩浆源区及成矿作用等问题的研究提供了更多认识 (郑有业等, 2007; 黄勇等, 2015)。

图 1 藏南中新世埃达克岩时空分布图 (a, 据Zhu et al., 2011; Zheng et al., 2012b; Liu et al., 2014修改) 和彭措林地质简图 (b, 据湖北省地质湖北省地质调查院,2003改绘) IYZS-印度-雅鲁藏布缝合带;BNS-班公湖-怒江缝合带;SNMZ-狮泉河-纳木错蛇绿混杂岩带;LMF-洛巴堆-米拉山断裂;NLS-北拉萨地体;CLS-中拉萨地体;SLS-南拉萨地体 Fig. 1 Simplified geological map for the spatial distribution of the Miocene adakitic rocks in southern Tibet (a, modified after Zhu et al., 2011; Zheng et al., 2012b; Liu et al., 2014) and simplified geological map of Pengcuolin (b) IYZS-Indus-Yarlung Zangbo Suture Zone; BNS-Bangong Co-Nujiang Suture Zone; SNMZ-Shiquan River-Nam Tso Ophiolitic Melange Zone; LMF-Luobadui-Milashan Fault; NLS-Nothern Lhasa subterrane; CLS-Central Lhasa subterrane; SLS-Southern Lhasa subterrane

①  湖北省地质调查院.2003. 1:250000拉孜县幅区域地质调查报告

研究区位于南拉萨地体中段拉孜县彭措林村 (29°24′N、88°00′E),地处冈底斯斑岩铜矿带中段的西缘,在朱诺矿床东南方向约59km处。区内发育的一系列宽约3~5m的NS向及NNW向岩脉群,穿切白垩纪花岗闪长岩和石英正长岩,位于近南北向断裂之中 (图 1a),可能与青藏高原在后碰撞晚期阶段因EW向地壳伸展 ( < 18Ma) 形成的NS向正断层系统 (14~10Ma) 有关 (侯增谦等, 2006a)。本文所采岩脉中岩石呈浅肉红色,具斑状结构 (图 2a)。斑晶含量约30%,主要为钾长石、斜长石和石英,以及少量角闪石和黑云母。钾长石斑晶呈半自形-自形板状,具卡式双晶,部分颗粒表面泥化比较明显,偶见环带状构造;斜长石斑晶多呈自形板状,具聚片双晶;石英斑晶多呈他形粒状,部分被熔蚀成港湾状;角闪石斑晶呈长条状或菱形,单偏光下为黄绿色;黑云母斑晶呈长条状或宽片状,单偏光下为棕褐色;基质主要由石英、斜长石和黑云母等矿物组成 (图 2b)。

图 2 藏南彭措林岩脉野外照片 (a) 和显微照片 (b) Kfs-钾长石;Pl-斜长石;Qtz-石英;Am-角闪石;Bi-黑云母 Fig. 2 Field photograph (a) and microphotograph (b) for dykes in Pengcuolin, southern Tibet Kfs-potash feldspar; Pl-plagioclase; Qtz-quartz; Am-amphibole; Bi-biotite
3 分析方法 3.1 锆石U-Pb定年及微量元素

(ICP-MS) 为Agilent 7500a。实验过程采用NIST610、SK10和91500作为标样。采用Andersen (2002)进行普通铅校正。锆石U-Pb年龄谐和图的绘制和MSWD的计算均采用Isoplot/Ex_ver3(Ludwig, 2003)。对于小于1000Ma的岩浆锆石采用206Pb/238U年龄,对于大于1000Ma的岩浆锆石采用207Pb/206Pb年龄,测试结果见表 1

表 1 藏南彭措林岩脉锆石U-Pb年龄数据 Table 1 U-Pb age data of zircons from dykes in Pengcuolin, southern Tibet

通过锆石微量元素计算Ce异常 (Blundy and Wood, 1994; Qiu et al., 2013) 和Ti温度计 (Watson and Harrison, 2005),从而得到氧逸度 (Trail et al., 2011, 2012)。Ce异常根据晶格应变模型由Nd、Sm和Gd至Lu的锆石微量元素计算 (Blundy and Wood, 1994; Qiu et al., 2013)。具体采用公式如下:

其中,fO2为氧逸度,T为绝对温度 (K)。锆石微量数据见表 2

表 2 藏南彭措林岩脉锆石微量元素数据 (×10-6) Table 2 Trace element data for zircons from dykes in Pengcuolin, southern Tibet (×10-6)
3.2 全岩主、微量元素

全岩主、微量元素在核工业北京地质研究院分析测试研究中心进行,测试结果见表 3。全岩主量元素根据GB/T14506.28-93硅酸盐岩石化学分析方法、采用飞利浦PW2404 X射线荧光光谱仪进行测定,FeO的含量采用滴定法测定;全岩微量元素根据DZ/T0223-2001电感耦合等离子体质谱 (ICP-MS) 方法、采用Finnigan MAT制造的HR-ICP-MS进行测定。

表 3 藏南彭措林岩脉主量 (wt%)、微量 (×10-6) 元素数据 Table 3 Whole rock major element (wt%) and trace element (×10-6) data for dykes in Pengcuolin, southern Tibet
3.3 Sr-Nd-Pb同位素

Sr-Nd-Pb同位素测试在核工业北京地质研究院分析测试研究中心进行,测试结果见表 4。根据GB/T17672-1999《岩石中铅锶钕同位素测定方法》,Sr-Nd同位素由仪器PHOENIX测得,Pb同位素由仪器ISOPROBE-T测得。

表 4 藏南彭措林岩脉Sr-Nd-Pb同位素组成 Table 4 Sr-Nd-Pb isotopic compositions from dykes in Pengcuolin, southern Tibet
4 分析结果 4.1 锆石U-Pb定年及微量元素

本文用于锆石U-Pb定年的2个样品为PCL09-1-2(29°24′21.2″N、87°58′57.4″E) 和PCL09-2-9(29°23′10″N、88°00′10.2″E),具体位置如图 1b所示。彭措林岩脉中的锆石单矿物绝大多数颗粒晶形完好,多呈短柱状,浅灰色。从CL图中可以看出 (图 3a, b),锆石粒径变化范围为80~300μm,长宽比介于1:1~2:1之间,大多数具有窄的同心振荡环带。除了PCL09-1-2-13具有相对低的Th含量 (103×10-6)、PCL09-2-9-13具有十分高的Th含量 (52907×10-6) 以外,大多数锆石颗粒具有较高的Th (446×10-6~17914×10-6)、U (357×10-6~4157×10-6) 含量。锆石Th/U比值 (0.1~5.3) 变化范围较大,绝大多数大于1(表 1)。在剔除继承锆石年龄 (104~91.7Ma) 及不谐和的年龄之后,样品PCL09-1-2的锆石206Pb/238U加权平均年龄为9.7±0.2Ma (2σ, MSWD=2.1, n=17, 图 3c),样品PCL09-2-9的锆石206Pb/238U加权平均年龄为9.9±0.3Ma (2σ, MSWD=3.2, n=13, 图 3d)。由此可知,彭措林岩脉的成岩时代约为10Ma,为中新世晚期。作为冈底斯斑岩铜矿带中段西缘出露的中新世埃达克质斑岩,彭措林岩脉的成岩年龄表明,在冈底斯斑岩铜矿带中段的后碰撞埃达克质岩浆作用在10Ma左右仍在进行。

图 3 藏南彭措林岩脉锆石CL图像 (a、b) 与U-Pb年龄 (c、d) Fig. 3 Cathodoluminescene images (a, b) and U-Pb ages (c, d) for zircons from dykes in Pengcuolin, southern Tibet

此外,较高的Th/U比值、强烈的Ce正异常、弱的Eu负异常以及富集HREE的稀土配分模式 (图 4a),表明这些锆石为典型的岩浆锆石 (Hoskin and Schaltegger, 2003)。通过锆石微量Ce异常和Ti温度计算可知 (图 4b, Blundy and Wood, 1994; Watson and Harrison, 2005; Qiu et al., 2013; Trail et al., 2011, 2012),彭措林岩脉的氧逸度范围为-23.4~-13.6(平均值为-18.2),大部分数据点落于FMQ和IW之间,ΔFMQ=-6.7~+2.1(平均值为-1.4)。

图 4 藏南彭措林岩脉锆石球粒陨石标准化REE图解 (a,标准化值据Chondrite-normalized REE parterns (a, normalization values after Sun and McDonough, 1989) and oxygen fugacity (b, after Qiu et al., 2013) for zircons from dykes in Pengcuolin, southern Tibet 冈底斯斑岩铜矿带中新世不成矿岩石和成矿岩石的数据来自Wang et al.(2014a, b), Yang et al. (2016, unpub. data) Fig. 4 Chondrite-normalized REE parterns (a, normalization values after Sun and McDonough, 1989) and oxygen fugacity (b, after Qiu et al., 2013) for zircons from dykes in Pengcuolin, southern Tibet
4.2 全岩主量元素

彭措林岩脉以高SiO2(67.05%~69.96%)、K2O (6.05%~6.88%) 和低MgO (0.47%~1.27%) 为特征,Al2O3含量为14.33%~15.24%,Mg#为36~54,K2O/Na2O比值为1.27~1.80,A/CNK比值为0.85~1.00 (表 3)。根据全岩主量地球化学特征可知 (图 5),彭措林岩脉属于钾玄岩系列、准铝质碱性花岗岩。

图 5 藏南彭措林岩脉主量元素分类图解 (a) 侵入岩分类图解 (Wilson, 1989);(b) K2O-SiO2分类图解 (Rickwood, 1989);(c) A/NK-A/CNK分类图解.冈底斯埃达克质不含矿斑岩和含矿斑岩数据来自Hou et al. (2013) Fig. 5 Diagrams of dykes in Pengcuolin, southern Tibet (a) classification diagram of intrusive rock (Wilson, 1989), the line between alkaline and subalkalines series after Irvine and Baragar (1971); (b) K2O-SiO2 diagram (Rickwood, 1989); (c) A/NK-A/CNK diagram
4.3 全岩微量元素

彭措林岩脉稀土元素总含量ΣREE=294.7×10-6~410.0×10-6,轻重稀土分异明显 (LREE/HREE=10.4~12.2, (La/Yb)N=54~79),显示富集轻稀土元素 (LREE)、亏损重稀土元素 (HREE) 及弱Eu负异常 (δEu=0.68~0.74) 的特征 (图 6a)。同时,彭措林岩脉强烈富集Th、U、Pb等大离子亲石元素 (LILE),强烈亏损Nb、Ta、P、Ti等高场强元素 (HFSE)(图 6b)。

图 6 藏南彭措林岩脉微量元素图解 (a) 球粒陨石标准化稀土元素配分图;(b) 原始地幔标准化微量元素蛛网图 (a、b, 标准化值据Sun and McDonough, 1989);(c) Sr/Y-Y (Defant and Drummond, 1990);(d) La/Yb-Yb (Richards and Kerrich, 2007; Castillo, 2012).冈底斯埃达克质不含矿斑岩和含矿斑岩微量数据来自Hou et al. (2013) Fig. 6 Plots of dykes in Pengcuolin, southern Tibet (a) chondrite-normalized REE patterns; (b) primitive mantle normalized multi-element diagrams (a, b, normalization values after Sun and McDonough, 1989); (c) Sr/Y vs. Y (Defant and Drummond, 1990); (d) La/Yb vs. Yb (Richards and Kerrich, 2007; Castillo, 2012)

此外,在微量元素特征上,相容元素Cr、Ni含量较低 (Cr=9.27×10-6~20.5×10-6, Ni=3.7×10-6~13.7×10-6; 表 3);Nb/Ta比值较高 (15.3~17.0);具有高Sr/Y和La/Yb比值、低Y和Yb值的典型埃达克质地球化学特征 (Sr/Y=45.5~80.0, La/Yb=75.7~110, Y=11.6×10-6~16.1×10-6, Yb=0.7×10-6~1.1×10-6; 图 6c, d)。

4.4 Sr-Nd-Pb同位素

彭措林岩脉5件样品的Sr、Nd同位素比值变化范围较小,87Sr/86Sr(i)=0.7120~0.7123,143Nd/144Nd(i)=0.51207~0.51213;εNd(t) 介于-10.92~-9.77之间,平均值为-10.51(图 7);Nd同位素亏损地幔模式年龄在1.36~1.43Ga之间。彭措林岩脉6件样品的Pb同位素比值较高 (206Pb/204Pb=18.812~18.844, 207Pb/204Pb=15.705~15.728, 208Pb/204Pb=39.424~39.523),变化范围较小,分布于北半球参考线 (NHRL) 之上、地球等时线 (Geochron) 右侧 (图 8)。

图 7 藏南彭措林岩脉εNd-87Sr/86Sr图解 (据Hou et al., 2013; Zheng et al., 2014改绘) 冈底斯埃达克质含矿斑岩和不含矿斑岩数据来自Hou et al. (2013) Fig. 7 εNd vs. 87Sr/86Sr plot for dykes in Pengcuolin, southern Tibet (modified after Hou et al., 2013; Zheng et al., 2014)

图 8 藏南彭措林岩脉207Pb/204Pb-206Pb/204Pb及208Pb/204Pb-206Pb/204Pb同位素比值图解 冈底斯埃达克质不含矿斑岩数据来自Gao et al. (2010);冈底斯埃达克质含矿斑岩数据来自Hou et al. (2004);林子宗火山岩区域来自Mo et al. (2007) Fig. 8 Plots of 207Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb showing the Pb isotopic compositions for dykes in Pengcuolin, southern Tibet
5 讨论 5.1 岩石成因与岩浆源区

与区域上广泛分布的中新世冈底斯后碰撞埃达克质岩浆一样,彭措林岩脉具有高Sr/Y和La/Yb比值、低Y和Yb值的典型埃达克质地球化学属性 (Sr/Y=45.5~80.0, La/Yb=75.7~110.0, Y=11.6×10-6~16.1×10-6, Yb=0.7×10-6~1.1×10-6; 图 6c, d)。关于冈底斯后碰撞埃达克质岩浆的成因,有如下解释:(1) 俯冲过程中受改造的陆下岩石圈地幔的熔融 (Gao et al., 2007, 2010; Richards, 2009);(2) 加厚古老下地壳的熔融 (Chung et al., 2003; Xu et al., 2010);(3) 加厚新生镁铁质下地壳的熔融 (Hou et al., 2004; Chung et al., 2009; Li et al., 2011; 秦克章等, 2014)。

在主微量元素上,彭措林埃达克质岩脉具有低MgO、Cr、Ni和Mg#的特征,与幔源熔体的组成特征不一致,排除了其起源于岩石圈地幔熔融的可能性 (Wang et al., 2008; Xu et al., 2010)。同时,彭措林岩脉亏损重稀土元素和Y,这需要来自石榴子石稳定区域 (对应深度≥50km的榴辉岩相或角闪-榴辉岩相) 的镁铁质岩石的部分熔融 (Rapp et al., 1999; Xiong, 2006),意味着其源区可能为加厚的下地壳 (Atherton and Petford, 1993; Chung et al., 2003; Hou et al., 2004; Xu et al., 2010)。此外,从Sr-Nd同位素特征上来看,相较于西藏中新世冈底斯埃达克质含矿斑岩起源于加厚新生镁铁质下地壳的熔融 (εNd(t)=-6.2~2.2; Zheng et al., 2012a, b; Hou et al., 2013; Yang et al., 2015),彭措林岩脉 (εNd(t)=-10.9~-9.8) 和中新世不含矿斑岩 (εNd(t)=-8.1~-3.0; Hou et al., 2013) 则同样具有更低的εNd(t) 值,指示其起源于加厚古老下地壳的熔融。通过进一步比较彭措林岩脉与西藏古老下地壳的87Sr/86Sr(i)比值可知,彭措林岩脉很有可能起源于西藏古老下地壳 (87Sr/86Sr(i) > 0.706, εNd(t) < -3; Hou et al., 2013)。主微量元素和Sr-Nd同位素特征共同表明,彭措林岩脉很可能起源于加厚的拉萨下地壳,在其形成过程中有较少幔源物质的加入。

同时,通过锆石Ce异常和Ti温度计算 (Blundy and Wood, 1994; Watson and Harrison, 2005; Qiu et al., 2013; Trail et al., 2011, 2012),彭措林岩脉的氧逸度范围为-23.4~-13.6,ΔFMQ=-6.7~+2.1(平均值为-1.4)(图 4b),表明该岩脉的氧逸度较低,进而指示其岩浆源区氧逸度也较低。经由同样的方法计算可知,在冈底斯斑岩铜矿带 (89°E~93°E),中新世不成矿岩石的氧逸度范围为-19.6~-11.3,ΔFMQ=-1.6~+6.4(平均值为2.4);成矿岩石的氧逸度范围为-18.9~-11.7,ΔFMQ=-1.1~+7.3(平均值为3.1)(图 4b, Wang et al., 2014a, b; Yang et al., 2016; Yang et al., unpub. data)。通过对比可知,在岩浆源区氧逸度上,彭措林岩脉岩浆源区的氧逸度均低于中新世不成矿岩石和成矿岩石岩浆源区的氧逸度。

与冈底斯埃达克质含矿斑岩 (Hou et al., 2004, 2013)、不含矿斑岩 (Gao et al., 2010; Hou et al., 2013) 进行综合对比可知,彭措林岩脉与含矿斑岩、不含矿斑岩均具有明显的埃达克质属性 (图 6c, d);较含矿斑岩和不含矿斑岩具有更高的87Sr/86Sr(i)比值、更低的εNd(t) 值、更高的Pb同位素比值 (图 7图 8)。在岩浆源区上,彭措林岩脉与冈底斯斑岩铜矿带中新世不含矿斑岩具有一致性,即起源于加厚的、新生幔源组分有限的、低氧逸度的古老下地壳。

5.2 对区域成矿作用的启示

最近的研究表明,冈底斯斑岩铜矿带的含矿斑岩来自于下地壳富含硫化物堆晶体的重熔 (Hou et al., 2015a),该新生下地壳 (堆晶体) 形成于中生代特提斯洋的俯冲过程,其机制类似于环太平洋弧岩浆带 (Lee et al., 2012; Chiaradia, 2014)。然而,彭措林岩脉岩浆源区下地壳中新生幔源组分十分有限,指示了古老下地壳中岛弧幔源岩浆注入量较少,因而岛弧期堆晶至下地壳的金属硫化物含量极为有限,故而不利于形成含矿斑岩。另外,斑岩型矿床的形成,同时要求岩浆具有高氧逸度。在硅酸盐熔体中,硫在高氧逸度条件下以硫酸根的形式溶解于岩浆之中,促使通常优先向硫化物分配的Cu、Au等作为不相容元素向熔体中富集 (Hamlyn et al., 1985; Bornhorst and Rose Jr, 1986; Richards et al., 1991; Richards, 1995; Jugo et al., 2005)。由于彭措林岩脉是低氧逸度的,所以即使其岩浆源区有足够的金属硫化物存在,如此低氧逸度的岩浆也无法将源区的硫化物有效萃取,因而低氧逸度也制约了其成矿潜力。由此可知,并非冈底斯成矿带所有的埃达克岩都具有成矿潜力,而应具体分析其岩浆源区的特征,从幔源贡献率和氧逸度来评价其成矿潜力。

另外,已有研究表明,拉萨地体的地壳基底存在大区域尺度上的不均一性 (Zhu et al., 2011; Hou et al., 2015b)。从Hf同位素填图上可知,北拉萨地体90°E以东为古老物质,中拉萨地体几乎均为古老物质,南拉萨地体83°E~87°E之间为古老物质 (Hou et al., 2015b)。然而,在彭措林西北方向59km处发育的朱诺斑岩Cu-Mo矿床 (87°28′E),其含矿斑岩成岩年龄为15.6Ma、成矿年龄为13.7Ma (郑有业等, 2007);其花岗岩岩体具有富集的Hf同位素 (εHf(t)=-9.87~0.21) 特征并具有古老二阶段模式年龄 (1.08~1.73Ga),壳源贡献率达30.5%~33.4%,反映出矿区中新世岩浆岩的古老下地壳混染程度较高,可能指示古老拉萨地体的印迹 (黄勇等, 2015)。同时,起源于古老下地壳的彭措林岩脉 (88°E) 的存在,也进一步表明在南拉萨地体87°E以东的新生下地壳中存在西藏古老下地壳物质,暗示拉萨地体地壳基底组成的不均一性在小区域范围内也有所显示。

6 结论

(1) 彭措林岩脉形成于~10Ma,较中新世冈底斯斑岩铜矿带中段含矿斑岩的年龄更新,表明该时期的埃达克质岩浆作用可能一直持续到了10Ma左右。

(2) 彭措林岩脉为钾玄岩系列、准铝质碱性花岗岩;轻重稀土分异明显 (LREE/HREE=10.4~12.2, (La/Yb)N=54~79),存在弱Eu负异常 (δEu=0.68~0.74);强烈富集大离子亲石元素,强烈亏损高场强元素;具有高Sr/Y和La/Yb比值、低Y和Yb值的典型埃达克质地球化学特征;高87Sr/86Sr(i)比值和低εNd(t) 值 (87Sr/86Sr(i)=0.7120~0.7123, εNd(t)=-10.9~-9.8),暗示其可能起源于加厚的古老拉萨地体下地壳的部分熔融。

(3) 彭措林岩脉下地壳岩浆源区中新生幔源组分含量较少,指示了古老下地壳中岛弧幔源岩浆注入量较少,因而岛弧期堆晶至下地壳的金属硫化物量极为有限,加之氧逸度较低导致岩浆萃取金属的能力也相对较弱,故而彭措林埃达克质岩脉不具备成矿潜力。

致谢 感谢中国科学院地球化学研究所罗泰义研究员在野外工作中的帮助和指导!感谢西北大学大陆动力学国家重点实验室以及核工业北京地质研究院分析测试研究中心的老师和同学在测试工作中的帮助和指导!感谢团队曹康博士、李秋耘博士在文章修改阶段的帮助!感谢两位匿名审稿专家对本文提出的宝贵评审意见!
参考文献
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Atherton MP, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144–146. DOI:10.1038/362144a0
[] Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372(6505): 452–454. DOI:10.1038/372452a0
[] Bornhorst TJ, Rose Jr WI. 1986. Partitioning of gold in young calc-alkalic volcanic rocks from Guatemala. The Journal of Geology, 94(3): 412–418. DOI:10.1086/629039
[] Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304–316. DOI:10.1016/j.lithos.2011.09.013
[] Chiaradia M. 2014. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, 7(1): 43–46.
[] Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021–1024. DOI:10.1130/G19796.1
[] Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY, Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36–48. DOI:10.1016/j.tecto.2009.08.008
[] Defant MJ, Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662–665. DOI:10.1038/347662a0
[] Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ, Zhao RS. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105–120. DOI:10.1007/s00410-006-0137-9
[] Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH, Tian SH. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651–663. DOI:10.1016/j.lithos.2010.08.018
[] Goldstein SL, O'Nions RK, Hamilton PJ. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2): 221–236. DOI:10.1016/0012-821X(84)90007-4
[] Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM. 1985. Precious metals in magnesian low-Ti lavas:Implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta, 49(8): 1797–1811. DOI:10.1016/0016-7037(85)90150-4
[] Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. DOI:10.2113/0530027
[] Hou ZQ, Qu XM, Huang W, Gao YF. 2001. Gangdise porphyry copper metallogenic belt:The possible second "Yulong" copper belt. Geology in China, 28(10): 27–29, 40.
[] Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139–155. DOI:10.1016/S0012-821X(04)00007-X
[] Hou ZQ, Qu XM, Wang SX, Gao YF, Du AD, Huang W. 2004. Re-Os age for molybdenite from the Gangdese porphyry copper belt on Tibetan Plateau:Implication for geodynamic setting and duration of the Cu mineralization. Science in China (Series D), 47(3): 221–231. DOI:10.1360/01YD0487
[] Hou ZQ, Gao YF, Meng XJ, Qu XM, Huang W. 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20(2): 239–248.
[] Hou ZQ, Qu XM, Yang ZS, Meng XJ, Li ZQ, Yang ZM, Zheng MP, Zheng YY, Nie FJ, Gao YF, Jiang SH, Li GM. 2006a. Metallogenesis in Tibetan collisional orogenic belt:Ⅲ. Mineralization in post-collisional extension setting. Mineral Deposits, 25(6): 629–651.
[] Hou ZQ, Zhao ZD, Gao YF, Yang ZM, Jiang W. 2006b. Tearing and dischronal subduction of the Indian continental slab:Evidence from Cenozoic Gangdese volcano-magmatic rocks in South Tibet. Acta Petrologica Sinica, 22(4): 761–774.
[] Hou ZQ, Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2–24. DOI:10.1016/j.oregeorev.2009.05.001
[] Hou ZQ, Zheng YC, Yang ZM, Yang ZS. 2012. Metallogenesis of continental collision setting:Part Ⅰ. Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Mineral Deposits, 31(4): 647–670.
[] Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM, Sun QZ. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 48(2): 173–192. DOI:10.1007/s00126-012-0415-6
[] Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD, McCuaig TC. 2015a. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541–1575. DOI:10.2113/econgeo.110.6.1541
[] Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF. 2015b. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247–250. DOI:10.1130/G36362.1
[] Huang Y, Ding J, Li GM, Dai J, Yan GQ, Wang G, Liu XF. 2015. U-Pb dating, Hf isotopic characteristics of zircons from intrusions in the Zhuluo porphyry Cu-Mo-Au deposit and its mineralization significance. Acta Geologica Sinica, 89(1): 99–108.
[] Jacobsen SB, Wasserburg GJ. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1): 139–155. DOI:10.1016/0012-821X(80)90125-9
[] Jugo PJ, Luth RW, Richards JP. 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300℃ and 1.0GPa.. Journal of Petrology, 46(4): 783–798.
[] Lee CT, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Roux VL, Yin QZ, Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64–68. DOI:10.1126/science.1217313
[] Li JX, Qin KZ, Li GM, Xiao B, Chen L, Zhao JX. 2011. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet:Melting of thickened juvenile arc lower crust. Lithos, 126(3-4): 265–277. DOI:10.1016/j.lithos.2011.07.018
[] Liu D, Zhao ZD, Zhu DC, Niu YL, DePaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun CG, Zhang ZC, Liu JL. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207–231. DOI:10.1016/j.gca.2014.03.031
[] Ludwig KR. 2003. User's Manual for Isoplot/Ex, Version 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley, CA, USA:Berkeley Geochronology Center
[] Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225–242. DOI:10.1016/j.lithos.2006.10.005
[] Peucat JJ, Vidal P, Bernard-Griffiths J, Condie KC. 1989. Sr, Nd, and Pb isotopic systematics in the Archean low-to high-grade transition zone of southern India:Syn-accretion vs. post-accretion granulites. The Journal of Geology, 97(5): 537–549.
[] Qin KZ, Xia DX, Li GM, Xiao B, Duo J, Jiang GW, Zhao JX. 2014. Qulong Porphyry-Skarn Type Cu-Mo Deposit, Tibet. Beijing: Science Press: 1-3.
[] Qiu JT, Yu XQ, Santosh M, Zhang DH, Chen SQ, Li PJ. 2013. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545–556. DOI:10.1007/s00126-013-0456-5
[] Qu XM, Hou ZQ, Zaw K, Li YG. 2007. Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau:Preliminary geochemical and geochronological results. Ore Geology Reviews, 31(1-4): 205–223. DOI:10.1016/j.oregeorev.2005.03.012
[] Rapp RP, Shimizu N, Norman MD, Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335–356. DOI:10.1016/S0009-2541(99)00106-0
[] Richards JP, McCulloch MT, Chappell BW, Kerrich R. 1991. Sources of metals in the Porgera gold deposit, Papua New Guinea:Evidence from alteration, isotope, and noble metal geochemistry. Geochimica et Cosmochimica Acta, 55(2): 565–580. DOI:10.1016/0016-7037(91)90013-U
[] Richards JP. 1995. Alkalic-type epithermal gold deposits:A review. In:Thompson JFH (ed.). Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course, 23: 367–400.
[] Richards JP, Kerrich R. 2007. Special paper:Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537–576. DOI:10.2113/gsecongeo.102.4.537
[] Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247–250. DOI:10.1130/G25451A.1
[] Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247–263. DOI:10.1016/0024-4937(89)90028-5
[] Rui ZY, Li GM, Zhang LS, Wang LS. 2004. The response of porphyry copper deposits to important geological events in Xizang. Earth Science Frontiers, 11(1): 145–152.
[] Sillitoe RH. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2): 184–197. DOI:10.2113/gsecongeo.67.2.184
[] Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. DOI:10.2113/gsecongeo.105.1.3
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42: 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Trail D, Watson EB, Tailby ND. 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature, 480(7375): 79–82. DOI:10.1038/nature10655
[] Trail D, Watson EB, Tailby ND. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70–87. DOI:10.1016/j.gca.2012.08.032
[] Wang Q, Wyman DA, Xu JF, Dong YH, Vasconcelos PM, Pearson N, Wan YS, Dong H, Li CF, Yu YS, Zhu TX, Feng XT, Zhang QY, Zi F, Chu ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158–171. DOI:10.1016/j.epsl.2008.04.034
[] Wang R, Richards JP, Hou ZQ, Yang ZM, DuFrane SA. 2014a. Increased magmatic water content:The key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern gangdese belt, Tibet. Economic Geology, 109(5): 1315–1339. DOI:10.2113/econgeo.109.5.1315
[] Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB, DuFrane SA. 2014b. Increasing magmatic oxidation state from Paleocene to Miocene in the eastern gangdese belt, Tibet:Implication for collision-related porphyry Cu-Mo±Au mineralization. Economic Geology, 109(7): 1943–1965. DOI:10.2113/econgeo.109.7.1943
[] Watson EB, Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841–844. DOI:10.1126/science.1110873
[] Wilson BM. 1989. Igneous Petrogenesis:A Global Tectonic Approach. Netherlands:Springer
[] Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11): 945–948. DOI:10.1130/G22711A.1
[] Xu WC, Zhang HF, Guo L, Yuan HL. 2010. Miocene high Sr/Y magmatism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293–306. DOI:10.1016/j.lithos.2009.09.005
[] Yang ZM, Lu YJ, Hou ZQ, Chang ZS. 2015. High-Mg diorite from qulong in southern Tibet:Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227–254. DOI:10.1093/petrology/egu076
[] Yang ZM, Hou ZQ, Chang ZS, Li QY, Liu YF, Qu HC, Sun MY, Xu B. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet:Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245: 243–257. DOI:10.1016/j.lithos.2015.04.002
[] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. DOI:10.1146/annurev.earth.28.1.211
[] Yuan HL. 2012. State Key Laboratory of Continental Dynamics, Northwest University. Rock and Mineral Analysis, 31(6): 1090–1092.
[] Zheng YC, Hou ZQ, Li W, Liang W, Huang KX, Li QY, Sun QZ, Fu Q, Zhang S. 2012a. Petrogenesis and geological implications of the Oligocene Chongmuda-Mingze adakite-like intrusions and their mafic enclaves, southern Tibet. The Journal of Geology, 120(6): 647–669. DOI:10.1086/667812
[] Zheng YC, Hou ZQ, Li QY, Sun QZ, Liang W, Fu Q, Li W, Huang KX. 2012b. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296–311. DOI:10.1016/j.lithos.2012.05.026
[] Zheng YC, Hou ZQ, Gong YL, Liang W, Sun QZ, Zhang S, Fu Q, Huang KX, Li QY, Li W. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese plutonic belt, southern Tibet:Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240–263. DOI:10.1016/j.lithos.2013.12.013
[] Zheng YY, Gao SB, Cheng LJ, Li GL, Feng NP, Fan ZH, Zhang HP, Guo JC, Zhang GY. 2004a. Finding and significances of Chongjiang porphyry copper (molybdenum, aurum) deposit, Tibet. Earth Science, 29(3): 333–339.
[] Zheng YY, Xue YX, Cheng LJ, Fan ZH, Gao SB. 2004b. Finding, characteristics and significances of Qulong superlarge porphyry copper (molybdenum) deposit, Tibet. Earth Science, 29(1): 103–108.
[] Zheng YY, Zhang GY, Xu RK, Gao SB, Pang YC, Cao L, Du AD, Shi YR. 2007. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139–3147. DOI:10.1007/s11434-007-0406-7
[] Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241–255. DOI:10.1016/j.epsl.2010.11.005
[] 侯增谦, 曲晓明, 黄卫, 高永丰. 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带. 中国地质, 28(10): 27–29, 40.
[] 侯增谦, 曲晓明, 王淑贤, 高永丰, 杜安道, 黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用. 中国科学 (D辑), 33(7): 609–618.
[] 侯增谦, 高永丰, 孟祥金, 曲晓明, 黄卫. 2004. 西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239–248.
[] 侯增谦, 曲晓明, 杨竹森, 孟祥金, 李振清, 杨志明, 郑绵平, 郑有业, 聂凤军, 高永丰, 江思宏, 李光明. 2006a. 青藏高原碰撞造山带:Ⅲ. 后碰撞伸展成矿作用.矿床地质, 25(6): 629–651.
[] 侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006b. 印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761–774.
[] 侯增谦, 郑远川, 杨志明, 杨竹森. 2012. 大陆碰撞成矿作用:Ⅰ. 冈底斯新生代斑岩成矿系统.矿床地质, 31(4): 647–670.
[] 黄勇, 丁俊, 李光明, 戴婕, 闫国强, 王刚, 刘晓峰. 2015. 西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义. 地质学报, 89(1): 99–108.
[] 秦克章, 夏代祥, 李光明, 肖波, 多吉, 蒋光武, 赵俊兴. 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床. 北京: 科学出版社: 1-316.
[] 芮宗瑶, 李光明, 张立生, 王龙生. 2004. 西藏斑岩铜矿对重大地质事件的响应. 地学前缘, 11(1): 145–152.
[] 袁洪林. 2012. 西北大学大陆动力学国家重点实验室. 岩矿测试, 31(6): 1090–1092.
[] 郑有业, 高顺宝, 程力军, 李国梁, 冯南平, 樊子珲, 张华平, 郭建慈, 张刚阳. 2004a. 西藏冲江大型斑岩铜钼金) 矿床的发现及意义. 地球科学, 29(3): 333–339.
[] 郑有业, 薛迎喜, 程力军, 樊子珲, 高顺宝. 2004b. 西藏驱龙超大型斑岩铜 (钼) 矿床:发现, 特征及意义. 地球科学, 29(1): 103–108.
[] 郑有业, 张刚阳, 许荣科, 高顺宝, 庞迎春, 曹亮, 杜安道, 石玉若. 2007. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542–2548.