岩石学报  2017, Vol. 33 Issue (1): 291-303   PDF    
汶川Ms 8.0地震破裂带CO2、CH4、Rn和Hg脱气强度
周晓成1, 孙凤霞1, 陈志1, 吕超甲1, 李静2, 仵柯田1,3, 杜建国1     
1. 中国地震局地震预测重点实验室, 中国地震局地震预测研究所, 北京 100036;
2. 防灾科技学院, 廊坊 065201;
3. 中国地质大学, 北京 100083
摘要: 地震活动断裂带能够向大气释放大量的温室气体、放射性气体和有毒气体(CO2、CH4、Rn和Hg),并对大气环境的影响产生复杂的影响。利用静态暗箱法,对汶川Ms 8.0地震破裂带CO2、Rn和Hg脱气强度进行实地测量,并计算了CO2和Hg脱气对大气的年贡献量。结果表明:(1)破裂带土壤气中CO2、CH4、Rn和Hg异常浓度最大值分别可以达到7.98%、2.38%、524.30kBq/m3和161.00ng/m3;破裂带CO2、Rn和Hg脱气平均通量是34.95g·m-2d-1、36.11mBq·m-2s-1和26.56ng·m-2h-1,最大值分别达到259.23g·m-2d-1、580.35mBq·m-2s-1和387.67ng·m-2h-1;(2)汶川Ms 8.0地震破裂带向大气脱气的CO2年贡献量是0.95Mt,Hg的年贡献量是15.94kg。汶川Ms 8.0地震破裂带破裂CO2、CH4、Rn和Hg等的脱气强度,不仅与破裂带渗透率有关,还与断裂带浅部存在的气藏、煤层以及磷矿层等气体源有重要的联系。
关键词: 土壤气     通量          二氧化碳          汶川地震    
Degassing of CO2, CH4, Rn and Hg in the rupture zones produced by Wenchuan Ms 8.0 earthquake
ZHOU XiaoCheng1, SUN FengXia1, CHEN Zhi1, LÜ ChaoJia1, LI Jing2, WU KeTian1,3, DU JianGuo1     
1. Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China;
2. Institute of Disaster Prevention, Langfang 065201, China;
3. China University of Geosciences, Beijing 100083, China
Abstract: Large amounts of greenhouse gases, radioactive gases and toxic gases (e.g. CO2, CH4, Rn and Hg) could be emitted from seismic active faults into the atmosphere with effect to the atmospheric environment. The flux of CO2, Rn and Hg along rupture zones were investigated by static chamber techniques and the total anualy output of CO2 and Hg to atmosphere were estimated. The results indicated (1) The maximum anomalies of CO2, CH4, Rn and Hg concentration in soil gas along co-seismic rupture zones reached values of 7.98%, 2.38%, 524.30kBq/m3 and 161.00ng/m3, respectively. The average flux of CO2, Rn and Hg from co-seismic rupture zones were 34.95g·m-2d-1, 36.11mBq·m-2s-1and 26.56ng·m-2h-1, respectively. The maximum flux of CO2, Rn and Hg reached 259.23g·m-2d-1, 580.35mBq·m-2s-1and 387.67ng·m-2h-1. (2) The total output of CO2 and Hg degassing estimated along siesmic ruptures were approximately 0.95Mt·y-1 and 15.94kg·y-1. The flux of CO2, Rn and Hg in soil gas were affected not only by the permeability of rupture zones, but also by gas sources from natural gas reservoir, coal seams and phosphat, etc.
Key words: Soil gas     Flux     Rn     CO2     Hg     Wenchuan earthquake    
1 引言

地球内部炽热高温与固态地表之间存在巨大的热力梯度,地球内部各种物理化学场的变化,板块块体之间的相互作用等都不断地驱使地下气体从各种通道逸散(杜乐天, 2005; Chiodini et al., 2010)。地球上大部分地区,地球的脱气是以小规摸,低速度的形式进行的,而在地壳的某些薄弱部位,如洋中脊、火山、温泉,活动断裂带等,脱气都是非常强烈的(Ciotoli et al., 2007; Chiodini et al., 2010; Phuong et al., 2012; Chavrit et al., 2014)。针对全球环境变化研究中,关于地球脱气主要集中在火山排气(Chiodini et al., 2008),而地震断裂带排气研究较少,主要研究是在美国圣安德列斯断裂带(Lewicki et al., 2003)、土耳其安托里亚断裂带(Doğan et al., 2009; Dupré et al., 2015)和意大利非火山区的活动断裂带(Rogie et al., 2000)等。地球上每天都发生大量的地震,都伴有排气,并且地震震级越大,排气越强烈(Voltattorni et al., 2012; Chiodini et al., 2004, 2011)。地震断裂带在构造运动中因断层裂隙发育和地热流体垂向运移为气体排放提供了良好的通道(Tao et al., 2005; Lewicki and Brantley, 2000);即使大震后较长时间内,这种作用并不会立即终止,而且仍然持续,地震破裂带土壤气体的空间异常分布就是这一作用的反映(Chiodini et al., 2011; Zhou et al., 2016)。目前,基本一致地认为活动断裂带深部脱气过程含有大量的二氧化碳、水蒸气,以及少量的烃类气体、氮气、氢气和稀有气体等(Tao et al., 2005; 邵济安等, 2010; Kämpf et al., 2013; Jung et al., 2014)。

2008年5月12日发生在青藏高原东缘龙门山推覆构造带中段的汶川Ms 8.0地震,是一次罕见的逆冲斜滑型特大地震(张培震等, 2013)。同震地表破裂带长度达到240km,最大垂直位移为6.5±0.5m,最大右旋走滑位移4.9m,汶川地震在龙门山推覆构造带中段产生了最大~7m的地壳缩短量(徐锡伟等, 2010; Yu et al., 2010; Fu et al., 2011)。汶川Ms 8.0地震断裂带脱气强烈,范围广,并且持续向外脱气(Chiodini et al., 2011; Zhou et al., 2010)。大量的地震现场考察发现,汶川Ms 8.0级地震震中地下有异常高压气体在地震时高速膨胀,经由地下裂隙和断层等面状通道快速涌出,导致岩体飞移、流动和扩散(赵京轶等, 2009; 曾明果等, 2009; 王成善等, 2009; Zheng et al., 2013)。在汶川Ms 8.0地震断裂带脱气初步调查测量中发现,土壤气中的CO2、Rn和Hg浓度及其通量的时空变化在地震断裂带南部和北部存在明显差异,但是,土壤气中的CO2、Rn和Hg通量测点只有70个,采样率低;而且,汶川Ms 8.0地震破裂带中部清平、高川、北川缺少测点,因此,很有必要对汶川Ms 8.0地震破裂带脱气进行全面系统测量(Zhou et al., 2010, 2016)。

对地震断裂带排放强度进行研究,可以很好估算地震断裂带排气对大气的贡献量(Engle et al., 2001; Mörner and Etiope, 2002; Siirila et al., 2012)。汶川地震断裂带每年向大气究竟排放了多少温室气体和有毒气体?由于缺乏实际和全面的调查研究,目前仍然是个未知数,需要进行深入的系统研究。截止目前,汶川Ms 8.0地震破裂带内的余震仍然频繁发生,脱气现象依然很强烈。针对汶川Ms 8.0地震断裂带的脱气强度进行较大范围的系统调查研究,对于加深了解地震断裂带脱气的环境效应具有重要的参考意义。

2 地质概况

龙门山构造带介于华北陆块、扬子陆块和羌塘陆块之间,是松潘-甘孜褶皱带的东缘,同时也是青藏高原的东缘(唐荣昌和韩渭宾, 1993)。龙门山构造带是由一系列走向NE、倾向NW的逆冲断裂及其所夹持的逆冲岩片所组成,这些逆冲片岩主要由前震旦纪基底杂岩和震旦系至三叠系海相地层组成,自北向南分布有轿子顶杂岩、彭灌杂岩和宝兴杂岩(Burchfiel et al., 1995)。在晚三叠世,扬子西缘发生陆内汇聚作用,在川西形成龙门山构造带,并导致四川前陆盆地的形成,龙门山与四川前陆盆地表现出典型的盆山耦合关系。龙门山断裂是由一系列大致平行的叠瓦状逆冲断裂带构成,自西向东分别为:汶川-茂县断裂(后龙门山断裂)、映秀-北川断裂(中央断裂)、灌县-安县断裂(前山断裂)和广元-大邑(隐伏)断裂,全长约500km,东西宽30~50km (唐荣昌和韩渭宾, 1993; 徐锡伟等, 2010)。龙门山的冲断褶皱变形垂直于山脉走向从西北向东南, 即从松潘-甘孜地块向四川盆地逐渐扩展;平行于龙门山走向发育的断裂带控制川西油气聚散带的分布,前山断裂带上盘及以西地层中的油气基本散失,山前隐伏断裂带有利于深浅储气藏的形成(曹俊兴等, 2009; Liu et al., 2012)。汶川地震地表破裂带是迄今为止地表破裂结构最复杂、破裂长度最长、同时兼有逆冲和右旋走滑分量的一次板块内部逆断层型特大地震事件。汶川Ms 8.0地震使龙门山推覆构造带中段北川-映秀断裂和灌县-江油断裂等两条叠瓦状逆断层和NW向小鱼洞断裂同时发生破裂,形成了北川-映秀和汉旺-白鹿等两条近于平行的NE向地表破裂带和一条NW向小鱼洞地表破裂带(Lin et al., 2009; 徐锡伟等, 2010; Yu et al., 2010; Fu et al., 2011)。北川-映秀地表破裂带西起汶川县映秀镇西马柳村,东止于北川县红光乡东河口大型基岩崩塌体附近,破裂长度约240±5km;汉旺-白鹿地表破裂带西起彭县通济镇东涧,终止于安县安昌镇,破裂长度达72km;小鱼洞地表破裂带位于北川-映秀破裂带虹口与龙门山镇两次级地表破裂段斜列阶区至汉旺-白鹿破裂带西端之间,运动性质为左旋走滑兼有逆冲分量,破裂长度约为7km (徐锡伟等, 2010)。

3 样品与测量方法 3.1 温泉气体样品采样和测量

2013年4月,在龙门山断裂带内采集温泉气体(图 1),温泉气体采样样品容器为500mL的玻璃瓶,气样利用排水取气法采集。温泉气体中的N2、H2、CO2、O2、CH4和Ar是使用Agilent Macro 3000便携式气相色谱仪测量,测量精度为含量>0.001%时,相对标准偏差 < 5%(Zhou et al., 2015, 2016)。温泉气体中的同位素是在中国科学院地质与地球物理研究所兰州油气资源研究中心分析测量,温泉气体中He和Ne的浓度以及同位素是使用MM5400质谱仪检测(Ye et al., 2007)。碳同位素分析是使用Delta Plus XL质谱计分析完成,它是由美国ThermoFinnigan公司制造,由HP6890气相色谱、燃烧/转换炉、接口和DeltaPlusXP质谱计组成(Li et al., 2012)。稳定碳同位素组成一般用δ13C表示。13C/12C的精度为0.2‰。

图 1 汶川地震破裂带周围温泉气体采样和破裂带土壤气采样区位置分布图(破裂带分布图数据来自徐锡伟等, 2010) Fig. 1 Map of locations of sampling points of the hot spring gas around co-seismic surface ruptures produced by Wenchuan Ms 8.0 earthquake and location of the soil gas sampling sites surveyed (fault lines were adopted from Xu et al., 2010)
3.2 汶川Ms 8.0地震地表断裂带土壤气浓度和通量测量

2014年7月,先进行野外实地调查,测区的选择过程中参考已有大量学者的工作(Lin et al., 2009; 徐锡伟等, 2010; Yu et al., 2010; Fu et al., 2011),收集了陡坎垂直位移、探槽剖面和测区的土壤类型等资料,最终,在汶川Ms 8.0地震地表断裂带23个测区进行现场CH4、CO2、Hg和Rn浓度测量(图 1表 1)。每一个测区布置3~4条测线,每条测线垂直陡坎走向,测线中央位于陡坎之上,每条测线10个测点,测线间距5~30m不等;每条测线的测点间距5~50m不等,在陡坎附近测点间距一般为5m,离开陡坎测点间距逐渐增加(Zhou et al., 2016)。测线长度使用米尺准确测量。

表 1 汶川Ms 8.0地震破裂带土壤气测区和周边温泉气体采样的位置 Table 1 Location of the surveyed area of soil gas along rupture zones produced by the and Ms 8.0 earthquake and sampling location of hot spring gas around rupture zones

在每一个地点完成近40个测点的土壤气浓度测量后,从中选择靠近破裂带的20个土壤气CO2、Hg和Rn浓度测点进行土壤气CO2、Hg和Rn通量测量。在汶川Ms 8.0地震地表断裂带23个测区,CO2、Hg和Rn浓度测量测点共计884个,通量测点共441计个。CO2、Hg和Rn浓度和通量测量方法以及数据处理方法详见Zhou et al.(2010, 2016)。

4 测量结果 4.1 破裂带气体测量结果

在汶川Ms 8.0地震破裂带23个测区884个测点中,只在11个测点探测到CH4;土壤气中CO2、CH4、Rn和Hg浓度平均值分别为1.54%、0.25%、22.78kBq/m3和16.28ng/m3,而最大值达到7.98%、2.38%、524.30kBq/m3、161.00ng/m3;土壤气中CO2、Rn和Hg平均通量是34.95g·m-2d-1、36.11mBq·m-2s-1和26.56ng·m-2h-1,最大值分别达到259.23g·m-2d-1、580.35mBq·m-2s-1、387.67ng·m-2h-1(表 2)。利用qq图法(Sinclair, 1991; Ciotoli et al., 2007)划定土壤气中CO2、Rn和Hg浓度异常界为3.20%、73.00kBq/m3和32.00ng/m3(图 2)。

表 2 汶川Ms 8.0地震破裂带土壤气浓度和通量数据统计结果 Table 2 Descriptive statistics of soil gas CO2, Rn and Hg concentrations and fluxes data along co-seismic rupture zones

图 2 破裂带土壤气浓度QQ图方法确定异常界图 Fig. 2 The anomaly threshold of soil gas estimated by Quantile-quantile plots (Q-Q plot) method
4.2 温泉气体测量结果

从温泉气体的浓度数据可以看出,除了位于龙门山后山断裂的茂县吉鱼沟温泉之外,其它位于龙门山中央断裂带和前山断裂带温泉气体中都有较高浓度的CH4,CH4浓度变化范围是29.3%~95%,这些温泉气中CO2浓度范围是0.2%~2.69%。3He/4He (R/Ra)值分布范围是0.01~0.04,δ13CCO2(PDB‰)值分布范围为-16.3‰~-2‰,δ13CCO2(PDB‰)值分布范围为-49.9‰~-29.0‰(表 3)。

表 3 汶川地震破裂带周围温泉气体样品的组分和He、Ne和C同位素比值 Table 3 Gas composition and He, Ne and C isotopic ratios of the samples in the hot spring gases around rupture zones produced by the and Ms 8.0 earthquake
5 讨论 5.1 汶川Ms 8.0地震破裂带CO2、CH4、Rn和Hg异常脱气的主要影响因素 5.1.1 CH4

汶川Ms 8.0地震破裂带周边温泉气样品的R/Ra (R为3He/4He, Ra为大气的3He/4He值1.4×10-6, Mamyrin et al., 1970)值均小于0.05,表现出典型壳源氦的特征。幔源、壳源和空气中He各自具有特征的3He/4He比值,分别为(1.1~1.4)×10-5,2×10-8和Ra=1.4×10-6(Ozima and Podosek, 1983)。对3He/4He值进行大气校正后可以计算出幔源He的百分比(Duchkov et al., 2010)。从图 3可以看出,汶川Ms 8.0地震破裂带附近的温泉幔源氦的比例都小于1%,因此,温泉气体中的氦主要是地壳浅部来源。温泉气体的来源深度一般都在几千米之内,而汶川Ms 8.0地震破裂带CO2、CH4、Rn和Hg气体的浓度主要是在地表测量,因此,这些气体主要还是来自地壳浅部。

图 3 温泉气体中3He/4He与4He/20Ne比值的关系图 各不同端元的比值分别是:空气,3He/4He=1.4×10-6, 4He/20Ne=0.318;地幔,3He/4He=12×10-6, 4He/20Ne=100 000;地壳,3He/4He=0.02×10-6, 4He/20Ne=100 000) (Ozima and Podosek, 1983; Ballentine et al., 2005) Fig. 3 Plot of 3He/4He versus 4He/20Ne ratios Mixing lines between the atmosphere and upper mantle and the atmosphere and crust were calculated using the end members: air (3He/4He=1.4×10-6, 4He/20Ne=0.318), upper mantle (3He/4He=12×10-6, 4He/20Ne=100 000), old continental crust (3He/4He=0.02×10-6, 4He/20Ne=100 000) (Ozima and Podosek, 1983; Ballentine et al., 2005)

龙门山断裂带内温泉气中CH4的浓度有从西向东增加的趋势。吉鱼沟温泉(7点)位于后山断裂上盘,CH4的浓度是0.059%;宝山温泉位于中央断裂上盘,CH4的浓度是29.4%;桑枣温泉、花水湾温泉、文锦江温泉和罗浮山温泉位于龙门山前山断裂的下盘,CH4的浓度最高达到81%;周公山温泉位于龙门山前山断裂的前缘,CH4的浓度是95.01%(表 3)。δDCH4-δ13CCH4关系图 4中可以看出,所有温泉气中的甲烷主要是来自与腐殖质烃源有关的热成因气体(Shang et al., 2015)。龙门山后山断裂、中央断裂和前山断裂将青藏高原东部龙门山地区由西向东划分为古生代变质地体(以彭灌杂岩体和宝兴杂岩体为代表的前寒武纪变质杂岩)、三叠系含煤系地层和侏罗系前陆盆地。龙门山构造变形始于印支期,经历了燕山期和喜山期多次递进变形, 在时期上具有由北向南、由西向东逐渐变晚的特征;在强度上具有西侧强、东侧弱的特征(王焕等, 2010)。灌县-江油断裂(中央断裂带)上盘区域隆升剥蚀作用强烈,大面积出露下古生界地层,断层通天,地表油气苗、沥青普遍分布,显示油气保存条件遭到破坏;其下盘深部海相层系则存在膏泥岩的保护,龙门山前缘地层发育完全,油气保存条件好(刘树根等, 2011; 赵建成等, 2011)。在龙门山冲断带前缘发现了中坝、大邑、邛西、平落坝气田以及鸭子河、金马、高家场、莲花山等含油气构造,龙门山冲断带前缘地区具有良好的烃源条件(刘树根等, 2011)。因此,温泉气中的CH4的浓度与龙门山断裂带内的浅部天然气藏释放强弱具有密切关系。

图 4 δ13CCH4-δDCH4关系图(据Whiticar, 1999) Fig. 4 Cross plot of δ13CCH4 vs. δDCH4 (after Whiticar, 1999)

汶川Ms 8.0地震破裂带23个测区840个测点中,只在11个测点探测到CH4(图 5),土壤气中CH4最高浓度在龙池,达到2.38%,说明还是有浅部气藏的泄露。汶川Ms 8.0地震映秀-北川断裂和灌县-安县断裂分别形成约230km和70km的通天破裂。从汶川Ms 8.0地震余震分布在某种程度上反映破裂带向下延伸可达20km (Li et al., 2010),远远超过了沉积地层的厚度;这将意味着龙门山沉积地层中的油气藏,无论深浅都会受到地震的破坏性影响。强余震分布区油气藏可能也受到了破坏性影响(曹俊兴等, 2009)。

图 5 破裂带土壤气中CH4浓度分布图 Fig. 5 Distribution of CH4 concentrations in soil gas

汶川Ms 8.0地震后,沿破裂带发现大量由于气体突出、爆炸而引起的地表景观现象(Shang et al., 2015),而且在震后高光谱卫星观测数据处理中发现震中区域的CH4浓度在汶川Ms 8.0地震发生时有明显异常(崔月菊, 2014),以及在汶川地震深钻过程中泥浆气体CO2和CH4浓度在汶川Ms 8.0地震断裂位置有明显异常(Gong et al., 2015)。汶川地震后,位于汶川地震破裂带上盘的青川县青竹河边出现大量温泉,并伴随可燃气体的溢出,对这些温泉气体的测试分析显示,其主要气体成分为甲烷,可能主要是断裂浅部的气藏脱气作用的结果(Zheng et al., 2013)。还有学者根据这些气体异常现象推测,汶川地震是由地壳深部一股海量异常高密度、高压甲烷天然气体突然破裂,逃出其圈闭围岩,再沿龙门山深大叠瓦状推覆断裂和不整合接触带,高速运移、膨胀、破裂和喷出岩层和断层造成的(岳中琦, 2013)。这些都表明汶川Ms 8.0地震对地下天然气藏有大的破坏性,使得浅部天然气藏的天然气释放出来。

5.1.2 CO2

温泉气中的CO2根据其形成母质的类型可以划分为有机和无机成因两大类,前者主要是有机质分解和细菌活动形成,后者主要是来自地幔/岩浆活动、碳酸盐岩热分解以及碳酸盐岩的溶解(Wycherley et al., 1999)。不同类型CO2表现出不同的碳同位素特征:有机成因的δ13CCO2值一般低于-10‰,而无机成因的δ13CCO2值常介于-8‰~3‰之间(Dai et al., 1996)。龙门山断裂带内温泉气中CO2δ13CCO2值,在-16.3‰~-2‰范围内,特征较为复杂,表明其成因和来源可能具有多样性(图 6)。位于龙门山前山断裂的下盘的花水湾温泉和文锦江温泉的CO2δ13CCO2值分别为-6‰和-2‰,可能主要是碳酸盐岩热分解以及碳酸盐岩的溶解而形成,其它温泉的CO2主要是有机成因。从δ13CCH4-δ13CCO2的关系图(图 7)中可以看出,除了桑枣温泉中CO2与甲烷发酵有关,其它温泉中CO2主要来自与沉积有机质相关的甲烷的氧化,并与汶川地震带的岩性关系密切。汶川Ms 8.0地震地震断层出露地表的滑动面大多沿什么时代炭质泥岩和煤层发育;映秀-北川地震破裂带的西南段(虹口-清平段)和灌县-安县地震地表破裂带的展布与龙门山地区上三叠统须家河组煤系地层的出露范围基本一致(王萍等, 2009)。汶川Ms 8.0地震破裂带土壤气中CO2δ13CCO2值范围是-24.1%~-15.1%,平均值是-20.4%(Zhou et al., 2016)。这些都表明汶川Ms 8.0地震破裂带的CO2主要是有机成因。

图 6 3He/4He (R/Ra)-δ13CCO2关系图 不同端元组成分别是:沉积有机碳(S),δ13CCO2=-25‰~-19‰,3He/4He (R/Ra)=0.01;幔源碳(M),δ13CCO2=-6‰~-2‰,3He/4He (R/Ra)=8;灰岩(L),δ13CCO2=0‰,3He/4He (R/Ra)=0.01(Sano and Marty, 1995) Fig. 6 Plot of 3He/4He (R/Ra) vs. δ13CCO2 The end-member compositions for sedimentary organic carbon (S, δ13CCO2=-25‰~-19‰, 3He/4He (R/Ra)=0.01), mantle carbon (M, δ13CCO2=-6‰~-2‰, 3He/4He (R/Ra)=8) and lime stones (L, δ13CCO2=0‰, 3He/4He (R/Ra)=0.01), respectively (Sano and Marty, 1995)

图 7 δ13CCO2-δ13CCH4的关系图(据Woltemate et al., 1984) Fig. 7 Cross plot of δ13CCO2 vs. δ13CCH4 in gas samples (after Woltemate et al., 1984)

汶川Ms 8.0地震破裂CO2通量分布与垂直位移大小在空间上有一定的对应性。汶川Ms 8.0地震破裂带土壤气中CO2的平均浓度和CO2的平均通量在汶川Ms 8.0地震震中附近(映秀和龙池测区)以及破裂带北段北川测区明显高于其它区域,CO2最高浓度和通量分别达到7.8%和259.2g·m-2d-1(图 8图 9),远高于全球土壤通量,其平均值是4.9g·m-2d-1(Raich and Schlesinger, 1992)。美国圣安德列斯断裂脱气通量最高达到63g·m-2d-1(Lewicki and Brantley, 2000)。地震地表破裂带可分为兼有右旋走滑分量,但以逆冲推覆为主的映秀段和同时兼有右旋走滑和逆冲运动分量的北川段,其中,映秀段长约112km,最大垂直位移在深溪沟测区,达到6.2±0.5m,平均垂直位移介于3~4m之间;北川-石坝段长约118km,最大垂直位移在北川测区,达到6.5±0.5m (Yu et al., 2010; 徐锡伟等, 2010)。汶川Ms 8.0地震地表破裂不同段内高渗透率的破碎带为地下深部流体到达地表提供了良好的运移通道(陈建业等, 2011)。龙门山断裂带浅部气藏为地震破裂带脱气提供了物质来源,垂直位移越大,裂隙发育程度越高,更有利于气体的逃逸(Tan et al., 2012; Shang et al., 2015)。

图 8 破裂带土壤气中CO2(a)、Rn (b)和Hg (c)浓度异常分布图 Fig. 8 Distribution of anomalies of CO2(a), Rn (b) and Hg (c) concentrations in soil gas

图 9 破裂带CO2(a)、Rn (b)和Hg (c)通量空间变化图及破裂带垂直位移(d) 黑线是每个测区的通量的平均值,红线是破裂带分段 Fig. 9 Spatial variation of CO2 (a), Rn (b) and Hg (c) flux along ruptures and vertical offset (d) Black line represent with average flux of every survey area, Red lines represent with segments of co-seismic rupture zones
5.1.3 Hg

汶川Ms 8.0地震破裂带土壤气中的Hg异常浓度主要位于深溪沟、白鹿、蓥华和金花测区,异常最高达到161ng/m3,通量在罗中、小鱼洞、北川和黄家坝测区较高,通量最高在北川测区,达到259.2ng·m-2h-1(图 8图 9),

明显高于重庆市农田土壤表面测得的土壤气通量85.8±32.4ng·m-2h-1(Wang et al., 2006)。在海原断裂东南段破裂带,土壤气中Hg的浓度最大值达到245ng/m3,土壤气中Hg的通量最高达到211.2ng·m-2h-1(周晓成等, 2011)。通常土壤气中浓度高的地方,通量也较高(Ciotoli et al., 2007)。在印度尼西亚爪哇岛土壤气汞测量发现,活动断裂土壤气汞浓度有明显异常,最高达到142.3ng/m3(Phuong et al., 2012)。断裂带内的气汞对围岩压力及温度变化反应比较灵敏,气态汞在压力梯度和热力梯度作用下,沿构造裂隙向地表迁移,因此,活动断裂带中CO2通量很高的地方,Hg的通量也很高,呈正相关关系(Koval et al., 2006; Witt et al., 2008)。腐殖质对汞有很强的吸附作用,汞在泥炭或腐殖质沉积中丰度高。在成煤作用过程中,泥炭与腐殖质沉积分别成为煤层与炭质泥岩或泥岩。随着成煤作用加深伴有气体生成, 汞的高挥发性使得其与煤型气中其他组分从煤层和炭质泥岩中一起运移出来。同时, 由于在深切地幔的深断裂和大断裂带,汞与其他挥发性组分伴随着岩浆上升,并与有机质生成的天然气混合在一起,从而演变成天然气藏中的一部分(陈践发等, 2000)。我国7个盆地29个气(油)田或构造上242个油型气汞含量为4~142000ng/m3,一般小于600ng/m3(陈践发等, 2000)。汶川地震同震破碎带上出现的高

汞含量异常带与断裂带渗透率增大和深部热液流体上涌有一定的关系(Zhang et al., 2014)。

5.1.4 Rn

在汶川Ms 8.0地震破裂带中部汉旺、清平、高川和擂鼓测区,土壤气中Rn的异常浓度和通量高于其它区域,这可能与汶川Ms 8.0地震破裂带中段磷矿开采等因素有关,最大土壤气氡通量是580.3mBq·m-2s-1(图 8图 9)。在意大利中部的Fucino山间盆地,土壤气中Rn的通量在非断层地区一般是10mBq·m-2s-1,而在断层区一般在45mBq·m-2s-1以上,最高可以达到120mBq·m-2s-1(Ciotoli et al., 2007)。在东昆仑活动断裂带西大滩段开挖的2~3m深的探槽内,氡浓度可达20.7kBq/m3,氡通量可达433mBq·m-2s-1(李陈侠等, 2007)。在海原断裂东南段靠断裂中部区域通量达到828.6mBq·m-2s-1(周晓成等, 2011)。土壤中富含放射性铀、钍系列的矿物是产生土壤气高浓度氡的主要因素(Choubey et al., 1999)。地震破裂带内岩石的破裂又增加了岩石颗粒的面积、孔隙度和射气系数(Baixeras et al., 2001)。四川绵远河沿岸遍布许多磷矿山和化工企业,清平磷矿是四川磷矿的主要产地之一,整条绵远河流的铀含量范围为0.72.86μg/L,平均铀含量为1.64μg/L,相比于世界河流铀浓度平均浓度0.51μg/L,此水体中铀的含量偏高。这可能是由于磷块岩中通常伴生有U、Th等放射性元素,矿山的开发和地层背景的综合作用,从而导致该区域水体中铀含量较高(王新宇, 2014)。另外,龙门山断裂带寒武系沥青脉体的U含量也非常高,沿断层分布的沥青其U含量为35.5×10-6,浸染状沥青的U含量为14×10-6,干沥青的U含量为125×10-6,高于其围岩(2.74×10-6),又高于其他地层的围岩和沥青脉体(0.23×10-6~9.1×10-6)(薛钧月, 2009)。

5.2 破裂带CO2、Hg和Rn脱气对大气的贡献量 5.2.1 破裂带CO2脱气对大气的贡献

国际社会广泛关注的全球变暖问题则被认为与过去100年以来大气圈CO2浓度的快速上升密切相关(Joos et al., 1999; Solomon et al., 2009)。然而,对大气中CO2浓度增加而导致增温,目前许多科学家提出了质疑,主要的争论焦点集中在气候变暖的主要驱动因素是什么(亦即人类活动和自然过程的贡献分别各占多大比例);基于现有气候模式预测未来气候变化趋势的准确性如何;气候变化的影响程度如何(Iqbal et al., 2009),这些问题都存在着很大的不确定性。因此,不仅要减少人类活动造成的温室气体排放,还要研究自然因素对大气圈温室气体的贡献,以此区分导致大气圈温室气体浓度变化的自然因素和人为因素,正确理解地球脱气作用对大气圈温室气体浓度增加的影响。另外,地震活动断裂带脱气区域也是研究CO2地质储存是否泄露的“天然模拟”场地,尤其是储存气体的突然泄露对生物圈造成的危险性问题(Voltattorni et al., 2012)。

汶川Ms 8.0地震破裂带CO2脱气对大气的年贡献量等于破裂带每段的年平均释放通量乘于每段破裂带面积的总和。根据汶川地震破裂带特征和破裂带脱气特征,把破裂带分成5段,根据测量数据得到每段的长度和脱气通量平均值(图 9表 4)。通过对破裂带调查发现,破裂带映秀-北川断裂带由五个次级单元组成,分别为:碎裂岩带、黑色断层泥和角砾岩带、灰色断层角砾岩带、深灰色断层角砾岩带以及断层泥和角砾岩带。断裂岩组合显示映秀-北川断裂带具有多核断裂结构特征。映秀-北川断裂带在地表出露的宽度约为240m,岩心中厚度约为105m,碎裂岩、断层角砾岩、断层泥在地表及岩心中均发育,而假玄武玻璃仅在地表碎裂岩部分出现(王焕等, 2013)。因此,把汶川地震破裂带宽度定为240m,汶川地震破裂带土壤气测量剖面一般也在200m左右(图 8)。通过计算汶川地震破裂带每一段的平均通量,最后,计算得到汶川Ms 8.0地震破裂带每年向大气贡献的CO2是0.95Mt。中国大陆新生代典型火山区(长白山、腾冲、五大连池及青藏高原南部的羊八井等)向大气圈输送的温室气体总通量约为8.13Mt·a-1,接近107t·a-1级别,相当于全球火山活动导致的温室气体(主要为CO2)释放总量的6%左右(郭正府等, 2014)。全球非火山释放的CO2的量级范围在102~103Mt·y-1(Mörner and Etiope, 2002)。汶川Ms 8.0地震破裂带释放的CO2年排放量与中国典型火山排放量和全球非火山CO2的排放量相比是比较小的,但是,在中国只有8座活火山(刘嘉麒, 1999),而在中国大陆板内地区有200多条活动断裂带(Deng et al., 2003),其中郯庐断裂带、阿尔金断裂带、海原断裂带、鲜水河断裂带等长度都在1000km以上,所有活动断裂带的CO2的排放量总和将是巨大的,有可能会远高于中国活火山的排放量。

表 4 破裂带的平均通量和向大气脱气的贡献量 Table 4 Average flux and output of CO2 and Hg along co-seismic rupture
5.2.2 破裂带Hg逸散对大气的贡献

汞是一种高毒性的、生物体内非必需的化学物质,也是唯一主要以气态形式存在于大气中并可造成全球性污染的金属元素(Pirrone et al., 2010)。大气汞的主要形态为气态单质汞、活性气态汞和颗粒态汞。其中,气态单质汞较为稳定,可在大气中长期停留(0.5~2.0年),占大气总汞的质量分数高达95%(Lindqvist and Rodhe, 1985; Slemr et al., 1985)。气态汞进入大气中能随大气循环在全球范围内传输,大气环流成为不同环境介质中汞迁移转化的重要传输通道,大气中的汞通过干湿沉降进入地表生态系统后,将导致大面积范围内的生态环境受到污染;大气汞含量呈现出一定的时空变化,其浓度水平受到本地源、外地源长距离输入以及太阳辐射、温度和相对湿度等环境参数的综合影响(Feng et al., 2003; Pirrone et al., 2010)。

汶川Ms 8.0地震破裂带Hg脱气对大气的贡献量也是通过释放通量乘以破裂带面积来计算的,计算方式与CO2相同,计算所得的汶川Ms 8.0地震破裂带对大气Hg脱气的年排放量总共大约有15.94kg (表 4)。在美国内华达艾凡赫矿区周围分布有大量断裂,对周围586km2进行通量测量,得到平均通量是17.1ng·m-2h-1,最后计算得出这个地区年释放汞约8.4×104g,其中11%是人为采矿释放的,89%是自然释放的,而控制自然释放的主要因素主要是周边大量活动断裂带的影响(Engle et al., 2001)。大气汞的自然源则主要包括火山与地热活动、土壤和水体表面挥发作用、植物的蒸腾作用、森林火灾等,目前对自然源汞释放的精确估算还存在一定难度,普遍接受的释放量范围是1000~4000t·y-1(冯新斌等, 2009)。

5.2.3 破裂带Rn的逸散对大气的贡献

土壤气中的氡进入空气,使空气氡浓度增加,这个过程中,温度和风速等因素对其影响很大(Baixeras et al., 2001)。由于氡衰变周期短(3.8天),在经历4个周期后,空气中的浓度会很快下降。通常人们关心的室内氡的浓度,如果建筑物建在断裂带附近,断裂带土壤气中的氡通过房屋基底的裂缝进入房屋,当析出率(通量)很高时,房屋内空气短时间内氡将会达到很高的浓度,而室内Rn水平对人体健康的影响至关重要(Zhuo et al., 2005)。氡及其子体主要是通过对呼吸系统的内辐射等刺激作用引起慢性炎症和支气管肺癌等(Wichmann et al., 2005)。

按照国家标准《民用建筑工程室内环境污染控制规范》(GB 50325-2010)(中华人民共和国住房和城乡建设部, 2011)对土壤氡含量和氡的析出率界限指标有明确规定,其中当土壤气氡浓度达到50kBq/m3,氡的通量达到0.3Bq·m-2s-1,应采取综合建筑构造防氡措施。在汶川Ms 8.0地震破裂带中段清平、高川和擂鼓土壤气测区浓度和通量都高于国家标准,而在这些测区内或附近都有居民居住,因此,建议这些测区的居民搬离这些区域或对房屋基底采取综合建筑构造防氡措施。

6 结论

对汶川地震破裂带脱气强度以及破裂带周边温泉气体的综合调查与研究,初步得到以下结论:

(1) 汶川地震破裂带土壤气中CO2、CH4、Rn和Hg异常浓度最大值分别达到7.98%、2.38%、524.30kBq/m3、161.00ng/m3;破裂带CO2、Rn和Hg脱气平均通量是34.95g·m-2d-1、36.11mBq·m-2s-1和26.56ng·m-2h-1,最大值分别达到259.23g·m-2d-1、580.35mBq·m-2s-1、387.67ng·m-2h-1,这些值明显高于非活动断裂地区相应的土壤气中CO2、Rn和Hg的通量。

(2) 汶川Ms 8.0地震破裂带通过脱气作用向大气释放的CO2年贡献量大约是0.95Mt,相当于中国大陆新生代典型火山区向大气圈输送的温室气体总通量的12%左右;Hg的年贡献量是15.94kg,相当于美国内华达艾凡赫矿区年释放汞总量的19%左右。

(3) 汶川Ms 8.0地震破裂带CO2、CH4和Hg的脱气强度,不仅与破裂带渗透率有关,还与断裂带浅部存在的气藏、煤层以及磷矿层等气体源有重要的关系。

致谢 感谢四川省地震局杜方主任为野外测量提供的大力支持;非常感谢审稿专家给予的宝贵修改建议。
参考文献
[] Baixeras C, Erlandsson B, Font L, Jönsson G. 2001. Radon emanation from soil samples. Radiation Measurements , 34 (1-6) :441–443. DOI:10.1016/S1350-4487(01)00203-7
[] Ballentine CJ, Marty B, Sherwood Lollar B, Cassidy M. 2005. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature , 433 (7021) :33–38. DOI:10.1038/nature03182
[] Burchfiel BC, Chen ZL, Liu Y, Royden LH. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review , 37 (8) :661–735. DOI:10.1080/00206819509465424
[] Cao JX, Liu SG, He XY, Zhao L. 2009. Dynamic coupling mechanism between Longmenshan and Sichuan Basin and its impact on the hydrocarbon migration in West Sichuan based on the analysis of the characteristics of Wenchuan earthquake. Journal of Chengdu University of Technology (Science & Technology Edition) , 36 (6) :605–616.
[] Chavrit D, Humler E, Grasset O. 2014. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth and Planetary Science Letters , 387 :229–239. DOI:10.1016/j.epsl.2013.11.036
[] Chen JF, Tuo JC, Li CY, Chen ZY, Zhang ZW, Pu MZ. 2000. Origin and geochemical significance of Hg in natural gas from Liaohe basin. Petroleum Exploration and Development , 27 (1) :23–24.
[] Chen JY, Yang XS, Dang JX, He CR, Zhou YS, Ma SL. 2011. Internal structure and permeability of Wenchuan earthquake fault. Chinese Journal of Geophysics , 54 (7) :1805–1816.
[] Chiodini G, Cardellini C, Amato A, Boschi E, Caliro S, Frondini F, Ventura G. 2004. Carbon dioxide earth degassing and seismogenesis in central and southern Italy. Geophysical Research Letters , 31 (7) :L07615.
[] Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A. 2008. Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth and Planetary Science Letters , 274 (3-4) :372–379. DOI:10.1016/j.epsl.2008.07.051
[] Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Minopoli C, Vilardo G. 2010. Non-volcanic CO2 Earth degassing:Case of Mefite d'Ansanto (southern Apennines), Italy. Geophysical Research Letters , 37 (11) :L11303.
[] Chiodini G, Caliro S, Cardellini C, Frondini F, Inguaggiato S, Matteucci F. 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth and Planetary Science Letters , 304 (3-4) :389–398. DOI:10.1016/j.epsl.2011.02.016
[] Choubey VM, Bist KS, Saini NK, Ramola RC. 1999. Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India. Applied Radiation and Isotopes , 51 (5) :587–592. DOI:10.1016/S0969-8043(98)00149-3
[] Ciotoli G, Lombardi S, Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin:Fucino Plain, central Italy. Journal of Geophysical Research , 112 (B5) :B05407.1–B05407.23.
[] Cui YJ. 2014. CO, O3 and CH4 anomalies of remote sensing geochemistry occurred before and after great earthquakes. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-79 (in Chinese with English summary)
[] Dai JX, Song Y, Dai CS, Wang DR. 1996. Geochemistry and accumulation of carbon dioxide gases in China. AAPG Bulletin , 80 (10) :1615–1625.
[] Deng QD, Zhang PZ, Ran YK, Yang XP, Min W, Chu QZ. 2003. Basic characteristics of active tectonics of China. Science in China (Series D) , 46 (4) :356–372.
[] Doğan T, Sumino H, Nagao K, Notsu K, Tuncer MK, Çelik C. 2009. Adjacent releases of mantle helium and soil CO2 from active faults:Observations from the Marmara region of the North Anatolian Fault zone, Turkey. Geochemistry, Geophysics, Geosystems , 10 (11) :Q11009.
[] Du LT. 2005. Significance of earth degassing and its research progress. Geological Review , 51 (2) :174–180.
[] Duchkov AD, Rychkova KM, Lebedev VI, Kamenskii IL, Sokolova LS. 2010. Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs. Russian Geology and Geophysics , 51 (2) :209–219. DOI:10.1016/j.rgg.2009.12.023
[] Dupré S, Scalabrin C, Grall C, Augustin JM, Henry P, Şengör AMC, Görür N, Çağatay MN, Géli L. 2015. Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara:Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research:Solid Earth , 120 (5) :2891–2912. DOI:10.1002/2014JB011617
[] Engle MA, Gustin MS, Zhang H. 2001. Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environment , 35 (23) :3987–3997. DOI:10.1016/S1352-2310(01)00184-4
[] Feng XB, Tang SL, Shang LH, Yan HY, Sommar J, Lindqvist O. 2003. Total gaseous mercury in the atmosphere of Guiyang, PR China. Science of the Total Environment , 304 (1-3) :61–72. DOI:10.1016/S0048-9697(02)00557-0
[] Feng XB, Qiu GL, Fu XW, He TR, Li P, Wang SF. 2009. Mercury pollution in the environment. Progress in Chemistry , 21 (2-3) :436–457.
[] Fu BH, Shi PL, Guo HD, Okuyama S, Ninomiya Y, Wright S. 2011. Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau. Journal of Asian Earth Sciences , 40 (4) :805–824. DOI:10.1016/j.jseaes.2010.11.011
[] Gong Z, Li HB, Lao CL, Tang LJ, Luo LQ. 2015. Real-time drilling mud gas monitoring records seismic damage zone from the 2008 Mw 7.9 Wenchuan earthquake. Tectonophysics , 639 :109–117. DOI:10.1016/j.tecto.2014.11.017
[] Guo ZF, Zhang ML, Cheng ZH, Zhang LH, Liu JQ. 2014. Fluxes and genesis of greenhouse gases emissions from typical volcanic fields in China. Acta Petrologica Sinica , 30 (11) :3467–3480.
[] Iqbal J, Lin S, Hu RG, Feng ML. 2009. Temporal variability of soil-atmospheric CO2 and CH4 fluxes from different land uses in mid-subtropical China. Atmospheric Environment , 43 (37) :5865–5875. DOI:10.1016/j.atmosenv.2009.08.025
[] Joos F, Plattner GK, Stocker TF, Marchal O, Schmittner A. 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science , 284 (5413) :464–467. DOI:10.1126/science.284.5413.464
[] Jung NH, Han WS, Watson ZT, Graham JP, Kim KY. 2014. Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah. Earth and Planetary Science Letters , 403 :358–367. DOI:10.1016/j.epsl.2014.07.012
[] Kämpf H, Bräuer K, Schumann J, Hahne K, Strauch G. 2013. CO2 discharge in an active, non-volcanic continental rift area (Czech Republic):Characterisation (δ13C, 3He/4He) and quantification of diffuse and vent CO2 emissions. Chemical Geology , 339 :71–83. DOI:10.1016/j.chemgeo.2012.08.005
[] Koval PV, Udodov YN, San'kov VA, Yasenovskii AA, Andrulaitis LD. 2006. Geochemical activity of faults in the Baikal Rift Zone (Mercury, Radon, and Thoron). Doklady Earth Sciences , 409 (2) :912–915. DOI:10.1134/S1028334X06060171
[] Lewicki J, Brantley SL. 2000. CO2 degassing along the San Andreas fault, Parkfield, California. Geophysical Research Letters , 27 (1) :5–8. DOI:10.1029/1999GL008380
[] Lewicki JL, Evans WC, Hilley GE, Sorey ML, Rogie JD, Brantley SL. 2003. Shallow soil CO2 flow along the San Andreas and Calaveras faults, California. Journal of Geophysical Research, B:Solid Earth , 108 (B4) :ECV 3-1–ECV 3-14.
[] Li CX, Xu XW, Perrier F, Richon P, Chen GH, Klinger Y, Nocquet JM, Romieu C, Zhang XQ, Chang ZG. 2007. The exhalation characteristic of Rn and CO2 at the Xidatan segment of East Kunlun active fault zone. Seismology and Geology , 29 (4) :905–909.
[] Li YQ, Jia D, Shaw JH, Hubbard J, Lin AM, Wang MM, Luo L, Li HB, Wu L. 2010. Structural interpretation of the coseismic faults of the Wenchuan earthquake:Three-dimensional modeling of the Longmen Shan fold-and-thrust belt. Journal of Geophysical Research , 115 (B4) :B04317.
[] Li ZP, Li LW, Tao MX, Cao CH, Du L, Wang G, Xu Y. 2012. Development of combustion reactor furnace applied to compound specific of carbon isotope ratio analysis. Chinese Journal of Analytical Chemistry , 40 (9) :1439–1444. DOI:10.1016/S1872-2040(11)60573-2
[] Lin AM, Ren ZK, Jia D, Wu XJ. 2009. Co-seismic thrusting rupture and slip distribution produced by the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics , 471 (3-4) :203–215. DOI:10.1016/j.tecto.2009.02.014
[] Lindqvist O, Rodhe H. 1985. Atmospheric mercury:A review. Tellus B , 37 (3) :136–159.
[] Liu JQ.1999. Volcanoes in China. Beijing: Science Press : 1 -193.
[] Liu SG, Deng B, Li ZW, Sun W. 2011. The texture of sedimentary basin-orogenic belt system and its influence on oil/gas distribution:A case study from Sichuan basin. Acta Petrologica Sinica , 27 (3) :621–635.
[] Liu SG, Deng B, Li ZW, Sun W. 2012. Architecture of basin-mountain systems and their influences on gas distribution:A case study from the Sichuan basin, South China. Journal of Asian Earth Sciences , 47 :204–215. DOI:10.1016/j.jseaes.2011.10.012
[] Mamyrin BA, Anufrier GS, Kamensky IL, Tolstikhin IN. 1970. Determination of the isotopic composition of atmospheric helium. Geochemistry International , 7 :498–505.
[] Ministry of Housing and Urban Rural Development of the People's Republic of China, General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China. 2011. GB 50325-2010 Code for indoor environmental pollution control of civil building engineering. Beijing:China Planning Press (in Chinese)
[] Mörner NA, Etiope G. 2002. Carbon degassing from the lithosphere. Global and Planetary Change , 33 (1-2) :185–203. DOI:10.1016/S0921-8181(02)00070-X
[] Ozima M, Podosek FA.1983. Noble Gas Geochemistry. Cambridge: Cambridge University Press : 367 .
[] Phuong NK, Harijoko A, Itoi R. 2012. Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia. Journal of Volcanology and Geothermal Research , 229-230 :23–33. DOI:10.1016/j.jvolgeores.2012.04.004
[] Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics , 10 (13) :5951–5964. DOI:10.5194/acp-10-5951-2010
[] Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B , 44 (2) :81–99. DOI:10.1034/j.1600-0889.1992.t01-1-00001.x
[] Rogie JD, Kerrick DM, Chiodini G, Frondini F. 2000. Flux measurements of nonvolcanic CO2 emission from some vents in central Italy. Journal of Geophysical Research , 105 (B4) :8435–8445. DOI:10.1029/1999JB900430
[] Sano Y, Marty B. 1995. Origin of carbon in fumarolic gas from island arcs. Chemical Geology , 119 (1-4) :265–274. DOI:10.1016/0009-2541(94)00097-R
[] Shang YJ, Liu JQ, Liu DA, Zhang LQ, Xia YQ, Lei TZ. 2015. Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake, China. Geomorphology , 231 :162–168. DOI:10.1016/j.geomorph.2014.11.025
[] Shao JA, Zhao Y, Zhang FS, Lu YF. 2010. Discussions on earth degassing and seismic activities in central west Heilongjiang Province. Acta Petrologica Sinica , 26 (12) :3651–3656.
[] Siirila ER, Navarre-Sitchler AK, Maxwell RM, McCray JE. 2012. A quantitative methodology to assess the risks to human health from CO2 leakage into groundwater. Advances in Water Resources , 36 :146–164. DOI:10.1016/j.advwatres.2010.11.005
[] Sinclair AJ. 1991. A fundamental approach to threshold estimation in exploration geochemistry:Probability plots revisited. Journal of Geochemical Exploration , 41 (1-2) :1–22. DOI:10.1016/0375-6742(91)90071-2
[] Slemr F, Schuster G, Seiler W. 1985. Distribution, speciation, and budget of atmospheric mercury. Journal of Atmospheric Chemistry , 3 (4) :407–434. DOI:10.1007/BF00053870
[] Solomon S, Plattner GK, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America , 106 (6) :1704–1709. DOI:10.1073/pnas.0812721106
[] Tan X, Yuan R, Xu X, Chen G, Klinger Y, Chang C, Ren J, Xu C, Li K. 2012. Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 Mw 7.9 Wenchuan Earthquake, China. Journal of Asian Earth Sciences , 58 :132–142. DOI:10.1016/j.jseaes.2012.06.005
[] Tang RC, Han WB.1993. Earthquake and Active Fault in Sichuan. Beijing: Seismological Press : 1 -305.
[] Tao MX, Xu YC, Shi BG, Jiang ZT, Shen P, Li XB, Sun ML. 2005. Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China. Science in China (Series D) , 48 (7) :1074–1088. DOI:10.1360/04yd0040
[] Voltattorni N, Quattrocchi F, Gasparini A, Sciarra A. 2012. Soil gas degassing during the 2009 L'Aquila earthquake:Study of the seismotectonic and fluid geochemistry relation. Italian Journal of Geosciences , 131 (3) :440–447.
[] Wang CS, Deng B, Zhu LD, Li Y, Wang XN. 2009. Discovery of hot spring and nature gas exposure spots in Donghekou, Qingchuan County, Sichuan Province, China. Geological Bulletin of China , 28 (7) :991–994.
[] Wang DY, He L, Shi XJ, Wei SQ, Feng XB. 2006. Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere , 64 (11) :1845–1854. DOI:10.1016/j.chemosphere.2006.01.054
[] Wang H, Li HB, Pei JL, Li TF, Huang Y, Zhao ZD. 2010. Structural and lithologic characteristics of the Wenchuan earthquake fault zone and its relationship with the seismic activity. Quaternary Sciences , 30 (4) :768–778.
[] Wang H, Li HB, Si JL, Huang Y. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica Sinica , 29 (6) :2048–2060.
[] Wang P, Fu BH, Zhang B, Kong P, Wang G. 2009. Relationships between surface ruptures and lithologic characteristics of the Wenchuan Ms 8.0 earthquake. Chinese Journal of Geophysics , 52 (1) :131–139.
[] Wang XY. 2014. Study on uranium speciation and distribution in phosphate-rich water. Ph. D. Dissertation. Chengdu:Chengdu University of Technology, 1-135 (in Chinese with English summary)
[] Whiticar MJ. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology , 161 (1-3) :291–314. DOI:10.1016/S0009-2541(99)00092-3
[] Wichmann HE, Rosario SA, Heid IM, Kreuzer M, Heinrich J, Kreienbrock L. 2005. Lung cancer risk due to radon in dwellings:Evaluation of the epidemiological knowledge. International Congress Series , 1276 :54–57. DOI:10.1016/j.ics.2004.10.010
[] Witt MLI, Fischer TP, Pyle DM, Yang TF, Zellmer GF. 2008. Fumarole compositions and mercury emissions from the Tatun Volcanic Field, Taiwan:Results from multi-component gas analyser, portable mercury spectrometer and direct sampling techniques. Journal of Volcanology and Geothermal Research , 178 (4) :636–643. DOI:10.1016/j.jvolgeores.2008.06.035
[] Woltemate I, Whiticar MJ, Schoell M. 1984. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake. Limnology and Oceanography , 29 (5) :985–992. DOI:10.4319/lo.1984.29.5.0985
[] Wycherley H, Fleet A, Shaw H. 1999. Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins. Marine and Petroleum Geology , 16 (6) :489–494. DOI:10.1016/S0264-8172(99)00047-1
[] Xu XW, Chen GH, Yu GH, Sun XZ, Tan XB, Chen LC, Sun JB, Chen YG, Chen WS, Zhang SP, Li K. 2010. Reevaluation of surface rupture parameters of the 5·12 Wenchuan earthquake and its tectonic implication for Tibetan uplift. Chinese Journal of Geophysics , 53 (10) :2321–2336.
[] Xue JY. 2009. The geochemistry of tectonic fluids and a discussion on the hydrocarbon conservation in the central-northern section of Longmenshan Tectonic Belt, western Sichuan, China. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-85 (in Chinese with English summary)
[] Ye XR, Tao MX, Yu CA, Zhang MJ. 2007. Helium and neon isotopic compositions in the ophiolites from the Yarlung Zangbo River, southwestern China:The information from deep mantle. Science in China (Series D) , 50 (6) :801–812. DOI:10.1007/s11430-007-0017-9
[] Yu G, Xu X, Klinger Y, Diao G, Chen G, Feng X, Li C, Zhu A, Yuan R, Guo T, Sun X, Tan X, An Y. 2010. Fault-scarp features and cascading-rupture model for the Mw 7.9 Wenchuan Earthquake, eastern Tibetan Plateau, China. Bulletin of the Seismological Society of America , 100 (5B) :2590–2614. DOI:10.1785/0120090255
[] Yue ZQ. 2013. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures. Earth Science Frontiers , 20 (6) :15–20.
[] Zeng MG, Yue H, Fu G, Yang DX. 2009. Mud Volcano in the Wenchuan Earthquake. Acta Geologica Sichuan , 29 (2) :250–251.
[] Zhang L, Liu YW, Guo LS, Yang DX, Fang Z, Chen T, Ren HW, Yu B. 2014. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault scientific drilling project Hole-1 (WFSD-1). Tectonophysics , 619-620 :79–85. DOI:10.1016/j.tecto.2013.08.025
[] Zhang PZ, Deng QD, Zhang ZQ, Li HB. 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China. Scientia Sinica (Terrae) , 43 (10) :1607–1620.
[] Zhao JC, Liu SG, Sun W, Dai HS, Zhang ZJ, Deng B. 2011. Analysis on petroleum preservation condition in the coupling area between Longmen Mountain and Sichuan Basin. Lithologic Reservoirs , 23 (1) :79–85, 89.
[] Zhao JY, Tang Q, Lan XW, Basang YJ, Zhao Y. 2009. Analysis of underground high-pressure gas to Wenchuan earthquake disaster impact. Technology for Earthquake Disaster Prevention , 4 (4) :406–416.
[] Zheng GD, Xu S, Liang SY, Shi PL, Zhao J. 2013. Gas emission from the Qingzhu River after the 2008 Wenchuan Earthquake, Southwest China. Chemical Geology , 339 :187–193. DOI:10.1016/j.chemgeo.2012.10.032
[] Zhou XC, Du JG, Chen Z, Cheng JW, Tang Y, Yang LM, Xie C, Cui YJ, Liu L, Yi L, Yang PX, Li Y. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochemical Transactions , 11 :5. DOI:10.1186/1467-4866-11-5
[] Zhou XC, Wang CY, Chai ZZ, Si XY, Lei QY, Li Y, Xie C, Liu SC. 2011. The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault. Seismology and Geology , 33 (1) :123–132.
[] Zhou XC, Wang WC, Chen Z, Yi L, Liu L, Xie C, Cui YJ, Du JG, Cheng JW, Yang LM. 2015. Hot spring gas geochemistry in Western Sichuan Province, China after the Wenchuan Ms 8.0 earthquake. Terrestrial, Atmospheric and Oceanic Sciences , 26 (4) :361–373. DOI:10.3319/TAO.2015.01.05.01(TT)
[] Zhou XC, Chen Z, Cui YJ. 2016. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan Ms 80 earthquake in western Sichuan, China. Environmental Geochemistry and Health , 38 (5) :1067–1082. DOI:10.1007/s10653-015-9773-1
[] Zhuo WH, Furukawa M, Guo QJ, Kim YS. 2005. Soil radon flux and outdoor radon concentrations in East Asia. International Congress Series , 1276 :285–286. DOI:10.1016/j.ics.2004.10.002
[] 曹俊兴, 刘树根, 何晓燕, 赵亮.2009. 从汶川地震分析龙门山与四川盆地的动力耦合机制及其对川西深层油气运移聚散的影响. 成都理工大学学报(自然科学版) , 36 (6) :605–616.
[] 陈践发, 妥进才, 李春圆, 陈振岩, 张占文, 朴明植.2000. 辽河坳陷天然气中汞的成因及地球化学意义. 石油探勘与开发 , 27 (1) :23–24.
[] 陈建业, 杨晓松, 党嘉祥, 何昌荣, 周永胜, 马胜利.2011. 汶川地震断层带结构及渗透率. 地球物理学报 , 54 (7) :1805–1816.
[] 崔月菊. 2014.大地震前后CO、O3和CH4遥感地球化学异常特征.博士学位论文.北京:中国地质大学, 1-79
[] 杜乐天.2005. 地球排气作用的重大意义及研究进展. 地质论评 , 51 (2) :174–180.
[] 冯新斌, 仇广乐, 付学吾, 何天容, 李平, 王少锋.2009. 环境汞污染. 化学进展 , 21 (2-3) :436–457.
[] 郭正府, 张茂亮, 成智慧, 张丽红, 刘嘉麒.2014. 中国大陆新生代典型火山区温室气体释放的规模及其成因. 岩石学报 , 30 (11) :3467–3480.
[] 李陈侠, 徐锡伟, PerrierF, RichonP, 陈桂华, KlingerY, NocquetJM, RomieuC, 张晓清, 常振广.2007. 东昆仑活动断裂带西大滩段断层气(Rn, CO2)的释放特征. 地震地质 , 29 (4) :905–909.
[] 刘嘉麒. 1999. 中国火山. 北京: 科学出版社 : 1 -193.
[] 刘树根, 邓宾, 李智武, 孙玮.2011. 盆山结构与油气分布--以四川盆地为例. 岩石学报 , 27 (3) :621–635.
[] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2011. GB 50325-2010民用建筑工程室内环境污染控制规范.北京:中国计划出版社
[] 邵济安, 赵谊, 张福松, 陆永发.2010. 黑龙江省中西部地球排气与地震活动的探讨. 岩石学报 , 26 (12) :3651–3656.
[] 唐荣昌, 韩渭宾. 1993. 四川活动断裂与地震. 北京: 地震出版社 : 1 -305.
[] 王成善, 邓斌, 朱利东, 李勇, 王晓南.2009. 四川省青川县东河口地震遗址公园发现温泉及天然气溢出. 地质通报 , 28 (7) :991–994.
[] 王焕, 李海兵, 裴军令, 李天福, 黄尧, 赵志丹.2010. 汶川地震断裂带结构、岩性特征及其与地震活动的关系. 第四纪研究 , 30 (4) :768–778.
[] 王焕, 李海兵, 司家亮, 黄尧.2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报 , 29 (6) :2048–2060.
[] 王萍, 付碧宏, 张斌, 孔屏, 王刚.2009. 汶川8.0级地震地表破裂带与岩性关系. 地球物理学报 , 52 (1) :131–139.
[] 王新宇. 2014.富磷水体中铀的赋存形态与分配研究.博士学位论文.成都:成都理工大学, 1-135
[] 徐锡伟, 陈桂华, 于贵华, 孙鑫喆, 谭锡斌, 陈立春, 孙建宝, 陈于高, 陈文山, 张淑萍, 李康.2010. 5·12汶川地震地表破裂基本参数的再论证及其构造内涵分析. 地球物理学报 , 53 (10) :2321–2336.
[] 薛钧月. 2009.龙门山构造带中-北段构造流体地球化学特征及其与成藏关系的探讨.硕士学位论文.成都:成都理工大学, 1-85 http://d.wanfangdata.com.cn/Thesis_D066804.aspx
[] 岳中琦.2013. 汶川地震与山崩地裂的极高压甲烷天然气成因和机理. 地学前缘 , 20 (6) :15–20.
[] 曾明果, 悦辉, 符广, 杨大雄.2009. 汶川大地震震中喷发气、石的"爆烈式泥火山"场景--兼讨论地震的超临界水流体退相爆发成因. 四川地质学报 , 29 (2) :250–251.
[] 张培震, 邓起东, 张竹琪, 李海兵.2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学(地球科学) , 43 (10) :1607–1620.
[] 赵建成, 刘树根, 孙玮, 代寒松, 张志敬, 邓宾.2011. 龙门山与四川盆地结合部的油气保存条件分析. 岩性油气藏 , 23 (1) :79–85, 89.
[] 赵京轶, 汤倩, 兰晓雯, 巴桑央金, 赵永.2009. 地下高压气体对汶川地震灾害的作用分析. 震灾防御技术 , 4 (4) :406–416.
[] 周晓成, 王传远, 柴炽章, 司学芸, 雷启云, 李营, 谢超, 刘胜昌.2011. 海原断裂带东南段土壤气体地球化学特征. 地震地质 , 33 (1) :123–132.