岩石学报  2017, Vol. 33 Issue (1): 191-203   PDF    
腾冲地块梁河早始新世花岗岩成因机制及其地质意义
赵少伟, 赖绍聪, 秦江锋, 朱韧之, 甘保平     
大陆动力学国家重点实验室, 西北大学地质学系, 西安 710069
摘要: 腾冲地块梁河地区芒东和青木寨花岗岩是新特提斯洋演化过程中重要的壳源岩浆活动产物。岩石形成年龄为48~51Ma,属于早始新世,与腾冲地块西缘盈江地区大量的酸性和基性侵入岩的形成年龄相近。梁河地区的早始新世花岗岩具有高硅、钾的特征,属于准铝质-强过铝质高钾钙碱性S型花岗岩。这些花岗岩具有高的初始87Sr/86Sr比值和富集的Nd同位素组成,Nd模式年龄显示源岩应为中元古代的地壳岩石。同时,芒东花岗岩具有高的CaO/Na2O和相对低的Al2O3/TiO2、Rb/Sr和Rb/Ba比值,说明源区为变质杂砂岩。而青木寨花岗岩具有低的CaO/Na2O和Al2O3/TiO2、相对高的Rb/Sr和Rb/Ba比值,指示其源岩以变泥质岩为主。结合区域内中-新生代岩浆活动特征,我们认为芒东和青木寨花岗岩是印度-亚洲大陆东向初始碰撞或同碰撞时期挤压背景下,腾冲地块中下地壳成熟度较低的杂砂岩以及成熟度较高的泥岩在高温条件下部分熔融的产物。
关键词: 新特提斯洋     腾冲地块     陆陆碰撞     始新世     花岗岩    
The Petrogenesis and implications of the Early Eocene granites in Lianghe area, Tengchong Block
ZHAO ShaoWei, LAI ShaoCong, QIN JiangFeng, ZHU RenZhi, GAN BaoPing     
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Abstract: The Mangdong and Qingmuzhai granites in Lianghe area, Tengchong Block, are important crust-derived magmatic products during the evolution of Neo-Tethys. The crystallization ages of granites are 48Ma to 51Ma, which is coeval to the Early Eocene acid and basic intrusions in Yingjiang area, western Tengchong Block. The granites in Lianghe area have high SiO2 and K2O contents, belonging to metaluminous to strongly peraluminous, high-K calc-alkaline S-type granite. In addition, the granites have high initial 87Sr/86Sr ratios and negative εNd(t) values, and the Nd model ages indicate that the provenances are Meso-Proterozoic. Furthermore, The Mangdong granites have high CaO/Na2O ratios and relatively low ratios of Al2O3/TiO2, Rb/Sr and Rb/Ba, but the Qingmuzhai granites have low CaO/Na2O ratios and relatively high ratios of Al2O3/TiO2, Rb/Sr and Rb/Ba. These signatures indicate that the Mangdong granites were derived from the metagreywackes but the Qingmuzhai granites were derived from the metapelite in the Tengchong lower-middle crust under the relatively high temperature condition. Coupled with the Mesozoic to Cenozoic magmatism in Tengchong Block, we propose that the Mangdong and Qingmuzhai granites formed in the compressive tectonic setting during the eastward initial collision or syn-collision of the India-Asia.
Key words: Neo-Tethys     Tengchong Block     Continental collision     Eocene     Granite    
1 引言

新特提斯洋的最终俯冲消减,导致印度-亚洲大陆的碰撞和青藏高原的抬升,进而对亚洲及邻区的河流分布,洋陆格局,气候变化及生物演化有着重大的影响(Clift et al., 2008)。同时,现今的印度洋的形成于新特提斯洋的南部,是印度大陆在早侏罗世从冈瓦纳大陆裂解,向北漂移,新特提斯洋逐渐的俯冲消减以及印度-亚洲大陆碰撞的结果,并且印度洋洋中脊的跃迁也可能与新特提斯洋的俯冲息息相关(李三忠等, 2015a, b)。因此,限制印度-亚洲大陆碰撞时间以及碰撞方式对于解释和理解相关地质事件尤为重要。对于新特提斯洋的北向俯冲和碰撞的相关研究,现阶段的研究成果相对比较成熟,包括对古地磁数据、岩浆活动、变质事件以及地层沉积学的研究(Zhu et al., 2011; Yi et al., 2011; Chu et al., 2011; Chung et al., 2005; Rowley, 1996; Leech et al., 2005)。但关于新特提斯洋的东向俯冲和陆陆碰撞的研究程度相对较低,而云南三江地区是特提斯构造域的东段部分,为特提斯域构造演化及其相关岩浆作用的研究保存了重要的地质信息,能够很好的约束新特提斯洋东向俯冲及印度-亚洲陆陆碰撞过程中的岩浆活动。腾冲地块及高黎贡带内出露大面积的中新生代火成岩(季建清等, 2000a, b; 马莉燕等, 2013; Ma et al., 2014; Xu et al., 2012; Wang et al., 2014, 2015),这些火成岩的形成与新特提斯洋的演化密切相关,是新特提斯洋东向俯冲及陆陆碰撞过程中的岩浆响应,对反演新特提斯洋构造演化过程及俯冲碰撞过程中壳内物质的热反应有重要的意义。密支那-那邦岛弧岩浆带被认为是新特提斯洋东向闭合,印度大陆和亚洲大陆东向碰撞的结果,而腾冲地块应是大洋俯冲及陆陆碰撞的活动陆缘弧地区。本文通过对腾冲地块梁河地区始新世花岗岩岩石学、地球化学及同位素年代学的精细研究,反演新特提斯洋东向闭合和陆陆碰撞过程中,壳源岩浆活动的属性和特征。

2 地质背景

研究区位于青藏高原东南缘南部,云南省梁河县境内,大地构造位置上属于腾冲地块(图 1)。腾冲地块东侧以高黎贡带为界与保山地块相邻,西侧以抹谷变质带和实皆断裂为界与西缅地块相接,东南缘以瑞丽断裂为界(Replumaz and Tapponnier, 2003)。

图 1 西藏喜马拉雅大地构造略图(据Qi et al., 2015) Fig. 1 Tectonic sketch map of Himalaya-Tibet tectonic realm (after Qi et al., 2015)

腾冲地块的变质基底为元古宙的高黎贡群,以片岩、片麻岩、混合岩、斜长角闪岩和少量的大理岩为主,变质程度达到绿片岩相-角闪岩相。在晚古生代,腾冲地块被认为是冈瓦纳大陆北缘的一部分(Li et al., 2014),直到晚中生代拼贴到欧亚大陆之上(Morley et al., 2001)。而在腾冲地块之上,发育大量的中-新生代火成岩(Xu et al., 2008, 2012; Ma et al., 2014; Wang et al., 2007, 2014, 2015; Zhao et al., 2016; Chen et al., 2015; Qi et al., 2015; Guo et al., 2015),以花岗质和镁铁质深成岩以及玄武质火山岩为主。早白垩世花岗岩成南北向带状分布在高黎贡带西侧,结晶年龄为126~118Ma,其地球化学性质与拉萨地块北缘同期花岗岩一致,被认为是班公-怒江洋洋壳俯冲和大洋闭合过程中的岩浆活动产物(Xu et al., 2012; 杨启军等, 2006; Zhu et al., 2015)。腾冲-梁河一带的晚白垩世花岗岩主要以S-型强过铝质壳源岩石为主,其结晶年龄为64~76Ma (Qi et al., 2015; Chen et al., 2015; Zhao et al., 2016; Xu et al., 2012)。始新世岩浆活动主要发育在那邦-铜壁关一带,岩性主要为花岗岩和基性岩,其结晶年龄为50~55Ma,被认为与新生地壳的增长有关(Ma et al., 2014; Wang et al., 2014, 2015),而季建清等(2000a)认为那邦地区的呈大小不等的透镜状、似层状,赋存在同碰撞成因的片麻状花岗闪长岩岩体内的变质基性岩是新特提斯洋东向闭合过程中的残留洋壳上部组成部分。新生代的火山岩主要以玄武岩或安山质玄武岩为主,其形成年龄主要集中在5.5~4.0Ma、3.9~0.9Ma和0.8~0.01Ma (Wang et al., 2007)。芒东花岗岩位于腾冲地块内部梁河县正南方,岩体是以复式的花岗岩基产出,由早白垩世黑云母花岗岩和花岗闪长岩组成,始新世的黑云母花岗岩和似斑状黑云母花岗岩侵入。但由于两期花岗岩的岩性没有明显的区别,野外很难区分岩体之间的界限。青木寨花岗岩位于梁河县正西方,岩体以黑云母花岗岩为主(图 2)。

图 2 腾冲地块地质简图(a, 据Xu et al., 2008)及芒东花岗岩体地质简图(b)和青木寨花岗岩体地质简图(c) Fig. 2 Simplified geological map of Tengchong Block (a, after Xu et al., 2008), and Mangdong granitic body (b) and Qingmuzhai granitic body (c)
3 岩石学特征及样品分析方法 3.1 岩石学特征

芒东花岗岩呈灰白色,主要为黑云母花岗岩,块状构造,粗粒自形-半自形等粒结构或似斑状结构(斑晶为钾长石,以条纹长石和微斜长石为主),主要组成矿物为碱性长石、酸性斜长石、石英和黑云母,副矿物主要是锆石、针状磷灰石和榍石(图 3)。碱性长石主要是钾长石、条纹长石和微斜长石,可见明显的格子双晶,酸性斜长石成自形-半自形板状,可见聚片双晶,双晶纹细密,在斜长石和条纹长石的接触边界上可见蠕虫结构。石英呈他形粒状。黑云母呈黑褐色自形-半自形晶,具有一组极完全解理,颗粒边缘具有轻微的氧化蚀变和铁质物质分解析出现象。各矿物的百分比含量为:碱性长石(45%~50%)+酸性斜长石(25%)+石英(20%~25%)+黑云母(5%)。

图 3 腾冲地块芒东和青木寨花岗岩的野外(a、d)及镜下(b、c、e、f)照片 Fig. 3 Field (a, d) and microscopic (b, c, e, f) photos of the Mangdong and Qingmuzhai granites from the Tengchong Block

青木寨花岗岩呈灰白色,以黑云母花岗岩为主,块状构造,等粒结构,主要组成矿物为:钾长石(20%~25%)+微斜长石、条纹长石(30%~35%)+酸性斜长石(20%)+石英(>20%)+黑云母( < 5%)。钾长石可见简单双晶,微斜长石具有明显的格子双晶,条纹长石具有条纹结构,酸性斜长石可见聚片双晶,双晶纹细密。黑云母呈半自形晶,具有一组极完全解理,在花岗岩中呈簇状产出(图 3)。

3.2 样品分析方法

分析测试样品是在岩石薄片鉴定的基础上精心挑选出来的。首先经过镜下观察,选择新鲜的、无后期交代脉体贯入的样品,用小型颚式破碎机击碎成直径约5~10mm的细小颗粒,然后用蒸馏水洗净、烘干,最后用玛瑙研钵托盘在振动式碎样机中碎至200目,将随后的粉末样品用二分之一均一缩分法分为2份,一份用来做化学成分分析测试,另外一份作为备份。

主量和微量元素在中国科学院贵阳地球化学研究所完成。主量元素测试采用XRF法完成,微量及稀土元素使用仪器Bruker Aurora M90 ICP-MS进行测试,分析精度均优于5%,详细分析流程见文献(Qi et al., 2000)。Sr-Nd同位素分析也是在中国科学院贵阳地球化学研究所完成。Sr-Nd同位素首先采用离子交换树脂进行分离,然后利用Neptune Plus多接收电感耦合等离子体质谱仪(MC-ICP MS)测定,详细方法和流程见文献(Chu et al., 2009)。

锆石单矿物采用常规重力和磁选方法分选,最后再双目镜下挑纯,锆石分选是在河北省区域地质矿产调查研究所实验室完成的。在进行单矿物分析过程中,首先将锆石样品置于环氧树脂中,然后打磨露出约1/3,然后进行抛光,再利用超声波在纯净水里进行清洗去除样品表面的污染。锆石的CL图像分析是在西北大学大陆动力学国家重点实验室的电子显微扫描电镜上完成。锆石U-Pb同位素组成分析在西北大学大陆动力学国家重点实验室激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)仪上完成。激光剥蚀系统配备有193nm ArF-excimer激光器的Geolas200M (Microlas Gottingen Germany),分析采用激光剥蚀孔径30μm,激光脉冲为10Hz,能量为32~36mJ,同位素组成用锆石91500进行外标校正。LA-ICP-MS分析的详细方法和流程见(Yuan et al., 2004)。

4 锆石LA-ICP-MS U-Pb定年结果

选取芒东花岗岩中的2个黑云母花岗岩和青木寨1个黑云母花岗岩样品用于LA-ICP-MS微区锆石U-Pb定年分析,分析的结果列于表 1,锆石的CL图像如图 4所示。

表 1 腾冲地块梁河地区芒东和青木寨始新世花岗岩LA-ICP-MS锆石U-Th-Pb分析结果 Table 1 The zircon LA-ICP-MS U-Th-Pb isotopic analytical results of Mangdong and Qingmuzhai Eocene granites from Lianghe area, Tengchong block

图 4 芒东和青木寨花岗岩代表性锆石阴极发光(CL)图像 Fig. 4 Representative zircons cathodoluminescene (CL) images for the Mangdong and Qingmuzhai granites

似斑状黑云母花岗岩(MD50):锆石颗粒为无色透明,自形-半自形长柱状,粒径为150~300μm,长宽比为1.5:1~3:1。在CL图像上,锆石大部分具有不规则的带状分布,可能是由于结晶过程中,熔体中流体过多的结果。个别锆石具有岩浆韵律环带,指示岩浆成因特征(图 4)。共进行了24个谐和数据点分析,其Th=38×10-6~1058×10-6,U=158×10-6~938×10-6,Th/U=0.24~1.27,206Pb/238U的年龄为47~53Ma,加权平均年龄为50±1Ma (MSWD=2.8, n=24),代表似斑状黑云母花岗岩的结晶年龄(图 5a)。

图 5 芒东和青木寨花岗岩锆石U-Pb年龄谐和图 Fig. 5 Zircon U-Pb concordia diagram for the Mangdong and Qingmuzhai granites

黑云母花岗岩(XH09):锆石颗粒呈无色透明,长柱状自形晶,粒径介于100~300μm之间,长宽比介于1.5:1~2.5:1。在CL图像上,锆石显示出明显的振荡环带,指示岩浆成因特征(图 4)。选取24个谐和数据点分析,其Th=301×10-6~4020×10-6,U=197×10-6~1891×10-6,Th/U=0.65~3.21,206Pb/238U的年龄为46~51Ma,加权平均年龄为48±1Ma (MSWD=3.9, n=24),代表黑云母花岗岩的结晶年龄(图 5b)。

黑云母花岗岩(LL159):锆石颗粒为无色透明,柱状自形晶,粒径为100~200μm,长宽比介于1:1~2:1。在CL图像中,锆石具有明显的振荡环带,指示岩浆成因(图 4),同时,部分锆石中显示明亮的核,可能为捕获晶。共26个点进行分析,其中一个点获得206Pb/238U年龄为508±4Ma,代表捕获锆石的结晶年龄。其他25个点获得年龄谐和,其Th=125×10-6~1397×10-6,U=142×10-6~2320×10-6,Th/U=0.13~1.31,206Pb/238U的年龄为49~53Ma,加权平均年龄为51±1Ma (MSWD=4.7, n=25),代表黑云母花岗岩的结晶年龄(图 5c)

综上所诉,梁河地区芒东和青木寨花岗岩的形成时代为早始新世,年龄为48~51Ma。

5 岩石化学特征 5.1 主量元素特征

研究区花岗岩的主微量元素分析结果列于表 2中。这些花岗岩具有高Si富K的特征,其SiO2=67.67%~76.98%,K2O=4.07%~6.22%,Na2O=2.45%~3.60%,K2O/Na2O=1.20~2.23,岩石的里斯特曼指数σ为1.86~3.31, 属于高钾钙碱性系列(图 6a)。岩石具有高的CaO=0.55%~2.97%,Al2O3=11.97%~16.16%,铝饱和指数为A/CNK=0.79~1.15,属于准铝质到弱过铝质(图 6b)。同时,花岗岩中的TiO2=0.10%~0.40%,MgO=0.15%~1.10%,其Mg#值为19~45。

图 6 芒东和青木寨花岗岩SiO2-K2O图解(a, 据Rollinson, 1993)和A/NK-A/CNK图解(b, 据Maniar and Piccoli, 1989) Fig. 6 The diagrams of SiO2-K2O (a, after Rollinson, 1993) and A/NK-A/CNK (b, after Maniar and Piccoli, 1989) for the Mangdong and Qingmuzhai granites

表 2 芒东和青木寨花岗岩主量(wt%)及微量(×10-6)元素分析结果 Table 2 Analytical results of major (wt%) and trace (×10-6) elements of the granites from the Mangdong and Qingmuzhai granite
5.2 稀土及微量元素特征

花岗岩的稀土元素总量变化范围较大,∑REE=90×10-6~415×10-6。所有样品基本具有相似的稀土配分模式,曲线呈右倾型,轻稀土明显富集(图 7b),(La/Yb)N=7~38,重稀土具有较弱的分异,(Gd/Yb)N=2~3,岩石具有明显的Eu负异常,δEu=0.20~0.68。岩石具有较高的Sr、Rb、Ba,和较低的Yb,Y含量,同时在原始地幔标准化微量元素蛛网图中(图 7a),岩石具有明显的富集大离子亲石元素LILE (如Rb、K等),亏损高场强元素(如Nb、Ta、Ti等)的特征。

图 7 芒东和青木寨花岗岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图解(b)(标准化值据Sun and McDonough, 1989) Fig. 7 Primitive mantle-normalized trace element spidergrams (a) and chondrite-normalized REE pattern diagrams (b) for the Mangdong and Qingmuzhai granites (normalization values after Sun and McDonough, 1989)
5.3 Sr-Nd同位素特征

选取芒东似斑状黑云母花岗岩和黑云母花岗岩各1个样品(MD52和XH05)及青木寨黑云母花岗岩1个样品(LL154),进行全岩Sr-Nd同位素分析,分析结果列于表 3中。从表 3中可以看到岩石的同位素地球化学特征显示花岗岩具有高的初始87Sr/86Sr比值,分别为0.710254~0.725863。花岗岩的εNd(t)为-4.6和-11.4,二阶段模式年龄为1.05~1.52Ga。在εNd(t)-87Sr/86Sr相关图解中(图 8),显示出壳源特征,与腾冲地块中下地壳的同位素特征相似(Wang et al., 2014),但与腾冲地块那邦地区的始新世花岗岩类Sr-Nd同位素明显不同(Ma et al., 2014)。

图 8 芒东和青木寨花岗岩87Sr/86Sr-εNd(t)图解 Fig. 8 The diagram of 87Sr/86Sr-εNd(t) for the Mangdong and Qingmuzhai granites

表 3 芒东青和木寨花岗岩全岩Sr-Nd同位素分析结果 Table 3 Whole-rock Sr-Nd isotopic compositions of the Mangdong and Qingmuzhai granites
6 讨论 6.1 岩石成因

芒东和青木寨花岗岩的地球化学特征显示出准铝质-强过铝质高钾钙碱性特征,A/CNK=0.79~1.15,同时,岩石具有高的K2O和低的Na2O,其K2O/Na2O比值为1.2~2.2。因此,芒东和青木寨花岗岩应为准铝质-弱过铝质高钾钙碱性的S型花岗岩。在微量元素蛛网图中(图 7a),花岗岩显示出高场强元素Nb、Ta、Ti和P亏损,大离子亲石元素Rb和K富集。在稀土图中显示出轻稀土的富集和重稀土的亏损。这种微量元素和稀土元素的配分模式反应出源区中的角闪石,钛铁矿,石榴子石等富Nb、Ta、Ti的矿物含量较少或者这些矿物作为熔融残留物保留在源区。而这些花岗岩中具有高的HREE含量,如Y=20.6×10-6~39.1×10-6,说明源区的残留相矿物可能是角闪石,而不是石榴子石。同时,低的Sr含量(49.6×10-6~239×10-6),和明显的Eu负异常,说明岩浆形成于长石稳定区,石榴子石不稳定区。Patiño Douce and Beard (1995)通过实验表明,当片麻岩和石英角闪岩在脱水熔融时石榴石在源区残留相出现的压力≥12.5kbar。这也就是说,梁河地区芒东和青木寨花岗岩的岩浆形成深度在正常的地壳范围内( < 40km)。

芒东和青木寨花岗岩的Sr-Nd同位素显示高的初始Sr比值和低的εNd(t)值,说明这些花岗岩为壳源岩石部分熔融的产物。Nd同位素二阶段模式年龄为1.05~1.52Ga,说明其源岩是腾冲地块中元古代地壳岩石。芒东花岗岩具有高的CaO/Na2O比值(0.45~0.88),相对较低的Rb/Sr (0.85~1)和Rb/Ba (0.42~0.54)比值,显示源区主要为贫粘土的杂砂岩,而青木寨花岗岩具有低的CaO/Na2O比值(0.22~0.41),高的Rb/Sr (2.85~6.38)和Rb/Ba (0.81~2.52),指示其源区主要为泥质岩(图 9a, b),这与实验岩石学的结果是一致的(图 9c)。Al2O3/TiO2比值能够很好的指示岩浆形成时温度,当比值小于100时,花岗岩熔体温度大于875℃,当大于100时,熔体温度小于875℃(Sylvester, 1998),芒东和青木寨花岗岩具有低的Al2O3/TiO2比值(34~92,除LL161),表明芒东和青木寨花岗岩是在高温条件下部分熔融形成的,这与Pb-Ba相关图解(图 9d)得到的结果也是一致的。因此,芒东花岗岩应为腾冲地块中下地壳中元古代变质杂砂岩高温条件下部分熔融的产物,而青木寨花岗岩的源岩应该为中元古代变泥质岩。

图 9 芒东和青木寨花岗岩地球化学判别图解 (a) Al2O3/TiO2-CaO/Na2O (Sylvester, 1998); (b) Rb/Sr-Rb/Ba (Sylvester, 1998); (c) (Al2O3+Fe2O3T+MgO+TiO2)-Al2O3/(Fe2O3T+MgO+TiO2) (Patiño Douce, 1999); (d) Pb-Ba (Finger and Schiller, 2012) Fig. 9 The geochemical discrimination diagrams for Mangdong and Qingmuzhai granites (a) Al2O3/TiO2-CaO/Na2O (Sylvester, 1998); (b) Rb/Sr-Rb/Ba (Sylvester, 1998); (c) (Al2O3+Fe2O3T+MgO+TiO2)-Al2O3/(Fe2O3T+MgO+TiO2) (Patiño Douce, 1999); (d) Pb-Ba (Finger and Schiller, 2012)
6.2 岩石形成构造环境及地质意义

腾冲地块上的晚白垩世-始新世岩浆带被认为是拉萨地块的冈底斯岩浆带经喜马拉雅东构造结南迦巴瓦的南延部分(Xu et al., 2012)。季建清等(2000a)在腾冲地块那邦地区发现具有MORB属性的麻粒岩相变质基性岩,认为是新特提斯洋洋壳的上部组成部分,是由于板片断离折返地表的麻粒岩相岩石。这些岩石学的证据指示新特提斯洋向东俯冲及随后印度-亚洲大陆的东向碰撞。在大洋俯冲及碰撞期间,岛弧地区会形成大量的岩浆作用,对这些岩浆作用的形成时代和岩石学的研究能够很好的约束新特提斯洋东向俯冲和陆陆碰撞的时间及方式。关于印度-亚洲大陆的北向初始碰撞时间,前人已经进行了很多的工作,主要通过古地磁、沉积学、生物地层学、岩石学等学科(Guillot et al., 2003; Rowley, 1996; Yin and Harrison, 2000; Aitchison et al., 2007; van Hinsbergen et al., 2012; Leech et al., 2005; Bouilhol et al., 2013; White et al., 2012; Yi et al., 2011; Chen et al., 2010; Ding et al., 2001, 2005; Zhang et al., 2010; Clementz et al., 2010)。现阶段比较认可的初始碰撞时间为60Ma左右(Wu et al., 2014; Hu et al., 2015),并且碰撞是在拉萨地块中部开始发生,向两侧逐渐扩展(Wu et al., 2014),比如东部的Kohistan-Ladakh岛弧地区的初始碰撞时间大约为50Ma (Bouilhol et al., 2013)。但是,关于印度-亚洲大陆东向初始碰撞时间,现阶段仍然存在争议。经岩石学的研究表明,新特提斯洋东向俯冲的板片发生断离的时间为40~42Ma (Xu et al., 2008),Ding et al.(2001)Zhang et al.(2010)利用麻粒岩相高压变质年龄提出印度-亚洲大陆在青藏高原东部碰撞的时间应该早于45~40Ma。因此,印度-亚洲大陆东向初始碰撞的时间可能为57~52Ma (Xu et al., 2008)。这与三维数值模拟的研究结果一致,碰撞带发生板片断离的时间一般发生在初始碰撞之后约10~20Myr (van Hunen and Allen, 2011)。

近年来研究表明,腾冲地块盈江-梁河一带发育大量的早始新世岩浆作用,岩石类型多样,从花岗质岩石到镁铁质岩石均有分布,这些岩石的侵位时间基本是在50~55Ma,被认为是活动大陆边缘岛弧地区岩浆作用的产物(马莉燕等, 2013; Ma et al., 2014; Wang et al., 2014, 2015)。Wang et al.(2014)对盈江县城的那邦-铜壁关一带的变质基性岩进行了锆石U-Pb定年,地球化学和同位素分析。结果表明,由西向东,基性岩中的富集组分逐渐增多,可能与俯冲的沉积物或者俯冲流体交代岩石圈地幔有关,同时也表明新特提斯洋的东向俯冲过程。Ma et al.(2014)也对那邦地区的始新世花岗岩进行地球化学和同位素分析,表明这些花岗岩在形成过程中有幔源岩浆的参与。我们最近的工作也表明,腾冲地块西部的花岗岩从西向东,由那邦经铜壁关到陇川县城一带,始新世花岗岩也显示出富集组分逐渐增加的地球化学特征(未发表成果)。本文所研究的花岗岩处于腾冲地块内部,其侵位时间与那邦地区变质基性岩和花岗岩的侵位时间一致,为50Ma左右。地球化学特征显示这些花岗岩是地壳内变质杂砂岩和泥质岩部分熔融的结果,同位素研究表明,这些花岗岩的形成与幔源岩浆作用无关,但是,起源于幔源的镁铁质岩浆可能对这些纯壳源花岗岩提供了必要的热源。由于印度-亚洲大陆东向的初始碰撞时间可能为57~52Ma (Xu et al., 2008),因此这些始新世的岩浆作用为初始碰撞时期或者同碰撞时期的岩浆作用,这与Rb-Y+Nb判别图解得到的结果一致(图 10)。腾冲地块西部那邦地区的基性岩及花岗岩由于陆陆碰撞,导致俯冲板片的后撤,引起软流圈物质上涌,导致岩石圈地幔或者上涌的软流圈地幔减压发生部分熔融,形成基性岩浆,而基性岩浆的底侵作用和侵位导致那邦地区的地壳物质熔融,形成混合岩浆(Wang et al., 2014; Ma et al., 2014)。而在腾冲地块内部,在初始碰撞到陆陆碰撞时期的挤压背景下,中下地壳的变质杂砂岩和变质泥质岩发生部分熔融,形成本区芒东和青木寨的花岗质岩浆。

图 10 芒东和青木寨花岗岩Y+Nb-Rb构造环境判别图解(据Pearce et al., 1984) Fig. 10 The Y+Nb vs. Rb tectonic discrimination diagram for the Mangdong and Qingmuzhai granites (after Pearce et al., 1984)
7 结论

(1)梁河境内芒东和青木寨花岗岩具有高硅、富钾的特征,其A/CNK比值为0.79~1.15,属于高钾钙碱性准铝质-强过铝质S型花岗岩。岩石总体富集大离子亲石元素,亏损高场强元素,具有明显的Eu负异常。地球化学特征和同位素数据显示这些花岗岩分别为腾冲地块中下地壳中元古代变质杂砂岩和泥质岩高温条件下部分熔融的结果。

(2)芒东和青木寨花岗岩的结晶年龄为48~50Ma,是印度-亚洲大陆初始碰撞到同碰撞时期挤压背景下岩浆弧壳内的岩浆响应。

参考文献
[] Aitchison JC, Ali JR, Davis AM. 2007. When and where did India and Asia collide?. Journal of Geophysical Research , 112 (B5) :B05423.
[] Bouilhol P, Jagoutz O, Hanchar JM, Dudas FQ. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth and Planetary Science Letters , 366 :163–175. DOI:10.1016/j.epsl.2013.01.023
[] Chen JS, Huang BC, Sun LS. 2010. New constraints to the onset of the India-Asia collision:Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics , 489 (1-4) :189–209. DOI:10.1016/j.tecto.2010.04.024
[] Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH, Zhu JJ. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China:Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos , 212 (212-215) :93–110.
[] Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu CH, Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircon and host rocks. Earth and Planetary Science Letters , 307 (3-4) :479–486. DOI:10.1016/j.epsl.2011.05.020
[] Chu ZY, Chen FK, Yang YH, Guo JH. 2009. Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry , 24 (11) :1534–1544. DOI:10.1039/b904047a
[] Chung SL, Chu MF, Zhang YQ, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Science Reviews , 68 (3-4) :173–196.
[] Clementz M, Bajpai S, Ravikan V, Thewissen JGM, Saravanan N, Singh IB, Prasad V. 2010. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology , 39 (1) :15–18.
[] Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience , 1 (12) :875–880. DOI:10.1038/ngeo351
[] Ding L, Zhong DL, Yin A, Kapp P, Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters , 192 (3) :423–438. DOI:10.1016/S0012-821X(01)00463-0
[] Ding L, Kapp P, Wan XQ. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tecotnics , 24 (3) :TC3001.
[] Finger F, Schiller D. 2012. Lead contents of S-type granites and their petrogenetic significance. Contributions to Mineralogy and Petrology , 164 (5) :747–755. DOI:10.1007/s00410-012-0771-3
[] Guillot S, Garzanti E, Baratoux D, Marquer D, Mahéo G, de Sigoyer J. 2003. Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems , 4 (7) :1064.
[] Guo ZF, Cheng ZH, Zhang ML, Zhang LH, Li XH, Liu JQ. 2015. Post-collisional high-K calc-alkaline volcanism in Tengchong volcanic field, SE Tibet:Constraints on Indian eastward subduction and slab detachment. Journal of the Geological Society , 172 (5) :624–640. DOI:10.1144/jgs2014-078
[] Hu XM, Garzanti E, Moore T and Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (Middle Paleocene, 59±1Ma). Geology, 43(10):859-862
[] Ji JQ, Zhong DL, Chen CY. 2000a. Geochemistry and genesis of Nabang metamorphic basalt, Southwest Yunnan, China:Implications for the subducted slab break-off. Acta Petrologica Sinica , 16 (3) :433–442.
[] Ji JQ, Zhong DL, Zhang LS. 2000b. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, West Yunnan:Implications for the block movement in the southeastern Tibet Plateau. Scientia Geologica Sinica , 35 (3) :336–349.
[] Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM. 2005. The onset of Indian-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters , 234 (1-2) :83–97. DOI:10.1016/j.epsl.2005.02.038
[] Li DP, Luo ZH, Chen YL, Liu JQ, Jin Y. 2014. Deciphering the origin of the Tengchong block, West Yunnan:Evidence from detrital zircon U-Pb ages and Hf isotopes of Carboniferous strata. Tectonophysics , 614 :66–77. DOI:10.1016/j.tecto.2013.12.023
[] Li SZ, Suo YH, Liu X, Zhao SJ, Yu S, Dai LM, Xu LQ, Zhang Z, Liu WY, Li HM. 2015a. Tectonic reconstruction and mineralization models of the Indian Ocean:Insights from SWIR. Geotectonica et Metallogenia , 39 (1) :30–43.
[] Li SZ, Suo YH, Yu S, Zhao SJ, Dai LM, Cao HH, Zhang Z, Liu WY, Zhang GY. 2015b. Morphotectonics and tectonic processes of the Southwest Indian Ocean. Geotectonica et Metallogenia , 39 (1) :15–29.
[] Ma LY, Fan WM, Wang YJ, Cai YF, Liu HC. 2013. Zircon U-Pb Geochronology and Hf isotopes of the granitic gneisses in the Nabang area, western Yunnan Province. Geotectonica et Metallogenia , 37 (2) :273–283.
[] Ma LY, Wang YJ, Fan WM, Geng HY, Cai YF, Zhong H, Liu HC, Xing XW. 2014. Petrogenesis of the Early Eocene I-type granites in West Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research , 25 (1) :401–419. DOI:10.1016/j.gr.2013.04.010
[] Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin , 101 (5) :635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[] Morley CK, Woganan N, Sankumarn N, Hoon TB, Alief A, Simmons M. 2001. Late Oligocene-Recent stress evolution in rift basins of northern and central Thailand:Implications for escape tectonics. Tectonophysics , 334 (2) :115–150. DOI:10.1016/S0040-1951(00)00300-0
[] Patiño Douce AG, Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology , 36 (3) :707–738. DOI:10.1093/petrology/36.3.707
[] Patiño Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In:Castro A, Fernandez C and Vigneresse JL (eds.). Understanding Granites:Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168:55-75
[] Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for tectonic interpretation of the granitic rocks. Journal of Petrology , 25 (4) :956–983. DOI:10.1093/petrology/25.4.956
[] Qi L, Hu J, Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta , 51 (3) :507–513. DOI:10.1016/S0039-9140(99)00318-5
[] Qi XX, Zhu LH, Grimmer JC, Hu ZC. 2015. Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu-Hf isotopic and geochemical data:Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. Journal of Asian Earth Sciences , 110 :170–188. DOI:10.1016/j.jseaes.2014.07.019
[] Replumaz A, Tapponnier P. 2003. Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research , 108 (B6) :2285.
[] Rollinson HR.1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. London: Longman Scientific & Technical .
[] Rowley DB. 1996. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters , 145 (1-4) :1–13. DOI:10.1016/S0012-821X(96)00201-4
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42:313-345
[] Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos , 45 (1-4) :29–44. DOI:10.1016/S0024-4937(98)00024-3
[] van Hinsbergen DJJ, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV, Spakman W, Torsvik TH. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America , 109 (20) :7659–7664. DOI:10.1073/pnas.1117262109
[] van Hunen J, Allen MB. 2011. Continental collision and slab break-off:A comparison of 3-D numerical models with observations. Earth and Planetary Science Letters , 302 (1-2) :27–37. DOI:10.1016/j.epsl.2010.11.035
[] Wang Y, Zhang XM, Jiang CS, Wei HQ, Wan JL. 2007. Tectonic controls on the Late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of Tibetan Plateau. Journal of Asian Earth Sciences , 30 (2) :375–389. DOI:10.1016/j.jseaes.2006.11.005
[] Wang YJ, Zhang LM, Cawood PA, Ma LY, Fan WM, Zhang AM, Zhang YZ, Bi XW. 2014. Eocene supra-subduction zone mafic magmatism in the Sibumasu block of SW Yunnan:Implications for Neotethyan subduction and India-Asia collision. Lithos , 206-207 :384–399. DOI:10.1016/j.lithos.2014.08.012
[] Wang YJ, Li SB, Ma LY, Fan WM, Cai YF, Zhang YH, Zhang FF. 2015. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction. Gondwana Research , 27 (4) :1474–1486. DOI:10.1016/j.gr.2014.01.007
[] White LT, Ahmad T, Lister GS, Ireland TR, Forster MA. 2012. Is the switch from I-to S-type magmatism in the Himalayan Orogen indicative of the collision of India and Eurasia?. Australian Journal of Earth Sciences , 59 (3) :321–340. DOI:10.1080/08120099.2012.652670
[] Wu FY, Ji WQ, Wang JG, Liu CZ, Chung SL, Clift PD. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. American Journal of Science , 314 (2) :548–579. DOI:10.2475/02.2014.04
[] Xu YG, Lan JB, Yang QJ, Huang XL, Niu HN. 2008. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology , 255 (3-4) :439–453. DOI:10.1016/j.chemgeo.2008.07.016
[] Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YB, Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences , 53 :151–175. DOI:10.1016/j.jseaes.2011.06.018
[] Yang QJ, Xu YG, Huang XL, Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan:Tectonic implications. Acta Petrologica Sinica , 22 (4) :817–834.
[] Yi ZY, Huang BC, Chen JS, Chen LW, Wang HL. 2011. Paleomagnetism of Early Paleogene marine sediments in southern Tibet, China:Implications to onset of the India-Asia collision and size of Greater India. Earth and Planetary Science Letters , 309 (1-2) :153–165.
[] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences , 28 (1) :211–280. DOI:10.1146/annurev.earth.28.1.211
[] Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY.2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. : 353 -370.
[] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology , 28 (7) :719–733.
[] Zhao SW, Lai SC, Qin JF, Zhu RZ. 2016. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau:Constraints from granitic gneisses and granitoid intrusions. Gondwana Research , 35 :238–256. DOI:10.1016/j.gr.2015.05.007
[] Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters , 301 (1-2) :241–255. DOI:10.1016/j.epsl.2010.11.005
[] Zhu RZ, Lai SC, Qin JF, Zhao SW. 2015. Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences , 100 :145–163. DOI:10.1016/j.jseaes.2015.01.014
[] 季建清, 钟大赉, 陈昌勇.2000a. 滇西南那邦变质基性岩地球化学与俯冲板片裂离. 岩石学报 , 16 (3) :433–442.
[] 季建清, 钟大赉, 张连生.2000b. 滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义. 地质科学 , 35 (3) :336–349.
[] 李三忠, 索艳慧, 刘鑫, 赵淑娟, 余珊, 戴黎明, 许立青, 张臻, 刘为勇, 李怀明.2015a. 印度洋构造过程重建与成矿模式:西南印度洋洋中脊的启示. 大地构造与成矿学 , 39 (1) :30–43.
[] 李三忠, 索艳慧, 余珊, 赵淑娟, 戴黎明, 曹花花, 张臻, 刘为勇, 张国堙.2015b. 西南印度洋构造地貌与构造过程. 大地构造与成矿学 , 39 (1) :15–29.
[] 马莉燕, 范蔚茗, 王岳军, 蔡永丰, 刘汇川.2013. 那邦地区花岗片麻岩的锆石U-Pb年代学及Hf同位素组成特征. 大地构造与成矿学 , 37 (2) :273–283.
[] 杨启军, 徐义刚, 黄小龙, 罗震宇.2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义. 岩石学报 , 22 (4) :817–834.