岩石学报  2017, Vol. 33 Issue (1): 173-190   PDF    
东昆仑山脉晚志留世-早侏罗世花岗类岩石中锆石微量元素地球化学特征及地质意义
周敖日格勒1, 戴紧根2, 李亚林2, 张海龙1,3     
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质大学地质过程与矿产资源国家重点实验室, 青藏高原地质研究中心, 北京 10008;
3. 核工业二四三大队, 赤峰 024000
摘要: 为了更深入的认识东昆仑山脉岩浆作用和构造演化历史,本文采用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)方法对东昆仑山脉中部和东部不同时代的花岗类岩石中锆石进行了系统的微量元素分析。东昆仑山脉晚志留世二长花岗岩和晚二叠世、晚三叠世、早侏罗世花岗岩中绝大多数锆石Th/U>0.5,锆石的球粒陨石标准化REE配分曲线均为HREE相对于MREE和LREE富集,并且具有Ce正异常和Eu负异常,为典型的岩浆锆石。晚志留世二长花岗岩和晚二叠世、晚三叠世花岗岩锆石具有低的Ce正异常,高的Eu负异常;早侏罗世花岗岩锆石则具有高的Ce正异常,高Nb、Ta含量,低Eu负异常;晚二叠世花岗岩锆石还具有高∑REE、Y、Th、U含量;而晚三叠世花岗岩锆石则在所有样品中具有最高的Hf含量,是演化程度高的岩浆产物。除此之外,晚志留世、晚二叠世、晚三叠世和早侏罗世样品中部分锆石呈现LREE富集,说明它们在岩浆晚期可能遭受LREE富集热液的改造。根据锆石Ti温度计,计算出所有样品的结晶温度小于800℃,说明它们很有可能形成于富集流体的俯冲带环境。结合前人研究资料和所分析锆石的U-Pb年龄数据,对东昆仑山脉中古-中生代多期的构造-岩浆事件提供了新的约束:(1)晚志留世二长花岗岩的形成可能与一个小型洋盆的俯冲作用有关,其岩浆源区是地壳浅部的沉积基底;(2)晚二叠世花岗岩可能是在古特提斯洋向北俯冲过程中由于幔源岩浆使浅层地壳发生熔融形成;(3)晚三叠世-早侏罗世花岗岩在羌塘和昆仑-柴达木同碰撞过程形成。
关键词: 东昆仑山脉     锆石     LA-ICP-MS     LREE富集     晚志留世-早侏罗世    
Zircon trace element geochemical characteristics of Late Silurian-Early Jurassic granitoids from Eastern Kunlun Range and its geological significance
ZHOU AoRiGeLe1, DAI JinGen2, LI YaLin2, ZHANG HaiLONG1,3     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. Research Center for Tibetan Plateau Geology, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 10008;
3. Geologic Party No. 243, CNNC, Chifeng 024000, China
Abstract: In order to understand magmatism and tectonic evolution of the Eastern Kunlun Range, we conducted systematic Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) trace element analyses of zircons from the Paleozoic-Mesozoic granitoid rocks in the central and eastern segments of this range. The majority of zircons from the Late Silurian monzogranite and Late Permian, Late Triassic and Early Jurassic granites from the Eastern Kunlun Range possess high Th/U (>0.5), and their chondrite-normalized REE patterns of all zircons are characterized by HREE enrichment relative to LREE and MREE with distinctive positive Ce and negative Eu anomalies, which are typical of magmatic zircons. Zircons from the Late Silurian monzogranite and Late Permian, Late Triassic granites show small positive Ce anomalies and large negative Eu anomalies; while those from the Early Jurassic granites are characterized by large positive Ce anomalies, high Nb and Ta, low negative Eu anomalies. Zircons of the Late Permian granite have high total REE, Y, Th, U contents, whereas those of the Late Triassic granite have the highest Hf contents indicating that they might be the products of highly evolved magma. Some of zircons from the Late Silurian, the Late Permian, the Late Triassic and the Early Jurassic samples display LREE enrichments, indicating that they were probably metasomatized by LREE enriched melt from the subducted slab. All the zircons yield different Ti-in-zircon temperatures, but all of them are below 800℃. This low crystallization temperatures indicate that the infiltration of the source region by a water-rich fluid should occur at a subduction zone. Combined with previous studies and the zircon U-Pb ages, these zircon trace elements provide new constraints on the Paleozoic-Mesozoic multi-stage tectonic-magmatic events of the Eastern Kunlun Range:(1) the origin of the Late Silurian monzogranite was related to the subduction of a small paleo-ocean and its magma source was derived from shallow crustal sedimentary basement; (2) the Late Permian granite was generated by the shallow crust partial melting induced by mantle magma above a subduction zone of the Paleo-Tethys; (3) the Late Triassic-Early Jurassic granites were formed during the collision between Qiangtang and Kunlun-Qaidam, and their source regions of the Late Triassic granite are shallower than those of the Early Jurassic granite.
Key words: Eastern Kunlun Range     Zircon     LA-ICP-MS     LREE enrichment     Late Silurian-Early Jurassic    

青藏高原存在两条近东西向的大规模的花岗岩带,一是高原南侧的冈底斯带,二是高原北侧的东昆仑带(Yin and Harrison, 2000; Zhu et al., 2013; 图 1a)。目前对冈底斯带的研究较为详细,已经建立了岩浆演化的时空格架和成因模式(Zhu et al., 2013; Ji et al., 2009)。然而,对于东昆仑的研究却相对较少,缺乏系统的年代学和地球化学的约束,从而导致对该地区地质演化的认识存在争议。东昆仑山脉在早古生代和早中生代发生了两次俯冲和碰撞事件,相继形成了诺木洪-清水泉和阿尼玛卿-布青山缝合带(Bian et al., 2004; Yang et al., 1996; Zhang et al., 2012a; Zhu et al., 2006; 图 1b),分别对应昆中断裂和昆南断裂。该山脉中的奥陶-志留纪和二叠-三叠纪侵入岩分别是这两期构造事件伴随的岩浆作用产物(Chen et al., 2012)。其中,对奥陶-志留纪侵入岩起源有三种不同的观点:(1)小型古海洋的俯冲和随后东昆仑南北两部分的碰撞作用(刘彬等, 2012; 莫宣学等, 2007);(2)弧后扩张作用(任军虎等, 2009);(3)典型的后碰撞作用(谌宏伟等, 2006; 刘彬等, 2012)。另外,二叠-三叠纪侵入岩的起源和构造背景的认识也存在争议(Hu et al., 2016; Zhang et al., 2012a):Roger et al.(2008)认为晚二叠-三叠纪侵入岩其起源与阿尼玛卿洋岩石圈向北俯冲有关。谌宏伟等(2005)认为三叠纪侵入岩为后碰撞背景下板片断离发生岩浆混合作用产物。然而,Peng et al.(2016)认为早二叠统晚期花岗岩是古特提斯洋两期俯冲事件间隙的伸展环境产物。因此,很有必要对东昆仑带内奥陶-志留纪和晚二叠-三叠纪两期侵入岩的起源和构造背景进行更深入的研究。

图 1 区域构造简图和地质图 (a)展示青藏高原主要缝合带的构造刚要图:AKSZ:阿尼玛卿-昆仑缝合带;JSSZ:金沙江缝合带;SHSZ:双湖缝合带;BNSZ:班公-怒江缝合带;YZSZ:雅鲁藏布江缝合带.(b)显示采样点,U-Pb年龄和Ru-Sr年龄的简化的东昆仑构造带地质图.地质年代学数据来源:1)刘斌等(2012); 2)Zhang et al.(2012a); 3)Chen et al.(2012); 4)Wu et al.(2004); 5)Liu et al.(2004); 6) 谌宏伟等(2006); 7)Harris et al.(1988); 8)吴珍汉等(2005); 9)Bian et al.(2004); 10)Wang et al.(2003); 11)李碧乐等(2012).CD为横切东昆仑构造带中部的地质剖面图(据Dai et al., 2013修改) Fig. 1 Regional simplified geological map (a) tectonic outline of the Tibetan Plateau showing major sutures: AKSZ: Anyimaqen-Kunlun suture zone; JSSZ: Jinshajiang suture zone; SHSZ: Shuanghu suture zone; BNSZ: Bangong-Nujiang suture zone; YZSZ: Yurlung Zangbo suture zone. (b) simplified geological map of the Eastern Kunlun Range showing sample locations and zircon U-Pb ages and Ru-Sr ages. Geochronological data are from: 1) Liu et al.(2012); 2) Zhang et al.(2012a); 3) Chen et al.(2012); 4) Wu et al.(2004); 5) Liu et al.(2004); 6) Chen et al.(2006); 7) Harris et al.(1988); 8) Wu et al.(2005); 9) Bian et al.(2004); 10) Wang et al.(2003); 11)Li et al.(2012). CD is the geologic cross section across the central segment of the Eastern Kunlun Range (revised after Dai et al., 2013)

锆石是非常普遍的矿物,在大部分火成岩中都有出现(Nikitina et al., 2012; Orejana et al., 2011; Page et al., 2007; Zheng et al., 2006)。由于锆石具有化学稳定性,难溶解,难熔融,抗风化,抗再循环,抗高温变质和深溶作用等物理化学特征(El-Bialy and Ali, 2013; Hoskin and Schaltegger, 2003),因此,在漫长而复杂的地质历史时期锆石可以保持其初始的化学组分(除U、Th等元素的衰变作用)。锆石结晶时趋于吸收特定的微量元素(如Sc、Y、Ti、Hf、Th、U、Nb、Ta、V、P和REE),而这些元素的含量变化可以反映其形成的地质过程(El-Bialy and Ali, 2013)。目前锆石微量元素地球化学主要用在以下方面:判断母岩浆成分(Hinton and Upton, 1991; Rubatto, 2002);区分陆壳和洋壳锆石(Grimes et al., 2009; Grimes et al., 2007; Iizuka et al., 2006; Peck et al., 2001);区分不同类型的花岗岩(Wang et al., 2012);利用锆石Ti温度计估算锆石结晶温度等(Ferry and Watson, 2007; Fu et al., 2008; Harrison et al., 2007; Page et al., 2007; Watson and Harrison, 2005; Watson et al., 2006)。

针对上述问题,我们对东昆仑晚志留世-早侏罗世已经报道的岩浆锆石(Dai et al., 2013),开展了微量元素地球化学的研究,试图揭示东昆仑奥陶-志留纪和二叠-三叠纪两期侵入岩的岩浆性质、源区和构造环境。

1 地质背景和野外采样

东昆仑山脉东西分别与西秦岭造山带和西昆仑构造带相连,南北侧分别与可可西里盆地和柴达木盆地为邻(图 1),在青藏高原北部地区出露非常广泛,东西向延伸长达1500km (Dai et al., 2013)。东昆仑山脉由三个构造单元组成,即东昆仑北构造单元、东昆仑中构造单元和东昆仑南构造单元,分别被昆中断裂和昆南断裂隔开(Zhang et al., 2012a)。研究区位于东昆仑南构造单元和东昆仑中构造单元(图 1)。

东昆仑中构造单元地层主要由白沙河组、小庙组、冰沟组(万宝沟组)和出露广泛的古生代-中生代侵入岩,少量的泥盆系和石炭系沉积岩组成。然而,东昆仑南构造单元相对于中构造单元具有更多的三叠系火山-沉积岩和更少的古生代-中生代侵入岩(Zhang et al., 2012a)。白沙河组由片麻岩和大理岩组成,含少量角闪岩、混合岩和片岩,年龄为2468±46Ma~1846Ma (陆松年, 2002; Zhang et al., 2012a; 邓晋福等, 1995; 莫宣学等, 2007)。小庙组由角闪黑云斜长变粒岩、片岩和次要的大理岩组成(Zhang et al., 2012a),其沉积时代为1683~1554Ma (陈有炘等, 2011)。白沙河组和小庙组合称为金水口组。冰沟组由大理岩、板岩和浅变质的碎屑岩组成(Zhang et al., 2012a; 张耀玲等, 2010b),其形成时代为新元古代(孙雨等, 2009)。纳赤台群主要含玄武岩、超镁铁质岩、浅变质碎屑岩和碳酸盐(Zhang et al., 2012a; 张耀玲等, 2010b),其时代为奥陶-志留纪(张耀玲等, 2010b)。上部有牦牛山组磨拉石建造角度不整合覆盖,岩性主要为砾岩、砂岩、泥岩和少量火山岩,其火山岩锆石U-Pb年龄为423.2±1.8Ma~399.6±2.8Ma (陆露等, 2010; 张耀玲等, 2010a; 张耀玲等, 2010b)。向上为上石炭统滨海相沉积,主要岩性为砂岩、粉砂岩和灰岩,含少量泥岩和凝灰岩(Zhang et al., 2012a; 张耀玲等, 2010b)。三叠系沉积物为以砂岩和板岩为主的复理石沉积(Zhang et al., 2012a; 张耀玲等, 2010b)。上三叠统地层中有安山岩、英安岩和流纹岩夹层(Yang et al., 2009)。

早古生代的侵入岩主要以奥陶-志留纪为主,含少量寒武纪,主要由石英闪长岩,二长花岗岩和正长花岗岩组成(龙晓平等, 2006; 张耀玲等, 2010b)。然而,二叠-三叠纪侵入岩的出露面积最广(郭正府等, 1998; 罗照华等, 2002; 莫宣学等, 2007),主要岩性为花岗闪长岩,二长花岗岩和正长花岗岩,含少量闪长岩和辉长岩(Zhang et al., 2012a)。

研究区主要分布在格尔木-纳赤台-西大滩一带,主要地层有白沙河组、冰沟组(万宝沟组)、纳赤台群、牛宝祖、浩特洛娃组、洪水川组和闹仓坚沟组(张耀玲等, 2010b)。沿拉萨-格尔木国道进行了系统采样,并且在东昆仑东部花石峡附近也进行了采样。样品均为细粒-中粒花岗岩(图 1b)。除了样品1003为二长花岗岩外,其他4件样品(1005、1007、1008和1059)均为典型的花岗岩。该5件样品锆石U-Pb年龄和(U-Th)/He年龄已经在Dai et al.(2013)中有详细论述,本文主要针对上述锆石的微量元素进行分析与讨论。

2 测试方法

锆石颗粒的挑选是经过以下步骤完成的,在每个步骤都确保了无外来物质的污染:首先,清水冲洗岩石样品,晾干,机械破碎至60目;其次,用重选、重液和磁选等技术使锆石富集。最后,在显微镜下手工挑选无包体,无裂隙的自形晶体。用挑选好的锆石制靶,并对样品进行透射光和阴极发光(CL)照相。

锆石微量元素含量分析测试工作在中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)上完成。LA-ICP-MS激光剥蚀系统为美国NewWave公司生产的UP193FX型193nm ArF准分子系统,激光器来自于德国ATL公司,ICP-MS为Agilent 7500a。激光器波长为193nm,脉冲宽度 < 4ns。激光剥蚀采样过程以氦气作为载气。仪器238U灵敏度可达6×104cps/ppm;208Pb灵敏度可达2.5×104cps/ppm;氧化物产率ThO/Th < 0.3%;204Pb气体空白 < 100cps;绝大部分元素(REE、U、Th、Pb) RSD < 3%锆石中Th-U比值图+40s样品剥蚀+45s冲洗;采样束斑直径35μm;每10个未知样品点插入一组标样(锆石标样和成分标样)。采用Plesovice (年龄为337±0.37Ma, Sláma et al., 2008)和SL标准锆石(TIMS获得谐和年龄为572.2±0.4Ma,Claoué-Long et al., 1995)作为外标进行基体校正;成分标样采用NIST SRM 612,其中29Si作为内标元素。样品的同位素比值及元素含量计算采用GLITTER_ ver 4.0程序(Achterbergh et al., Macquarie University),普通铅校正采用ComPbCorr#3.15软件来完成(Anderson, 2002)。

3 分析结果

对采自东昆仑山脉的5件样品中92个锆石进行微量元素分析(1003=18、1005=18、1007=18、1008=18和1059=20)。每个锆石颗粒选择一个点进行分析,分析结果见表 1-表 5。球粒陨石标准化(McDonough and Sun, 1995)的稀土配分曲线图和微量元素蛛网图见图 2

图 2 锆石球粒陨石标准化REE配分曲线图(a-e)和所有样品微量元素蛛网图(f)(标准化值据McDonough and Sun, 1995) (a)晚志留(1003)二长花岗岩;(b)晚二叠世(1005)花岗岩;(c)晚三叠世(1059)花岗岩;(d)早侏罗世(1007)花岗岩;(e)早侏罗世(1008)花岗岩 Fig. 2 Chondrite-normalized REE contents diagrams (a-e) and multi-elements spider diagram of all samples (f)(normalization values after McDonough and Sun, 1995) (a) Late Silurian (1003) monozonitic granite; (b) Late Permain (1005)granite; (c) Late Triassic (1059)granite; (d) Early Jurassic (1007)granite; (e) Early Jurassic (1008)granite

表 1 东昆仑构造带晚志留世(1003)二长花岗岩中锆石主要元素、稀土元素和微量元素组成(×10-6)及锆石TZr温度 Table 1 The main and trace element (×10-6) composition and TZr temperature of zircon in the Late Silution (1003) monozonitic granite from Eastern Kunlun Range

在球粒陨石标准化的稀土元素(REE)配分曲线上,本文中测定的锆石全部表现出重稀土元素(HREE)相对中稀土元素(MREE)和轻稀土元素(LREE)强烈富集,并且具有不同程度的Ce正异常和Eu负异常,为典型的未变质岩浆锆石(Belousova et al., 2002; Hinton and Upton, 1991; Hoskin and Ireland, 2000; Hoskin and Schaltegger, 2003; 图 2)。对于单个样品的HREE分布整体上平行于(Yb/Gd)N值范围,即1003(20.5~46.3)、1005(12.9~41.3)、1007(6.0~39.8)、1008(12.3~35.4)和1059(10.1~39.9),而每件样品内部(Sm/La)N值变化超过一个数量级,即1003(4.3~371)、1005(1.2~455)、1007(0.3~103)、1008(1.3~167)和1059(25.4~707),反映MREE和LREE部分的分布变化大。总稀土元素含量(∑REE)变化范围分别为:1005(1281×10-6~5838×10-6,平均2545×10-6)最高,1003(822×10-6~1923×10-6,平均1325×10-6)次之,再者1007和1059分别为(418.7×10-6~3960×10-6,平均1382×10-6)和(662.4×10-6~3057×10-6,平均1330×10-6),1008(646.4×10-6~1668×10-6,平均1030×10-6)最低。值得注意的是样品1005,其∑REE量为其他样品的两倍,而样品1007的∑REE量变化范围非常大。

表 2 东昆仑构造带晚二叠世(1005)花岗岩中锆石主要元素、稀土元素和微量元素组成(×10-6)及锆石TZr温度 Table 2 The main and trace element (×10-6) composition and TZr temperature of zircon in the Late Permain (1005) granite from Eastern Kunlun Range

表 3 东昆仑构造带早侏罗世(1007)花岗岩中锆石主要元素、稀土元素和微量元素组成(×10-6)及锆石TZr温度 Table 3 The main and trace element (×10-6) composition and TZr temperature of zircon in the Early Jurassic (1007) granite from Eastern Kunlun Range

表 4 东昆仑构造带早侏罗世(1008)花岗岩中锆石主要元素、稀土元素和微量元素组成(×10-6)及锆石TZr温度 Table 4 The main and trace element (×10-6) composition and TZr temperature of zircon in the Early Jurassic (1008) granite from Eastern Kunlun Range

表 5 东昆仑构造带晚三叠世(1059)花岗岩中锆石主要元素、稀土元素和微量元素组成(×10-6)及锆石TZr温度 Table 5 The main and trace element (×10-6) composition and TZr temperature of zircon in the Late Triassic (1059) granite from Eastern Kunlun Range

除了样品1059有3个Ce负异常值(0.93、0.95、0.98)外,其他锆石颗粒都具有不同程度的Ce正异常,其中样品1007和1008最大(除了1008-05=109特高值)分别为(10.8~51.6,平均27.9)和(1.5~37.5,平均11.2);1059为最小(0.9~22.8,平均4.9);1003和1005在中间,分别为(1.4~16.2,平均5.6)和(1.0~27.4,平均5.0)。然而,5件样品的Eu异常从大到小依次为:1003(0.04~0.20,平均0.10)、1005(0.02~0.41,平均0.15)、1059(0.09~0.30,平均0.17)、1007(0.02~0.63,平均0.38)和1008(0.39~0.60,平均0.48)(表 1-表 5)。

锆石是Zr和Hf的主要赋存矿物。因此,锆石中的Hf含量很高,其值为球粒陨石的几百倍,甚至几千倍。样品1003、1005、1007、1008和1059的Hf值分布范围分别为(0.86%~1.33%,平均1.05%)、(0.77%~1.29%,平均1.10%)、(0.74%~1.37%,平均1.20%)、(0.99%~1.21%,平均1.07%)和(0.96%~1.36%,平均1.20%)(表 1-5)。

放射性衰变成因U、Th、Pb*是锆石中研究程度最高的微量元素。由于非放射性成因Pb (Pb2+1.29Å)离子半径明显大于Zr (Zr4+0.84Å),因此,锆石中Pb含量基本都来自放射性成因Pb*。U (U4+1.00Å)和Th (Th4+1.05Å)都比较接近Zr4+,所以其在锆石中含量可以达到数十×10-6到数千×10-6。除去1005样品的U特高值(5321×10-6和6743×10-6)和Th特高值(5954×10-6),1005样品锆石中Th、U、Pb*含量均最高且变化范围最大(平均,731×10-6、1052×10-6、76×10-6);1059样品最低且变化范围最小(平均分别为281×10-6、384×10-6、15×10-6);1003(平均分别为280×10-6、644×10-6、44×10-6)、1007(平均分别为273×10-6、572×10-6、29×10-6)和1008(平均分别为429×10-6、841×10-6、28×10-6)在1005和1059之间。另外,1003样品Pb*含量高于1007,而Th和U含量相当;而1008样品中Th和U含量高于1007,而Pb*含量相当(表 1-表 5)。由于U4+离子半径比Th4+更接近Zr4+,所以在锆石中U含量大于Th。样品的Th/U从大到小依次为:1059(平均0.73)、1005(平均0.67)、1007(平均0.55)、1008(平均0.51)和1003(平均0.44)。5件样品大多数锆石Th/U≥0.5(Hoskin and Schaltegger, 2003),即典型的岩浆锆石(图 3a)。值得注意的是同一件样品中锆石之间的Th和U含量变化很大,能超过十的数量级,如样品1003和1007的Th含量,分别为(67×10-6~875×10-6)和(77×10-6~1516×10-6)(表 1-表 5)。

图 3 锆石中Th-U比值图解(a)和用Watson et al. (2006)温度计公式计算的锆石结晶温度与Hf含量关系图(b) Fig. 3 Th vs. U diagram of zircon (a) and plots of the calculated crystallization temperatures of the zircon samples using the thermometer calibration of Watson et al. (2006) against their Hf contents (b)

研究中有效的测定了锆石Nb、Ta和Ti三个高场强元素(表 1-表 5),其中Ti的含量最高。除了1个锆石Ti含量(1059-09=344×10-6)明显高于岩浆锆石中含量正常范围(≤75×10-6; Hoskin and Schaltegger, 2003),5件样品中其他锆石Ti含量均小于75×10-6,其平均含量依次为:1007(10.6×10-6)、1005(9.4×10-6)、1003(7.7×10-6)、1059(5.8×10-6)和1008(5.5×10-6)。出现这种高Ti的锆石数据结果,可能是测定了变质锆石或锆石中含有金红石等包裹体(El-Baily and Ali, 2013)。5件样品的Nb含量均在岩浆锆石范围内(Nb≤62×10-6Hoskin and Schaltegger, 2003),品均含量依次为:1005(11.3×10-6)、1008(11.1×10-6)、1007(10.0×10-6)、1059(4.9×10-6)和1003(4.2×10-6)。然而,5件样品中都有至少2个锆石Ta含量大于岩浆锆石范围(Ta≤3×10-6; Hoskin and Schaltegger, 2003),尤其是1007、1008和1005样品,分别为:1007样品有8个锆石Ta≥3×10-6,最大为31.5×10-6;1005样品9个锆石Ta≥3×10-6,最大为18.6×10-6;1008样品2个锆石Ta≥3×10-6,最大11.3×10-6。1003和1059样品也分别有4个和3个锆石Ta≥3×10-6,最大分别为4.1×10-6和3.4×10-6,低于其他3件样品。这种Ta富集的锆石可能在钽铁矿和其他钽氧化物沉淀之前的花岗岩熔浆内结晶(Van Lichtervelde et al., 2009, 2011)。

4 讨论 4.1 锆石微量元素:对东昆仑带晚志留世-早侏罗世花岗质岩浆起源和演化的约束

本文中5件花岗岩样品锆石U-Pb年龄分布在晚志留世和二叠纪晚期-早侏罗世(Dai et al., 2013)。通过研究锆石微量元素特征发现,5件样品所代表的岩浆性质存在差异。锆石Ti温度计是约束锆石结晶温度的非常有效的地球化学追踪器(Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007)。Ti原子进入锆石晶体的过程受温度和TiO2的活度(aTiO2)的控制(Watson and Harrison, 2005)。在此理论基础上,Ferry and Watson (2007)结合高温-高压实验和天然锆石的分析,总结出温度与锆石吸收Ti含量的线性方程:

(1)

(其中,T表示锆石的Ti温度计,Ti表示锆石中Ti元素含量(×10-6),aSiO2aTiO2分别表示岩浆中SiO2和TiO2的活度)。然而,石英是花岗岩中普遍存在的矿物,此外,本文中大部分锆石具有Nb和Ta含量高的特征,指示锆石中包含金红石包体。因此本文中5件样品的岩浆中SiO2和TiO2的活度均可视为1(aSiO2≈1和aTiO2≈1),因此以上方程可以省略为:

(2)

根据方程式(2)得出本文中5件样品所代表的岩浆锆石结晶温度分别为:晚志留世二长花岗岩(620~837℃)、晚二叠世花岗岩(576~851℃)、晚三叠世花岗岩(642~760℃)、早侏罗世花岗岩为1007(651~835℃)和1008(602~763℃)(图 3b; 表 1-5),大部分都集中在600~800℃之间。此外,前人研究认为地幔柱作用形成的花岗岩岩浆或A-型花岗岩岩浆温度一般比较高(>800℃)(Liu et al., 2013; 吴福元等, 2007);然而,俯冲带中富含流体,可能导致在这些环境中形成的花岗岩岩浆温度较低( < 800℃)(Liu et al., 2013; Miller et al., 2003)。因此,说明东昆仑山脉晚志留世(1003)二长花岗岩和晚二叠世-早侏罗世(1005、1059、1007和1008)花岗岩主要形成于俯冲-碰撞作用中形成。

由于Hf4+和Zr4+具有非常相似的地球化学行为(Weyer et al., 2002),随着岩浆分异作用,锆石中Hf含量不断增高(Hoskin and Schaltegger, 2003),即锆石中Hf值高指示其母岩浆演化程度高,样品1059具有最高的Hf含量,说明晚三叠世花岗岩可能是这些岩石中演化程度最高的岩浆产物。此外,随着岩浆温度降低,锆石晶格变小,因此离子半径较小的Hf4+比Zr4+更容易进入锆石中,导致锆石中Zr/Hf比值减小(Wang et al., 2010)。同理,随着岩浆演化(温度降低),离子半径较小的U4+比Th4+更容易进入锆石晶格中,导致Th/U比值降低。所以,Zr/Hf和Th/U共同反映岩浆演化过程。在Zr/Hf-Th/U图解上,随着岩浆演化5件样品均表现出Zr/Hf和Th/U比值降低(图 4a)。另外,Wang et al.(2010)得出花岗质岩浆锆石Zr/Hf平均值为38.5,并认为花岗质岩浆中早期锆石相对于晚期锆石具有高的Zr/Hf比值。本文中5件样品的Zr/Hf值分别为1003(平均=38.1)、1005(平均=46.2)、1059(平均=48.3)、1008(平均=51.1)和1007(平均=55.4),在花岗质浆岩锆石Zr/Hf比值范围之内(Wang et al., 2010),说明晚志留世(1003)二长花岗岩是较晚期岩浆产物,然而,晚二叠世(1005)、晚三叠世(1059)和早侏罗世(1007和1008)花岗岩为较早期岩浆产物(Wang et al., 2010)。

图 4 锆石Zr/Hf-Th/U图解(a)和(La/Gd)N-(Th+U)图解(b) Fig. 4 Plot of Zr/Hf vs. Th/U (a) and (La/Gd)N vs. (Th+U) diagram (b) of zircon

晚志留世、晚三叠世、早侏罗世花岗岩中锆石∑REE平均值(分别为1325×10-6、1329×10-6、1381×10-6和1029×10-6)在花岗质岩石中锆石总稀土含量范围之内(Hoskin and Schaltegger, 2003),然而,晚二叠世花岗岩中锆石∑REE平均值为2545×10-6,明显大于花岗质岩石中锆石总稀土含量,其原因可能有两种:1)锆石在岩石裂隙中REE富集的熔浆池中结晶;2)锆石在岩浆演化晚期结晶。然而,岩石裂隙中REE富集的熔浆池的规模较小,形成岩脉或岩墙。晚二叠世花岗岩出露面积大,不支持第一种解释,因此该花岗岩应当是岩浆演化晚期的产物。晚二叠世花岗岩中锆石Th和U的含量也明显大于其他样品,也说明其在岩浆演化晚期形成(Wang et al., 2010)(表 1-表 5)。锆石球粒陨石标准化REE配分曲线图上,未变质的岩浆锆石HREE相对于MREE和LREE富集,从LREE到HREE表现为较陡的斜率,并具有正Ce异常和Eu负异常(Hoskin and Schaltegger, 2003)(图 2)。然而,本文中部分锆石表现出LREE富集(图 2a-c, e),尤其是晚三叠世花岗岩表现出强LREE富集。导致锆石具有高LREE值的可能性有三种:(1)锆石中具有磷灰石、独居石和金红石等包体,由于我们没有对锆石中P元素进行分析,因此无法排除磷灰石和独居石包体的有无,另外研究中锆石的Nb和Ta含量较高,暗示金红石的存在。(2)锆石中放射性诱发的晶格破裂使LREE富集。由于放射性诱发导致晶格破裂使LREE富集的锆石的Th、U含量和(La/Gd)N具有陡的线性相关,然而,本文中锆石无一表现出陡的线性关系(图 4b)。因此,这种可能性被排除(Whitehouse and Kamber, 2002)。(3)热液蚀变作用。热液蚀变被广泛的认为是岩浆锆石LREE富集的重要的方式(Whitehouse and Kamber, 2002; Hoskin, 2005; Pettke et al., 2005; Rayner et al., 2005; Fu et al., 2009; Xia et al., 2010)。(Pr)N-(La)N图解可以区分未变质岩浆锆石和LREE富集的岩浆锆石。其依据为热液成因锆石和LREE富集岩浆锆石具有(Pr)N>10和(La)N>1的特征,然而未变质岩浆锆石(Pr)N < 10和(La)N < 1(Hoskin and Schaltegger, 2003; Cavosie et al., 2006)。在(Pr)N-(La)N图上,晚三叠世花岗岩几乎所有锆石,晚二叠世和早侏罗世(1008)花岗岩部分锆石落在热液锆石和LREE富集岩浆锆石区域,早侏罗世(1007)花岗岩落在未变质岩浆锆石区域,晚志留世二长花岗岩锆石落在(La)N>1的过渡区域(图 5a)。Hoskin (2005)提出Ce/Ce*-(Sm/La)N图解,试图区分岩浆锆石和热液锆石。在这一图解上,晚三叠世花岗岩大部分锆石,晚二叠世和早侏罗世(1008)花岗岩部分锆石落在热液锆石区域,早侏罗世(1007)花岗岩落在岩浆锆石区域及附近,晚志留世二长花岗岩锆石落在过渡区域(图 5b)。此外,本文中5件样品中锆石结晶温度均>600℃(图 3b),大于热液锆石的结晶温度上限( < 600℃),可以排除热液锆石的可能性。因此认为本文中5件样品均在封闭的岩浆体系中形成,然而,除了早侏罗世(1007)花岗岩,其他花岗岩岩浆均在岩浆晚期遭受LREE富集热液的改造。

图 5 PrN-LaN图解区分未变质岩浆锆石和热液、LREE富集的晚期岩浆锆石(a)和Ce/Ce*-(Sm/La)N图解可以辨别岩浆锆石和热液锆石(b, 据Hoskin, 2005) Fig. 5 Plot of PrN vs. LaNdiagram to discriminate un-metamorphic magmatic zircon and hydrothermal and LREE enriched late magmatic zircon (a) and Ce/Ce* vs. (Sm/La)N diagram to discriminate magmatic zircon and hydrothermal zircon (b, after Hoskin, 2005)

锆石的Ce异常和Eu异常的变化可以反映锆石结晶的物理化学条件(Ballard et al., 2002; Barth and Wooden, 2010; Burnham and Berry, 2012; Claiborne et al., 2010; Li et al., 2012; Pettke et al., 2005, Trail et al., 2011, 2012)。不同于其他REE元素,Ce和Eu元素的离子有两种价态,即(Ce3+和Ce4+)和(Eu2+和Eu3+)。在岩浆中Ce3+(1.143Å)一旦氧化成Ce4+(0.970Å),其地球化学行为与Zr、Hf相似,与其他LREE元素相比更容易进入锆石晶体。相反,一旦Eu3+还原成Eu2+,与相邻元素相比,Eu更难进入锆石晶体。因此,在岩浆锆石的球粒陨石标准化REE配分曲线上:Ce相比于La和Pr富集,指示氧化条件;Eu相比于Sm和Gd亏损,反映还原条件(Trail et al., 2012)。然而,两种异常,即氧化环境和还原环境在锆石中同时出现是相互对立的(El-Bialy and Ali, 2013)。因此,氧逸度可能不是控制Ce和Eu异常的唯一因素。Hoskin and Ireland (2000)认为,锆石结晶前和结晶过程中岩浆的斜长石分离结晶可能是导致Eu负异常的另一个因素,这一观点被后来的研究支持(Burnham and Berry, 2012; Hoskin and Schaltegger, 2003; Kaczmarek et al., 2008)。因此锆石中Eu负异常是Eu亏损的岩浆和氧逸度的综合效应。图 6a上晚志留世二长花岗岩表现出强Eu负异常(平均Eu/Eu*=0.10),弱Ce正异常(平均Ce/Ce*=5.60),两个异常值的范围小,指示岩浆氧逸度弱,且变化范围小和源区具有斜长石分离结晶的特征晚二叠世-早侏罗世的样品从老到新分别为:晚二叠世花岗岩和晚三叠世花岗岩具强Eu负异常(平均Eu/Eu*=0.15和0.17),弱Ce正异常(平均Ce/Ce*=5.04和4.87),指示在弱的氧逸度条件下形成,且具有较强的斜长石分离结晶;早侏罗世花岗岩(1007) Eu和Ce异常的变化范围均比较大(Eu/Eu*为0.02~0.63,Ce/Ce*为10.8~51.6),指示氧逸度变化范围大;然而,早侏罗世花岗岩(1008) Eu异常变化范围比较小(Eu/Eu*为0.39~0.60),Ce异常变化范围比较大(Ce/Ce*为1.50~37.5),指示氧逸度变化范围大,但是没有斜长石的分离结晶作用。Li et al.(2012)指出来源 < 35km深度的岩浆具有明显的Eu负异常,而>35km深度的岩浆有弱的Eu负异常或没有Eu负异常。因此晚侏罗世二长花岗岩、晚二叠世花岗岩和晚三叠世花岗岩浆源区深度 < 35km,而早侏罗世花岗岩(1007)源区为>35km到 < 35km的过渡,早侏罗世花岗岩(1008)源区深度>35km。

图 6 反映结晶锆石的岩浆氧逸度的图解 Fig. 6 Plots revealing the oxidation state of the magma from which studied zircons were crystallized (a) Ce/Ce* vs. Eu/Eu* diagram; (b) Hf vs. Ce/Ce* diagram

Wang et al.(2012)从松潘-甘孜地体、拉萨地体和喜马拉雅地体选择187颗成因明确的岩浆锆石(花岗岩),用锆石微量元素进行投图,认为I-型花岗岩的岩浆锆石具有相对低Pb值,高(Nb/Pb)N比值;而S-型花岗岩以高Pb值,低(Nb/Pb)N比值和显著的Eu负异常为特征(Eu/Eu*≤0.3)。然而,A-型花岗岩以显著的Eu负异常与I-型花岗岩区分,以高(Nb/Pb)N比值与S-型花岗岩区分。在(Nb/Pb)N-Eu/Eu*图解上,晚志留世二长花岗岩和晚二叠世花岗岩样品投在S-型花岗岩区,说明其岩浆源区为沉积岩;早侏罗世花岗岩样品投在I-型花岗岩区,暗示其源区为火成岩;而晚三叠世花岗岩样品投到I-型与S-型中间,可能为过渡类型(图 7)。在自然界对S-型和I-型没有截然的界线,只是岩浆源区以沉积岩为主的花岗岩为S-型,相反,以火成岩为主的花岗岩认为是I-型。从图 7也可以观察到,不同时代的花岗岩分布区域有重叠的现象。

图 7 (Nb/Pb)N-Eu/Eu*图解辨别锆石寄主岩石的成因类型(据Wang et al., 2012修改) Fig. 7 The (Nb/Pb)N vs. Eu/Eu* diagram to discriminate the genetic types of the host rocks of zircon (revised after Wang et al., 2012)

Grimes et al.(2007)提出U/Yb-Y和U/Yb-Hf判别图解,该图解可以区分来自陆壳,洋壳和地幔的锆石,其依据为不同源区来源的锆石U/Yb比值不同,如大洋辉长岩为(0.18),陆壳花岗岩(1.07)和金伯利岩(2.1)。在上述两个判别图中,本文5件样品的锆石均投在陆壳源区区域,说明这些花岗岩岩浆均来自陆壳(图 8)。

图 8 U/Yb-Hf (a)和U/Yb-Y (b)图解区分陆壳锆石和洋壳锆石(据Grimes et al., 2007修改) Fig. 8 U/Yb vs. Hf (a) and U/Yb vs. Y (b) diagrams to discriminate between continental and oceanic crust zircon (after Grimes et al., 2007)

结合岩浆锆石结晶温度、Zr/Hf比值、微量元素球粒陨石标准化图解类型、锆石的来源和寄主岩浆的成因类型等证据,我们得出晚志留世二长花岗岩和晚二叠世花岗岩岩浆源区为陆壳浅层的沉积岩区,其岩浆的演化程度高;晚三叠世花岗岩岩浆源区可能比晚志留世二长花岗岩和晚二叠世花岗岩要深,并且可能发生过岩浆混合作用;早侏罗世(1007)花岗岩岩浆在陆壳比较深的位置形成,并且向上运移至地壳浅层发生斜长石的分离结晶,同时同化上地壳物质;早侏罗世(1008)花岗岩岩浆在地壳深部形成。另外,除早侏罗世(1007)花岗岩外,其他样品均受到LREE富集热液的叠加,其热液来源可能是不同时期俯冲带流体。

4.2 晚志留世-早侏罗世花岗类岩石的构造环境及其对东昆仑构造的启示

晚志留世二长花岗岩锆石U-Pb年龄为429.2±7.9Ma (Dai et al., 2013),其岩浆温度较低(620~756℃,除1个值837℃),而且锆石形成时受流体(热液)作用影响,因此认为该二长花岗岩为俯冲作用产物。它与东昆仑志留纪弱铝质-过铝质A-型花岗岩结晶年龄一致(高晓峰等, 2010; 高永宝和李文渊, 2011)。这些志留纪花岗岩的形成环境被认为是东昆仑山脉局部扩张的弧后盆地(高晓峰等, 2010)。然而,张耀玲等(2010b)对东昆仑纳赤台群石灰厂组流纹岩定年,得出锆石U-Pb年龄为450.4±4.3Ma。此外,425.9±2.6Ma的流纹英安斑岩侵入到纳赤台群哈拉巴依沟组(在石灰厂组之上,与之整合接触)碎屑岩系中,说明哈拉巴依沟组时代上限为426Ma (周春景等, 2010)。牦牛山组磨拉石不整合覆盖在纳赤台群哈拉巴依沟组之上(张耀玲等, 2010b),指示东昆仑在中奥陶世-晚志留世间发生过一次地壳抬升。陆露等(2010)从东昆仑山脉中部牦牛山组磨拉石中流纹岩得423.2±1.8Ma~399.6±2.8Ma的锆石U-Pb年龄,并提出牦牛山组磨拉石代表古海洋的闭合。本文的结论和前人研究资料正好指示了一个大洋俯冲到闭合的地质事实。文中晚志留世二长花岗岩中锆石同时存在Eu异常和Ce异常,说明岩浆中有斜长石分离结晶作用,而且它是S型花岗岩,其源区为沉积岩,因此我们认为该二长花岗岩是在一个古海洋洋壳向陆壳俯冲过程中,由于俯冲带上板块镁铁质下地壳发生脱水熔融产生基性岩浆,这些岩浆使地壳浅层的沉积岩(沉积盖层)发生部分熔融,形成的岩浆又发生斜长石的分离结晶,最终形成二长花岗岩岩浆。之后洋壳闭合,发生造山作用。这种结论与东昆仑地区广泛出露的早志留世后碰撞花岗岩(刘彬等, 2012)和以40Ar-39Ar年龄代表的晚志留世-早泥盆世变形和变质作用一致(陈能松等, 2002; Liu et al., 2005)。

晚二叠世-早侏罗世花岗岩类在东昆仑地区分布非常广泛(Harris et al., 1988; Zhang et al., 2012a, b; 吴祥珂等, 2011)。Zhang et al.(2012a)认为晚二叠世-中三叠世(266~241Ma)花岗闪长岩和石英闪长岩在古特提斯洋向北俯冲过程中上板块镁铁质下地壳发生脱水熔融形成。孙雨等(2009)对东昆仑山脉东部哈拉尕吐花岗闪长岩体(259~250Ma)和岩体内微粒闪长岩包体进行U-Pb测年,获得大致相同的年龄(花岗闪长岩255.3±3.6Ma、闪长岩包体252.9±2.5Ma),认为花岗闪长岩成因为岩浆混合作用。也有研究者在东昆仑白日其利地区发现辉长岩岩墙群(U-Pb年龄为251±2Ma和248.9±4.2Ma)侵入到古生代花岗岩中,该辉长岩具相对集中且明显不同于地壳岩浆的Hf同位素组成(εHf(t)=-2.37~+1.07)(熊富浩等, 2011a, b)。这些花岗闪长岩、石英闪长岩和辉长岩在时代上与本文中晚二叠世花岗岩U-Pb年龄253.1±4.7Ma (Dai et al., 2013)一致。上述岩石在时代上一致,空间上相近,并且可以成为从基性到酸性的岩浆序列。并且,上述辉长岩、闪长岩、石英闪长岩和花岗闪长岩都在地壳深部形成(Zhang et al., 2012a),成因类型为I-型。然而,东昆仑山脉晚二叠世花岗岩的岩浆源区比较浅,而且成因类型为S-型。另外,晚二叠世花岗岩岩浆温度低(576~798℃为主),且受流体作用改造(图 2图 5)。因此可以认为,随着古特提斯洋向北俯冲,俯冲带上板块地幔楔发生脱水熔融形成基性岩浆(熊富浩等, 2011a, b),该岩浆使沉积盖层发生部分熔融形成形成酸性岩浆,然后,两个端元的岩浆发生岩浆混合作用(孙雨等, 2009)形成了从基性到酸性的岩浆序列,本文中晚二叠世花岗岩是由地壳浅部酸性岩浆冷凝的产物。

中三叠世中期古特提斯洋盆已经闭合,羌塘和昆仑-柴达木碰撞作用开始(Chen et al., 2007; 莫宣学等, 2007),在碰撞过程中在羌塘地块与昆仑-柴达木造山带之间形成大型的前陆盆地--松潘盆地,晚三叠世在盆地中沉积深海浊积岩,并伴随晚三叠世-早侏罗世的花岗岩侵入到复理石沉积中,形成松潘-甘孜地体(Wang et al., 2013; 胡健民等, 2005; Roger et al., 2010)。Zhang et al.(2012a)认为昆仑-柴达木造山带晚三叠世(231Ma)正长花岗岩为同碰撞背景下产生的源区较浅的岩石,与本文晚三叠世花岗岩(U-Pb年龄为228.4±2.4Ma)一致。另外,东昆仑构造带祁门塔格二长花岗岩(吴祥珂等, 2011)和香日德高Nb-Ta流纹岩(丁烁等, 2011)锆石U-Pb年龄分别为218±2Ma和212±2Ma,两者都具有非常小的εNd(t)变化范围(-2到-3),并认为是在古特提斯洋闭合时幔源岩浆和地壳组分的混合作用形成的。本文早侏罗世花岗岩成因类型为I型,源区为火成岩(图 7);并且锆石的Eu异常较小,指示弱或无斜长石分离结晶作用(图 6a);岩浆温度小于800℃(图 3b),为俯冲-碰撞作用的产物;另外早侏罗世花岗岩受热液影响弱,暗示俯冲作用已经结束(图 5)。此外,早侏罗世花岗岩锆石均具有Nb和Ta富集(表 1-表 5),与香日德高Nb-Ta流纹岩相似,指示幔源高Nb-Ta岩浆的混入。综合以上的讨论,可以总结出以下地质过程:随着三叠纪晚期羌塘和昆仑-柴达木碰撞造山,地壳加厚,幔源岩浆侵入到下地壳,高温基性岩浆使地壳物质熔融形成长英质岩浆,在地壳深部(下地壳)长英质岩浆与幔源基性岩浆已一定比例混合(谌宏伟等, 2005; 丁烁等, 2011; 刘成东等, 2002; 罗照华等, 1999; 莫宣学等, 2007)。而晚三叠世花岗岩是长英质岩浆上升,并经过斜长石分离结晶后形成的(Zhang et al., 2012a),其岩浆作用晚期可能有岩浆混合作用;然而,早侏罗世花岗岩是经过长英质岩浆与幔源基性岩浆混合后形成(丁烁等, 2011)。

5 结论

我们通过激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)方法对5件东昆仑晚志留世二长花岗岩和晚二叠世-早侏罗世花岗岩样品中锆石进行微量元素分析,得出5件样品中大部分锆石的Th/U>0.5, 为典型的未变质岩浆锆石;锆石结晶温度(TZr)为600~800℃之间,为俯冲-碰撞作用的产物;根据锆石中Hf值的变化范围,得出早侏罗世(1007)花岗岩岩浆演化历史最长,早侏罗世(1008)花岗岩岩浆演化历史最短,其他的在两者之间;又根据源区有无斜长石分离结晶,得出晚志留世二长花岗岩、晚二叠世花岗岩和晚三叠世花岗岩岩浆源区深度 < 35km,早侏罗世花岗岩岩浆源区深度>35km,然而,早侏罗世(1007)花岗岩向上运移比较大。另外,对5件样品锆石进行U/Yb-Y、U/Yb-Hf图解(判别锆石来源)投图,得出所有样品都来自陆壳;然而,从(Nb/Pb)N-Eu/Eu*图解得出5件样品岩浆成因类型不同:晚志留世二长花岗岩和晚二叠世花岗岩成因类型为S-型;晚三叠世花岗岩成因类型为S-型和I-型的过渡类型;早侏罗世花岗岩成因类型为I-型。

结合东昆仑山脉5件花岗岩样品中锆石年代学数据和前人研究成果,我们得出以下结论:

(1)晚志留世二长花岗岩的成因与一个小型洋盆的俯冲作用有关,其岩浆源区是地壳浅部的沉积盖层;

(2)晚二叠世花岗岩可能在古特提斯洋向北俯冲过程中由于幔源岩浆的底侵作用使浅层地壳发生熔融形成;

(3)晚三叠世-早侏罗世花岗岩在羌塘和昆仑-柴达木同碰撞过程形成。

致谢 中国科学院青藏高原研究所岳雅慧和蔡福龙博士在数据测试和分析过程中给予了热情的帮助;文章撰写过程中得到了中国地质大学(北京)博士研究生韩中鹏、张宝森、许明、宁子杰和硕士研究生张佳伟和钱信禹等的帮助;两位审稿老师对文章提出了诸多宝贵的意见;在此一并致以最诚挚的感谢!
参考文献
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology , 192 (1-2) :59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Ballard JR, Palin MJ, Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce (Ⅳ)/Ce (Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology , 144 (3) :347–364. DOI:10.1007/s00410-002-0402-5
[] Barth AP, Wooden JL. 2010. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chemical Geology , 277 (1-2) :149–159. DOI:10.1016/j.chemgeo.2010.07.017
[] Belousova EA, Griffin WL, O'Reilly SY, Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology , 143 (5) :602–622. DOI:10.1007/s00410-002-0364-7
[] Bian QT, Li DH, Pospelov I, Yin LM, Li HS, Zhao DS, Chang CF, Luo XQ, Gao SL, Astrakhantsev O, Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences , 23 (4) :577–596. DOI:10.1016/j.jseaes.2003.09.003
[] Burnham AD, Berry AJ. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta , 95 :196–212. DOI:10.1016/j.gca.2012.07.034
[] Cavosie AJ, Valley JW, Wilde SA, Edinburgh Ion Microprobe F. 2006. Correlated microanalysis of zircon:Trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900Ma detrital grains. Geochimica et Cosmochimica Acta , 70 (22) :5601–5616. DOI:10.1016/j.gca.2006.08.011
[] Chen HW, Luo ZH, Mo XX, Liu CD, Ke S. 2005. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt. Geology in China , 32 (3) :386–395.
[] Chen HW, Luo ZH, Mo XX, Zhang XT, Wang J, Wang BZ. 2006. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications. Acta Petrologica et Mineralogica , 25 (1) :25–32.
[] Chen NS, Sun M, He L, Zhang KX, Wang GC. 2002. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen. Chinese Science Bulletin , 47 (13) :1130–1133. DOI:10.1360/02tb9253
[] Chen NS, Sun M, Wang QY, Zhao GC, Chen Q, Shu GM. 2007. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen:Records of multi-tectonometamorphic events. Chinese Science Bulletin , 52 (16) :2252–2263. DOI:10.1007/s11434-007-0299-5
[] Chen XH, Gehrels G, Yin A, Li L, Jiang RB. 2012. Paleozoic and mesozoic basement magmatisms of eastern Qaidam Basin, northern Qinghai-Tibet Plateau:LA-ICP-MS zircon U-Pb geochronology and its geological significance. Acta Geologica Sinica , 86 (2) :350–369. DOI:10.1111/j.1755-6724.2012.00665.x
[] Chen YX, Pei XZ, Li RB, Liu ZQ, Li ZC, Zhang XF, Chen GC, Liu ZG, Ding SP, Guo JF. 2011. Zircon U-Pb age of Xiaomiao Formation of Proterozoic in the eastern section of the east Kunlun Orogenic Belt. Geoscience , 25 (3) :510–521.
[] Claiborne LL, Miller CF, Wooden JL. 2010. Trace element composition of igneous zircon:A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology , 160 (4) :511–531. DOI:10.1007/s00410-010-0491-5
[] Claoué-Long JC, Compston W, Roberts J and Fanning CM. 1995. Two carboniferous ages:A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In:Geochronology Time Scales and Global Stratigraphic Correlation. SEPM Special Publication, 3-21
[] Dai JG, Wang CS, Hourigan J, Santosh M. 2013. Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet:Insights from U-Pb geochronology and (U-Th)/He thermochronology. Tectonophysics , 599 :97–106. DOI:10.1016/j.tecto.2013.04.005
[] Deng JF, Wu ZX, Yang JJ, Zhao HL, Liu HX, Lai SC, Di YJ. 1995. Crust-mantle petrological structure and deep processes along the Golmud-Ejin Qi Geoscience section. Chinese Journal of Geophysics , 38 (Suppl.2) :130–144.
[] Ding S, Huang H, Niu YL, Zhao ZD, Yu XH, Mo XX. 2011. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrologica Sinica , 27 (12) :3603–3614.
[] El-Bialy MZ, Ali KA. 2013. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600~614Ma) post-collisional Dokhan volcanics and Younger granites of SE Sinai, NE Arabian-Nubian Shield. Chemical Geology , 360-361 :54–73. DOI:10.1016/j.chemgeo.2013.10.009
[] Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology , 154 (4) :429–437. DOI:10.1007/s00410-007-0201-0
[] Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW. 2008. Ti-in-zircon thermometry:Applications and limitations. Contributions to Mineralogy and Petrology , 156 (2) :197–215. DOI:10.1007/s00410-008-0281-5
[] Fu B, Mernagh TP, Kita NT, Kemp AIS, Valley JW. 2009. Distinguishing magmatic zircon from hydrothermal zircon:A case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit, SE Australia. Chemical Geology , 259 :131–142. DOI:10.1016/j.chemgeo.2008.10.035
[] Gao XF, Xiao PX, Xie CR, Fan LY, Guo L, Xi RG. 2010. Zircon LA-ICP-MS U-Pb dating and geological significance of Bashierxi granite in the eastern Kunlun area, China. Geological Bulletin of China , 29 (7) :1001–1008.
[] Gao YB, Li WY. 2011. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantage, NW China:Constraints from petrology, chronology and geochemistry. Geochimica , 40 (4) :324–336.
[] Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ. 2007. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance. Geology , 35 (7) :643–646. DOI:10.1130/G23603A.1
[] Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ. 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology , 158 (6) :757–783. DOI:10.1007/s00410-009-0409-2
[] Guo ZF, Deng JF, Xu ZQ, Mo XX, Luo ZH. 1998. Late Palaeozoic Mesozoic intracontinental orogenic process and intermedate acidic igneous rocks from the Eastern Kunlun mountains of northwestern China. Geoscience , 12 (3) :344–352.
[] Harris NBW, Xu RH, Lewis CL, Hawkesworth CJ, Zhang YQ. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences , 327 (1594) :263–285. DOI:10.1098/rsta.1988.0129
[] Harrison TM, Watson EB, Aikman AB. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology , 35 (7) :635–638. DOI:10.1130/G23505A.1
[] Hinton RW, Upton BGJ. 1991. The Chemistry of zircon:Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochimica et Cosmochimica Acta , 55 (11) :3287–3302. DOI:10.1016/0016-7037(91)90489-R
[] Hoskin PWO, Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology , 28 (7) :627–630. DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
[] Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry , 53 (1) :27–62. DOI:10.2113/0530027
[] Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta , 69 (3) :637–648. DOI:10.1016/j.gca.2004.07.006
[] Hu JM, Meng QR, Shi YR, Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica , 21 (3) :867–880.
[] Hu Y, Niu YL, Li JY, Ye L, Kong JJ, Chen S, Zhang Y, Zhang GR. 2016. Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, northern Tibet Plateau. Lithos , 245 :205–222. DOI:10.1016/j.lithos.2015.05.004
[] Iizuka T, Horie K, Komiya T, Maruyama S, Hirata T, Hidaka H, Windley BF. 2006. 4.2Ga zircon xenocryst in an Acasta gneiss from northwestern Canada:Evidence for early continental crust. Geology , 34 (4) :245–248. DOI:10.1130/G22124.1
[] Ji WQ, Wu FY, Liu CZ, Chung SL. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D) , 52 :1240–1261. DOI:10.1007/s11430-009-0131-y
[] Kaczmarek MA, Müentener O, Rubatto D. 2008. Trace element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology , 155 (3) :295–312. DOI:10.1007/s00410-007-0243-3
[] Li BL, Sun FY, Yu XF, Qian Y, Wang G, Yang YQ. 2012. U-Pb dating and geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted basement and granitic belt. Acta Petrologica Sinica , 28 (4) :1163–1172.
[] Li N, Chen YJ, Pirajno F, Gong HJ, Mao SD and Ni ZY. 2012. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:Implications for Mesozoic tectono-magmatic evolution. Lithos, 142-143:34-47
[] Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J, Jiang HA. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica , 28 (6) :1785–1807.
[] Liu CD, Zhang WQ, Mo XX, Luo ZH, Yu XH, Li SW, Zhao X. 2002. Features and origin of mafic microgranular enclaves in the Yuegelu granite in the Eastern Kunlun. Geological Bulletin of China , 21 (11) :739–744.
[] Liu CD, Mo XX, Luo ZH, Yu XH, Chen HW, Li SW, Zhao X. 2004. Mixing events between the crust-and mantle-derived magmas in Eastern Kunlun:Evidence from zircon SHRIMP Ⅱ chronology. Chinese Science Bulletin , 49 (8) :828–834.
[] Liu HQ, Xu YG, He B. 2013. Implications from zircon-saturation temperatures and lithological assemblages for Early Permian thermal anomaly in Northwest China. Lithos , 182-183 :125–133. DOI:10.1016/j.lithos.2013.09.015
[] Liu YJ, Genser J, Neubauer F, Jin W, Ge XH, Handler R, Takasu A. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics , 398 (3-4) :199–224. DOI:10.1016/j.tecto.2005.02.007
[] Long XP, Jin W, Ge WC, Yu N. 2006. Zircon U-Pb geochronology and geological implications of the granitoids in Jinshuikou, East Kunlun, NW China. Geochimica , 35 (4) :367–376.
[] Lu L, Wu ZH, Hu DG, Barosh PJ, Hao S, Zhou CJ. 2010. Zircon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains. Acta Petrologica Sinica , 26 (4) :1150–1158.
[] Lu SN.2002. Precambrian Geology in Northern Tibetan Plateau. Beijing: Geological Publishing House : 1 -125.
[] Luo ZH, Deng JF, Cao YQ, Guo ZF, Mo XX. 1999. On Late Paleozoic-Early Mesozoic volcanism and regional tectonic evolution of Eastern Kunlun, Qinghai Province. Geoscience , 13 (1) :51–56.
[] Luo ZH, Ke S, Cao YQ, Deng JF, Chen HW. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun. Geological Bulletin of China , 21 (6) :292–297.
[] McDonough WF, Sun SS. 1995. The composition of the earth. Chemical Geology , 120 (3-4) :223–253. DOI:10.1016/0009-2541(94)00140-4
[] Miller CF, McDowell SM, Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology , 31 (6) :529–532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[] Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM, Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities , 13 (3) :403–414.
[] Nikitina LP, Marin YB, Skublov SG, Korolev NM, Saltykova AK, Zinchenko VN, Chissupa HM. 2012. U-Pb age and geochemistry of zircon from mantle xenoliths of the Katoka and Kat-115 kimberlitic pipes (Republic of Angola). Doklady Earth Sciences , 445 (1) :840–844. DOI:10.1134/S1028334X12070069
[] Orejana D, Villaseca C, Armstrong RA, Jeffries TE. 2011. Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths:Constraints on the tectonothermal evolution of the lower crust under central Spain. Lithos , 124 (1-2) :103–116. DOI:10.1016/j.lithos.2010.10.011
[] Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS, Valley JW. 2007. Zircons from kimberlite:New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochimica et Cosmochimica Acta , 71 (15) :3887–3903. DOI:10.1016/j.gca.2007.04.031
[] Peck WH, Valley JW, Wilde SA, Graham CM. 2001. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons:Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta , 65 (22) :4215–4229. DOI:10.1016/S0016-7037(01)00711-6
[] Peng B, Li BL, Zhao TF, Wang C, Chang JJ, Wang GZ, Yang WL. 2016. Identification of A-type granite in the southeastern Kunlun Orogen, Qinghai Province, China:Implications for the tectonic framework of the Eastern Kunlun Orogen. Geological Journal . DOI:10.1002/gj.2775
[] Pettke T, Audétat A, Schaltegger U, Heinrich CA. 2005. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole granite (NSW, Australia):Part Ⅱ:Evolving zircon and thorite trace element chemistry. Chemical Geology , 220 (3-4) :191–213. DOI:10.1016/j.chemgeo.2005.02.017
[] Rayner N, Stern RA, Carr SD. 2005. Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contributions to Mineralogy and Petrology , 148 (6) :721–734. DOI:10.1007/s00410-004-0633-8
[] Ren JH, Liu YQ, Feng Q, Han WZ, Gao H, Zhou DW. 2009. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica , 25 (5) :1135–1145.
[] Roger F, Jolivet M, Malavieille J. 2008. Tectonic evolution of the Triassic fold belts of Tibet. Comptes Rendus Geoscience , 340 (2-3) :180–189. DOI:10.1016/j.crte.2007.10.014
[] Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present:A synthesis. Journal of Asian Earth Sciences , 39 (4) :254–269. DOI:10.1016/j.jseaes.2010.03.008
[] Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology , 184 (1-2) :123–138. DOI:10.1016/S0009-2541(01)00355-2
[] Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology , 249 (1-2) :1–35. DOI:10.1016/j.chemgeo.2007.11.005
[] Sun Y, Pei XZ, Ding SP, Li RB, Feng JY, Zhang YF, Li ZC, Chen YX, Zhang XF, Chen GC. 2009. Halagatu Magma mixing granite in the East Kunlun Mountains:Evidence from zircon U-Pb dating. Acta Geologica Sinica , 83 (7) :1000–1010.
[] Trail D, Watson EB, Tailby ND. 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature , 480 (7375) :79–82. DOI:10.1038/nature10655
[] Trail D, Watson EB, Tailby ND. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta , 97 :70–87. DOI:10.1016/j.gca.2012.08.032
[] Van Lichtervelde M, Melcher F, Wirth R. 2009. Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. American Mineralogist , 94 (4) :439–450. DOI:10.2138/am.2009.2952
[] Van Lichtervelde M, Holtz F, Dziony W, Ludwig T, Meyer HP. 2011. Incorporation mechanisms of Ta and Nb in zircon and implications for pegmatitic systems. American Mineralogist , 96 (7) :1079–1089. DOI:10.2138/am.2011.3650
[] Wang GC, Chen NS, Zhu YH, Zhang KX. 2003. Late Caledonian ductile thrusting deformation in the Central East Kunlun Belt, Qinghai, China and its significance:Evidence from geochronology. Acta Geologica Sinica , 77 (3) :311–319. DOI:10.1111/acgs.2003.77.issue-3
[] Wang H, Rahn M, Zhou J, Tao X. 2013. Tectonothermal evolution of the Triassic flysch in the Songpan-Garzê orogen, eastern Tibetan Plateau. Tectonophysics , 608 :505–516. DOI:10.1016/j.tecto.2013.08.036
[] Wang Q, Zhu DC, Zhao ZD, Guan Q, Zhang XQ, Sui QL, Hu ZC, Mo XX. 2012. Magmatic zircons from I-, S-and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences , 53 :59–66. DOI:10.1016/j.jseaes.2011.07.027
[] Wang X, Griffin WL, Chen J. 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal , 44 (1) :65–72. DOI:10.2343/geochemj.1.0043
[] Watson EB, Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science , 308 (5723) :841–844. DOI:10.1126/science.1110873
[] Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology , 151 (4) :413–433. DOI:10.1007/s00410-006-0068-5
[] Weyer S, Münker C, Rehkämper M, Mezger K. 2002. Determination of ultra-low Nb, Ta. Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chemical Geology , 187 (3-4) :295–313. DOI:10.1016/S0009-2541(02)00129-8
[] Whitehouse MJ, Kamber BS. 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation. Earth and Planetary Science Letters , 204 (3-4) :333–346. DOI:10.1016/S0012-821X(02)01000-2
[] Wu CL, Yang JS, Wooden JL, Shi RD, Chen SY, Meibom A, Mattinson C. 2004. Zircon U-Pb SHRIMP dating of the Yematan batholith in Dulan, North Qaidam, NW China. Chinese Science Bulletin , 49 (16) :1736–1740. DOI:10.1007/BF03184308
[] Wu FY, Li XH, Yang JH, Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica , 23 (6) :1217–1238.
[] Wu XK, Meng FC, Xu H, Cui MH. 2011. Zircon U-Pb dating, geochemistry and Nd-Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the eastern Kunlun. Acta Petrologica Sinica , 27 (11) :3380–3394.
[] Wu ZH, Hu DG, Song B, Zhou CJ. 2005. Ages and thermo-chronological evolution of the North Xidatan granite in the South Kunlun Mts. Acta Geologica Sinica , 79 (5) :628–635.
[] Xia QX, Zheng YF, Hu ZC. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen:Implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos , 114 (3-4) :385–412. DOI:10.1016/j.lithos.2009.09.013
[] Xiong FH, Ma CQ, Zhang JY, Liu B. 2011a. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrologica Sinica , 27 (11) :3350–3364.
[] Xiong FH, Ma CQ, Zhang JY, Liu B, Jiang HA, Huang J. 2011b. Zircon LA-ICP-MS U-Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance. Geological Bulletin of China , 30 (8) :1196–1202.
[] Yang JS, Robinson PT, Jiang CF, Xu ZQ. 1996. Ophiolites of the Kunlun mountains, China and their tectonic implications. Tectonophysics , 258 (1-4) :215–231. DOI:10.1016/0040-1951(95)00199-9
[] Yang JS, Shi RD, Wu CL, Wang XB, Robinson PT. 2009. Dur'ngoi ophiolite in East Kunlun, Northeast Tibetan plateau:Evidence for paleo-Tethyan suture in Northwest China. Journal of Earth Science , 20 (2) :303–331. DOI:10.1007/s12583-009-0027-y
[] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences , 28 :211–280. DOI:10.1146/annurev.earth.28.1.211
[] Zhang JJ, Santosh M, Wang XX, Guo L, Yang XY, Zhang B. 2012b. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research , 21 (4) :939–960. DOI:10.1016/j.gr.2011.11.004
[] Zhang JY, Ma CQ, Xiong FH, Liu B. 2012a. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geological Magazine , 149 (5) :892–908. DOI:10.1017/S0016756811001142
[] Zhang YL, Hu DG, Shi YG, Lu L. 2010a. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China. Geological Bulletin of China , 29 (11) :1614–1618.
[] Zhang YL, Zhang XJ, Hu DG, Shi YR, Lu L. 2010b. SHRIMP zircon U-Pb ages of rhyolite from the Naij Tal Group in the East Kulun Orogenic Belt. Journal of Geomechanics , 16 (1) :21–27, 50.
[] Zheng JP, Griffin WL, O'Reilly SY, Zhang M, Pearson N. 2006. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth and Planetary Science Letters , 247 (1-2) :130–142. DOI:10.1016/j.epsl.2006.05.011
[] Zhou JC, Hu DG, Barosh PJ, Wu ZH, Zhang YQ, Geng JZ, Hao S, Ni JY, Zhang YL. 2010. Zircon U-Pb dating of the rhyolite-dacite porphyry in the Sandaowan of East Kunlun mountains and its geological significance. Journal of Geomechanics , 16 (1) :28–35.
[] Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research , 23 (4) :1429–1454. DOI:10.1016/j.gr.2012.02.002
[] Zhu YH, Lin QX, Jia CX, Wang GC. 2006. SHRIMP zircon U-Pb age and significance of Early Paleozoic volcanic rocks in East Kunlun orogenic belt, Qinghai Province, China. Science in China (Series D) , 49 (1) :88–96. DOI:10.1007/s11430-004-5317-8
[] 谌宏伟, 罗照华, 莫宣学, 刘成东, 柯珊.2005. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制. 中国地质 , 32 (3) :386–395.
[] 谌宏伟, 罗照华, 莫宣学, 张雪亭, 王瑾, 王秉璋.2006. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义. 岩石矿物学杂志 , 25 (1) :25–32.
[] 陈能松, 何蕾, 孙敏, 王国灿, 张克信.2002. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定. 科学通报 , 47 (8) :628–631.
[] 陈有炘, 裴先治, 李瑞保, 刘战庆, 李佐臣, 张晓飞, 陈国超, 刘智刚, 丁仨平, 郭俊锋.2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质 , 25 (3) :510–521.
[] 邓晋福, 吴宗絮, 杨建军, 赵海玲, 刘厚祥, 赖绍聪, 狄永军.1995. 格尔木-额济纳旗地学断面走廊域地壳-上地幔岩石学结构与深部过程. 地球物理学报 , 38 (S2) :130–144.
[] 丁烁, 黄慧, 牛耀龄, 赵志丹, 喻学惠, 莫宣学.2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因. 岩石学报 , 27 (12) :3603–3614.
[] 高晓峰, 校培喜, 谢从瑞, 范立勇, 过磊, 奚仁刚.2010. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报 , 29 (7) :1001–1008.
[] 高永宝, 李文渊.2011. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因. 地球化学 , 40 (4) :324–336.
[] 郭正府, 邓晋福, 许志琴, 莫宣学, 罗照华.1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质 , 12 (3) :344–352.
[] 胡健民, 孟庆任, 石玉若, 渠洪杰.2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报 , 21 (3) :867–880.
[] 李碧乐, 孙丰月, 于晓飞, 钱烨, 王冠, 杨延乾.2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报 , 28 (4) :1163–1172.
[] 刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安.2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报 , 28 (6) :1785–1807.
[] 刘成东, 张文秦, 莫宣学, 罗照华, 喻学惠, 李述为, 赵欣.2002. 东昆仑约格鲁岩体暗色微粒包体特征及成因. 地质通报 , 21 (11) :739–744.
[] 龙晓平, 金巍, 葛文春, 余能.2006. 东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义. 地球化学 , 35 (4) :367–376.
[] 陆露, 吴珍汉, 胡道功, BaroshPJ, 郝爽, 周春景.2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义. 岩石学报 , 26 (4) :1150–1158.
[] 陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社 : 1 -125.
[] 罗照华, 邓晋福, 曹永清, 郭正府, 莫宣学.1999. 青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化. 现代地质 , 13 (1) :51–56.
[] 罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟.2002. 东昆仑印支晚期幔源岩浆活动. 地质通报 , 21 (6) :292–297.
[] 莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华.2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报 , 13 (3) :403–414.
[] 任军虎, 柳益群, 冯乔, 韩文中, 高辉, 周鼎武.2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报 , 25 (5) :1135–1145.
[] 孙雨, 裴先治, 丁仨平, 李瑞保, 冯建赟, 张亚峰, 李佐臣, 陈有炘, 张晓飞, 陈国超.2009. 东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据. 地质学报 , 83 (7) :1000–1010.
[] 吴福元, 李献华, 杨进辉, 郑永飞.2007. 花岗岩成因研究的若干问题. 岩石学报 , 23 (6) :1217–1238.
[] 吴祥珂, 孟繁聪, 许虹, 崔美慧.2011. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成. 岩石学报 , 27 (11) :3380–3394.
[] 吴珍汉, 胡道功, 宋彪, 周春景.2005. 昆仑山南部西大滩盆北花岗岩的年龄与热历史. 地质学报 , 79 (5) :628–635.
[] 熊富浩, 马昌前, 张金阳, 刘彬.2011a. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报 , 27 (11) :3350–3364.
[] 熊富浩, 马昌前, 张金阳, 刘彬, 蒋红安, 黄坚.2011b. 东昆仑造山带白日其利辉长岩体LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报 , 30 (8) :1196–1202.
[] 张耀玲, 胡道功, 石玉若, 陆露.2010a. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义. 地质通报 , 29 (11) :1614–1618.
[] 张耀玲, 张绪教, 胡道功, 石玉若, 陆露.2010b. 东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄. 地质力学学报 , 16 (1) :21–27, 50.
[] 周春景, 胡道功, BaroshPJ, 吴珍汉, 张永清, 耿建珍, 郝爽, 倪晋宇, 张耀玲.2010. 东昆仑三道湾流纹英安斑岩锆石U-Pb年龄及其地质意义. 地质力学学报 , 16 (1) :28–35.