岩石学报  2016, Vol. 32 Issue (12): 3753-3780   PDF    
敦煌地块南部古生代花岗岩地球化学、锆石U-Pb定年及Hf同位素特征研究
王楠1,2,3, 吴才来2, 马昌前3, 雷敏2, 郭文峰2, 张昕2, 陈红杰2     
1. 中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室, 北京 100037 ;
2. 中国地质科学院地质研究所, 中国地质调查局大陆动力学研究中心, 北京 100037 ;
3. 中国地质大学地球科学学院, 地质过程与矿产资源国家重点实验室, 武汉 430074
摘要: 敦煌地块出露有大量古生代花岗岩,对这些花岗岩的研究可以更深入的了解敦煌地块的构造演化及其地球动力学意义。本文对敦煌地块南部的安盆沟复式花岗岩体和小草湖花岗岩体进行了岩相学、地球化学、锆石U-Pb年代学和Hf同位素的研究。研究结果表明:(1)安盆沟岩体岩石组合为正长花岗岩-花岗岩,其中正长花岗岩侵位于早古生代(431Ma),花岗岩侵位于泥盆纪(~360Ma)和石炭纪(~340Ma);小草湖岩体主要为似斑状花岗岩,侵位时代为石炭纪(340Ma)。(2)安盆沟早古生代正长花岗岩的εHft)为-11.7到-6.3,tDM2为1.8~2.2Ga,而晚古生代花岗岩的εHft)为-12.3到-5.5,tDM2为1.7~2.1Ga,二者Hf同位素特征相似,推测源岩均为古元古代-中元古代时期的含泥质成分的(变)砂质岩。小草湖似斑状花岗岩为加厚下地壳部分熔融成因的埃达克质岩石,εHft)变化于-16.7至-4.9,tDM2变化于1.8~2.4Ga之间,源岩为古元古代古老地壳物质。两个岩体的部分源岩可能与Columbia超大陆的汇聚和裂解有关。(3)安盆沟正长花岗岩、花岗岩和小草湖似斑状花岗岩的残留相分别为麻粒岩、角闪岩和麻粒岩-角闪榴辉岩,反映了形成深度和变质级别的不同。(4)敦煌地块内的早古生代造山活动结束时间明显晚于中央造山带,并且早古生代造山活动以及早-晚古生代花岗岩与北侧的天山-北山造山带存在时空上的对应关系,敦煌地块可能在古生代期间卷入了中亚造山带的造山活动中。
关键词: 敦煌地块     花岗岩体     地球化学     U-Pb年代学     Hf同位素特征     构造意义    
Geochemistry, zircon U-Pb geochronology and Hf isotopic characteristics for Granites in southern Dunhuang block
WANG Nan1,2,3, WU CaiLai2, MA ChangQian3, LEI Min2, GUO WenFeng2, ZHANG Xin2, CHEN HongJie2     
1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China ;
2. Centre for Continental Dynamics, China Geological Survey, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ;
3. State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Abstract: Numerous Paleozoic granitoids emplaced in Dunhuang block. Aiming to better understand the tectonic evolution of Dunhuang block and the geodynamic significance, in this paper, Anpengou composite granites and Xiaocaohu granite in southern Dunhuang block were chosen to study by means of petrography, geochemistry, zircon U-Pb chronology and Hf isotopic analyses. The results show that:(1) the two granites had different rock assemblage types. Anpengou composite granites were mainly composed of Early Paleozoic syenogranite emplaced during the Silurian period (431Ma) and granite emplaced during the Devonian period (~360Ma) and the Carboniferous period (~340Ma), while Xiaocaohu porphyritic granite was emplaced during the Carboniferous period (~340Ma). (2) Both Anpengou syenogranite and granite showed S-type granite features and similar Hf isotopic characteristics, with εHf(t) ranging from -11.7 to -6.3 and -12.3 to -5.5, and two-stage model age was varied in 1.8~2.2Ga and 1.7~2.1Ga, respectively. Both source rocks of the Early Paleozoic syenogranite and the Late Paleozoic granite derived from meta-greywacke with part of metapelitic materials of Paleoproterozoic to Mesoproterozoic. Xiaocaohu porphyritic granite showed features of adakitic rocks and was generated by partial melting of thickened crust, with εHf(t) ranging from -16.7 to -4.9 and two-stage model age was varied in 1.8~2.4Ga, indicating that the source rocks of Xiaocaohu porphyritic granite derived from the Paleoproterozoic crustal materials. In addition, some of the source rocks of the two granites may be related to the assemblage and break-up of Columbia supercontinent. (3) The residual rocks of Anpengou syneogranite, Anpengou granite and Xiaocaohu porphyritic granite were granulite, amphibolite and granulite-amphibole eclogite, which reflected the differences in the formation depth and grade of metamorphism. (4) The Early Paleozoic orogenic movement of Dunhuang block ended much later than the Central Orogenic Belt, but exhibited closely temporal-spatial coupling retionship with the Tianshan-Beishan orogenic belt in timing limitation and the distribution of the Paleozoic granites. Therefore, we proposed that the Dunhuang block was involved in the orogenic event of the Central Asian Orogenic Belt in both Early Paleozoic and Late Paleozoic.
Key words: Dunhuang block     Granites     Geochemistry     U-Pb chronology     Hf isotopic characteristics     Tectonic significance    
1 引言

花岗岩是大陆地壳的重要组成部分,花岗岩的形成通常被认为是壳幔相互作用的结果,其中多数是通过地壳岩石的部分熔融而成,仅有少量直接源于演化的地幔岩浆。此外,花岗岩的成因与造山带的形成和演化有着密切的联系,可以通过多种地质过程来实现地壳的水平和垂直增生。因此,花岗岩的研究对理解大陆地壳生长、演化,大陆内部壳幔相互作用和了解大陆地壳内部结构及物质组成具有重要意义(Castro et al.,19911995王涛,2000Rudnick and Gao,2003肖庆辉等,2007张旗等,20072008)。近年,埃达克质花岗岩已成为岩石学的一个热点研究(Rapp et al.,1991Moyen,2009Gao et al.,2004Martin et al.,2005)。埃达克岩最早被认为是年轻的(≤25Ma)的热的俯冲洋片熔融而成(Defant and Drummond,1990),并被认为是具特殊地球化学特征和构造成因意义的火山岩和侵入岩:(1)SiO2≥56%,Al2O3≥15%,通常MgO <3%;(2)高Sr、Sr/Y和La/Yb,低Y(≤18×10-6)和Yb(≤1.9×10-6);(3)亏损Nb、Ta和Ti等高场强元素(HFSE)和具有亏损同位素。这些板片熔体的地球化学特征要求压力能够使石榴石±角闪石稳定存在(Kay,1978Defant and Drummond,1990Rapp et al.,1991Peacock et al.,1994Martin,1999)。

敦煌地块位于阿尔金主断裂西北侧,位于中亚造山带、塔里木克拉通、特提斯构造域和华北克拉通的连接部位,而对于其归属问题,至今仍存争议,部分学者认为敦煌地块和阿拉善地块同属于华北克拉通(张振法等,1997董国安等,2007),但目前多数学者认为敦煌地块属塔里木地块变质基底,与华北克拉通相互分离(梅华林等,1998许志琴等,1999孟繁聪等,2011)。目前已有的研究工作主要集中于敦煌地块中前寒武纪变质基底的研究(梅华林,1998Zhang et al.,2013Zong et al.,2013Zhao et al.,2015a),但近年来的研究表明,敦煌地块中同样出露有早古生代造山活动引发的石榴角闪岩、高压麻粒岩和花岗岩(孟繁聪等,2011Zong et al.,2012He et al.,2014Wang et al.,2014Zhao et al.,2016),而对花岗岩浆作用的研究工作仅见党河水库地区花岗岩体和红柳峡地区花岗岩(张志诚等,2009Wang et al.,20142016)。此外还有晚泥盆世斜长花岗岩(365~363Ma)和石炭纪埃达克岩(335Ma)的报道,并分别被认为是古亚洲洋南缘弧后盆地扩张和陆陆俯冲(地壳加厚)向陆内伸展体制转换期间加厚下地壳部分熔融的产物(朱涛等,2014赵燕等,2015)。但总体而言,敦煌地块内的古生代构造-热事件的相关研究极其薄弱,本文将对敦煌地块南部的安盆沟花岗复式岩体和小草湖花岗岩体进行岩相学、地球化学、锆石U-Pb年代学以及Hf同位素特征的研究,以期进一步加强对敦煌地块古生代花岗岩浆作用的理解。

2 地质背景及岩相学

敦煌地块北侧为北山造山带,西北为且末-星星峡断裂,西侧为塔里木克拉通,东南为阿尔金断裂和祁连造山带(图 1b)。敦煌地块南部发育有两条与阿尔金主断裂近平行的断裂,为三危山北缘断裂和南截山北缘断裂(杨建等,2010)。敦煌地块主要由敦煌群组成,自下向上划分为4个岩组(甘肃省地质局,1974a孟繁聪等,2011):主要由条痕状-眼球状混合岩、角闪黑云斜长片麻岩和石榴黑云片岩、石英岩及少量透辉石岩、大理岩透镜体组成;第二岩组主要为不同成分的大理岩夹少量石榴黑云石英片岩;第三岩组主要为含榴二云母石英片岩、白云母石英片岩和黑云斜长片麻岩,局部含石榴黑云斜长角闪岩;第四岩组为黑云石英片岩、黑云母变粒岩、黑云斜长片麻岩等,局部具有混合岩化现象。此外,敦煌地块还出露有早古生代花岗岩、晚古生代埃达克质花岗岩、斜长花岗岩和中生代基性岩墙(张志诚等,2009冯志硕等,2010朱涛等,2014赵燕等,2015)。

① 甘肃省地质局.1974a. 1:20万敦煌幅区域地质调查报告

图 1 敦煌地块南部地质简图(b,据张建新等,2010;c,据甘肃省地质局,1974b) Fig. 1 Geological sketch map of southern Dunhuang block(b,after Zhang et al.,2010)

甘肃省地质局.1974b. 1:20万别盖幅区域地质图

安盆沟地区的花岗岩体空间上分为两部分,西侧的部分位于敦煌地块的安盆沟、红柳沟和红沟地区,东侧的部分位于金场沟地区,且两部分均为具相同岩石组合的复式岩体。两个岩体均呈NW向长条状展布,出露于前寒武纪变质基底中,围岩为敦煌群片岩、片麻岩等,北侧为新生代沉积物。岩 体内部发育有NW向断裂及同走向的辉绿玢岩脉。安盆沟岩体的岩性可以分为两类,其一为正长花岗岩,肉红色,中-粗粒结构,块状构造(图 2a)。另一类为花岗岩,块状构造、灰白-灰红色,具球状风化,局部具片麻状构造。岩体边缘与围岩接触带附近发育两组节理以及大量石英脉,两组节理走向分别为30°和100°,石英脉走向多为0°左右,岩体与围岩接触带处发育有眼球状钾长石斑晶,疑为变质重结晶产物,有暗色矿物聚集现象,同时伴有定向结构(图 2b)。

图 2 安盆沟岩体和小草湖岩体野外(a-c)及镜下(d-f)照片 (a)安盆沟正长花岗岩野外;(b)安盆沟花岗岩野外;(c)小草湖岩体野外;(d)安盆沟正长花岗岩镜下Kfs+Qz+Pl+Bt+Ms;(e)安盆沟花岗岩镜下Kfs+Pl+Qz+Bt+Ms;(f)小草湖似斑状花岗岩Kfs+Pl+Qz+Bt. Kfs-钾长石;Pl-斜长石; Qz-石英;Bt-黑云母;Ms-白云母(据Whitney and Evans,2010) Fig. 2 Outcrops(a-c)and microphotographs(d-f)of Anpengou granite and Xiaocaohu granite (a)outcrop of Anpengou syenogranite;(b)outcrop of Anpengou granite;(c)outcrop of Xiaocaohu granite;(d)microphotograph of Anpengou syenogranite,consisting of Kfs,Qz,Pl,Bt and Ms;(e)microphotograph of Anpengou granite,consisting of Kfs,Pl,Qz,Bt and Ms;(f)microphotograph of Xiaocaohu Porphyritic granite,consisting of Kfs,Pl,Qz and Bt. Kfs-K-feldspar;Pl-plagioclase;Qz-quartz;Bt-biotite;Ms-muscovite(after Whitney and Evans,2010)

正长花岗岩主要造岩矿物为钾长石+石英+斜长石+黑云母。钾长石自形-半自形,具格子双晶;斜长石可见聚片双晶;石英波状消光,可见交代钾长石和斜长石的现象;黑云母有定向,以及绿泥石化;另外,可见白云母,轻微定向;金属矿物常沿矿物之间缝隙分布(图 2d)。花岗岩主要造岩矿物为钾长石+斜长石+石英+黑云母。钾长石具格子双晶,有高岭土化,还可见条纹长石;斜长石呈自形,可见聚片双晶和简单双晶;石英滴状交代钾长石;黑云母片状、条带状,Ⅱ级干涉色(图 2e)。

小草湖岩体位于阿尔金主断裂北侧。西侧为新生代沉积物,其余为前寒武纪变质基底,主要为敦煌群深灰色片麻岩和灰白色大理岩、片麻岩。岩体与围岩接触带可见混合岩化花岗岩。根据野外观察,该岩体有两种岩性,为似斑状二长花岗岩和似斑状花岗岩。似斑状二长花岗岩为灰白-肉红色,块状。似斑状花岗岩为肉红色,块状构造(图 2c)。根据镜下观察,二者岩相学特征基本一致,不同之处在于似斑状二长花岗岩斜长石含量高于似斑状花岗岩,而钾长石含量低于似斑状花岗岩。似斑状二长花岗岩和似斑状花岗岩主要造岩矿物为钾长石+斜长石+石英+黑云母,斑晶为钾长石,基质为中粒斜长石、钾长石、石英和黑云母。镜下可见钾长石具格子双晶和简单双晶,另可见钾长石斑晶内部含斜长石,构成条纹长石;轻度高岭土化,内部有石英的滴状交代现象;斜长石多聚片双晶,双晶纹较细;除交代钾长石外,石英还与钾长石共同构成文象结构;黑云母单偏光下为浅绿色,正交偏光下为Ⅱ-Ⅲ级黄、绿色(图 2f)。

3 分析方法 3.1 LA-ICP-MS 锆石 U-Pb定年

锆石分选工作由河北廊坊区调院完成,样品破碎至80~120目,经淘洗粉尘、去除磁性矿物、重液分选等程序,在双目镜下人工挑出锆石;由中国地质科学院地质研究所大陆动力学实验室完成锆石与标样环氧树胶浇铸,制成薄片、抛光,拍透反射照片及阴极发光照片等程序。测试分析在中国地质科学院地质研究所大陆构造与动力学实验室完成,锆石U-Pb定年工作所用的MC-ICP-MS为美国Thermo Fisher公司最新一代Neptune Plus型多接收等离子体质谱仪。采用的激光剥蚀系统为美国Coherent公司生产的GeoLasPro 193nm。激光剥蚀所用斑束直径为32μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。结合锆石反射、透射照片,避开锆石内部裂隙和包裹体。实验标样为91500,206Pb/238Pb年龄的加权平均值误差为±1σ。详细实验测试过程可参见侯可军等(2009)。数据处理采用ICPMSDataCal程序(Liu et al.,2010),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot(Ludwig,2003)程序获得。

3.2 主、微量元素分析

本项研究所选新鲜样品的岩石粉末碎样、化学全分析工作分别在河北廊坊区调院和河北廊坊物化探研究所(实验室)完成,氧化物用X荧光光谱仪3080E测试,执行标准分别为:Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、MnO、Fe2O3按GB/T 14506.28—1993标准;H2O+按GB/T 14506.2—1993标准;CO2按GB 9835—1988标准;LOI按LY/T 1253—1999标准。分析的相对标准偏差小于2%~8%。稀土元素La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y和微量元素Cu、Pb、Th、U、Hf、Ta、Sc、Cs、V、Co、Ni用等离子质谱(ICP-MS)Excell测试,执行标准为DZ/T0223—2001,样品前处理过程和分析流程见Qi et al.(2000)。微量元素Sr、Ba、Zn、Rb、Nb、Zr、Ga用X荧光光谱仪2100测试,执行JY/T016—1996标准。分析精度大多数元素可达到10-8,少量元素为10-6(Zr、Ba)和10-7(Hf、Nb),其相对标准偏差小于10%。

3.3 LA-ICP-MS Hf同位素

锆石Hf同位素的分析是在前述锆石U-Pb同位素基础上完成的,测试在中国地质科学院地质研究所大陆构造与动力学实验室Neptune Plus型多接收等离子质谱和GeoLasPro 193nm激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用He作为剥蚀物质载气,根据锆石大小,剥蚀直径采用44μm,测定时使用锆石国际标样GJ-1作为参考物质。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ-1的176Hf/177Hf 测试加权平均值分别为0.282007±0.000025(2σ)。计算初始176Hf/177Hf时,Lu的衰变常数采用1.865×10-11a-1(Scherer et al.,2001),εHf(t)值的计算时采用球粒陨石Hf同位素值176Lu/177Hf =0.0336,176Hf/177Hf=0.282785(Bouvier et al.,2008)。在Hf的地幔模式年龄计算中,亏损地幔176Hf/177Hf现在值采用0.28325,176Lu/177Hf采用0.0384(Griffin et al.,2000),地壳模式年龄计算时采用平均地壳的176Lu/177Hf=0.015(Griffin et al.,2002)。

4 分析结果 4.1 锆石U-Pb年代学

安盆沟地区正长花岗岩与花岗岩的年代学特征明显不同。正长花岗岩(14CL126-3和14CL156-3)在CL图像中多呈短柱状,极少数为长柱状。以14CL126-3作为正长花岗岩代表,该样品的锆石多呈灰白色,少量灰黑色,大部分锆石的长度在80~150μm之间,长宽比为1.2:1~1.5:1,个别锆石颗粒如24,长宽比达到3:1,锆石内可见震荡环带(图 3a)。一般认为,锆石中某一区域的U、Th和REE等微量元素含量越高,对应的阴极发光图象越暗(Hanchar and Miller,1993Rubatto and Gebauer,2000Crofu et al.,2003)。Th含量为66×10-6~1459×10-6,U含量为76×10-6~2832×10-6,Th/U比值平均为0.73(表 1),可能为岩浆成因(吴元保和郑永飞,2004)。通过锆石内部的206Pb/238U进行年龄计算,加权平均年龄为431±5Ma(MSWD=0.28)(图 3a)。此外,测点4、17和18的U-Pb年龄分别为370Ma、384Ma和366Ma,可能反映了在泥盆纪发生了一定构造热事件,致使发生了铅丢失。

表 1 敦煌地块南部花岗岩体锆石LA-ICP-MS U-Th-Pb Table 1 LA-ICP-MS zircon U-Pb isotopic analyses for the samples from the granites in southern Dunhuang block

图 3 敦煌地块南部花岗岩体锆石阴极发光图像和谐和曲线图 实线和虚线分别代表LA-ICP-MS U-Pb定年和Hf同位素分析测点 Fig. 3 Cathodoluminescence(CL)images of representative zircon grains and concordia plots of the granites in southern Dunhuang block Solid and dashed circles indicate the locations of LA-ICP-MS U-Pb and Hf analyses,respectively

花岗岩中锆石基本为长柱状,灰黑色,长约100~180μm,长宽比约2:1~3:1,岩浆环带清晰(图 3b-d)。其中样品14CL129-3的Th含量为314×10-6~3755×10-6,U含量为653×10-6~6539×10-6,Th/U比值平均为0.57(表 1)。通过锆石内部的206Pb/238U进行年龄计算,加权平均年龄为360±3Ma(MSWD=1.5)(图 3b)。并且,附近的正长花岗岩中365~384Ma的锆石可能与此次岩浆事件有关。

样品14CL127-3中锆石Th含量介于244×10-6~1942×10-6,U含量介于631×10-6~11671×10-6,其Th/U比值平均为0.48(表 1)。通过锆石内部的206Pb/238U进行年龄计算,加权平均年龄为340±4Ma(MSWD=1.18)(图 3c)。

此外,样品14CL126-6中Th的含量为190×10-6~2728×10-6,U含量为348×10-6~7024×10-6,Th/U比值平均为0.47(表 1)。通过锆石内部的206Pb/238U进行年龄计算,年龄可分为明显两组(图 3d),两组的加权平均年龄分别为364±4Ma(MSWD=0.57)和337±3Ma(MSWD=0.083)。

小草湖岩体各样品(132-3、133-3、134-3和135-3)中锆石CL图像特征一致,晶形完好,晶棱、晶面清晰,灰黑色、呈长柱状,长约100μm左右,长宽比为2:1~4:1,可见环带,颜色较深(图 3e)。小草湖岩体中样品14CL133-3较为典型,其内部Th含量为179×10-6~3784×10-6,U含量为588×10-6~3563×10-6,Th/U比值平均为0.38,可能为岩浆成因(表 1)。根据锆石进行的206Pb/238U年龄计算表明,14CL133-3的加权平均年龄为340±3Ma(MSWD=1.4)(图 3e)。此外,其余样品加权年龄为338~344Ma,因此,以加权平均年龄340±3Ma作为小草湖岩体形成年龄。

4.2 地球化学特征

安盆沟正长花岗岩用于地球化学分析的样品编号为14CL126-2和14CL156-2,其SiO2含量为68.39%~74.50%,FeOT含量为1.60%~2.65%,MgO含量为0.23%~0.87%,Na2O含量为2.55%~2.80%,K2O含量为4.38%~4.84%,Na2O+K2O含量为6.93%~7.64%,Na2O/K2O比值均为0.58(表 2)。时代较晚的花岗岩样品编号为14CL126-5、14CL127-2、14CL128-2、14CL129-2和14CL157-2。其SiO2含量为73.47%~75.14%,FeOT含量为1.07%~1.38%,MgO含量为0.34%~0.49%,Na2O含量为3.26%~4.00%,K2O含量为4.35%~5.08%,Na2O+K2O含量为7.75%~8.36%,Na2O/K2O比值均为0.64~0.92。根据SiO2-Na2O+K2O分类图(图 4a),安盆沟岩体的样品中正长花岗岩14CL156-2因相对偏低的SiO2含量落入花岗闪长岩区域内,其余正长花岗岩和花岗岩均落入了花岗岩区域内。在SiO2-K2O图中(图 4b),所有样品均属高钾钙碱性系列。正长花岗岩和花岗岩的Al2O3含量分别为13.27%~14.16%和13.20%~14.17%(表 2),A/CNK分别为1.05~1.18和1.01~1.07,根据A/CNK-A/NK分类图(图 5),所有正长花岗岩和花岗岩均具有过铝质特征。

表 2 敦煌地块南部花岗岩体主量(wt%)和微量(×10-6)元素含量 Table 2 Major(wt%)and trace(×10-6)element compositions for granites in southern Dunhuang block

图 4 敦煌地块南部花岗岩体全岩SiO2-Na2O+K2O图(a,据Middlemost,1994)和SiO2-K2O图(b,据Martin et al.,2005) Fig. 4 SiO2 vs. Na2O+K2O classification diagram(a,after Middlemost,1994)and SiO2 vs. K2O(b,after Martin et al.,2005)for granites in southern Dunhuang block

图 5 敦煌地块南部花岗岩体A/CNK-A/NK图(据Maniar and Piccoli,1989) Fig. 5 A/CNK vs. A/NK diagram of granites in southern Dunhuang block(after Maniar and Piccoli,1989)

安盆沟岩体的稀土配分模式表现为轻稀土富集重稀土相对亏损的右倾型(图 6a),正长花岗岩REE总量为200.6×10-6~283.7×10-6,LREE为186.7×10-6~267.5×10-6,(La/Yb)N比值为37.4~39.8,表明轻重稀土之间分馏程度较高,(La/Sm)N和(Gd/Lu)N分别为3.9~4.9和3.5~4.2,反映了LREE内部和HREE内部均具有一定程度的分馏(表 2)。晚古生代花岗岩REE总量为77.2×10-6~193.8×10-6,LREE为68.9×10-6~179.6×10-6,(La/Yb)N比值为6.5~30.3,(La/Sm)N和(Gd/Lu)N分别为3.2~7.2和0.8~2.3,表明安盆沟晚古生代花岗岩的轻重稀土之间分馏程度较高,而LREE内部的分馏程度明显高于HREE。此外,安盆沟岩体各样品均表现出强烈-中度的负Eu异常,Eu/Eu*为0.30~0.57(图 6a)。微量元素蛛网图中(图 6b),安盆沟岩体富集大离子亲石元素K、Rb,而高场强元素Nb、Ta、P等具有明显的负异常,在元素Ti上,绝大部分表现为明显的亏损。

图 6 敦煌地块南部花岗岩体全岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989) Fig. 6 Chondrite-normalized REE patterns(a)and primitive-mantle normalized spiderdiagrams(b)for granites in southern Dunhuang block(normalization values after Sun and McDonough.1989)

小草湖花岗岩样品编号为14CL132-2、14CL133-2、14CL134-2和14CL135-2。其SiO2含量为67.06%~73.80%,FeOT含量为0.28%~3.59%,MgO含量为0.14%~1.04%,Na2O含量为3.46%~4.47%,K2O含量为3.74%~6.43%,Na2O+K2O含量为7.84%~10.37%,Na2O/K2O比值为0.61~1.20(表 2)。根据SiO2-Na2O+K2O分类图(图 4a),小草湖花岗岩落入了石英二长岩和花岗岩区域内。在SiO2-K2O图中(图 4b),样品则属高钾钙碱性系列。Al2O3含量为14.16%~17.49%(表 2),A/CNK为0.96~1.04,根据A/CNK-A/NK分类图(图 5),14CL133-2为准铝质,其余花岗岩为弱过铝质。

小草湖花岗岩的稀土配分模式为轻稀土富集重稀土相对亏损的右倾型(图 6a),REE总量为78.3×10-6~282.5×10-6,其中LREE总量为74.8×10-6~260.3×10-6,(La/Yb)N比值为15.9~51.1,轻重稀土分馏程度高,(La/Sm)N为5.4~7.7,(Gd/Lu)N为2.2~5.1,表明LREE元素内部分馏程度较高,而各样品HREE元素内部分馏程度不同(表 2)。此外,样品14CL134-2具有明显的正Eu异常,Eu/Eu*为1.43,其它样品表现出中-弱的Eu负异常,Eu/Eu*为0.43~0.87(图 6a)。微量元素蛛网图中(图 6b),小草湖花岗岩富集Rb、Ba、K等强不相容元素,具有明显的Ba、K正异常,以及U、Ta、Nb、P、Ti负异常。

4.3 Hf同位素特征

对安盆沟岩体早古生代正长花岗岩的14CL126-3进行20个分析测点结果显示(表 3图 7),176Yb/177Hf和176Lu/177Hf比值范围分别为0.009767~0.050455和0.000257~0.001157,176Hf/177Hf范围为0.282178~0.282334,对应的εHf(t)变化于-11.7至-6.3,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.8~2.15Ga之间(图 8)。

表 3 敦煌地块南部花岗岩体锆石Lu-Hf同位素数据 Table 3 LA-ICP-MS zircon Hf isotopic analyses for the samples from granites in southern Dunhuang block

图 7 敦煌地块南部花岗岩体锆石εHf(t)频率直方图(a)和tDM2频率直方图(b) Fig. 7 Histograms of εHf(t)(a)and tDM2(b)of zircons from granites in southern Dunhuang block

图 8 敦煌地块南部花岗岩体锆石Hf同位素组成 Fig. 8 Hf isotopic compositions of zircons from granites in southern Dunhuang block

对安盆沟地区晚古生代花岗岩的14CL129-3、14CL127-3和14CL126-6进行Hf同位素分析(表 3图 7)。对14CL129-3(360Ma)的25个分析测点结果显示,176Yb/177Hf和176Lu/177Hf比值范围分别为0.033507~0.063294和0.000766~ 0.001375,176Hf/177Hf范围为0.282241~0.282374,对应的εHf(t)变化于-11.1至-6.3,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.7~2.1Ga之间(图 8)。

对14CL127-3(340Ma)的21个分析测点结果显示(表 3图 7),176Yb/177Hf和176Lu/177Hf比值范围分别为0.028568~0.097235和0.000631~0.002208,176Hf/177Hf范围为0.282231~0.282406,对应的εHf(t)变化于-11.7至-5.5,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.7~2.1Ga之间(图 8)。

对14CL126-6(337 & 364Ma)的29个分析测点结果显示(表 3图 7),176Yb/177Hf和176Lu/177Hf比值范围分别为0.035247~0.086771和0.000772~0.002255,176Hf/177Hf范围为0.282225~0.282367,对应的εHf(t)变化于-12.3至-7,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.8~2.1Ga之间(图 8)。

对小草湖似斑状花岗岩(14CL132-3、14CL133-3和14CL135-3)中58颗已测U-Pb年龄的锆石进行Hf同位素分析(表 3图 7)。分析结果显示,14CL132-3中14颗锆石的176Yb/177Hf和176Lu/177Hf比值范围分别为0.048369~0.075455和0.001460~0.002278,176Hf/177Hf范围为0.282123~0.282432,对应的εHf(t)变化于-15.8至-4.9,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.7~2.3Ga之间(图 8)。

对14CL133-3中24颗已测U-Pb年龄的锆石进行Hf同 位素分析。分析结果显示(表 3图 7),14CL133-3中14颗锆石的176Yb/177Hf和176Lu/177Hf比值范围分别为0.036160~0.119812和0.000927~0.002573,176Hf/177Hf范围为0.282195~0.282329,对应的εHf(t)变化于-13.2至-8.6,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.9~2.2Ga之间(图 8)。

对14CL135-3中20颗已测U-Pb年龄的锆石进行Hf同位素分析。分析结果显示(表 3图 7),176Yb/177Hf和176Lu/177Hf比值范围分别为0.027750~0.055524和0.000849~0.001626,176Hf/177Hf范围为0.282098~0.282236,对应的εHf(t)变化于-16.7至-11.9,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于2.1~2.4Ga之间(图 8)。

综上所述,58颗锆石的176Yb/177Hf和176Lu/177Hf比值范围分别为0.027750~0.119812和0.000849~0.002573,176Hf/177Hf范围为0.282098~0.282432,对应的εHf(t)变化于-16.7~-4.9之间,根据锆石U-Pb年龄计算的二阶段模式年龄(tDM2)变化于1.7~2.4Ga之间。

5 讨论 5.1 形成时代

通过对不同岩性样品进行的锆石U-Pb定年结果显示,安盆沟地区的复式花岗岩体明显具有不同期次的岩浆活动,正长花岗岩的锆石U-Pb结果为431±5Ma,为志留纪花岗岩体。花岗岩样品的定年结果则有所不同,分别为360±3Ma和340±4Ma,而对样品14CL126-6中锆石颗粒进行的U-Pb定年结果表明,该样品中锆石年龄可明显分为截然不同的两期,分别为364±4Ma和337±3Ma,并与~360Ma(14CL129-3)和~340Ma(14CL127-3)相对应,并且两期年龄之间缺少连续性,因此,安盆沟地区有可能在~360Ma和~340Ma有两期花岗岩浆活动,并且后一期岩浆侵位过程中可能捕获了早期的继承性锆石。小草湖岩体不同样品的锆石U-Pb定年结果极为接近,整体位于344~338Ma,以代表性样品14CL133-3的结果(340±3Ma)作为小草湖岩体形成年龄。

总体而言,本文锆石U-Pb定年所选岩石样品新鲜,锆石颗粒晶形完整,岩浆震荡环带清晰,所得年代学结果可以代表岩体侵位时代。结果表明,敦煌地块南部的安盆沟岩体和小草湖岩体为早古生代和晚古生代花岗岩浆活动的产物,岩石组合分别为志留纪正长花岗岩(431Ma),泥盆纪花岗岩(~360Ma)和石炭纪花岗岩-似斑状花岗岩(~340Ma)。

5.2 成因类型及源岩 5.2.1 安盆沟地区花岗岩体

安盆沟地区正长花岗岩的A/CNK为1.05~1.18,表现出过铝质的特征。过铝质花岗岩通常被认为是纯变质-沉积岩在造山过程中地壳加厚期间深熔的响应,也有过铝质花岗岩形成于区域伸展环境下或者与俯冲有关的环境(Barbarin,1996Collins,1998Douce and Harris,1998Sylvester,1998Douce,1999Healy et al.,2004Chen et al.,2014)。而实验岩石学证据表明,在较宽的温压条件下,多种源岩的部分熔融均可以产生过铝质花岗质熔体(Rapp et al.,1991Rapp and Watson,1995Winther and Newton,1996),而熔体的成分变化则取决于初始熔融物质的成分、熔融的温度和压力、初始物质的含水量(Hansen et al.,2002)。过铝质熔体可以通过多种方式产生:(1)准铝质熔体的结晶分异;(2)基性岩的部分熔融;(3)(变)杂砂岩或泥质岩的部分熔融(Beard and Lofgren,1991;Le Breton and Thompson,1988Montel and Vielzuef,1997Douce,19951999Wu et al.,2003abSisson et al.,2005Cai et al.,2011Chen et al.,2014Zhao et al.,2015b)。并且地壳中泥质的沉积岩部分熔融可以产生强烈富铝和富钾的熔体,硬砂岩的部分熔融可以产生中等到强烈富铝的花岗闪长岩/花岗岩熔体(Rushmer,1991Rapp et al.,1991Rapp and Watson,1995Sen and Dunn,1994Johannes and Holtz,1996)。

长期以来的观点认为,I型花岗岩富Na贫K,A/CNK通常小于1,标志性矿物为角闪石;而S型花岗岩则通常富K贫Na,A/CNK大于1.1,并且出现刚玉,标志性矿物为堇青石(Chappell and White,1974)。但近年来越来越多的研究表明,I型花岗岩不仅可以为准铝质-弱过铝质,也可以具有强过铝质特征(Chappell,1999Chappell et al.,2012)。Zhao et al.(2015b)提出,应结合A/CNK和K2O/Na2O比值来判断成因类型,强过铝质的I型花岗岩的K2O/Na2O <1,而S型花岗岩的K2O/Na2O>1。安盆沟正长花岗岩野外及镜下未见角闪石或堇青石等标志性矿物,但可见富铝矿物白云母,而A/CNK为1.05~1.18,CIPW计算中出现1.13%~2.14%的刚玉,且K2O/Na2O比值为1.71~1.73,矿物组合和具高SiO2、K2O,低TiO2、FeOT、MgO和CaO,均表现出S型花岗岩的岩石化学特征(Ghani et al.,2013Zhao et al.,2015b)。在C/MF-A/MF源岩判别图中(Alther et al.,2000),样品与变砂岩部分熔融区域极为接近,不同于基性岩部分熔融(图 9a)。而在Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2)判别图解中(Douce,1999),其源岩可能与砂质岩有关,但部分样品与泥质岩区域也较为接近(图 9b)。Sylvester(1998)对砂质岩和泥质岩部分熔融产生过铝质花岗岩的熔融实验表明,CaO/Na2O是区分泥质岩和砂岩的重要指标,其比值主要控制因素为源区长石/黏土的比率,富长石贫黏土的砂岩部分熔融而成的过铝质花岗岩中CaO/Na2O比值 >0.3,而贫长石富黏土的泥岩部分熔融产生的过铝质花岗岩中CaO/Na2O比值 <0.3。安盆沟正长花岗岩的CaO/Na2O的比值介于0.28~0.98之间,表明其源岩成分较为复杂,可能含有部分泥质成分(图 9c),与较高的K2O一致。微量元素Rb、Sr和Ba在不同类型岩石中的含量变化存在一定规律,在实验岩石学的Rb/Sr-Rb/Ba图解中(图 9d)(Sylvester,1998),正长花岗岩同样落入了贫黏土的杂砂岩区(Sylvester,1998)。多种地球化学证据表明,安盆沟正长花岗岩的源岩可能为含部分泥质成分,但以砂质成分为主的(变)沉积岩。安盆沟花岗岩的A/CNK为1.01~1.07,属弱过铝质,其矿物组合,富SiO2、K2O,低TiO2、FeOT、MgO和CaO含量,和较高的K2O/Na2O比值(1.09~1.55),均表现出了S型花岗岩的特征(Ghani et al.,2013Zhao et al.,2015b)(表 2)。在Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2)图解中(Douce,1999),样品普遍落入了砂质岩源区内(图 9b)。而C/MF-A/MF源岩判别图则表明(Alther et al.,2000),部分样品的源岩可能有泥质成分(图 9a),与CaO/Na2O(0.16~0.56)一致(Sylvester,1998)(图 9c)。在Rb/Sr-Rb/Ba图解中(图 9d),样品全部落入了砂质岩源岩熔体区域内。结合地球化学数据和多个判别图解综合判断,安盆沟花岗岩可能为S型花岗岩,源岩可能以砂质岩为主,但含有一定比例的泥质成分,源岩特征与安盆沟早古生代的正长花岗岩相似。

图 9 敦煌地块南部花岗岩体地球化学图解 (a)C/MF-A/MF图解(Alther et al.,2000);(b)Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2)图解(Douce,1999);(c)Al2O3/TiO2-CaO/Na2O图解和(d)Rb/Sr-Rb/Ba图解(Sylvester,1998).数据来源:Himalayan淡色花岗岩(Searle and Fryer,1986Inger and Harris,1993Ayres and Harris,1997)和Lachlan S型花岗岩(Chappell and Simpson,1984Healy et al.,2004) Fig. 9 Geochemical diagrams of granites in southern Dunhuang block (a)C/MF vs. A/MF(Alther et al.,2000);(b)Al2O3+FeOT+MgO+TiO2 vs. Al2O3/(FeOT+MgO+TiO2)(Douce,1999);(c)Al2O3/TiO2 vs. CaO/Na2O and(d)Rb/Sr vs. Rb/Ba(Sylvester,1998).Data sources:Himalayan leucogranites(Searle and Fryer,1986Inger and Harris,1993Ayres and Harris,1997)and Lachlan S-type granites(Chappell and Simpson,1984Healy et al.,2004)

石榴石强烈富集HREE和Yb,因此花岗岩的HREE和Yb可以反映石榴石残留的信息(葛小月等,2002),安盆沟正长花岗岩相对亏损HREE和Yb反映了岩浆源区可能有石榴石残留。而角闪石富集MREE,残留角闪石会降低MREE含量,样品平坦的MREE配分模式暗示着部分熔融过程中源区残留了角闪石(Bea et al.,1994),这与低TiO2、MREE和低的Rb/Sr比值一致。同时微量元素Sr、Ba和Eu的负异常则暗示源区可能有斜长石残留(图 6)。因此,安盆沟正长花岗岩的源岩发生部分熔融之后的残留相矿物组合可能至少为石榴石+角闪石+斜长石。张旗等(2006)根据Sr-Yb的关系对花岗岩划分了类型,并认为S型花岗岩在Sr-Yb图中多分布在低Sr低Yb和低Sr高Yb区。安盆沟正长花岗岩与低Sr低Yb型花岗岩的地球化学特征表现出了极强的一致性,张旗等(2006)认为与具中等负Eu异常的低Sr低Yb型花岗岩相平衡的残留相为麻粒岩,残留矿物组合为斜长石+石榴石+角闪石+辉石,位于石榴石+斜长石稳定区,与本文推测的残留矿物一致。因此,结合残留相矿物和Sr-Yb特征,本文认为与安盆沟正长花岗岩平衡的残留相可能为麻粒岩。而前人的研究也表明敦煌地块同期发生过角闪岩相-麻粒岩相的变质作用(Zong et al.,2012Zhang et al.,2013He et al.,2014Wang et al.,2014)。安盆沟晚古生代花岗岩Y/Yb比值平均小于10,表明样品没有明显的HREE和Yb亏损,源区未残留石榴石,且MREE较为平坦的配分模式则表明源区很可能残留有角闪石,HoN与YbN大致相当或HoN<YbN也暗示角闪石可能是重要的残留相矿物(葛小月等,2002李承东等,2004)。此外,轻-中程度的Eu负异常,以及Sr和Ba也有同样程度的负异常,则表明源区可能残留了部分斜长石。因此,残留的主要矿物为角闪石+斜长石(无石榴石)。安盆沟花岗岩中Yb含量虽不足2×10-6

但岩石REE配分模式与张旗等(2006)划分的低Sr高Yb型花岗岩具有极为相似的地球化学特征,张旗等(2006)认为与低Sr高Yb型花岗岩平衡的残留相中斜长石和角闪石可稳定存在(无石榴石),残留相为角闪岩,矿物组合与地球化学特征相符,因此,安盆沟花岗岩的残留相可能为角闪岩。S型花岗岩形成的深度可能与地球化学特征有关:Yb含量高,可能形成的深度浅(张旗等,2006),安盆沟地区的早古生代正长花岗岩与晚古生代花岗岩对比,后者Yb含量明显高于前者,可能暗示前者的形成深度更深,变质级别更高。而前者残留相为麻粒岩(含石榴石),后者残留相为角闪岩(无石榴石),也进一步反映前者的形成压力相对较高。

安盆沟地区早古生代和晚古生代花岗岩类在锆石Hf同位素特征上表现出了较强的一致性,εHf(t)分别为-11.7到-6.3和-12.3到-5.5(表 3图 7),表明来源于古老地壳,并且形成过程中可能未受到地幔物质影响。花岗岩类的Nb/U、Ce/Pb、Nd/Sm和Ti/Eu比值均接近平均地壳(Rudnick and Fountain,1995),与受壳源物质混染的洋脊明显不同(Klein and Karsten,1995),表明了亲陆壳的特征(图 10)。主量元素FeOT、MgO和微量元素Ni、Cr较低的含量表明,安盆沟地区的花岗岩体以地壳物质为主,幔源物质的贡献很少或无贡献。正长花岗岩和花岗岩的tDM2分别集中于1.8~2.2Ga和1.7~2.1Ga,源岩时代为古元古代(表 3图 7)。敦煌地块出露有大量古元古代岩浆岩和变质岩,表明在早古生代曾发生过构造-热事件。Zhang et al.(2013)对红柳峡和石包城地区的TTG片麻岩的研究表明在2.3Ga发生过岩浆事件,1.97~1.85Ga发生过变质事件。而毫不拉地区的TTG片麻岩,党河水库地区的眼球状片麻岩和红柳峡地区的含石榴石角闪岩则记录了1.85~1.83Ga的岩浆活动(He et al.,2013Zhang et al.,2013Wang et al.,2014)。He et al.(2013)和Yu et al.(2013)分别认为三危山地区的角闪岩、眼球状片麻岩和A型花岗岩分别为2.0Ga和1.79~1.73Ga岩浆活动的产物。Zhang et al.(2013)对石包城地区高压基性麻粒岩和角闪岩的研究表明该地区曾于1.85~1.8Ga发生过角闪岩相-麻粒岩相的变质事件。目前这些关于敦煌地块中TTG岩石和花岗岩的前寒武纪年代学证据表明,发生于2.1~1.8Ga的古元古代构造热事件与Columbia超大陆汇聚的全球造山事件有关,而1.8~1.6Ga的构造热事件被认为与Columbia超大陆的裂解有关(Yu et al.,2013Zhang et al.,2013Zong et al.,2013Wang et al.,2014)。因此,根据时代,安盆沟花岗岩体的源岩可能与Columbia超大陆的汇聚和裂解有关,并且于早古生代和晚古生代期间都经历了岩浆事件。

图 10 敦煌地块南部花岗岩体Nb/U-Ce/Pb(a)和Nd/Sm-Ti/Eu(b)图解 平均地壳数据据Rudnick and Fountain,1995;Chile Ridge数据据Klein and karsten,1995 Fig. 10 Nb/U vs. Ce/Pb(a)and Nd/Sm vs. Ti/Eu(b)diagrams of granites in southern Dunhuang block Data sources: average contineneal crust(Rudnick and Fountain,1995),Chile Ridge(Klein and Karsten,1995)
5.2.2 小草湖岩体

P2O5是区分I型和S型花岗岩的重要指标,根据磷灰石溶解度的实验结果,磷灰石在准铝质和弱过铝质(A/CNK<1.1)熔体(I型)中含量非常低,并且会随着SiO2含量的增加而减少,但在过铝质熔体(S型)中呈相反趋势(Chappell,1999Wu et al.,2003ab)。小草湖岩体样品中SiO2与P2O5之间具有负相关关系(图 11),A/CNK为0.96~1.04,属准铝质至弱过铝质,CIPW计算中出现0~0.8%的刚玉,均具有I型花岗岩特征。但同时又具有较高的K2O含量,推测与其源岩成分较为复杂有关,可能为I型和S型花岗岩之间的过渡类型。小草湖花岗岩体表现出了较为明显的埃达克岩特点,其中SiO2含量均大于56%,Al2O3除样品14CL135-2为14.16%略小于15%外,其余均大于15%,而MgO的含量明显小于3%。微量元素方面,Sr含量为450×10-6~627×10-6,Y和Yb仅样品14CL133-2分别大于18×10-6和1.9×10-6(Y=28.3×10-6,Yb=2.83×10-6),其余样品的Y含量为2.98×10-6~9.13×10-6,Yb含量为0.28×10-6~0.91×10-6。在(Yb)N-(La/Yb)N和Y-Sr/Y图中,除14CL133-2外,均处于埃达克岩区(图 12),地球化学特征表明小草湖岩体可能为埃达克质花岗岩。埃达克质岩石具有多种成因模式,包括:(1)俯冲洋壳的部分熔融,以及随后与上覆地幔楔发生反应(Rapp et al.,1991Moyen,2009Martin et al.,2005);(2)拆沉/加厚下地壳熔融或俯冲大陆地壳深熔作用(Petford and Atherton,1996Gao et al.,2004);(3)玄武质岩浆的高/低压下分离结晶(Castillo et al.,1999Macpherson et al.,2006);4)长英质岩浆和玄武质岩浆的混合作用(Streck et al.,2007)。首先,小草湖岩体中较低的MgO、Cr、Co和Ni含量表明这些岩石的特征与典型的拆沉下地壳或俯冲洋壳成因的埃达克质岩石有所不同,并且缺少与地幔来源的岩石之间的相互作用(图 13)。其次,通常长英质岩浆与玄武质岩浆混合成因的埃达克质岩石的主微量元素在直角坐标系中会呈线性排列,但小草湖岩体中La和Na2O未与SiO2表现出明显的线性关系,并且未发现镁铁质包体,这进一步表明,岩浆混合可能不适合解释小草湖岩体的成因(图 14a,b)。高压条件下结晶分异过程中涉及石榴石,而石榴石会降低岩石中HREE和Y的含量,

图 11 敦煌地块南部小草湖岩体全岩SiO2-P2O5图解 Fig. 11 Whole-rock SiO2 vs. P2O5 diagram of Xiaocaohu granite in southern Dunhuang block

图 12 敦煌地块南部小草湖岩体(Yb)N-(La/Yb)N图(a)和Y-Sr/Y图(b)(底图据Petford and Atherton,1996Defant and Drummond,1990) Fig. 12 Plots of(La/Yb)N vs. YbN(a)and Sr/Y vs. Y(b)and for Xiaocaohu granite in southern Dunhuang block(fields of adakite and arc magmatic rocks are from Petford and Atherton,1996; Defant and Drummond,1990)

图 13 敦煌地块南部小草湖岩体全岩地球化学协变图(据Yu et al.,2015) Fig. 13 Variations of some trace element with SiO2 for Xiaocaohu granite in southern Dunhuang block(after Yu et al.,2015)

图 14 敦煌地块南部小草湖岩体全岩地球化学协变图 HPFC-高压分离结晶(Macpherson et al.,2006); LPFC-低压分离结晶(Castillo et al.,1999) Fig. 14 Variations of some trace element with SiO2 for Xiaocaohu granite in southern Dunhuang block HPFC-high-pressure fractional crystallization involving garnet(Macpherson et al.,2006); LPFC-low-pressure fractional crystallization involving olivine + clinopyroxene + plagioclase + hornblende + titanomagnetite(Castillo et al.,1999)

因此Dy/Yb和Sr/Y比值会与SiO2呈正相关,但岩石样品同样未表现出类似的关系(图 14c,d)。此外,Castillo et al.(1999)提出埃达克质岩石可以由低压条件下的玄武质岩浆的分离结晶作用下形成(涉及橄榄石+辉石+斜长石+角闪石),这会导致MgO、Cr和Ni等元素随SiO2增加而减少,然而,小草湖岩体也同样没有表现出相关特征(表 2)。此外,La/Sm-La可以判断花岗岩是否由玄武质岩浆分异而成,结晶分异趋势中La/Sm比值不会随La变化而发生数值上的改变,而图中La/Sm与La表现出与结晶分异明显不同的趋势(图 15)。而前人的研究结果表明,北祁连造山带于早古生代期间未发生明显的大陆深俯冲作用(Song et al.,2013;Yu et al.,2015)。最终,在排除多个成因模型之后,结合样品较高的SiO2和较低的MgO、Cr和Ni值,本文认为小草湖岩体为加厚下地壳部分熔融的产物。

图 15 敦煌地块南部小草湖岩体La-La/Sm图解(底图据Allègre and Minster,1978) Fig. 15 La vs. La/Sm diagram of Xiaocaohu granites in southern Dunhuang block(fractional crystallization and partial melting curves are after Allègre and Minster,1978)

小草湖似斑状二长花岗岩在稀土配分模式图中表现出了亏损HREE和Yb的特征,并且Y/Yb比值普遍大于10,表明源区可能残留了石榴石,(Ho/Yb)N除样品14CL132-2为0.65外,其余均大于1,说明源区角闪石可能发生了分解无残留或仅少量残留(葛小月等,2002李承东等,2004)。不同样品在Eu异常方面表现出了明显的不同,样品14CL134-2中Eu为正异常,可能与含有较多的斜长石斑晶有关,其余样品则表现出轻-中度的Eu负异常,同时所有样品在微量元素蛛网图中在Ba和Sr元素上普遍出现正异常现象,暗示源区可能未残留或残留少量斜长石。根据部分熔融曲线(图 12),小草湖岩体3个埃达克质花岗岩样品的残留相为麻粒岩-(角闪)榴辉岩,矿物组合为石榴石+辉石±角闪石。根据张旗等(2006)进行的Sr-Yb分类,源区未残留斜长石的高Sr低Yb型花岗岩的残留相为榴辉岩,形成压力较大,而与源区残留少量斜长石的花岗岩相平衡的残留相则为麻粒岩,与榴辉岩相比形成压力较小(张旗等,2006)。熔融曲线和地球化学特征的证据均表明,小草湖岩体的形成深度较深,可能处于地壳加厚环境。需要指出的是,小草湖岩体虽然具有一定的埃达克质岩石特征,但与朱涛等(2014)在青石沟发现的同时期的埃达克岩相比,其Al2O3、FeOT、MgO、NaO、CaO、Sr和Y明显较低,而SiO2和K2O则明显较高,与青石沟的埃达克岩具有一定的差异性。小草湖似斑状花岗岩的εHf(t)变化于-16.7至-4.9,但主要集中于-11至-6之间,二阶段模式年龄(tDM2)变化于1.8~2.4Ga之间,与安盆沟晚古生代花岗岩一样,源岩主要为古元古代的古老地壳,并且可能没有地幔成分的加入(表 3图 7)。该岩体中亲地幔元素MgO、FeOT、Cr、Ni、Nb、Ta等含量较低,也表明可能未受到地幔物质混染(图 10)。

5.3 构造意义

中国西部地区在早古生代经历过广泛的构造-热事件,敦煌地块位于阿尔金造山带、北祁连造山带和东天山-北山造山带等几大造山带连接处。柴北缘UHP变质带曾发生过洋壳俯冲(>460Ma)和随后的大陆俯冲(460~440Ma)(吴才来等,2008Zhang et al.,2013及相关文献)。塔里木克拉通南缘的北阿尔金造山带发育大量花岗岩,与板块俯冲和岛弧活动有关的花岗岩时代为481~467Ma(戚学祥等,2005郝杰等,2006吴才来等,2007),形成于后碰撞阶段的花岗岩时代为446~431Ma(陈宣华等,2003吴才来等,20052007)。北祁连造山带是与洋壳俯冲有关的增生造山带,持续时间为490~435Ma(吴才来等,2010Song et al.,2013)。总体上,中央造山带的北阿尔金、柴北缘和北祁连地区均在晚奥陶世前后结束了造山活动。而对敦煌地块中红柳峡地区的石榴角闪岩、花岗岩,蘑菇台地区的高压麻粒岩,以及三危山地区的角闪岩、花岗岩的岩石学和年代学研究表明,敦煌地块存在着462~400Ma的E-W向造山活动(孟繁聪等,2011Zong et al.,2012He et al.,2014Wang et al.,2014Zhao et al.,2016;未发表数据),根据时代,安盆沟正长花岗岩为这一造山事件中形成。敦煌地块的造山事件时代至少持续到了~400Ma,与中央造山带的各造山带相比,造山活动结束时间整体较晚。因此,早古生代期间,敦煌地块可能与祁连-阿尔金造山带经历了不同的地质过程,未受或只是早期受到祁连-阿尔金造山带的影响。

前人对敦煌地块早古生代的造山活动进行过讨论:张志诚等(2009)认为党河水库岩体是早古生代红柳河缝合带和(或)阿尔金北缘红柳沟-拉配泉俯冲碰撞杂岩带作用引发而形成的;Liu et al.(2011)认为~465Ma时,柳园微陆块与敦煌地块发生碰撞;He et al.(2014)认为该造山活动是敦煌地块与石板山微陆块碰撞的结果;Zhao et al.(2016)同样认为敦煌地块与天山-北山造山带有时空上的对应关系。天山-北山造山带位于敦煌地块北侧,多数学者认为天山造山带是古生代增生-碰撞造山带,敦煌地块北侧的北山造山带是东天山造山带的东延,位于中亚造山带的南部。北山造山带发生过465Ma的榴辉岩相变质作用,并且柳园地区内同样分布大量花岗岩类岩石,时代为438~397Ma(赵泽辉等,2007张元元和郭召杰,2008张志诚等,2009Liu et al.,2011;本文数据)。根据花岗岩类的时空对应关系,敦煌地块很可能在早古生代期间卷入了天山-北山造山带的造山事件当中,是北山地区的岛弧和微陆块增生至敦煌地块北缘过程的结果(Liu et al.,2011He et al.,2014),可能未受到或只是早期受到南侧的中央造山带的造山事件影响。

对于敦煌地块晚古生代岩石的报道较少,赵燕等(2015)认为三危山存在365~363Ma的斜长花岗岩;朱涛等(2014)认为敦煌地块南缘青石沟的黑云母石英闪长岩为埃达克岩,侵位时代为石炭纪(335Ma),是陆陆俯冲(地壳加厚)向陆内伸展体制转换期间加厚下地壳部分熔融的产物。本文中小草湖岩体同样表现出埃达克质岩石的特征,并且同样形成于地壳加厚的地质背景之下。天山-北山造山带位于敦煌地块北侧,多数学者认为天山造山带是古生代增生-碰撞造山带。其中西天山造山带发育有早石炭世(350~330Ma)HP/UHP变质岩(Gao and Klemd,2003Klemd et al.,2011),天山造山带中部和哈萨克斯坦-伊犁板块出露有古生代早期-中期(450~360Ma)和石炭纪(360~320Ma)的花岗闪长岩(Shi et al.,2007Long et al.,2011Ma et al.,2014),北天山造山带有石炭纪(350~310Ma)火山岩和侵入岩(Xia et al.,2004苏春乾等,2009周涛发等,2010李兆丽等,2011Zhao et al.,2016)。本文涉及的敦煌地块晚古生代花岗岩类的锆石U-Pb年代为360~337Ma,与天山-北山造山带的岩石具有时空对应关系,因此,敦煌地块可能与天山-北山造山带一样,卷入到了中亚造山带的造山事件中。

6 结论

(1) 敦煌地块南部的安盆沟岩体岩石组合为正长花岗岩-花岗岩,其中正长花岗岩侵位于早古生代(431Ma),花岗岩侵位于晚古生代的泥盆纪(~360Ma)和石炭纪(~340Ma);小草湖岩体主要为似斑状花岗岩,侵位时代为晚古生代的石炭纪(340Ma)。

(2) 安盆沟正长花岗岩和花岗岩具有相似的Hf同位素特征,早古生代正长花岗岩的εHf(t)为-11.7到-6.3,tDM2为1.8~2.2Ga,而晚古生代花岗岩的εHf(t)为-12.3到-5.5,tDM2为1.7~2.1Ga,源岩均为古元古代-中元古代时期的古老地壳,为含部分泥质成分的(变)砂质岩。小草湖似斑状花岗岩为加厚下地壳部分熔融成因的埃达克质岩石,εHf(t)变化于-16.7至-4.9,tDM2变化于1.8~2.4Ga之间,源岩为古元古代古老地壳物质。两个岩体的部分源岩可能与Columbia超大陆的汇聚和裂解有关。

(3) 安盆沟正长花岗岩、花岗岩和小草湖似斑状花岗岩的残留相分别为麻粒岩、角闪岩和麻粒岩-角闪榴辉岩,反映了形成深度和变质级别的不同。

(4) 敦煌地块内的早古生代造山活动结束时间明显晚于中央造山带,并且早古生代造山活动以及早-晚古生代花岗岩与北侧的天山-北山造山带存在时空上的对应关系,敦煌地块在古生代期间可能卷入了中亚造山带的造山活动中。

参考文献
[] Allègre CJ, Minster JF. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters , 38 (1) :1–25. DOI:10.1016/0012-821X(78)90123-1
[] Alther R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos , 50 (1-3) :51–73. DOI:10.1016/S0024-4937(99)00052-3
[] Ayres M, Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology , 139 (1-4) :249–269. DOI:10.1016/S0009-2541(97)00038-7
[] Barbarin B. 1996. Genesis of the two main types of peraluminous granitoids. Geology , 24 (4) :295–298. DOI:10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2
[] Bea F, Pereira MD, Stroh A. 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology , 117 (1-4) :291–312. DOI:10.1016/0009-2541(94)90133-3
[] Beard JS, Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6. 9kb. Journal of Petrology , 32 (2) :365–401. DOI:10.1093/petrology/32.2.365
[] Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters , 273 (1-2) :48–57. DOI:10.1016/j.epsl.2008.06.010
[] Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ, Long XP, Wu FY. 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos , 127 (1-2) :261–281. DOI:10.1016/j.lithos.2011.09.001
[] Castillo PR, Janney PE, Solidum RU. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology , 134 (1) :33–51. DOI:10.1007/s004100050467
[] Castro A, Moreno-Ventas I, De La Rosa JD. 1991. H-type (Hybrid) granitoids: A proposed revision of the granite-type classification and nomenclature. Earth-Science Reviews , 31 (3-4) :237–253. DOI:10.1016/0012-8252(91)90020-G
[] Castro A, De la Rosa JD, Fernández C, Moreno-Ventas I. 1995. Unstable flow, magma mixing and magma-rock deformation in a deep-seated conduit: The Gil-Márquez complex, South-west Spain. Geologische Rundschau , 84 (2) :359–374. DOI:10.1007/s005310050011
[] Chappell BW, White AJR. 1974. Two contrasting granite types. Pacific Geology , 8 :173–174.
[] Chappell BW, Simpson PR. 1984. Source rocks of I- and S-type granites in the Lachlan Fold Belt, Southeastern Australia. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences , 310 (1514) :693–707. DOI:10.1098/rsta.1984.0015
[] Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos , 46 (3) :535–551. DOI:10.1016/S0024-4937(98)00086-3
[] Chappell BW, Bryant CJ, Wyborn D. 2012. Peraluminous I-type granites. Lithos , 153 :142–153. DOI:10.1016/j.lithos.2012.07.008
[] Chen XH, Gehrels G, Wang XF, Yang F, Chen ZL. 2003. Granite from North Altyn Tagh, NW China: U-Pb geochronology and tectonic setting. Bulletin of Mineralogy, Petrology and Geochemistry , 22 (4) :294–298.
[] Chen YX, Song SG, Niu YL, Wei CJ. 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta , 132 :311–336. DOI:10.1016/j.gca.2014.02.011
[] Collins WJ. 1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications for crustal architecture and tectonic models. Australian Journal of Earth Sciences , 45 (4) :483–500. DOI:10.1080/08120099808728406
[] Crofu F, Hanchar JM, Hoskin PWO, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry , 53 (1) :469–495. DOI:10.2113/0530469
[] Defant MJ, Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature , 347 (6294) :662–665. DOI:10.1038/347662a0
[] Douce AEP. 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. Journal of Geophysical Research , 100 (B8) :15623–15639. DOI:10.1029/94JB03376
[] Douce AEP, Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology , 39 (4) :689–710. DOI:10.1093/petroj/39.4.689
[] Douce AEP. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C and Vigneresse JL (eds. ). Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications , 168 :55–75. DOI:10.1144/GSL.SP.1999.168.01.05
[] Feng ZS, Zhang ZC, Li JF, Guo ZJ. 2010. Geochemistry and geological significance of the Cretaceous OIB-type mafic dykes in Sanweishan, Dunhuang, Gansu Province. Acta Petrologica Sinica , 26 (2) :607–616.
[] Gao J, Klemd R. 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: Geochemical and age constraints. Lithos , 66 (1-2) :1–22. DOI:10.1016/S0024-4937(02)00153-6
[] Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature , 432 (7019) :892–897. DOI:10.1038/nature03162
[] Ge XY, Li XH, Chen ZG, Li WP. 2002. Geochemistry and petrogene-sis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness. Chinese Science Bulletin , 47 (11) :962–968. DOI:10.1360/02tb9216
[] Ghani AA, Searle M, Robb L, Chung SL. 2013. Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia. Journal of Asian Earth Sciences , 76 :225–240. DOI:10.1016/j.jseaes.2013.05.013
[] Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY, Shee SR. 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta , 64 (1) :133–147. DOI:10.1016/S0016-7037(99)00343-9
[] Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos , 61 (3-4) :237–269. DOI:10.1016/S0024-4937(02)00082-8
[] Hanchar JM, Miller CF. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology , 110 (1-3) :1–13. DOI:10.1016/0009-2541(93)90244-D
[] Hansen J, Skjerlie KP, Pedersen RB, De La Rosa J. 2002. Crustal melting in the lower parts of island arcs: An example from the Bremanger Granitoid Complex, west Norwegian Caledonides. Contributions to Mineralogy and Petrology , 143 (3) :316–335. DOI:10.1007/s00410-001-0342-5
[] Hao J, Wang EQ, Liu XH, Sang HQ. 2006. Jinyanshan collisional oroginic belt of the early Paleozoic in the Altun Mountains: Evidence from single zircon U-Pb and 40Ar/39Ar isotopic dating for the arc magmatite and ophiolitic mélange. Acta Petrologica Sinica , 22 (11) :2743–2752.
[] He ZY, Zhang ZM, Zong KQ, Dong X. 2013. Paleoproterozoic crustal evolution of the Tarim Craton: Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. Journal of Asian Earth Sciences , 78 :54–70. DOI:10.1016/j.jseaes.2013.07.022
[] He ZY, Zhang ZM, Zong KQ, Xiang H, Klemd R. 2014. Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction. Lithos , 196-197 :1–13. DOI:10.1016/j.lithos.2014.02.020
[] Healy B, Collins WJ, Richards SW. 2004. A hybrid origin for Lachlan S-type granites: The Murrumbidgee Batholith example. Lithos , 78 (1-2) :197–216. DOI:10.1016/j.lithos.2004.04.047
[] Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica , 23 (10) :2595–2604.
[] Hou KJ, Li YH, Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits , 28 (4) :481–492.
[] Inger S, Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology , 34 (2) :345–368. DOI:10.1093/petrology/34.2.345
[] Johannes W, Holtz F.1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer-Verlag .
[] Kay RW. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research , 4 (1-2) :117–132. DOI:10.1016/0377-0273(78)90032-X
[] Klein EM, Karsten JL. 1995. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile ridge. Nature , 374 (6517) :52–57. DOI:10.1038/374052a0
[] Klemd R, John T, Scherer EE, Rondenay S, Gao J. 2011. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP-UHP rocks (Tianshan, NW-China). Earth and Planetary Science Letters , 310 (1-2) :9–20. DOI:10.1016/j.epsl.2011.07.022
[] Le Breton N, Thompson AB. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology , 99 (2) :226–237. DOI:10.1007/BF00371463
[] Li CD, Zhang Q, Miao LC, Meng XF. 2004. Mesozoic high-Sr, low-Y and low-Sr, low-Y types granitoids in the northern Hebei Province: Geochemistry and petrogenesis and its relation to mineralization of gold deposits. Acta Petrologica Sinica , 20 (2) :269–284.
[] Li ZL, Yang JS, Liu Z. 2011. LA-ICP-MS zircon U-Pb dating of the volcanic rocks in the middle section of the eastern Tianshan, and its geological significance. Acta Petrologica Sinica , 27 (1) :181–192.
[] Liu XC, Chen BL, Jahn BM, Wu GG, Liu YS. 2011. Early Paleozoic (ca. 465Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences , 42 (4) :715–731.
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology , 51 (1-2) :537–571. DOI:10.1093/petrology/egp082
[] Long LL, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang JB, Jiang T. 2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos , 126 (3-4) :321–340. DOI:10.1016/j.lithos.2011.07.015
[] Ludwig KR. 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center
[] Ma XX, Shu LS, Meert JG, Li JY. 2014. The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence. Gondwana Research , 25 (2) :797–819. DOI:10.1016/j.gr.2013.05.015
[] Macpherson CG, Dreher ST, Thirwall MF. 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Phillippines. Earth and Planetary Science Letters , 243 :581–593. DOI:10.1016/j.epsl.2005.12.034
[] Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. The Geological Society of America Bulletin , 101 (5) :635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[] Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos , 46 (3) :411–429. DOI:10.1016/S0024-4937(98)00076-0
[] Martin H, Smiithies RH, Rapp R, Moyen JF, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos , 79 (1-2) :1–24. DOI:10.1016/j.lithos.2004.04.048
[] Mei HL, Yu HF, Lu SN, Li HM, Li Q, Lin YX, Zuo YC. 1998. Archean tonalite in the Dunhuang, Gansu Province: Age from the U-Pb single zircon and Nd isotope. Progress in Precambrian Research , 21 (2) :41–45.
[] Meng FC, Zhang JX, Xiang ZQ, Yu SY, Li JP. 2011. Evolution and formation of the Dunhuang Group in NE Tarim basin, NW China: Evidence from detrital-zircon geochronology and Hf isotope. Acta Petrologica Sinica , 27 (1) :59–76.
[] Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews , 37 (3-4) :215–224. DOI:10.1016/0012-8252(94)90029-9
[] Montel JM, Vielzeuf D. 1997. Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology , 128 (2) :176–196.
[] Moyen JF. 2009. High Sr/Y and La/Yb ratios: The meaning of the "adakitic signature". Lithos , 112 (3-4) :556–574. DOI:10.1016/j.lithos.2009.04.001
[] Peacock SM, Rushmer T, Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters , 121 (1-2) :227–244. DOI:10.1016/0012-821X(94)90042-6
[] Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology , 37 (6) :1491–1521. DOI:10.1093/petrology/37.6.1491
[] Qi L, Hu J, Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta , 51 (3) :507–513. DOI:10.1016/S0039-9140(99)00318-5
[] Qi XX, Wu CL, Li HB. 2005. SHRIMP U-Pb age of zircons from Kazisayi granite in the northern Alty Tagh mountains and its significations. Acta Petrologica Sinica , 21 (3) :859–866.
[] Rapp RP, Watson EB, Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research , 51 (1-4) :1–25. DOI:10.1016/0301-9268(91)90092-O
[] Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology , 36 (4) :891–931. DOI:10.1093/petrology/36.4.891
[] Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by Ion Microprobe: Some examples from the western Alps. In: Pagel M, Barbin V, Blanc P and Ohnenstetter D (eds.). Cathodoluminescence in Geosciences. Berlin Heidelberg: Springer-Verlag, 373-400 http://cn.bing.com/academic/profile?id=186841988&encoded=0&v=paper_preview&mkt=zh-cn
[] Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics , 33 (3) :267–309. DOI:10.1029/95RG01302
[] Rudunick RL and Gao S. 2003. Composition of the continental crust. In: Heinrich DH and Karl KT (eds.). Treatise on Geochemistry. Oxford: Pergamon, 1-64
[] Rushmer T. 1991. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology , 107 (1) :41–59. DOI:10.1007/BF00311184
[] Scherer E, Münker C, Mezger K. 2001. Calibration of the Lutetium-Hafnium clock. Science , 293 (5530) :683–687. DOI:10.1126/science.1061372
[] Searle MP and Fryer BJ. 1986. Garnet, tourmaline and muscovite-bearing leucogranites, gneisses and migmatites of the Higher Himalayas from Zanskar, Kulu, Lahoul and Kashmir. In: Coward MP and Hies AC (eds.). Collision Tectonics. Geological Society, London, Special Publications, 19: 185-201
[] Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1. 5 and 2.0GPa: Implications for the origin of adakites. Contributions to Mineralogy and Petrology , 117 (4) :394–409. DOI:10.1007/BF00307273
[] Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC. 2007. SHRIMP zircon U-Pb dating of the Gangou granitoids, Central Tianshan Mountains, Northwest China and tectonic significances. Chinese Science Bulletin , 52 (11) :1507–1516. DOI:10.1007/s11434-007-0204-2
[] Sisson TW, Ratajeski K, Hankins WB, Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology , 148 (6) :635–661. DOI:10.1007/s00410-004-0632-9
[] Song SG, Niu YL, Su L, Xia XH. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research , 23 (4) :1378–1401. DOI:10.1016/j.gr.2012.02.004
[] Streck MJ, Leeman WP, Chesley J. 2007. High-mgandesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology , 35 (4) :351–354. DOI:10.1130/G23286A.1
[] Su CQ, Jiang CY, Xia MZ, Wei W, Pan R. 2009. Geochemistry and zircons SHRIMP U-Pb age of volcanic rocks of Aqishan Formation in the eastern area of North Tianshan, China. Acta Petrologica Sinica , 25 (4) :901–915.
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications , 42 (1) :313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos , 45 (1-4) :29–44. DOI:10.1016/S0024-4937(98)00024-3
[] Tung GA, Yang HJ, Yang HY, Liu DY, Zhang JX, Wan YS, Tseng CY. 2007. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chinese Science Bulletin , 52 (19) :2687–2701. DOI:10.1007/s11434-007-0356-0
[] Wang HYC, Chen HX, Lu JS, Wang GD, Peng T, Zhang HCG, Yan QR, Hou QL, Zhang Q, Wu CM. 2016. Metamorphic evolution and SIMS U-Pb geochronology of the Qingshigou area, Dunhuang block, NW China: Tectonic implications of the southernmost Central Asian orogenic belt. Lithosphere , 8 :463–479. DOI:10.1130/L528.1
[] Wang T. 2000. Origin of hybrid granitoids and the implications for continental dynamics. Acta Petrologica Sinica , 16 (2) :161–168.
[] Wang ZM, Han CM, Xiao WJ, Wan B, Sakyi PA, Ao SJ, Zhang JE, Song DF. 2014. Petrology and geochronology of Paleoproterozoic garnet-bearing amphibolites from the Dunhuang Block, eastern Tarim Craton. Precambrian Research , 255 :163–180. DOI:10.1016/j.precamres.2014.09.025
[] Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist , 95 (1) :185–187. DOI:10.2138/am.2010.3371
[] Winther KT, Newton RC. 1996. Experimental melting of hydrous low-K tholeiite: Evidence on the origin of Archean cratons. Bulletin of the Geological Society of Denmark , 39 :213–228.
[] Wu CL, Yang JS, Yao SZ, Zeng LS, Chen SY, Li HB, Qi XX, Wooden JL, Mazdab FK. 2005. Characteristics of the granitoid complex and its zircon SHRIMP dating at the south margin of the Bashikaogong Basin, North Altun, NW China. Acta Petrologica Sinica , 21 (3) :846–858.
[] Wu CL, Yao SZ, Zeng LS, Yang JS, Wooden JL, Chen SY, Mazadab FK. 2007. Bashikaogong-Shimierbulake granitic complex, North Altun, NW China: Geochemistry and zircon SHRIMP ages. Science in China (Series D) , 37 (1) :10–26.
[] Wu CL, Gao YH, Wu SP, Chen QL, Wooden JL, Mazadab FK, Mattinson C. 2008. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam. Science in China (Series D) , 38 (3) :930–949.
[] Wu CL, X u, X Y, Gao QM, Li XM, Lei M, Gao YH, Frost RB, Wooden JL. 2010. Early Paleozoic granitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrologica Sinica , 26 (4) :1027–1044.
[] Wu FY, Jahn BM, Wilder SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY. 2003a. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos , 66 (3-4) :241–273. DOI:10.1016/S0024-4937(02)00222-0
[] Wu FY, Jahn BM, Wilder SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY. 2003b. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos , 67 (3-4) :191–204. DOI:10.1016/S0024-4937(03)00015-X
[] Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin , 49 (15) :1554–1569. DOI:10.1007/BF03184122
[] Xia LQ, Xu XY, Xia ZC, Li XM, Ma ZP, Wang LS. 2004. Petrogenesis of carboniferous rift-related volcanic rocks in the Tianshan, northwestern China. Geological Society of America Bulletin , 116 (3-4) :419–433.
[] Xiao QH, Qiu RZ, Xing ZY, Zhang Y, Wu GY, Tong JS. 2007. Major frontiers on studies of granite formation. Geological Review , 53 (S1) :17–27.
[] Xu ZQ, Yang JS, Zhang JX, Jiang M, Li HB, Cui JW. 1999. A comparison between the tectonic units on the two sides of the Altun sinistral strike-slip fault and the mechanism of lithospheric shearing. Acta Geologica Sinica , 73 (3) :193–205.
[] Yang J, Dai FG, Wu HH, Yang KS. 2010. Seismic features of Altun fault belt and Festoon fault system in Tarim basin. Marine Petroleum Geology , 15 (2) :56–63.
[] Yu SY, Zhang JX, Zhao XL, Gong JH, Li YS. 2013. Geochronology, geochemistry and petrogenesis of the Late Paleoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: Implications for the break-up of the Columbia supercontinent. Geological Magazine , 151 (4) :629–648.
[] Yu SY, Zhang JX, Qin HP, Sun DY, Zhao XL, Cong F, Li YS. 2015. Petrogenesis of the Early Paleozoic low-Mg and high-Mg adakitic rocks in the North Qilian orogenic belt, NW China: Implications for transition from crustal thickening to extension thinning. Journal of Asian Earth Sciences , 107 :122–139. DOI:10.1016/j.jseaes.2015.04.018
[] Zhang JX, Meng FC, Yu SY. 2010. Two contrasting HP/LT and UHP metamorphic belts: Constraint on Early Paleozoic orogeny in Qilian-Altun orogen. Acta Petrologica Sinica , 26 (7) :1967–1992.
[] Zhang JX, Yu SY, Gong JH, Li HK, Hou KJ. 2013. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U-Pb dating and Hf isotopic analyses. Precambrian Research , 226 :21–42. DOI:10.1016/j.precamres.2012.11.014
[] Zhang Q, Wang Y, Li CD, Wang YL, Jin WJ, Jia XQ. 2006. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica , 22 (9) :2249–2269.
[] Zhang Q, Pan GQ, Li CD, Jin WJ, Jia XQ. 2007. Granitic magma mixing versus basaltic magma mixing: New viewpoints on granitic magma mixing process: Some crucial questions on granite study (1). Acta Petrologica Sinica , 23 (5) :1141–1152.
[] Zhang Q, Wang YL, Jin WJ, Jia XQ, Li CD. 2008. Criteria for the recognition of pre-, syn- and post-orogenic granitic rocks. Geological Bulletin of China , 27 (1) :1–18.
[] Zhang YY, Guo ZJ. 2008. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu provinces and its tectonic implications. Acta Petrologica Sinica , 24 (4) :803–809.
[] Zhang ZC, Guo ZJ, Zou GQ, Feng ZS, Li JF. 2009. Geochemical characteristics and SHRIMP U-Pb age of zircons from the Danghe reservoir TTG in Dunhuang, Gansu Province, and its significations. Acta Petrologica Sinica , 25 (3) :495–505.
[] Zhang ZF, Li CY, Niu YZ. 1997. Role, significance, characteristics and range of Alashan-Dunhuang block. Geology of Inner Mongolia (2) :1–14.
[] Zhao Y, Sun Y, Yan JH, Diwu CR. 2015a. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U-Pb geochronology and in situ Hf isotopes. Precambrian Research , 271 :83–97. DOI:10.1016/j.precamres.2015.10.002
[] Zhao Y, Diwu CR, Zhu T, Wang HL, Sun Y. 2015. Discovery of the Late Devonian plagiogranite in Sanweishan area, Dunhuang, Gansu Province and its geological implications. Acta Petrologica Sinica , 31 (7) :1855–1869.
[] Zhao Y, Sun Y, Diwu CR, Guo AL, Ao WH, Zhu T. 2016. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China. Gondwana Research , 30 :207–223. DOI:10.1016/j.gr.2015.08.012
[] Zhao ZF, Gao P, Zheng YF. 2015b. The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology , 395 :11–26. DOI:10.1016/j.chemgeo.2014.11.028
[] Zhao ZH, Guo ZJ, Wang Y. 2007. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica , 23 (8) :1847–1860.
[] Zhou TF, Yuan F, Zhang DY, Fan Y, Liu S, Peng MX, Zhang JD. 2010. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrologica Sinica , 26 (2) :478–502.
[] Zhu T, Wang HL, Xu XY, Chen JL, Ma ZP, Li ZP, Zhu XH, Li P. 2014. Discovery of adakitic rocks in south margin of Dunhuang block and its geological significance. Acta Petrologica Sinica , 30 (2) :491–502.
[] Zong KQ, Zhang ZM, He ZY, Hu ZC, Santosh M, Liu YS, Wang W. 2012. Early Paleozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: Constraints on continental collision in the southern Central Asian Orogenic Belt. Journal of Metamorphic Geology , 30 (8) :753–768. DOI:10.1111/jmg.2012.30.issue-8
[] Zong KQ, Liu YS, Zhang ZM, He ZY, Hu ZC, Guo JL, Chen K. 2013. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China. Precambrian Research , 235 :251–263. DOI:10.1016/j.precamres.2013.07.002
[] 陈宣华, GehrelsG, 王小凤, 杨风, 陈正乐.2003. 阿尔金山北缘花岗岩的形成时代及其构造环境探讨. 矿物岩石地球化学通报 , 22 (4) :294–298.
[] 董国安, 杨怀仁, 杨宏仪, 刘敦一, 张建新, 万渝生, 曾建元.2007. 祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义. 科学通报 , 52 (13) :1572–1585.
[] 冯志硕, 张志诚, 李建锋, 郭召杰.2010. 敦煌三危山地区白垩纪OIB型基性岩墙的特征及地质意义. 岩石学报 , 26 (2) :607–616.
[] 葛小月, 李献华, 陈志刚, 李伍平.2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约. 科学通报 , 47 (6) :474–480.
[] 郝杰, 王二七, 刘小汉, 桑海清.2006. 阿尔金山脉中金雁山早古生代碰撞造山带: 弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩40Ar/39Ar年代学研究的证据. 岩石学报 , 22 (11) :2743–2752.
[] 侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青.2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报 , 23 (10) :2595–2604.
[] 侯可军, 李延河, 田有荣.2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质 , 28 (4) :481–492.
[] 李承东, 张旗, 苗来成, 孟宪峰.2004. 冀北中生代高Sr低Y和低Sr低Y型花岗岩: 地球化学、成因及其与成矿作用的关系. 岩石学报 , 20 (2) :269–284.
[] 李兆丽, 杨经绥, 刘钊.2011. 东天山中段火山岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石学报 , 27 (1) :181–192.
[] 梅华林, 于海峰, 陆松年, 李惠民, 李铨, 林源贤, 左义成.1998. 甘肃敦煌太古宙英云闪长岩: 单颗粒锆石U-Pb年龄和Nd同位素. 前寒武纪研究进展 , 21 (2) :41–45.
[] 孟繁聪, 张建新, 相振群, 于胜尧, 李金平.2011. 塔里木盆地东北缘敦煌群的形成和演化: 锆石U-Pb年代学和Lu-Hf同位素证据. 岩石学报 , 27 (1) :59–76.
[] 戚学祥, 吴才来, 李海兵.2005. 北阿尔金喀孜萨依花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报 , 21 (3) :859–866.
[] 苏春乾, 姜常义, 夏明哲, 魏巍, 潘荣.2009. 北天山东段阿奇山组火山岩的地球化学特征及锆石U-Pb年龄. 岩石学报 , 25 (4) :901–915.
[] 王涛.2000. 花岗岩混合成因研究及大陆动力学意义. 岩石学报 , 16 (2) :161–168.
[] 吴才来, 杨经绥, 姚尚志, 曾令森, 陈松永, 李海兵, 戚学祥, WoodenJL, MazdabFK.2005. 北阿尔金巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年. 岩石学报 , 21 (3) :846–858.
[] 吴才来, 姚尚志, 曾令森, 杨经绥, WoodenJL, 陈松永, MazadabFK.2007. 北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年. 中国科学(D辑) , 37 (1) :10–26.
[] 吴才来, 郜源红, 吴锁平, 陈其龙, WoodenJL, MazadabFK, MattinsonC.2008. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征. 中国科学(D辑) , 38 (8) :930–949.
[] 吴才来, 徐学义, 高前明, 李向民, 雷敏, 郜源红, FrostRB, WoodenJL.2010. 北祁连早古生代花岗质岩浆作用及构造演化. 岩石学报 , 26 (4) :1027–1044.
[] 吴元保, 郑永飞.2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报 , 49 (16) :1589–1604.
[] 肖庆辉, 邱瑞照, 邢作云, 张昱, 伍光英, 童劲松.2007. 花岗岩成因研究前沿的认识. 地质论评 , 53 (S1) :17–27.
[] 许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文.1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报 , 73 (3) :193–205.
[] 杨建, 戴福贵, 吴红华, 杨克绳.2010. 从地震信息看阿尔金断裂带构造和塔里木盆地花彩弧断裂体系. 海相油气地质 , 15 (2) :56–63.
[] 张建新, 孟繁聪, 于胜尧.2010. 两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约. 岩石学报 , 26 (7) :1967–1992.
[] 张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤.2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报 , 22 (9) :2249–2269.
[] 张旗, 潘国强, 李承东, 金惟俊, 贾秀勤.2007. 花岗岩混合问题: 与玄武岩对比的启示——关于花岗岩研究的思考之一. 岩石学报 , 23 (5) :1141–1152.
[] 张旗, 王元龙, 金惟俊, 贾秀勤, 李承东.2008. 造山前、造山和造山后花岗岩的识别. 地质通报 , 27 (1) :1–18.
[] 张元元, 郭召杰.2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义. 岩石学报 , 24 (4) :803–809.
[] 张振法, 李超英, 牛颖智.1997. 阿拉善-敦煌陆块的性质、范围及其构造作用和意义. 内蒙古地质 (2) :1–14.
[] 张志诚, 郭召杰, 邹冠群, 冯志硕, 李建锋.2009. 甘肃敦煌党河水库TTG地球化学特征、锆石SHRIMP U-Pb定年及其构造意义. 岩石学报 , 25 (3) :495–505.
[] 赵燕, 第五春荣, 朱涛, 王洪亮, 孙勇.2015. 敦煌三危山地区晚泥盆世斜长花岗岩的发现及其地质意义. 岩石学报 , 31 (7) :1855–1869.
[] 赵泽辉, 郭召杰, 王毅.2007. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义. 岩石学报 , 23 (8) :1847–1860.
[] 周涛发, 袁峰, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇.2010. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究. 岩石学报 , 26 (2) :478–502.
[] 朱涛, 王洪亮, 徐学义, 陈隽璐, 马中平, 李智佩, 朱小辉, 李平.2014. 敦煌地块南缘石炭纪埃达克岩的发现及其地质意义. 岩石学报 , 30 (2) :491–502.