岩石学报  2016, Vol. 32 Issue (11): 3507-3517   PDF    
湘中龙山大型金锑矿床成矿时代研究——黄铁矿Re-Os和锆石U-Th/He定年
付山岭, 胡瑞忠, 陈佑纬, 骆金诚     
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081
摘要: 龙山金锑矿床是湘中锑-金矿集区最重要的矿床之一,因缺少适合传统放射性同位素定年的矿物,其成矿时代以往未得到很好的限定,制约了对矿床成因的认识。由于分析测试技术的进步,Re-Os同位素定年技术得到了发展,可对热液矿床中形成的低Re、Os含量的硫化物进行较准确可靠的年龄测定,从而可为低温热液矿床的形成时代提供有效制约。锆石U-Th/He同位素定年,也是近年发展和成熟起来的定年技术,对低温热事件极其敏感,同样是约束低温成矿年龄的重要手段之一。本文采用矿床中黄铁矿Re-Os同位素和蚀变围岩中受成矿热事件影响的锆石U-Th/He同位素定年技术,对龙山金锑矿床的成矿时代进行了研究。定年结果显示:热液成因黄铁矿的Re-Os等时线年龄为195±36Ma,对应于印支晚期;锆石U-Th/He年龄为51.2~133.3Ma,经Ft校正后,U-Th/He年龄分布于93.78~258.29Ma之间,平均值为160.7±7.3Ma,对应于燕山早期。该矿床可能发生了200Ma和160Ma的两次成矿作用;或者矿床形成于200Ma左右,但是受到了160Ma左右岩浆热事件的改造,黄铁矿Re-Os年龄代表成矿年龄,而锆石U-Th/He年龄则代表第二期热事件发生的时间。无论是200Ma左右一次成矿,还是另有160Ma左右的成矿作用叠加,这两个年龄分别与区内两期岩浆活动的时间相当,这表明岩浆事件对驱动矿床的形成发挥了重要的作用。
关键词: 龙山金锑矿床     黄铁矿Re-Os同位素定年     锆石U-Th/He同位素定年     成矿时代    
Chronology of the Longshan Au-Sb deposit in central Hunan Province: Constraints from pyrite Re-Os and zircon U-Th/He isotopic dating
FU ShanLing, HU RuiZhong, CHEN YouWei, LUO JinCheng     
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Abstract: The Longshan deposit is one of the most important Au-Sb deposits in central Hunan Province. However, the mineralization age of this deposit is still not well constrained due to lacking of suitable minerals for conventional radiometric dating, limiting the recognition of its genesis. Pyrite Re-Os isotopic dating has been proved to be a reliable technique to determine the age of hydrothermal sulfides with low contents of Re and Os, which can be thus used to constrain the age of epithermal mineralization. The zircon U-Th/He isotopic dating is a newly developed technique, which can provide a potential constraint on the ages of low-temperature metallogenic events. Re-Os isotopic dating of the hydrothermal pyrites and U-Th/He isotopic dating of the zircons recording metallogenic event were carried out in this paper, aiming to constrain the mineralization age of the Longshan Au-Sb deposit. Dating results show that the Re-Os isochron age of hydrothermal pyrites is 195±36Ma, corresponding to Late Indosinian, whereas the U-Th/He ages of zircons from altered wallrock are 51.2~133.3Ma. After correction by Ft, the U-Th/He ages are distributing in the range of 93.78 to 258.29Ma with an average of 160.7±7.3Ma, corresponding to Early Yanshanian. It can be thus concluded that the Longshan Au-Sb deposit may have experienced two episodes of mineralization (i.e., ~200Ma and~160Ma) or the Sb-Au mineralization may have occurred at~200Ma which was remobilized by magmatic event at~160Ma. Pyrite Re-Os age represented the timing of Au-Sb mineralization, whereas the zircon U-Th/He age represented the timing of the second thermal event. Thus, whether the Longshan Au-Sb deposit formed due to the single mineralization event at~200Ma, or also experienced an overlapping of the mineralization event at~160Ma, the two ages were roughly consistent with those of two magmatic events in the district, indicating that magmatism may have played a vital role in the formation of the Longshan Sb-Au deposit.
Key words: Longshan Au-Sb deposit     Pyrite Re-OS dating     Zircon U-Th/He dating     Mineralization age    

湘中地区是我国重要的金锑矿床产区之一,据不完全统计,已发现的金锑矿床/点超过170处(史明魁等, 1993),构成华南低温成矿域的湘中锑-金矿集区(Hu and Zhou, 2012; 胡瑞忠等,2015)。自20世纪80年代以来,许多学者针对区内的金锑矿床开展了一系列研究,但关于其成因却依然存在两种截然不同的观点:1)与岩浆岩相关的中低温热液矿床,成矿物质主要来自深部岩浆作用(刘焕品等, 1985; 杨舜全, 1986; 李智明, 1993; 卢新卫, 1999; Murao et al., 1999);2)典型的层控矿床,成矿物质主要来源于沉积地层(谌锡霖等, 1983; 梁华英, 1991; 刘文均, 1992; 文国璋等, 1993; Fan et al., 2004; Yang et al., 2006)。争议的原因在于该类矿床的矿物组成较为简单,适合于精确开展地球化学及同位素研究的矿物相对较少,特别是缺少适合传统放射性同位素定年的矿物,极大地阻碍了对于成矿时代及成矿机制等方面的认识。锆石U-Th/He同位素定年是近年发展和成熟起来的一种定年技术,已在矿床学研究中取得显著进展(McInnes et al., 2005a, b; Harris et al., 2008; Betsi et al., 2012; Li et al., 2012, 2014; Liu et al., 2014; Wolff et al., 2015)。由于锆石U-Th/He同位素体系的封闭温度为160~200℃(Reiners, 2005),与低温矿床的成矿温度大致相当,低温成矿事件可以完全重置锆石U-Th/he同位素体系,故一般认为锆石U-Th/He同位素年龄可代表成矿热液冷却至锆石U-Th/He同位素体系封闭温度时的年龄或最后一期热液事件的年龄(Liu et al., 2014)。随着分析测试水平的提高,硫化物Re-Os同位素体系已成为金属矿床年龄测试最为有效的技术手段之一,测试对象已从传统的辉钼矿扩展到了磁黄铁矿、黄铁矿等低Re、Os含量及同位素组成的矿物。近年的研究表明,Re-Os同位素体系已能够对热液矿床中低Re、Os含量的硫化物矿物进行较准确的年龄测定(Stein et al., 2000; Selby and Creaser, 2005; 陈懋弘等, 2007; Wang et al., 2008; Liu et al., 2012; 陈雷等, 2013; 邵建波等, 2014; Vernon et al., 2014; Yakubchuk et al., 2014; Ying et al., 2014; Chen et al., 2015; Huang et al., 2015)。龙山金锑矿床是湘中锑-金矿集区的重要矿床之一,位于白马山-龙山成矿带的东段(图 1)。前人已对该矿床的地质特征、成矿物质来源及矿床成因等开展过较多的研究(梁华英, 1989, 1991; 吴继承等, 2007; 刘鹏程等, 2008; 庞保成等, 2011),但因成矿时代尚未精确确定,导致矿床成因仍存在较大争议。本文在前人研究的基础上,通过锆石U-Th/He和黄铁矿Re-Os同位素年代学研究,确定了龙山金锑矿床的成矿时代,揭示了成矿作用与岩浆活动可能存在成因联系。

1 地质背景

湘中地区位于扬子地块与华夏地块的过渡部位,区域地层具有明显的双层结构:元古界浅变质岩基底和古生界至中生界沉积盖层。其中上元古界基底浅变质岩是区内最重要的赋矿层位之一,主要由一套变质砂砾岩、板岩、变质凝灰岩组成,局部由含有基性、中酸性火山岩的碳酸盐岩和炭质板岩等组成,产出了如沃溪、渣滓溪、板溪、龙山等一些大型金锑矿床(罗献林, 1995; 梁华英, 1991; Peng and Frei, 2004; Gu et al., 2012; 王永磊等, 2012)。古生界至中生界沉积盖层主要由泥质页岩、粉砂岩、灰岩、白云岩等海相、陆相及海-陆过渡相沉积岩组成,其中泥盆系细碎屑岩-碳酸盐岩系是锡矿山超大型锑矿床的主要赋矿围岩(Hu et al., 1996; 彭建堂和胡瑞忠, 2001a, b; 彭建堂等, 2002; Peng et al., 2003; Fan et al., 2004)。该区经历了多期构造构造运动,形成了一系列隆起,并伴随北西向、北东向等多组不同走向断裂构造交织的构造搁架(吴继承等, 2007)。区域断裂和褶皱构造较为发育,对区内地层的产出形态及金锑矿床的分布具有明显的控制作用。尤其是印支-燕山期基底断裂的复活,切割了东西向隆起带,形成若干个次级隆起(图 1a, b; 如白马山穹隆、大乘山穹隆和龙山穹隆),而这些基底断裂则起到了沟通上下构造层的作用,为含矿溶液的迁移成矿提供了通道;与此同时,印支期花岗岩体(如白马山岩体、沩山岩体、紫云山岩体等,图 1a)的形成(200~230Ma; Ding et al., 2006; Chen et al., 2007; Wang et al., 2007; Chu et al., 2012; 李建华等, 2014; 刘凯等, 2014; Fu et al., 2015),可能为区内金锑矿床的形成提供了热源及部分成矿物质。

图 1 湘中地区区域地质简图(a, 据湖南省地质矿产局, 1988修改)和白马山-龙山金锑成矿带区域地质图(b, 据李己华等, 2004修改) Fig. 1 Simplified geological map of the Xiangzhong district (a, after BGMRH, 1988) and regional geological map of the Baimashan-Longshan Au-Sb ore belt (b, modified after Li et al., 2004)

龙山金锑矿床位于白马山-龙山东西向隆起带与北东向宁乡-新宁基底断裂北西向锡矿山-涟源隐伏基底断裂的交汇部位(图 1b),赋存于龙山穹隆的中心部位。穹隆核部由前泥盆系基底构成,泥盆系围绕穹隆成环带状展布,石炭系-三叠系分布于白马山-龙山隆起带的南北两侧。地层整体为一套坳拉槽环境中沉积的裂谷式沉积建造(庞保成等, 2011)。断裂构造控制了龙山金锑矿床的产出位置和形态(图 2)。其中,北西西向断裂多为张扭性断裂,规模较大,矿体规模也相对较大;而其他走向的断裂则多显示压性或压扭性特征,相应的矿体规模也较小。区内无大岩体出露,仅矿区西北侧发育有两条规模较小的酸性岩脉。但在龙山穹隆周边发育有大量花岗斑岩脉和花岗闪长斑岩脉(湖南省地质矿产局, 1988)。最新的年代学研究显示,龙山穹隆周边的酸性岩脉性主要形成于印支晚期(陈佑纬等, 2016),与湘中盆地周边大面积发育的花岗岩体形成年龄一致(Fu et al., 2015),表明二者可能为同一期岩浆作用的产物。地球物理资料显示,龙山穹隆的深部可能存在大型隐伏岩体(黎盛斯, 1996; 饶家荣等, 1999)。

图 2 龙山金锑矿床矿区地质图(据郑时干, 2006修改) Fig. 2 Geological map of the Longshan Au-Sb deposit (modified after Zheng, 2006)
2 矿床地质及样品采集

龙山金锑矿床的矿体主要赋存于龙山穹隆核部震旦系江口组的一套浅变质碎屑岩中,该套地层自下而上分四个岩性段,矿体主要赋存于江口组上段第一、二亚段的含砾砂质板岩、凝灰质含砾砂质板岩中。矿体形态严格受背斜核部的断裂控制,多呈脉状及透镜状产出(图 2图 3),具有成组分布的特点。根据矿脉展布方向,主要分为北西西向和北北东向两组,以前者为主,主要包括1号和2号矿体,是龙山金锑矿床早期开采的主要对象。北北东向的矿体主要有5号、7号、8号和20号等矿脉,其中5号、7号和8号矿脉是当前主要的开采对象。根据主要金属矿物组合特点,矿石主要有辉锑矿-毒砂(黄铁矿)自然金、毒砂-自然金、黄铁矿-自然金三种类型(刘鹏程等, 2008; 庞保成等, 2011)。矿石矿物主要为黄铁矿、辉锑矿、自然金和毒砂,脉石矿物主要为石英,次为绢云母、方解石、绿泥石等。矿石结构主要为粒状结构、鳞片变晶结构,具有脉状、网脉状、条带状、块状和角砾状构造。围岩蚀变主要为硅化、绢云母化、碳酸盐化和绿泥石化,其中硅化和绢云母化与成矿关系密切。根据矿物组合特征,可把成矿期划分为热液期和表生期,其中热液期又可分为早期石英-黄铁矿(毒砂)阶段、中期自然金-黄铁矿(毒砂)-石英阶段和晚期辉锑矿-黄铁矿-石英-碳酸盐岩阶段。

图 3 龙山金锑矿床矿体形态 Fig. 3 Pictures of orebodies from the Longshan Au-Sb deposit

本次工作的样品主要采自5号矿脉,其中黄铁矿Re-Os同位素定年的样品为辉锑矿-黄铁矿-自然金类型的矿石,黄铁矿成脉状或浸染状产出,粒径多小于1mm,本次工作共挑选出5件较粗粒的黄铁矿用于Re-Os同位素定年;锆石U-Th/He同位素定年的样品采自5号矿脉边部的强蚀变围岩,采用传统的重-磁方法挑选出锆石颗粒,然后在双目镜下挑选出自形程度高、透明好、无裂隙和包体的锆石用于U-Th/He同位素定年。

3 分析方法与结果 3.1 黄铁矿Re-Os同位素定年及结果

黄铁矿Re-Os同位素测定在中国地质科学院国家地质实验测试中心Re-Os同位素实验室完成,具体原理和详细分析方法见文献(杨胜洪等, 2007; 杜安道等, 2009; 李超等, 2009)。采用卡洛斯管溶样,通过蒸馏分离Os,用丙酮萃取并纯化Re。样品Re、Os的含量及同位素组成采用Finnigan Element 2型高分辨电感耦合等离子质谱(HR-ICP-MS)完成。测定过程中通过监测185Re控制Re对Os测定的干扰,通过监测190Os控制Os对Re测定的干扰。分析质量采用国家标准物质GBW04435(HLP)和GBW04436(JDC)进行监测,整个实验流程空白为Re < 4pg,Os < 0.7pg。

5件黄铁矿样品的Re、Os含量及187Re/188Os和187Os/188Os测定结果列于表 1。黄铁矿的Re含量为0.4410×10-9~4.4149×10-9,Os含量为0.0067×10-9~0.0306×10-9187Re/188Os和187Os/188Os比值分别为184.9~3172和1.36~11.31。用Isoplot2.06计算获得的Re-Os等时线年龄为195±36Ma(2σ,n=5),MSWD=16,初始187Os/188Os比值为1.09±0.84(2σ)(图 4)。本次实验结果的误差偏大,其原因通常涉及以下几个方面:(1)方法本身的原因,即黄铁矿Re-Os同位素分析的复杂性和不确定性而所致;(2)样品自身的原因,如黄铁矿常发育碎裂结构,裂隙中的充填物可导致黄铁矿样品的纯度不足而引起误差(唐永永等, 2013);(3)黄铁矿中Re、Os含量偏低,造成等时线上各点拉不开而引起误差(李超等, 2010)。由于本次测试的黄铁矿Re含量偏低,其中3件样品的Re含量低于1×10-9,且在等时线上分布较为集中,这可能是导致年龄误差偏大的原因。但从MSWD值及拟合概率来看,其等时线年龄是可靠的,对于开展矿床形成时代的研究仍具有重要意义。

表 1 湘中龙山金锑矿黄铁矿Re-Os同位素分析 Table 1 Pyrite Re-Os isotopic analysis of the Longshan Au-Sb deposit in central Hunan Province

图 4 龙山金锑矿床黄铁矿Re-Os同位素等时线图 Fig. 4 Pyrite Re-Os isotopic isochrons of the Longshan Au-Sb deposit
3.2 锆石U-Th/He同位素定年及结果

本次工作锆石U-Th/He同位素定年的实验准备和测试工作是在澳大利亚科廷大学John de Laeter Center同位素实验室完成的。将挑选出的锆石颗粒置于双目镜下,选择自形程度高、透明、包体少和无裂隙的锆石颗粒,用于U-Th/He同位素测定。同时记录所挑选锆石的长度、宽度等参数,用于计算α射出效应的校正系数Ft(Ft计算公式见下文; Farley et al., 1996; Farley, 2002)。将每个锆石颗粒分别放入Nb盒内后封闭,然后将其置入超高压真空箱内使用1064nm Nd-YAG激光系统在1250℃下提取单颗粒锆石中的He,并在Pfeiffer Prisma QMS-200质谱上进行分析。每个锆石颗粒都进行了多次去气过程直至锆石内He气被全部提取。采用热Ti-Zr吸收剂(350℃)对提出的He气进行纯化,加入3He稀释剂(纯度为99.9%)后导入到紧邻冷Ti-Zr吸收剂的质谱仪内进行He同位素分析。4He/3He比值采用静态模式下的Channeltron探测器进行分析,HD和3H干扰采用质/荷比=1进行校正,采用独立4He标准池对4He浓度进行校正,单个样品4He浓度分析误差小于1%。将去气后的锆石样品从激光室内取出转至Parr压溶管内,接下来的溶解过程详见Evans et al.(2005)。添加稀释剂235U,230Th和350 μL HF后, 在240℃条件下溶解40h左右,采用添加同样稀释剂的25 μL标准溶液和未加稀释剂的HF空白溶液对流程空白进行监测;然后将溶液从压力管中取出,放置在热盘上蒸干48h;然后给每个样品加添350μL HF,再次放置200℃热盘上加热24h以确保氟化盐全部溶解。样品、空白和标准溶液同时在Agilent 7700 ICP-MS上进行238U和232Th含量分析。锆石(U-Th)/He年龄的总误差小于5%,采用Ft方法进行年龄校正,Agecorrrected=Ageraw/Ft。Ft校正方法由Farley et al. (1996)提出,Ft=1-4.55β+5.2β2,β为矿物颗粒表面积与体积的比值。对于四方晶系的锆石而言,β=(4L+2W1)/(L×W1),其中L为锆石颗粒长度,W1为锆石颗粒的宽度。

6颗锆石的U-Th/He同位素分析结果见表 2。其中,锆石LS-5-3@3的分析结果误差较大(超过10%),远超出实验室分析误差,其可靠性存疑。其余5颗锆石的U-Th/He同位素年龄为51.2~133.3Ma。经Ft校正后,U-Th/He年龄分布于93.78~258.29Ma,5颗锆石U-Th/He平均年龄为160.7±7.3Ma。已有的研究表明,引起单个样品内(U-Th)/He年龄分散的因素主要有:(1)矿物颗粒内含有富U和Th的包体或流体包裹体(Lippolt et al., 1994);(2)富He主岩的外来干扰(Spiegel et al., 2009; Danisik et al., 2010);(3)锆石颗粒的大小不同(Reiners et al., 2004);(4)矿物颗粒内U、Th等不均一分布(如带状分布)(Farley et al., 1996; Meesters and Dunai, 2002; Hourigan et al., 2005; Danisik et al., 2010; Guenthner et al., 2013, 2014);与(5)U和Th衰变造成的辐射损伤(Nasdala et al., 2004; Shuster et al., 2006; Shuster and Farley, 2009)。本文所获得的锆石U-Th/He年龄误差范围偏大,可能是由于锆石内U、Th等母体同位素的不均一分布所致,而在实验测试过程中通常难以有效地测定U、Th的分布状态。因此,在处理U-Th/He同位素定年结果时,常采用多颗粒年龄的平均值代表该样品的U-Th/He年龄。

表 2 湘中龙山金锑矿床锆石U-Th/He同位素分析结果 Table 2 Zircon U-Th/He isotopic dating result of the Longshan Au-Sb deposit in central Hunan Province

流体包裹体研究表明,龙山金锑矿床的形成温度位于165~230℃之间(梁华英, 1991; 马东升等, 2003),高于锆石U-Th/He同位素体系的封闭温度(180±20℃; Reiners, 2005),成矿热事件可完全重置锆石的U-Th/He同位素体系进而记录成矿事件发生的时间。目前U-Th/He同位素定年已在金矿床、斑岩型铜-金矿床等研究中取得了较好的应用(McInnes et al., 2005a, b; Harris et al., 2008; Betsi et al., 2012; Li et al., 2012, 2014; Cabral et al., 2013; Zeng et al., 2013; Liu et al., 2014),可对成矿时代、矿化持续时间及成矿后的抬升剥蚀和保存情况进行较好的制约(陈文等, 2010)。本次工作测试的锆石选自矿脉边部强蚀变的围岩,其内的锆石U-Th/He同位素体系受到成矿事件的影响而发生重置,故其U-Th/He同位素年龄可为研究龙山金锑矿床的形成时代提供约束。

4 讨论

由于缺少适合用传统放射性同位素方法定年的矿物,龙山金锑矿床的形成时代一直未得到有效制约。梁华英(1991)根据构造与成矿关系及龙山地区出露的燕山期酸性岩脉,推测龙山金锑矿床的形成时代可能为燕山期,同时认为还存在加里东期成矿的可能。史明魁等(1993)通过石英流体包裹体Rb-Sr等时线法获得了175±27Ma的年龄,并认为龙山金锑矿床的形成与区内燕山早期的岩浆活动有关。然而最新的研究结果显示,龙山地区的酸性岩脉主要形成于印支晚期(217~220Ma; 陈佑纬等, 2016),并非前人推测的燕山期。事实上,印支晚期的酸性岩体/脉在湘中地区普遍发育,且与金锑矿床呈现出密切的空间关系,近年来在这些酸性岩体/脉周边发现了一系列金锑矿床/点,如产于白马山岩体边部的古台山金矿床(戴长华, 2000a)、青京寨金矿床(余建国, 1998; 戴长华, 2000b)、铲子坪和大坪金矿床(李华芹等, 2008),沩山岩体边部的太平金矿床(卢新卫, 1999)以及紫云山岩体边部的铃山和马鞍金矿床(戚学祥, 1998; 王滨清, 2005)等。刘继顺(1996)的研究表明,湘中地区至少有27个金锑矿床/矿点,在其100米范围内见有酸性岩脉或小岩珠分布,一些地方这些岩脉或小岩珠甚至为矿体的直接围岩,这表明湘中地区酸性岩体/脉与金锑矿化之间存在密切的空间联系。前人通过对赋矿岩脉年龄的测定来限定金锑矿床的形成时代,如通过对廖家坪金锑矿床、符竹溪锑金矿床和板溪锑矿床赋矿酸性岩脉年龄(钾长石K-Ar)的测定,获得相应矿床的年龄分别为200Ma、209Ma和194~204Ma(肖启明等, 1992; 姚振凯和朱蓉斌, 1993; 彭建堂和胡瑞忠, 2001a)。李华芹等(2008)测定的位于白马山岩体边部的铲子坪和大坪金矿床的石英流体包裹体Rb-Sr等时线年龄分别为205.6±9.4Ma和204.8±6.3Ma。上述研究表明,湘中地区在印支晚期(~200Ma)可能存在一期与同期岩浆活动密切相关的金锑成矿作用。

本次工作获得黄铁矿Re-Os同位素等时线年龄为195±36Ma,与龙山地区出露的酸性岩脉及湘中盆地周边的印支期花岗岩体的形成时代相近。但蚀变围岩内受成矿热事件影响的锆石的U-Th/He年龄为160.7±7.3Ma,远小于区内岩浆活动的时间,也与黄铁矿Re-Os同位素年龄相差较大。由于锆石U-Th/He同位素体系的封闭温度较低,易受到后期热事件的改造或重置。因此,锆石U-Th/He年龄所代表的地质意义通常分为两种情况:单一冷却过程(Single cooling),对应的锆石U-Th/He年龄代表了热事件冷却至U-Th/He同位素体系封闭温度时的时间,即热事件晚期的年龄;复杂冷却过程(Multiple cooling),锆石U-Th/He同位素体系可能经历了多次重置过程,对应的U-Th/He年龄则代表了U-Th/He同位素体系最后一次重置发生的时间,即最后一次热事件发生的时间(Liu et al., 2013)。那么,我们假设锆石U-Pb同位素体系封闭温度为900℃(Lee et al., 1997; Cherniak and Watson, 2001),区内岩浆活动的最小年龄为210Ma;锆石U-Th/He体系的封闭温度为200°C,U-Th/He年龄为160Ma,那么成矿热液的冷却速率约14℃/Myr,远小于典型岩浆热液矿床的冷却速率(McInnes et al., 2005a; Harris et al., 2008; Li et al., 2012, 2014)。这种不匹配性的原因可能为:(1)区内印支晚期岩浆活动后还存在一期热事件,这一热事件完全重置了锆石U-Th/He同位素体系;(2)成矿事件发生于深部,围岩与成矿热液达到了热平衡,且高于锆石U-Th/He同位素体系的封闭温度。已有的研究结果更支持第(1)种可能,如前人在研究湘中地区的印支期花岗岩体时发现,在白马山、沩山、紫云山等印支期岩体内存在少量燕山早期(170~180Ma)的锆石(Ding et al., 2006; Chen et al., 2007; 刘建清等, 2013),表明湘中地区可能存在燕山早期的岩浆活动,但地表出露不显著。另一方面,许多研究表明湘中地区也存在燕山早期的金锑成矿年龄,如形成于155Ma左右的锡矿山锑矿床(Peng et al., 2003)以及龙山地区最近发现的谢家山锑金(钨)矿床也形成于160Ma左右(谢桂青等, 未发表数据)。上述研究表明,燕山早期的岩浆活动促使湘中地区发生了又一次金锑成矿事件。

因此,我们认为龙山金锑矿床极可能:(1)发生了200Ma和160Ma的两次成矿作用,矿床是这两期成矿作用叠加的产物;或者(2)矿床形成于200Ma左右,但是受到了160Ma左右岩浆热事件的改造,黄铁矿Re-Os同位素年龄代表成矿事件的年龄,而锆石U-Th/He同位素年龄则代表了第二期热事件发生的时间。

龙山金锑矿床的成因一直备受争议,争议的焦点在于成矿作用是否与岩浆活动有成因联系(梁华英, 1991; 马东升等, 2002, 2003; 刘鹏程等, 2008; 庞保成等, 2011)。我们的研究表明,无论该矿床是200Ma左右一次成矿,还是另有160Ma左右的成矿作用叠加,这两个年龄都分别与区内两期岩浆活动的时间相当,表明金锑矿床与岩浆活动之间存在明显的时间相关性,这表明岩浆事件对驱动矿床的形成发挥了重要的作用。

5 结论

(1)龙山金锑矿床可能发生了200Ma和160Ma的两次成矿作用,矿床是这两期成矿作用叠加的产物;或者矿床形成于200Ma左右,但是受到了160Ma左右岩浆热事件的改造,黄铁矿Re-Os同位素年龄代表成矿事件的年龄,而锆石U-Th/He年龄则代表了第二期热事件发生的时间。

(2)无论该矿床是200Ma左右一次成矿,还是另有160Ma左右的成矿作用叠加,这两个年龄都分别与区内两期岩浆活动的时间相当,这表明岩浆事件对驱动矿床的形成发挥了重要的作用。

致谢 在野外调查和采样过程中得到新龙矿业公司地测科周靖平主任、袁亮工程师等人的帮助;黄铁矿Re-Os同位素分析得到了中国地质科学院国家地质测试中心的屈文俊研究员、李超博士的帮助;锆石U-Th/He同位素分析得到了西澳大学Geoffrey Batt教授和科廷大学Noreen Evans教授和Danisik Martin博士的帮助; 两位审稿人认真审阅了稿件并提出了建设性的意见和建议; 在此一并表示感谢。
参考文献
[] Betsi TB, Lentz D, McInnes B , Evans NJ. 2012. Emplacement ages and exhumation rates for intrusion-hosted Cu-Mo-Sb-Au mineral systems at Freegold Mountain (Yukon, Canada):Assessment from U-Pb, Ar-Ar, and (U-Th)/He geochronometer. Canadian Journal of Earth Sciences , 49 (5) :653–670. DOI:10.1139/e2012-009
[] Bureau of Geology and Mineral Resources of Hunan Province (BGMRH).1988. Regional Geology of the Hunan Province. Beijing: Geological Publishing House : 1 -718.
[] Cabral AR, Eugster O, Brauns M, Lehmann B, Rosel D, Zack T, de Abreu FR, Pernicka E , Barth M. 2013. Direct dating of gold by radiogenic helium:Testing the method on gold from Diamantina, Minas Gerais, Brazil. Geology , 41 (2) :163–166. DOI:10.1130/G33751.1
[] Chen L, Wang ZQ, Zhao YY, Liu Y, Cao J, Ding L , Qu WJ. 2013. Re-Os isotopic dating of pyrrhotite in the Linghou Cu deposit, Jiande, Zhejiang Province and its geological significance. Acta Geologica Sinica , 87 (12) :1864–1873.
[] Chen MH, Mao JW, Qu WJ, Wu LL, Uttley PJ, Norman T, Zheng JM , Qin YZ. 2007. Re-Os dating of arsenian pyrites from the Lannigou gold deposit, Zhenfeng, Guizhou Province, and its geological significances. Geological Review , 53 (3) :371–382.
[] Chen MH, Mao JW, Li C, Zhang ZQ , Dang Y. 2015. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China. Ore Geology Reviews , 64 :316–327. DOI:10.1016/j.oregeorev.2014.07.019
[] Chen W, He XX, Zhang Y, Li J, Chen Y , Liu XY. 2010. A new dating technique for metallic mineral deposit:(U-Th)/He isotopic dating. Mineral Deposits , 29 (Suppl.) :821–822.
[] Chen WF, Chen PR, Huang HY, Ding X , Sun T. 2007. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China. Science in China (Series D) , 50 (11) :1606–1627. DOI:10.1007/s11430-007-0073-1
[] Chen XL, Jiang YH, Li SY , Liao HZ. 1983. A preliminary study on the origin of the Xikuangshan antimony deposit in Hunan. Geological Review , 29 (5) :486–492.
[] Chen YW, Bi XW, Fu SL , Dong SH. 2016. Zircon U-Pb dating and Hf isotope of the felsic dykes in the Longshan Au-Sb deposit in Central Hunan Province and their geological significance. Acta Petrologica Sinica , 32 (11) :3469–3488.
[] Cherniak DJ , Watson EB. 2001. Pb diffusion in zircon. Chemical Geology , 172 (1-2) :5–24. DOI:10.1016/S0009-2541(00)00233-3
[] Chu Y, Lin W, Faure M, Wang QC , Ji WB. 2012. Phanerozoic tectonothermal events of the Xuefengshan Belt, central South China:Implications from U-Pb age and Lu-Hf determinations of granites. Lithos , 150 :243–255. DOI:10.1016/j.lithos.2012.04.005
[] Dai CH. 2000a. Deposit-controlled characteristics of NW-trending structure and prospecting significance about Au ores zone of Gutaishan-Gaojiaao. Hunan Geology , 19 (2) :105–110.
[] Dai CH. 2000b. The geological feature of Qingjingzhai gold deposit of Xinhua County and the meaning of conducting ore-prospecting there. Gold , 21 (4) :8–10.
[] Danisik M, Pfaff K, Evans NJ, Manoloukos C, Staude S, McDonald BJ , Markl G. 2010. Tectonothermal history of the Schwarzwald ore district (Germany):An apatite triple dating approach. Chemical Geology , 278 (1-2) :58–69. DOI:10.1016/j.chemgeo.2010.08.022
[] Ding X, Chen PR, Chen WF, Huang HY , Zhou XM. 2006. Single zircon LA-ICPMS U-Pb dating of Weishan granite (Hunan, South China) and its petrogenetic significance. Science in China (Series D) , 49 (8) :816–827. DOI:10.1007/s11430-006-0816-4
[] Du AD, Qu WJ, Li C , Yang G. 2009. A review on the development of Re-Os isotopic dating methods and techniques. Rock and Mineral Analysis , 28 (3) :288–304.
[] Evans NJ, Byrne JP, Keegan JT , Dotter LE. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite:Application to laser (U-Th)/He thermochronology. Journal of Analytical Chemistry , 60 (12) :1159–1165. DOI:10.1007/s10809-005-0260-1
[] Fan DL, Zhang T , Ye J. 2004. The Xikuangshan Sb deposit hosted by the Upper Devonian black shale series, Hunan, China. Ore Geology Reviews , 24 (1-2) :121–133. DOI:10.1016/j.oregeorev.2003.08.005
[] Farley KA, Wolf RA , Silver LT. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta , 60 (21) :4223–4229. DOI:10.1016/S0016-7037(96)00193-7
[] Farley KA. 2002. (U-Th)/He dating:Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry , 47 (1) :819–844. DOI:10.2138/rmg.2002.47.18
[] Fu SL, Hu RZ, Bi XW, Chen YW, Yang JH , Huang Y. 2015. Origin of Triassic granites in central Hunan Province, South China:Constraints from zircon U-Pb ages and Hf and O isotopes. International Geology Review , 57 (2) :97–111. DOI:10.1080/00206814.2014.996258
[] Gu XX, Zhang YM, Schulz O, Vavtar F, Liu JM, Zheng MH , Zheng L. 2012. The Woxi W-Sb-Au deposit in Hunan, South China:An example of Late Proterozoic sedimentary exhalative (SEDEX) mineralization. Journal of Asian Earth Sciences , 57 :54–75. DOI:10.1016/j.jseaes.2012.06.006
[] Guenthner WR, Reiners PW, Ketcham RA, Nasdala L , Giester G. 2013. Helium diffusion in natural zircon:Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science , 313 (3) :145–198. DOI:10.2475/03.2013.01
[] Guenthner WR, Reiners PW , Tian YT. 2014. Interpreting date-eU correlations in zircon (U-Th)/He datasets:A case study from the Longmen Shan, China. Earth and Planetary Science Letters , 403 :328–339. DOI:10.1016/j.epsl.2014.06.050
[] Harris AC, Dunlap WJ, Reiners PW, Allen CM, Cooke DR, White NC, Campbell IH , Golding SD. 2008. Multimillion year thermal history of a porphyry copper deposit:Application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina. Mineralium Deposita , 43 (3) :295–314. DOI:10.1007/s00126-007-0151-5
[] Hourigan JK, Reiners PW , Brandon MT. 2005. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta , 69 (13) :3349–3365. DOI:10.1016/j.gca.2005.01.024
[] Hu RZ , Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita , 47 (6) :579–588. DOI:10.1007/s00126-012-0431-6
[] Hu RZ, Mao JW, Hua RM , Fan WM.2015. Intra-continental Mineralization of South China Craton. Beijing: Science Press : 1 -903.
[] Hu XW, Pei RF , Zhou S. 1996. Sm-Nd dating for antimony mineralization in the Xikuangshan deposit, Hunan, China. Resource Geology , 46 (4) :227–231.
[] Huang XW, Gao JF, Qi L , Zhou MF. 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite:The Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China. Ore Geology Reviews , 65 :900–916. DOI:10.1016/j.oregeorev.2014.07.020
[] Lee JKW, Williams IS , Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature , 390 (6656) :159–162. DOI:10.1038/36554
[] Li C, Qu WJ, Du AD , Sun WJ. 2009. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating. Rock and Mineral Analysis , 28 (3) :233–238.
[] Li C, Qu WJ, Wang DH, Chen ZH , Du AD. 2010. Advances in the study of the Re-Os isotopic system of organic-rich samples. Acta Petrologica et Mineralogica , 29 (4) :421–430.
[] Li GM, Cao MJ, Qin KZ, Evans NJ, McInnes BIA , Liu YS. 2014. Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating. Journal of Asian Earth Sciences , 79 :741–758. DOI:10.1016/j.jseaes.2013.05.026
[] Li HQ, Wang DH, Chen FW, Mei YP , Cai H. 2008. Study on chronology of the Chanziping and Daping gold deposit in Xuefeng Mountains, Hunan Province. Acta Geologica Sinica , 82 (7) :900–905.
[] Li JH, Wu JC , Zhou YJ. 2004. Ore-control rules of dome structure in Baimashan-Co-Longshan gold belt, central Hunan. Gold Geology , 10 (4) :32–36.
[] Li JH, Zhang YQ, Xu XB, Li HL, Dong SW , Li TD. 2014. SHRIMP U-Pb dating of zircons from the Baimashan Longtan super-unit and Wawutang granites in Hunan Province and its geological implication. Journal of Jilin University (Earth Science Edition) , 44 (1) :158–175.
[] Li JX, Qin KZ, Li GM, Cao MJ, Xiao B, Chen L, Zhao JX, Evans NJ , McInnes BIA. 2012. Petrogenesis and thermal history of the Yulong porphyry copper deposit, eastern Tibet:Insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineralogy and Petrology , 105 (3-4) :201–221. DOI:10.1007/s00710-012-0211-0
[] Li SS. 1996. Evolution of antimony mineralization by the mantle plume of deep fluid in central Hunan. Hunan Geology , 15 (3) :137–142.
[] Li ZM. 1993. A discussion on the mechanism of Xikuangshan antimony deposit. Mineral Resources and Geology , 7 (2) :88–93.
[] Liang HY. 1989. Ore material sources of the Longshan gold-antimony deposit. Mineral Deposits , 8 (4) :39–48.
[] Liang HY. 1991. Geochemistry of ore fluids and genesis of Longshan Au-Sb deposit, west Hunan, China. Geochemica (4) :342–350.
[] Lippolt HJ, Leitz M, Wernicke RS , Hagedorn B. 1994. (uranium + thorium)/helium dating of apatite:Experience with samples from different geochemical environments. Chemical Geology , 112 (1-2) :179–191. DOI:10.1016/0009-2541(94)90113-9
[] Liu HP, Zhang YL , Hu WQ. 1985. On the origin of the stibnite deposit of Shikuangshan mine, Hunan. Hunan Geology , 4 (1) :28–39.
[] Liu J, Wu G, Li Y, Zhu MT , Zhong W. 2012. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences , 49 :300–312. DOI:10.1016/j.jseaes.2011.10.014
[] Liu JQ, Xie Y, Zhao Z, Lin JS, Feng WM , Huang XP. 2013. The geochronologic characteristics of Baimashan granite in western Hunan Province and its geotectonic significance. Earth Science Frontiers , 20 (5) :25–35.
[] Liu JS. 1996. Relationship between felsic dikes and antimony-gold mineralization in central Hunan Province. Geological Exploration for Non-Ferrous Metals , 5 (6) :321–326.
[] Liu K, Mao JR, Zhao XL, Ye HM , Hu Q. 2014. Geological and geochemical characteristics and genetic significance of the Ziyunshan pluton in Hunan Province. Acta Geologica Sinica , 88 (2) :208–227.
[] Liu PC, Tang QG , Li HC. 2008. Geological characteristics, enrichment laws and prospecting direction of gold-antimony deposit in Longshan deposits of Hunan. Geology and Prospecting , 44 (4) :31–38.
[] Liu WJ. 1992. Genesis of some antimony deposits in southern China. Journal of Chengdu College of Geology , 19 (2) :10–19.
[] Liu X, Fan HR, Evans NJ, Batt GE, McInnes BIA, Yang KF , Qin KZ. 2014. Cooling and exhumation of the Mid-Jurassic porphyry copper systems in Dexing City, SE China:Insights from geo-and thermochronology. Mineralium Deposita , 49 (7) :809–819. DOI:10.1007/s00126-014-0536-1
[] Lu XW. 1999. Regional ore-controlling characteristics of gold and antimony deposits in central Hunan. Uranium Geology , 15 (6) :344–349.
[] Luo XL. 1995. Geological characteristics of the formation of Banxi antimony deposits in Hunan. Journal of Guilin Institute of Technology , 15 (3) :231–242.
[] Ma DS, Pan JY, Xie QL , He J. 2002. Ore source of Sb(Au) deposits in Central Hunan:Ⅰ. Evidences of trace elements and experimental geochemistry. Mineral Deposits , 21 (3) :366–376.
[] Ma DS, Pan JY , Xie QL. 2003. Ore sources of Sb(Au) deposits in Central Hunan:Ⅱ. Evidence of isotopic geochemistry. Mineral Deposits , 22 (1) :78–87.
[] McInnes BIA, Evans NJ, Fu FQ, Garwin S, Belousova E, Griffin WL, Bertens A, Sukarna D, Permanadewi S, Andrew RL and Deckart K. 2005a. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-Mo-Au deposits. In:Porter TM (ed.). Supper Porphyry Copper & Gold Deposits:A Global Perspective. Adelaide:PGC Publishing, 1-16
[] McInnes BIA, Evans NJ, Fu FQ , Garwin S. 2005b. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry , 58 (1) :467–498. DOI:10.2138/rmg.2005.58.18
[] Meesters AGCA , Dunai TJ. 2002. Solving the production-diffusion equation for finite diffusion domains of various shapes Part Ⅱ. Application to cases with α-ejection and nonhomogeneous distribution of the source. Chemical Geology , 186 (3-4) :57–73.
[] Murao S, Sie SH, Hu X , Suter GF. 1999. Contrasting distribution of trace elements between representative antimony deposits in southern China. Nuclear Instruments and Methods in Physics Research Section B , 150 (1-4) :502–509. DOI:10.1016/S0168-583X(98)00947-1
[] Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E , Wirth R. 2004. Incomplete retention of radiation damage in zircon from Sri Lanka. American Mineralogist , 89 (1) :219–231. DOI:10.2138/am-2004-0126
[] Pang BC, Yang DS, Zhou Z, Liu YM, Liu PC , Liu YD. 2011. Trace elements in pyrites and their implication for hydrothermal ore-forming process in Longshan gold-antimony deposits, Hunan, China. Geoscience , 25 (5) :832–845.
[] Peng B , Frei R. 2004. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (western Hunan, China). Mineralium Deposita , 39 (3) :313–327. DOI:10.1007/s00126-004-0409-0
[] Peng JT , Hu RZ. 2001a. Metallogenic epoch and metallogenic tectonic environment of antimony deposits, South China. Geology-Geochemistry , 29 (3) :104–108.
[] Peng JT , Hu RZ. 2001b. Carbon and oxygen isotope systematics in the Xikuangshan giant antimony deposit, central Hunan. Geological Review , 47 (1) :34–41.
[] Peng JT, Hu RZ, Zou LQ , Liu JX. 2002. Isotope tracing of ore-forming materials for the Xikuangshan antimony deposit, central Hunan. Acta Mineralogica Sinica , 22 (2) :155–159.
[] Peng JT, Hu RZ , Burnard PG. 2003. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China):The potential of calcite as a geochronometer. Chemical Geology , 200 (1-2) :129–136. DOI:10.1016/S0009-2541(03)00187-6
[] Qi XX. 1998. Discussion on the mechanism of gold metallogeny in the uplift of Ziyunshan, Shuangfeng County, Hunan. Gold Geology , 4 (1) :50–56.
[] Rao JR, Luo JL , Yi ZJ. 1999. The mantle-crustal tectonic metallogenic model and ore-prospecting prognosis in the Xikuangshan antimony ore field. Geophysical and Geochemical Exploration , 23 (4) :241–249.
[] Reiners PW, Spell TL, Nicolescu S , Zanetti KA. 2004. Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta , 68 (8) :1857–1887. DOI:10.1016/j.gca.2003.10.021
[] Reiners PW. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry , 58 (1) :151–179. DOI:10.2138/rmg.2005.58.6
[] Selby D , Creaser RA. 2005. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes. Science , 308 (5726) :1293–1295. DOI:10.1126/science.1111081
[] Shao JB, Zhang XY, Wang HT, Chen DY , Ren Q. 2014. Geochemistry and pyrite Re-Os dating of the Tadong iron deposit in Jilin Province. Acta Geologica Sinica , 88 (1) :83–98.
[] Shi MK, Fu BQ, Jin XX , Zhou XC. 1993. Antimony Metallogeny in Central Part of Hunan Province. Changsha:Hunan Press of Science and Technology :1–151.
[] Shuster DL, Flowers RM , Farley KA. 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters , 249 (3-4) :148–161. DOI:10.1016/j.epsl.2006.07.028
[] Shuster DL , Farley KA. 2009. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochimica et Cosmochimica Acta , 73 (1) :183–196. DOI:10.1016/j.gca.2008.10.013
[] Spiegel C, Kohn B, Belton D, Berner Z , Gleadow A. 2009. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples:The effect of He implantation. Earth and Planetary Science Letters , 285 (1-2) :105–114. DOI:10.1016/j.epsl.2009.05.045
[] Stein HJ, Morgan JW , Scherstén A. 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides:The Harnäs gold deposit, Southwest Sweden, records continental-scale tectonic events. Economic Geology , 95 (8) :1657–1671.
[] Tang YY, Bi XW, Wu LY, Wang L, Zou ZC , He LP. 2013. Re-Os isotopic dating of pyrite from Jinding Zn-Pb ore deposit and its geological significance. Acta Mineralogica Sinica , 3 (3) :287–294.
[] Vernon E, Holdsworth RE, Selby D, Dempsey E, Finlay AJ , Fallick AE. 2014. Structural characteristics and Re-Os dating of quartz-pyrite veins in the Lewisian Gneiss Complex, NW Scotland:Evidence of an Early Paleoproterozoic hydrothermal regime during terrane amalgamation. Precambrian Research , 246 :256–267. DOI:10.1016/j.precamres.2014.03.007
[] Wang BQ. 2005. Enrichment pattern and ore-forming mechanism of Lingshan gold deposit in central Hunan Province. Gold , 26 (3) :14–17.
[] Wang JZ, Li JW, Zhao XF, Ma CQ, QU WJ , Du AD. 2008. Re-Os dating of pyrrhotite from the Chaoshan gold skarn, eastern Yangtze Craton, eastern China. International Geology Review , 50 (4) :392–406. DOI:10.2747/0020-6814.50.4.392
[] Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH , Peng TP. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:A case study in Hunan Province. Lithos , 96 (3-4) :475–502. DOI:10.1016/j.lithos.2006.11.010
[] Wang YL, Chen YC, Wang DH, Xu J , Chen ZH. 2012. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance. Geology in China , 39 (5) :1339–1344.
[] Wen GZ, Wu Q, Liu HY, Xie GZ , Lei XL. 1993. Preliminary study on ore controlling regularities and metallogenic mechanism of super large-sized Sb-deposits in Xikuangshan. Geology and Exploration (7) :20–27.
[] Wolff R, Dunkl I, Kempe U , von Eynatten H. 2015. The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany:Constraints from fluorite (U-Th-Sm)/He thermochronology. Economic Geology , 110 (8) :2025–2040. DOI:10.2113/econgeo.110.8.2025
[] Wu JC, Wang JR, Ou J, Wang SS, Yang SF , Li JH. 2007. Inclusion-isotope geochemistry of the Baimashan-Longshan gold metallogenic belt in Hunan and its ore-forming fluids' characteristics. Mineral Resources and Geology , 21 (6) :673–678.
[] Xiao QM, Zeng DR, Jin FQ, Yang MY , Yang ZF. 1992. Time-space distribution feature and exploration guide of China's Sb-deposits. Geology and Prospecting (12) :9–14.
[] Yakubchuk A, Stein H , Wilde A. 2014. Results of pilot Re-Os dating of sulfides from the Sukhoi Log and Olympiada orogenic gold deposits, Russia. Ore Geology Reviews , 59 :21–28. DOI:10.1016/j.oregeorev.2013.12.003
[] Yang DS, Shimizu M, Shimazaki H, Li XH , Xie QL. 2006. Sulfur isotope geochemistry of the supergiant Xikuangshan Sb deposit, central Hunan, China:Constraints on sources of ore constituents. Resource Geology , 56 (4) :385–396. DOI:10.1111/rge.2006.56.issue-4
[] Yang SH, Qu WJ, Yang G, Du AD , Chen JF. 2007. The correction of mass fractionation in the measurement of rhenium and osmium isotope ratios by ICP-MS. Rock and Mineral Analysis , 26 (1) :4–8.
[] Yang SQ. 1986. On inquiry about the genesis of Hunan stibnite ore and the direction of ore search. Hunan Geology , 5 (4) :12–25.
[] Yao ZK , Zhu RB. 1993. Polygenetic compound model for the Fuzhuxi gold deposit of Hunan Province and its prospecting. Geotectonica et Metallogenia , 17 (3) :199–209.
[] Ying LJ, Wang CS, Tang JX, Wang DH, Qu WJ , Li C. 2014. Re-Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jiama Cu-Mo deposit of Tibet, China. Journal of Asian Earth Sciences , 79 :497–506. DOI:10.1016/j.jseaes.2013.10.004
[] Yu JG. 1998. Alteration features and its direction of looking for the deposit in Gutaishan Au-Sb deposit, Xinhua. Hunan Geology , 17 (3) :155–159.
[] Zeng QT, Evans NJ, McInnes BIA, Batt GE, McCuaig CT , Bagas L. 2013. Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China. Mineralium Deposita , 48 (3) :397–412. DOI:10.1007/s00126-012-0433-4
[] Zheng SG. 2006. Geological characteristics of Longshan gold antimony deposit and resource forecast. Geology and Mineral Resources of South China (4) :14–21, 80.
[] 陈雷, 王宗起, 赵元艺, 刘妍, 曹洁, 定立, 屈文俊.2013. 浙江建德岭后铜矿磁黄铁矿Re-Os年代学特征及成矿意义. 地质学报 , 87 (12) :1864–1873.
[] 陈懋弘, 毛景文, 屈文俊, 吴六灵, UttleyPJ, NormanT, 郑建民, 秦运忠.2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义. 地质论评 , 53 (3) :371–382.
[] 谌锡霖, 蒋云杭, 李世永, 廖洪震.1983. 湖南锡矿山锑矿成因探讨. 地质论评 , 29 (5) :486–492.
[] 陈文, 何学贤, 张彦, 李洁, 陈越, 刘新宇.2010. 金属矿床年龄测定新技术——(U-Th)/He同位素定年方法. 矿床地质 , 29 (增刊) :821–822.
[] 陈佑纬, 毕献武, 付山岭, 董少花.2016. 湘中地区龙山金锑矿床酸性岩脉U-Pb年代学和Hf同位素特征及其地质意义. 岩石学报 , 32 (11) :3469–3488.
[] 戴长华.2000a. 古台山-高家坳金矿床带北西向构造控矿特征及其找矿意义. 湖南地质 , 19 (2) :105–110.
[] 戴长华.2000b. 新化青京寨金矿地质特征及找矿意义. 黄金 , 21 (4) :8–10.
[] 杜安道, 屈文俊, 李超, 杨刚.2009. 铼-锇同位素定年方法及分析测试技术的进展. 岩矿测试 , 28 (3) :288–304.
[] 湖南省地质矿产局. 1988. 湖南省区域地质志. 北京: 地质出版社 : 1 -718.
[] 胡瑞忠, 毛景文, 华仁民, 范蔚茗. 2015. 华南陆块陆内成矿作用. 北京: 科学出版社 : 1 -903.
[] 李超, 屈文俊, 杜安道, 孙文静.2009. 铼-锇同位素定年法中丙酮萃取铼的系统研究. 岩矿测试 , 28 (3) :233–238.
[] 李超, 屈文俊, 王登红, 陈郑辉, 杜安道.2010. 富有机质地质样品Re-Os同位素体系研究进展. 岩石矿物学杂志 , 29 (4) :421–430.
[] 李华芹, 王登红, 陈富文, 梅玉萍, 蔡红.2008. 湖南雪峰山地区铲子坪和大坪金矿成矿作用年代学研究. 地质学报 , 82 (7) :900–905.
[] 李己华, 吴继承, 周遗军.2004. 湘中白马山-龙山金矿带穹隆控矿规律分析. 黄金地质 , 10 (4) :32–36.
[] 李建华, 张岳桥, 徐先兵, 李海龙, 董树文, 李廷栋.2014. 湖南白马山龙潭超单元、瓦屋塘花岗岩锆石SHRIMP U-Pb年龄及其地质意义. 吉林大学学报(地球化学版) , 44 (1) :158–175.
[] 黎盛斯.1996. 湘中锑矿深源流体的地幔柱成矿演化. 湖南地质 , 15 (3) :137–142.
[] 李智明.1993. 锡矿山锑矿成矿机理的探讨. 矿产与地质 , 7 (2) :88–93.
[] 梁华英.1989. 龙山金锑矿床成矿物质来源研究. 矿床地质 , 8 (4) :39–48.
[] 梁华英.1991. 龙山金锑矿床成矿流体地球化学和矿床成因研究. 地球化学 (4) :342–350.
[] 刘焕品, 张永龄, 胡文清.1985. 湖南省锡矿山锑矿床的成因探讨. 湖南地质 , 4 (1) :28–39.
[] 刘建清, 谢渊, 赵瞻, 林家善, 冯伟明, 黄学平.2013. 湖南雪峰山地区白马山花岗岩年代学特征及构造意义. 地学前缘 , 20 (5) :25–35.
[] 刘继顺.1996. 湘中地区长英质脉岩与锑(金)成矿关系. 有色金属矿产与勘查 , 5 (6) :321–326.
[] 刘凯, 毛建仁, 赵希林, 叶海敏, 胡青.2014. 湖南紫云山岩体的地质地球化学特征及其成因意义. 地质学报 , 88 (2) :208–227.
[] 刘鹏程, 唐清国, 李惠纯.2008. 湖南龙山矿区金锑矿地质特征、富集规律与找矿方向. 地质与勘探 , 44 (4) :31–38.
[] 刘文均.1992. 华南几个锑矿床的成因探讨. 成都地质学院学报 , 19 (2) :10–19.
[] 卢新卫.1999. 湘中金、锑矿床区域控矿特征研究. 铀矿地质 , 15 (6) :344–349.
[] 罗献林.1995. 湖南板溪锑矿床的成矿地质特征. 桂林工学院学报 , 15 (3) :231–242.
[] 马东升, 潘家永, 解庆林, 何江.2002. 湘中锑(金)矿床成矿物质来源-Ⅰ. 微量元素及其实验地球化学证据.矿床地质 , 21 (3) :366–376.
[] 马东升, 潘家永, 解庆林.2003. 湘中锑(金)矿床成矿物质来源-Ⅱ. 同位素地球化学证据.矿床地质 , 22 (1) :78–87.
[] 庞保成, 杨东生, 周志, 刘义茂, 刘鹏程, 刘远栋.2011. 湖南龙山金锑矿黄铁矿微量元素特征及其对成矿过程的指示. 现代地质 , 25 (5) :832–845.
[] 彭建堂, 胡瑞忠.2001a. 华南锑矿带的成矿时代和成矿构造环境. 地质地球化学 , 29 (3) :104–108.
[] 彭建堂, 胡瑞忠.2001b. 湘中锡矿山超大型锑矿床的碳、氧同位素体系. 地质论评 , 47 (1) :34–41.
[] 彭建堂, 胡瑞忠, 邹利群, 刘建雄.2002. 湘中锡矿山锑矿床成矿物质来源的同位素示踪. 矿物学报 , 22 (2) :155–159.
[] 戚学祥.1998. 湖南双峰紫云山隆起区金矿成矿机制探讨. 黄金地质 , 4 (1) :50–56.
[] 饶家荣, 骆检兰, 易志军.1999. 锡矿山锑矿田幔-壳构造成矿模型及找矿预测. 物探与化探 , 23 (4) :241–249.
[] 邵建波, 张希友, 王洪涛, 陈殿义, 任强.2014. 吉林省塔东大型铁矿地球化学特征及黄铁矿Re-Os同位素定年. 地质学报 , 88 (1) :83–98.
[] 史明魁, 傅必勤, 靳西祥, 周雪昌. 1993. 湘中锑矿. 长沙: 湖南科学技术出版社 : 1 -151.
[] 唐永永, 毕献武, 武丽艳, 王雷, 邹志超, 何利平.2013. 金顶铅锌矿黄铁矿Re-Os定年及其地质意义. 矿物学报 , 3 (3) :287–294.
[] 王滨清.2005. 湘中铃山金矿床富集规律与成矿机理研究. 黄金 , 26 (3) :14–17.
[] 王永磊, 陈毓川, 王登红, 徐珏, 陈郑辉.2012. 湖南渣滓溪W-Sb矿床白钨矿Sm-Nd测年及其地质意义. 中国地质 , 39 (5) :1339–1344.
[] 文国璋, 吴强, 刘汉元, 谢国柱, 雷秀柳.1993. 锡矿山超大型锑矿床控矿规律及形成机理初步研究. 地质与勘探 (7) :20–27.
[] 吴继承, 王金荣, 欧健, 汪双双, 杨淑芬, 李己华.2007. 湖南白马山-龙山金矿带包裹体-同位素地球化学及成矿流体特征. 矿产与地质 , 21 (6) :673–678.
[] 肖启明, 曾笃仁, 金富秋, 杨明跃, 阳志芳.1992. 中国锑矿床时空分布规律及找矿方向. 地质与勘探 (12) :9–14.
[] 杨胜洪, 屈文俊, 杨刚, 杜安道, 陈江峰.2007. 电感耦合等离子体质谱法测量铼和锇同位素比值的质量分馏校正. 岩矿测试 , 26 (1) :4–8.
[] 杨舜全.1986. 湖南省锑矿成因及找矿方向的探讨. 湖南地质 , 5 (4) :12–25.
[] 姚振凯, 朱蓉斌.1993. 湖南符竹溪金矿床多因复成模式及其找矿意义. 大地构造与成矿学 , 17 (3) :199–209.
[] 余建国.1998. 新化古台山金锑矿床蚀变特征及其找矿方向. 湖南地质 , 17 (3) :155–159.
[] 郑时干.2006. 龙山金锑矿地质特征及深部找矿预测. 华南地质与矿产 (4) :14–21, 80.