岩石学报  2016, Vol. 32 Issue (11): 3407-3417   PDF    
四川会理天宝山矿床深部新发现铜矿与铅锌矿的成因关系探讨
孙海瑞1,2,3, 周家喜3, 黄智龙3, 樊海峰3, 叶霖3, 罗开3,4, 高建国5     
1. 中国地质调查局发展研究中心, 北京 100037 ;
2. 中国地质大学, 北京 10008 ;
3. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081 ;
4. 中国科学院大学, 北京 100049 ;
5. 昆明理工大学国土资源工程学院, 昆明 650093
摘要: 天宝山矿床是川滇黔接壤铅锌矿集区内的代表性铅锌矿床之一,赋存于上震旦统灯影组白云岩中。近年来,该矿床深部发现了以铜为主的矿化,甚至形成铜矿体。目前,对铜矿成因及其与铅锌矿的关系尚不清晰。本文报道新发现铜矿的矿物学和同位素地球化学资料,以期揭示铜矿的成矿物质来源,结合铅锌矿的相关研究,探讨铜矿形成机制及其与铅锌矿的成因关系。镜下观察和扫描电镜分析显示,铜矿石中主要金属矿物为黄铜矿和银黝铜矿,其次为方铅矿和毒砂,含少量闪锌矿和黄铁矿;铅锌矿石中闪锌矿是主要金属矿物,方铅矿和黄铁矿次之,含少量黄铜矿和深红银矿。铜矿石中闪锌矿主要呈半自形-他形粒状,与黄铜矿共生或被其包裹,方铅矿主要呈细脉状充填在黄铜矿、银黝铜矿和毒砂的裂隙中或呈他形粒状分布在这些矿物中;铅锌矿石中黄铜矿主要呈浸染状分布于闪锌矿之中。两类矿石金属矿物的组构特征,显示铜矿物与铅锌矿物具有密切的共生、穿插和包裹关系,应属同期成矿。同位素地球化学数据显示,铜矿石中黄铜矿的δ34SCDT值为3.9‰~4.2‰(均值为4.1‰,n=3),铅锌矿石闪锌矿的δ34SCDT值为3.3‰~3.9‰(均值为3.5‰,n=3),十分相近,暗示它们具有相似的S源,应均属赋矿地层海相蒸发岩中硫酸盐热化学还原作用的产物。铜矿石中黄铜矿的206Pb/204Pb=18.441~18.476(均值为18.461,n=3),207Pb/204Pb=15.731~15.751(均值为15.741,n=3),208Pb/204Pb=38.809~38.873(均值为38.849,n=3),μ=9.72~9.76;铅锌矿石中方铅矿的206Pb/204Pb=18.442~18.480(均值为18.455,n=3),207Pb/204Pb=15.746~15.763(均值为15.752,n=3),208Pb/204Pb=38.793~38.892(均值为38.840,n=3),μ=9.75~9.78。两者具有相近的Pb同位素组成且其壳源特征明显,表明它们的成矿金属来源相似,均来自上地壳,与赋矿沉积岩有关。综上,矿物学和同位素地球化学证据表明,天宝山矿床深部新发现铜矿与铅锌矿具有明显的同期共生关系和相似的成矿物质来源,是同一成矿热液体系不同阶段演化的产物。天宝山铜铅锌矿床与MVT矿床的成矿特征不同,暗示其成矿作用(环境)特殊,可能与矿床所处的地质背景有关,其成因认识对川滇黔接壤区同类型矿床深部找铜矿具有重要的指导意义。
关键词: 矿物学     S和Pb同位素     铜矿成因及其与铅锌矿的关系     天宝山铜铅锌矿床    
The genetic relationship between Cu-and Zn-dominant mineralization in the Tianbaoshan deposit, Southwest China
SUN HaiRui1,2,3, ZHOU JiaXi3, HUANG ZhiLong3, FAN HaiFeng3, YE Lin3, LUO Kai3,4, GAO JianGuo5     
1. Development Research Center of China Geological Survey, Beijing 100037, China ;
2. China University of Geosciences, Beijing 10008 ;
3. Stake Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy Sciences, Guiyang 550081, China ;
4. University of Chinese Academy Sciences, Beijing 100049, China ;
5. Kunming University of Science and Technology, Faculty of Land Resource and Engineering, Kunming 650093, China
Abstract: The Tianbaoshan, a typical Zn-Pb deposit in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province, is hosted by dolostone of Upper Sinian Dengying Formation. Recently, a Cu-dominant mineralization was discovered in the deep of the Tianbaoshan deposit and even formed Cu ore body. However, the origin of the Cu ores and the genetic relationship between Cu-and Zn-dominant mineralization are still unclear. This paper presents the mineralogical and isotope geochemical data of the Cu ores, integrates with those of Zn-Pb ores, in order to revealing the sources of ore-forming mineralized elements, and discussing its ore genesis and the genetic relationship with Zn-Pb ores. The microscopic observation and scanning electron microscope (SEM) analysis indicate that Cu ores are mainly composed of chalcopyrite and freibergite, followed by galena and arsenopyrite, with a small number of sphalerite and pyrite. Sphalerite is the main sulfide mineral in Pb-Zn ores, followed by galena and pyrite, with a little of chalcopyrite and pyrargyrite. In the Cu ores, sphalerite occurs as subhedral-xenomorphic granular and coexists with chalcopyrite or enclosed by chalcopyrite grain, while galena fills into the fracture of chalcopyrite, freibergite and arsenopyrite as veinlet or occurs as xenomorphic granular that was enclosed by those minerals. In the Pb-Zn ores, chalcopyrite presents as disseminated structure and distributes in sphalerite. The mineralogy, textures and structures of metal minerals in Cu-and Zn-dominant ores suggest that chalcopyrite has closely symbiotic, inserted and enclosed relationship with sphalerite and galena, and they should be formed at the same time. δ34SCDT values of chalcopyrite from Cu-dominant ores range from 3.9‰ to 4.2‰ (mean 4.1‰, n=3), similar to those of sphalerite from Zn-dominant ores (3.3‰ to 3.9‰, mean 3.5‰, n=3), indicating that the sources of reduced sulfur for the two types of ores are similar and all are mainly related to the sulfate in evaporites within ore-hosting strata. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of chalcopyrite from Cu-dominant ores range from 18.441 to 18.476 (mean 18.461, n=3), 15.731 to 15.751 (mean 15.741, n=3), and 38.809 to 38.873 (mean 38.849, n=3) with μ values range from 9.72 to 9.76, similar to those of galena from Zn-dominant ores (206Pb/204Pb=18.442~18.480 (mean 18.455, n=3), 207Pb/204Pb=15.746~15.763 (mean 15.752, n=3), 208Pb/204Pb=38.793~38.892 (mean 38.840, n=3), and μ=9.75~9.78). This reveals a clearly crustal source of Pb, and Cu-dominant ores have the same metal sources to the Zn-dominant ores, which are all related to upper crust (the ore-hosting sedimentary rocks). Studies on mineralogy, textures and structures, S and Pb isotope geochemistry demonstrate that the sources of newly found Cu ores and Pb-Zn ores are the same, and the two types of ores were belonged to one hydrothermal system and they were the produces formed at the same age with different ore-forming stages. The ore genesis of the Tianbaoshan Cu-Pb-Zn deposit is absolutely different from MVT deposit, suggesting a special mineralization (environment) related to local geological setting. This paper has vital guiding significance for Cu ore prospecting in the deep of the Pb-Zn deposits in the SYG province, western Yangtze Block, SW China.
Key words: Mineralogy     S and Pb isotopes     Genetic relationship between Zn-and Cu-dominant mineralization     Tianbaoshan (Cu)-Pb-Zn deposit    
1 引言

四川天宝山矿床位于扬子陆块西南缘川滇黔接壤铅锌矿集区西部,受区域性安宁河构造带控制(Wang et al., 2000; Zhou et al., 2013a),已探明铅锌金属储量超过260万吨(Cromie et al., 1996; Wang et al., 2010),是矿集区内最具代表性的铅锌矿床之一。尽管已有较多的研究积累,但对其成因认识仍存有较大分歧,从以下三个方面进行简要分析:

成矿物质来源方面:1)由赋矿灯影组白云岩、元古界基底岩石、寒武系及其以新的盖层沉积岩及二叠系峨眉山玄武岩共同提供(Zhou et al., 2013a);2)由矿集区内上地壳和造山带各类岩石共同提供(李发源, 2003; 张长青, 2008; 喻磊, 2014);3)由上震旦统灯影组白云岩和峨眉山玄武岩共同提供(涂首业, 2014);4)成矿金属主要来自上震旦统灯影组白云岩,硫则主要来源于赋矿地层(王乾, 2013)或元古界基底岩石(或地幔)和沉积岩源区的混合(Zhu et al., 2016)。

成矿年代学和动力学背景方面:1)存在晚三叠世和早侏罗世的两期成矿作用,分别对应扬子板块与兰坪-思茅地块碰撞及义敦弧与扬子板块碰撞和雅鲁藏布江洋打开、扩张的时间(张志斌等, 2006);2)与印度-欧亚板块碰撞作用诱发的陆内造山相关的构造-岩浆-热液活动有关,属于晚燕山期-喜马拉雅期形成的后成矿床(寇林林等, 2015);3)形成在260Ma(峨眉山玄武岩年龄)和156Ma(穿插矿体的辉绿岩年龄)之间,与印支运动有关(吴越, 2013; Zhang et al., 2015);4)形成于晚三叠-早侏罗世(226~192Ma),与导致古特提斯洋闭合的印支造山作用有关(Hu and Zhou, 2012; Zhou et al., 2013b, c, 2015)。

矿床成因和类型方面:1)古岩溶洞穴沉积成因(王则江, 1985);2)地下水热液矿床(成会章, 2013a, b);3)与典型MVT不同的会泽式(或SYG型;黄智龙等, 2004; Zhou et al., 2013a);4)MVT矿床(王小春, 1992; Wang et al., 2000, 2010; 冯镜权等, 2009; 蔡露明, 2012; 喻磊, 2014; 刘洋, 2015; 余冲等, 2015)。

随着天宝山矿床深部以铜为主矿化的逐步揭露,其蕴含的特殊地质信息值得深入研究。目前,对深部铜矿的研究,除少量的矿相学资料外(涂首业, 2014),其成矿物质来源、形成机制及其与铅锌矿的成因关系,尚未见报道。本文在详细的镜下观察和扫描电镜分析基础上,通过铜矿和铅锌矿矿物学和同位素地球化学特征的对比研究,揭示新发现铜矿的矿质来源,分析其与铅锌矿的成因联系,结合以往研究资料,探讨天宝山矿床成因及成矿动力学背景,为川滇黔接壤区内同类型矿床深部找铜矿提供新的理论指导。

2 区域地质概况和矿床地质特征 2.1 区域地质概况

天宝山矿床位于攀西裂谷中部,该裂谷由中部的元古界基底岩石和外侧的两个中生代盆地组成,发育有酸性火山岩、层状侵入岩和碱性花岗杂岩带(Wang et al., 2000)、峨眉山玄武岩及同源基性脉岩以及6条NS向区域性深大断裂带(图 1)。这些深大断裂构造带控制着川滇黔接壤区内铅锌矿床(点)的分布,其中天宝山和小石房两个大型铅锌矿床就产于安宁河断裂带内。有关川滇黔矿集区的区域地质背景资料,可参阅相关文献(Zheng and Wang, 1991; Wang et al., 2000; Zhou et al., 2001; Hu and Zhou, 2012; 黄智龙等, 2004; 胡瑞忠等, 2015; 王峰等, 2015等及其中文献),本文不再赘述。

图 1 攀西裂谷地质略图(据Wang et al., 2000修改) Fig. 1 The geological sketch map of the Panxi rift (modified after Wang et al., 2000)
2.2 矿床地质特征

天宝山矿区地层出露简单(图 2),主要为中-上元古界会理群天宝山组碎屑岩、上震旦统灯影组白云岩、中寒武统西王庙组砂岩、上三叠统白果湾组陆相砂页岩和第四系残坡积物。其中,灯影组可分为三段,上(第一)段在矿区及外围均缺失;中(第二)段在矿区广泛分布,以结晶白云岩为主,其次为条带状硅质白云岩、白云质砂岩、紫红色页岩和碧玉岩等,产核形石和叠层石等藻类化石,其走向近EW,倾向变化较大,倾角20°~30°,厚度大于1000m。该段又分四层,第一层:灰白色-浅灰色中厚层状硅质白云岩、白云岩,隐晶-细晶结构,可见灰色砾石结核及条带,局部有白云石和方解石穿插,厚度大于320m;第二层:矿区南部为灰-浅灰色细粒薄层状白云质砂岩,夹少量紫红色碧玉岩,矿区北部为暗紫红色、杂色碧玉岩,夹少量紫红色铁质板岩,致密胶状-显微粒状结构,厚约30~112m;第三层:上部为灰白色-浅灰色厚层状白云岩,下部为深灰色-灰色中厚层至厚层状白云岩,局部见有硅质白云岩,厚约240~470m;第四层:主要为灰白色-白色硅质白云岩,微粒结构,薄层状、条带状构造,局部见硅质岩,岩石中常见硅质结核及条带,厚度小于160m;下(第三)段,矿区范围内缺失,主要为灰白至深灰色厚层白云岩夹白云质灰岩,产藻类化石。其中,灯影组中(第二段)第三层是铜和铅锌矿体的赋矿层位。

图 2 天宝山矿床地质图(据Zhou et al., 2013a修改) Fig. 2 The geological map of the Tianbaoshan deposit (modified after Zhou et al., 2013a)

矿区内构造形迹复杂,以断裂和褶皱构造为主,主要断层包括F1、F2等,其中F1走向NNW,与天宝山向斜轴走向近垂直(图 2),倾向SW,属于益门断裂的分支断裂,而F2为近EW向延伸的张扭性隐伏角砾破碎带(Wang et al., 2000)。此外,在区域性SN向边界断裂间,还分布小规模NE、NW、近EW向断裂构造及产状平缓的层间剥离构造。矿区最大褶皱构造为天宝山向斜,其轴向NEE,为一北冀稍陡的宽缓不对称小型复式向斜,长度约2km,向斜核部为西王庙组砂岩,两翼为灯影组白云岩。

区域主要岩浆岩为酸性火山岩、峨眉山玄武岩及同源基性岩脉(Wang et al., 2000),其中基性岩脉一般沿SN和NW向侵入,岩性以辉绿岩为主,其次为煌斑岩和橄榄辉绿岩等(王小春, 1992; 涂首业, 2014),常见其切穿矿体和地层现象(图 2),且无矿化,表明其与铅锌成矿作用无关,其形成要晚于铅锌矿化。该岩体锆石U-Pb年龄约156Ma(吴越, 2013; Zhang et al., 2015)。

天宝山矿床由天宝山和新山两个矿段组成,探获三个主矿体(图 2),累计探明Pb+Zn金属储量约260万吨。天宝山矿段的矿体规模最大,其EW向长约285m,垂向上延深超过400m,被晚期F3断层切割破坏,在平面上形成顺时针方向的平错位移。其中,F3断层东侧矿体(I+II号矿体)出露面积最大,平面形态近似于四边形,而F3断层西侧矿体面积较小(图 2),分叉并趋于尖灭,平面形态似一个三角形,总体走向为近EW向。各矿体形态和产状相似,呈与地层层理斜交的脉状或筒柱状产出,边部多为锯齿状,向下往往出现简单分支并逐渐尖灭(图 3)。

图 3 天宝山矿床29号勘探线剖面图(据Zhou et al., 2013a) Fig. 3 The profile map of No. 29 exploration line in the Tianbaoshan deposit (after Zhou et al., 2013a)

以往工作对铅锌矿石的矿物学、结构构造、成分等进行了较为详细的研究(Wang et al., 2000; Zhou et al., 2013a; 涂首业, 2014),显示铅锌矿化主要充填于断层白云岩角砾间隙,呈脉状或网脉状产出,矿石中矿物组成简单,金属硫化物以闪锌矿为主,其次为方铅矿和黄铁矿,含少量黄铜矿和深红银矿。铅锌矿石中Zn、Pb品位分别为7.76%~10.09%和1.28%~1.50%,Zn/(Zn+Pb)比值为0.87(王小春, 1992)。脉石矿物主要为白云石和方解石,石英次之。矿石结构以交代结构为主,其次为他形-半自形粒状结构、脉状或网脉状交代结构等,矿石构造有角砾状、块状、脉状和浸染状构造等(Wang et al., 2000; 涂首业, 2014)。围岩蚀变较弱,主要表现为方解石化、弱硅化、白云石化和黄铁矿化等。

新发现的铜矿(化)体出露自2064m中段以下,至2014m中段仍见铜矿(化)体(图 3),但受矿业经济下行影响,矿山处于停产状态,没有新工程控制,铜(矿)化体的产状、规模等不祥。现有资料显示,铜(矿)化体与铅锌矿体呈过渡关系(图 3),界限以铜矿物明显增多为特征。铜矿石具有块状、豆状和浸染状构造(图 4)。

图 4 天宝山矿床深部铜矿石特征 (a、b)块状铜矿石;(c)浸染状铜矿石;(d、e)豆粒状铜矿石;(f)浸染状和块状铜矿石 Fig. 4 The feature of Cu-dominant ores in the deep of the Tianbaoshan deposit (a, b) massive Cu ores; (c) disseminated Cu ores; (d, e) pisolitic Cu ores; (f) disseminated and massive Cu ores

镜下观察和扫描电镜分析显示,铜矿石中主要金属矿物为黄铜矿和银黝铜矿,其次为方铅矿和毒砂,含少量闪锌矿和黄铁矿(图 5),其中闪锌矿主要呈半自形-他形粒状与黄铜矿共生(图 5a)或被其包裹(图 5b),银黝铜矿呈脉状或他形与黄铜矿共生(图 5b-f),方铅矿主要呈细脉状充填在黄铜矿、银黝铜矿和毒砂的裂隙中(图 5d-e)或呈他形粒状分别在这些矿物中(图 5f)。

图 5 铜矿石中金属矿物的共生关系 (a)他形黄铜矿(Clp)与半自形-他形粒状闪锌矿(Sp)和自形黄铁矿(Py)共生;(b)他形闪锌矿被他形黄铜矿包裹,脉状银黝铜矿(Fre)与他形黄铜矿共生;(c)脉状银黝铜矿与他形黄铜矿共生;(d)半自形方铅矿(Gal)和自形毒砂(Ars)分布在他形黄铜矿中,脉状方铅矿充填在他形黄铜矿和银黝铜矿间隙中;(e)自形毒砂被方铅矿包裹分布在银黝铜矿中;(f)半自形方铅矿和银黝铜矿分布在黄铜矿中 Fig. 5 The symbiotic relationship of metal minerals in Cu-dominant ores (a) xenomorphic granular chalcopyrite (Clp) coexists with subhedral-xenomorphic sphalerite (Sp) and euhedral pyrite (Py); (b) xenomorphic granular sphalerite enclosed by xenomorphic chalcopyrite, and veined freibergite (Fre) coexists with xenomorphic chalcopyrite; (c) veinlet freibergite coexists with xenomorphic chalcopyrite; (d) subhedral galena (Gal) and euhedral arsenopyrite (Ars) in xenomorphic chalcopyrite, and veined galena filled into the boundary of xenomorphic chalcopyrite and freibergite; (e) euhedral arsenopyrite was enclosed by galena and them were distributed in freibergite; (f) subhedral galena and freibergite in chalcopyrite
3 样品和分析方法

本次研究样品采自2064m、2036m、2014m三个中段,为铜矿石和铅锌矿石,来自不同采场。样品在详细的手标本观察、描述、拍照和光、薄片磨制后,进行粉碎至40~60目,分选黄铜矿、闪锌矿和方铅矿。分选后的硫化物单矿物样品在超声清洗后,用玛瑙研钵研磨至200目,以备S和Pb同位素分析。S同位素分析在矿床地球化学重点实验室采用MAT-253气体质谱仪上完成,以Vienna Canyon Diablo Troilite (V-CDT)作为参照标准,以STD-1(-0.22‰)、STD-2(22.57‰)、STD-3(-32.53‰)为标样校正,测试误差±0.1‰。Pb同位素分析在核工业北京地质研究院TIMS上完成,标样NBS 981的分析结果为206Pb/204Pb=16.936±0.03,207Pb/204Pb=15.489±0.04,208Pb/204Pb=36.672±0.05,与报道值一致(Zhou et al., 2013d, 2014a)。

4 分析结果 4.1 S同位素

黄铜矿和闪锌矿的S同位素分析结果列于表 1。铜矿石中黄铜矿的δ34SCDT值为3.9‰~4.2‰(均值为4.1‰),铅锌矿石中闪锌矿的δ34SCDT值为3.3‰~3.9‰(均值为3.5‰),其中闪锌矿δ34SCDT值与之前获得的结果(4‰~5‰)相近(Zhou et al., 2013a; Zhu et al., 2016)。可见,两种矿石硫化物的δ34S值相近,暗示它们具有相似的S源。此外,选自不同类型矿石的黄铜矿和闪锌矿,其δ34S值亦没有显著差别,指示它们具有一致的S源和形成条件(环境)。

表 1 天宝山矿床黄铜矿和闪锌矿S同位素组成 Table 1 S isotopic compositions of chalcopyrite and sphalerite from the Tianbaoshan deposit
4.2 Pb同位素

黄铜矿和方铅矿的Pb同位素组成分析结果列于表 2。铜矿石中黄铜矿的206Pb/204Pb=18.441~18.476(均值为18.461),207Pb/204Pb=15.731~15.751(均值为15.741),208Pb/204Pb=38.809~38.873(均值为38.849),μ=9.72~9.76;铅锌矿石中方铅矿的206Pb/204Pb=18.442~18.480(均值为18.455),207Pb/204Pb=15.746~15.763(均值为15.752),208Pb/204Pb=38.793~38.892(均值为38.840),μ=9.75~9.78。可见,两种矿石硫化物具有相近的Pb同位素组成和μ值,暗示它们具有相似的Pb等金属来源。选自不同类型矿石的黄铜矿和方铅矿,其Pb同位素组成和μ值亦不存在明显差别,进一步说明它们具有相似的物源。

表 2 天宝山矿床黄铜矿和方铅矿Pb同位素组成 Table 2 Pb isotopic compositions of chalcopyrite and galena from the Tianbaoshan deposit
5 讨论 5.1 铜矿(化)体的成矿物质来源 5.1.1 硫源

S和Pb同位素是示踪热液流体中硫和铅等成矿物质来源的最直接有效手段之一(Zheng and Wang, 1991; Carr et al., 1995; Zhou et al., 2001, 2016a, b)。天宝山矿床铜矿石中黄铜矿的δ34SCDT值(3.9‰~4.2‰)与铅锌矿石中闪锌矿的δ34SCDT值(3.3‰~3.9‰)接近,表明两类矿石S源的一致性。以往研究报道了铅锌矿石中硫化物(黄铁矿、闪锌矿和方铅矿)的δ34S值(-0.4‰~9.6‰:王小春, 1992; Wang et al., 2000; Zhou et al., 2013a; Zhu et al., 2016),并计算了成矿流体的δ34S∑S值为4.7‰(王小春, 1992; Wang et al., 2000)或4.2‰(Zhu et al., 2016)。可见,无论是铅锌矿石中硫化物还是成矿流体,其δ34S值均高于生物成因硫(多为负值)和幔源岩浆硫(0±3‰:Chaussidon et al., 1989),而明显低于震旦系同期海水硫(24‰~32‰:Claypool et al., 1980)。据此,王小春(1992)认为铅锌矿石的S是海相硫酸盐热化学还原后产生的H2S与成岩期黄铁矿提供的生物成因硫的混合,但也有学者认为该矿床铅锌矿中的S是来源于下元古界基底(或地幔)和沉积岩源区硫的混合(管士平和李忠雄, 1999; 寇林林等, 2015),而Zhu et al.(2016)则认为其是淋滤基底火成岩的硫与沉积岩源区硫的混合。天宝山矿床所在攀西裂谷内岩浆岩较为发育,包括酸性火山岩、层状侵入岩、峨眉山玄武岩及其同源基性岩脉(图 1图 2图 3)等(王小春, 1992; Wang et al., 2000; Zhou et al., 2013a; 涂首业, 2014; Zhang et al., 2015),这些岩浆作用是否可能为热液成矿提供硫源?构造应力场分析显示,天宝山矿床铅锌矿的形成可能存在两期,分别为晚三叠世和早侏罗世(张志斌等, 2006);而天宝山矿区穿插铅锌矿体和围岩的基性岩脉(图 2图 3)形成于约156Ma(吴越, 2013; Zhang et al., 2015),将铅锌矿的形成约束老于该年龄;同时大量的地质和同位素地质年代学研究则表明,包括天宝山在内的川滇黔地区铅锌矿床的形成晚于峨眉山玄武岩(约260Ma),集中在约226~192Ma,即晚三叠-早侏罗世(黄智龙等, 2004; Zhou et al., 2013b, c, 2015)。综上,天宝山矿床铅锌矿的形成与上述岩浆事件均非同期,它们直接提供大量岩浆硫源的可能性不大,除非天宝山矿床深边部还存在隐伏晚印支期岩浆作用,但目前还没有足够的证据支持。相反,已有研究表明硫酸盐岩的热化学还原作用所产生的H2S及其形成的硫化物,其δ34S值较硫酸盐岩的δ34S值可低达约20‰(Ohmoto, 1972; Jørgenson et al., 1992; Basuki et al., 2008),而天宝山矿床铜矿石中黄铜矿和铅锌矿石中闪锌矿的S同位素组成(3.3‰~4.2‰)及以往报道的S同位素组成(-0.4‰~9.6‰:王小春, 1992; Wang et al., 2000; Zhou et al., 2013a; Zhu et al., 2016)与赋矿震旦纪海水硫酸盐岩经热化学还原的理论δ34S值(4‰~12‰)相近。因此,本文认为无论是铜矿还是铅锌矿,其硫源均与赋存地层同期古海水有关,这与区域上赋存于不同时代地层铅锌矿床S来源于其赋矿地层同期海水蒸发岩的认识是一致的(Zhou et al., 2013e, 2014b)。此外,天宝山矿区灯影组中发育石膏、石盐假晶和鸟眼状白云岩(王小春, 1992),进一步支持该结论。

5.1.2 金属源

铜矿石中黄铜矿和铅锌矿石中方铅矿的Pb同位素组成及μ值(表 2)相近,且变化范围很窄及壳源特征明显,指示它们的金属来源相似且与上地壳岩石有关,这基本排除了幔源岩浆作用提供大量金属的可能性。尽管如此,以往对天宝山矿床成矿金属来源的认识仍存有分歧(见引言;李发源, 2003; 张长青, 2008; 王乾, 2013; Zhou et al., 2013a; 涂首业, 2014; 喻磊, 2014),概括起来可分为两种:一是认为由单一的赋矿震旦系灯影组地层提供;二是上地壳和造山带各类沉积岩甚至峨眉山玄武岩共同提供,并在成矿前存在均一化过程。天宝山矿区出露的地层为中-上元古界会理群天宝山组、上震旦统灯影组、中寒武统西王庙组和上三叠统白果湾组,矿体赋存于灯影组白云岩中。由于矿体的形成晚于这些地层,且地层中Pb、Zn等成矿元素的背景值较高(王小春, 1992)。因此,会理群、寒武系、三叠系与赋矿灯影组地层共同提供Pb、Zn等成矿金属是可能的。这些地层是否可能为铜矿(化)体提供来源呢?在207Pb/204Pb-206Pb/204Pb(图 6),铜矿石中黄铜矿和铅锌矿石中方铅矿的Pb同位素数据均落入上地壳Pb平均演化线上,集中于一个很小的区域且重叠,与峨眉山玄武岩显著不同,介于基底岩石和灯影组白云岩所投影区域之间,更靠近赋矿地层区域。这排除了峨眉山玄武岩作为铜矿和铅锌矿主要金属物源区的可能,然而不能排除基底岩石的贡献以及是否存在成矿前多来源成矿流体的均一化过程,但可以肯定的是天宝山矿床铜矿和铅锌矿成矿金属来源是一致的。

图 6 天宝山矿床、赋矿白云岩、基底岩石和峨眉山玄武岩的207Pb/204Pb-206Pb/204Pb图解(据Zartman and Doe, 1981) 上地壳(U)、造山带(O)、地幔(M)和下地壳(L) Fig. 6 Plot of 207Pb/204Pb vs. 206Pb/204Pb (after Zartman and Doe, 1981) among the Tianbaoshan, dolostone of Sinian Dengying Formation, basement rocks (Huili and Kunyang groups) and Emeishan flood basalts Upper Crust (U), Orogen Belt (O), Mantle (M) and Lower Crust (L)
5.2 铜矿与铅锌矿的成因关系及矿床成因 5.2.1 铜矿与铅锌矿的成因关系

在空间分布上,铜矿(化)体和铅锌矿体密切共生,没有明显的界线(图 3),表明二者具有内在的成因联系;在矿物组合上,铅锌矿石中黄铜矿、银黝铜矿、毒砂等较为发育,其中黄铜矿呈浸染状分布于闪锌矿中(王小春, 1992),而铜矿石中方铅矿和闪锌矿亦很发育,其中闪锌矿主要呈半自形-他形粒状与黄铜矿共生或被其包裹,方铅矿主要呈细脉状充填在黄铜矿、银黝铜矿和毒砂的裂隙中或呈他形粒状分布在这些矿物中(图 5a, b, d-f),显示二者“你中有我、我中有你”的共生、穿插和包裹关系,说明它们同属一个成矿热液体系;黄铜矿和闪锌矿、方铅矿的S和Pb同位素组成相似或重叠,表明它们的硫源和金属来源一致。因此,矿床地质、矿物学和同位素地球化学资料均指示铜矿(化)体和铅锌矿体是同期形成的,为成矿不同阶段演化的产物。

5.2.2 矿床成因及动力学背景

一直以来,学者们对天宝山矿床的成因争议不断,归纳起来主要有沉积-改造型(王则江, 1985; 成会章, 2013a, b)和后生低温热液型(又分为会泽式或SYG型:黄智龙等, 2004; Zhou et al., 2013a和MVT型:王小春, 1992; Wang et al., 2000, 2010; 冯镜权等, 2009; 蔡露明, 2012; 喻磊, 2014; 刘洋, 2015; 余冲等, 2015; 叶霖等, 2016)。矿床地质资料显示,天宝山矿床铅锌矿体呈与层理斜交的脉状、筒状状,向下呈简单分支(图 3),充填于断层白云岩角砾间隙(Wang et al., 2000; Zhou et al., 2013a; 涂首业, 2014),铅锌矿石构造有角砾状、块状、脉状和浸染状构造等(Wang et al., 2000; 涂首业, 2014)。上述特征可以肯定该矿床属于后生热液成矿。由于该矿床赋存于白云岩中(图 3),铅锌矿以富锌为特征,其Zn/(Zn+Pb)比值为0.87(王小春, 1992),闪锌矿流体包裹体测温结果显示,其成矿温度为150~250℃,盐度为4.94% NaCleqv,并富CH4(王小春, 1992),石英流体包裹体测温结果显示,其成矿温度为120~220℃,盐度为5.11%~8.45% NaCleqv,为NaCl-H2O体系(喻磊, 2014)。加之国外的一些MVT矿床中也常伴生铜(Sverjensky, 1989)。因此,多数学者倾向认为其属于MVT矿床(王小春, 1992; Wang et al., 2000, 2010; 冯镜权等, 2009; 蔡露明, 2012; 喻磊, 2014; 刘洋, 2015; 余冲等, 2015; 叶霖等, 2016)。事实上,天宝山矿床与MVT矿床亦存有诸多差异:1)天宝山矿床产于层间断层和向斜构造中,受控于区域性安宁河断裂带(图 2),位于扬子陆块西南边缘(陆缘挤压构造背景),与产于前陆伸展盆地的MVT矿床不同;2)矿体呈筒状或大脉状产出(图 3),矿石铅锌平均品位>10%,而MVT矿床铅锌体常呈似层状,平均品位常小于10%;3)超常富集Cd等分散元素(Zhu et al., 2016),并存在大量块状、脉状和浸染状铜矿石(图 4图 5;由黄铜矿、银黝铜矿和毒砂等构成),甚至形成铜矿体,而MVT矿床仅伴生少量铜和Cd等分散元素;4)成矿温度150~250℃,盐度小于10% NaCleqv,而MVT矿床常常具有低温(通常 < 150℃)和高盐度(通常>10% NaCleqv)的特征;5)天宝山矿床与峨眉山玄武岩及同源基性岩脉的空间关系极为密切(图 1图 2),特别是基性脉岩穿插地层和矿体(图 2图 3),而MVT矿床与岩浆作用没有直接的时空关系;6)天宝山矿床围岩蚀变弱,溶(塌)积角砾等MVT矿床特征不发育。因此,本文认为天宝山矿床成矿极为特殊,特别是富铜的主要原因很可能与其所处的地质背景有关,这些均与低温盆地卤水成因的MVT矿床(Leach et al., 2005, 2010)不同。此外,区域上的会泽、富乐等铅锌矿床深部均已有多种铜矿物发现(黄智龙等, 2004),暗示这些矿床的深部很可能蕴藏着丰富的铜资源,同时表明它们成矿作用(环境)的特殊性。综上,本文认为天宝山等川滇黔接壤区铅锌矿集区内的典型矿床明显有别于MVT矿床,不适合套用MVT矿床概念。

天宝山铜铅锌矿床位于攀西裂谷中部,该裂谷内前震旦纪基底地层广泛出露(如会理群;图 1),岩浆(1.0Ga酸性火山岩、260Ma峨眉山玄武岩、156Ma基性脉岩等;图 1图 2图 3)活动较为强烈,区域性的安宁河断裂对成矿具有明显的控制作用(图 1),这些独特的成矿地质条件为天宝山矿床形成(特别是铜矿化)提供了特殊的地质背景和丰富的物质来源(王小春, 1992; Wang et al., 2000, 2010; 黄智龙等, 2004; 冯镜权等, 2009; 蔡露明, 2012; Zhou et al., 2013a; 喻磊, 2014; 刘洋, 2015; 余冲等, 2015; Zhu et al., 2016)。大量的构造和地质年代学等资料(张志斌等, 2006; 黄智龙等, 2004; 吴越, 2013; Zhou et al., 2013b, c, 2015; Zhang et al., 2015),显示包括天宝山矿床在内的川滇黔接壤铅锌矿集区内的矿床主体形成于226~192Ma,即晚三叠-早侏罗世,集中于约200Ma。而根据构造应力场分析资料,张志斌等(2006)认为天宝山矿床形成可能经历了晚三叠世和早侏罗世的两期成矿作用,分别对应扬子板块与兰坪-思茅地块碰撞及义敦弧与扬子板块碰撞和雅鲁藏布江洋打开、扩张的时间。从天宝山矿床(特别是铜矿化)的矿物组构特征(图 4图 5)和同位素地球化学信息上看,两期或多期成矿的可能性不大或其它期次成矿作用的强度有限。因此,本文认为天宝山矿床铜矿和铅锌矿均主要形成于晚三叠世(晚印支期),与导致古特提斯洋闭合的印支造山作用有关(Hu and Zhou, 2012),是晚三叠世-早侏罗世构造应力由挤压向伸展转换的动力学背景下热液流体卸载充填成矿的产物,与典型MVT矿床的成矿特征不同,其矿床成因或矿床类型还有待更深入研究。

6 结论

(1) 天宝山矿床铜矿石具有块状、豆(脉)状和浸染状构造,主要金属矿物为黄铜矿和银黝铜矿,其次为方铅矿和毒砂,含少量闪锌矿和黄铁矿,金属矿物具有半自形-他形粒状结构、交代残余结构等。铜矿石中铜矿物与铅锌矿物具有密切的包裹、穿插等共生关系,表明它们属于同一个成矿热液体系。

(2) 铜矿石中黄铜矿与铅锌矿石中闪锌矿具有相近的S同位素组成,且与铅锌矿石中方铅矿具有相似的Pb同位素组成,指示铜矿石与铅锌矿石的成矿物质(S和Pb等金属)来源一致。

(3) 天宝山矿床成矿作用(环境)特殊,与典型MVT矿床成矿特征不同,其形成于晚印支期-早燕山期挤压向伸展转换的动力学背景下,与导致古特提斯洋闭合的印支造山作用有关。

致谢 实验得到矿床地球化学国家重点实验室谷静高级工程师的帮助;成矿过程与朱丹研究员、沈能平副研究员等进行了有益的讨论;温汉捷研究员、赵新福教授和胡瑞忠研究员提出了宝贵的修改建议和意见;在此对他们及引文作者表示衷心的感谢!
参考文献
[] Basuki NI, Taylor BE, Spooner ETC. 2008. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology , 103 (4) :783–799. DOI:10.2113/gsecongeo.103.4.783
[] Cai LM. 2012. Study on the ore-controlling structures in Tianbaoshan Pb-Zn deposit, Huili, Sichuan. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-59 (in Chinese with English summary)
[] Carr GR, Dean JA, Suppel DW, Heithersay PS. 1995. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Economic Geology , 90 (6) :1467–1505. DOI:10.2113/gsecongeo.90.6.1467
[] Chaussidon M, Albarède F, Sheppard SMF. 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters , 92 (2) :144–156. DOI:10.1016/0012-821X(89)90042-3
[] Cheng HZ. 2013a. A research and a prospecting practice on the fault structure in Tianbaoshan lead-zinc mine, Huili, Sichuan. Mineral Resources and Geology , 27 (4) :298–302.
[] Cheng HZ. 2013b. Discussion on the genesis of Tianbaoshan Pb-Zn deposit. Sichuan Nonferrous Metals (3) :41–44.
[] Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology , 28 :199–260. DOI:10.1016/0009-2541(80)90047-9
[] Cromie PW, Gosse RR, Zhang P and Zhu X. 1996. Exploration for carbonate-hosted Pb-Zn deposits, Sichuan, P. R. C. In:Proceedings of the 30th International Geological Congress. Beijing, China, 412
[] Feng JQ, Li Y, Liu WZ. 2009. Geological features and ore control conditions for the Tianbaoshan Pb-Zn deposit in Huili. Acta Geologica Sichuan , 29 (4) :426–430.
[] Guan SP, Li ZX. 1999. Lead-sulfur isotope study of carbonate-hosted lead-zinc deposits at the eastern margin of the Kangdian axis. Geology-Geochemistry , 27 (4) :45–54.
[] Hu RZ, Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita , 47 (6) :579–588. DOI:10.1007/s00126-012-0431-6
[] Hu RZ, Mao JW, Hua RM, Fan WM.2015. Intra-Continental Mineralization of South China Craton. Beijing: Science Press : 387 -592.
[] Huang ZL, Chen J, Han RS, Li WB, Liu CQ, Zhang ZL, Ma DY, Gao DR and Yang HL. 2004. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China:Discussion on the Relationship between the Emeishan Flood Basalts and Lead-Zinc Mineralization. Beijing:Geological Publishing House, 1-214 (in Chinese)
[] Jørgenson BB, Isaksen MF, Jannasch HW. 1992. Bacterial sulfate reduction above 100℃ in deep-sea hydrothermal vent sediments. Science , 258 (5089) :1756–1757. DOI:10.1126/science.258.5089.1756
[] Kou LL, Zhang S, Zhong KH. 2015. Geochemical differences between Daliangzi and Tianbaoshan lead-zinc deposits in Huili-Huidong area, Sichuan, China:Tectonic implication. Geology and Resources , 24 (1) :26–32.
[] Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters SG. 2005. Sediment-hosted lead-zinc deposits:A global perspective. Economic Geology , 100 :561–607.
[] Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD, Gardoll SJ. 2010. Sediment-hosted lead-zinc deposits in Earth history. Economic Geology , 105 (3) :593–625. DOI:10.2113/gsecongeo.105.3.593
[] Li FY. 2003. Study on occurrence state and enrichment mechanism of dispersed elements in MVT deposites:A case study for the Tianbaoshan and Daliangzi Pb-Zn deposits in Sichuan Province. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-64 (in Chinese with English summary)
[] Liu Y. 2015. The application of high-precision magnetic method to search for lead-zinc mine in Tianbaoshan. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-57 (in Chinese with English summary)
[] Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology , 67 (5) :551–578. DOI:10.2113/gsecongeo.67.5.551
[] Sverjensky DA. 1989. Chemical evolution of basinal brines that formed sediment-hosted Cu-Pb-Zn deposits. In:Boyle RW, Brown AC, Jefferson CJ, Jowett EC and Kirkham RV (eds.). Sediment Hosted Stratiform Copper Deposits. Geological Association of Canada Special Paper , 36 :127–134.
[] Tu SY. 2014. The mineralography characteristics and its genetic significance of the Tianbaoshan Pb-Zn deposit in Huili Sichuan. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-50 (in Chinese with English summary)
[] Wang CM, Deng J, Zhang ST, Xue CJ, Yang LQ, Wang QF, Sun X. 2010. Sediment-hosted Pb-Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton. Acta Geologica Sinica , 84 (6) :1428–1438. DOI:10.1111/acgs.2010.84.issue-6
[] Wang F, Chen J, Luo DF. 2015. The Resources Potential and Prospecting Pattern Analysis of Pb-Zn Minerals in the Sichuan-Yunnan-Guizhou Contiguous Area. Beijing:Science Press :1–329.
[] Wang Q. 2013. Sulfur isotope characteristics of Tianbaoshan lead-zinc deposit in Sichuan. Acta Mineralogica Sinica , 33 (Suppl.2) :168.
[] Wang XC. 1992. Genesis analysis of the Tianbaoshan Pb-Zn deposit. Journal of Chendu College of Geology , 19 (3) :10–20.
[] Wang XC, Zhang ZR, Zheng MH, Xu XH. 2000. Metallogenic mechanism of the Tianbaoshan Pb-Zn deposit, Sichuan. Chinese Journal of Geochemistry , 19 (2) :121–133. DOI:10.1007/BF03166867
[] Wang ZJ. 1985. Geologic characteristics of genesis of Karst lead-zinc deposit in South China. Acta Petrologica et Mineralogica , 5 (1) :1–11.
[] Wu Y. 2013. The age and ore-forming process of MVT deposits in the boundary area of Sichuan-Yunnan-Guizhou provinces, Southwest China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-167 (in Chinese with English summary)
[] Ye L, Li ZL, Hu YS, Huang ZL, Zhou JX, Fan HF, Danyushevskiy L. 2016. Trace elements in sulfide from Tianbaoshan Pb-Zn ore deposit, Huidong, Sichuan Province, China:A LA-ICPMS study. Acta Petrologica Sinica , 32 (11) :3377–3393.
[] Yu C, Wei ML, Hu GC. 2015. The geochemical feature of fluid inclusion in Tianbaoshan Pb-Zn deposit of Huili, Sichuan. Yunnan Geology , 34 (4) :531–538.
[] Yu L. 2014. Brief study on the fluid inclusion characteristics and its genetic significance of Tianbaoshan Pb-Zn deposit in Huili County, Sichuan Province. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-58 (in Chinese with English summary)
[]
[] Zhang CQ. 2008. The genetic model of Mississippi valley-type deposits in the boundary area of Sichuan, Yunnan and Guizhou provinces, China. Ph. D. Dissertation. Beijing:Chinese Academy of Geological Sciences, 1-167 (in Chinese with English summary)
[] Zhang CQ, Wu Y, Hou L, Mao JW. 2015. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, Southwest China:Implications from age-dating studies in the past decade and the Sm-Nd age of the Jinshachang deposit. Journal of Asian Earth Sciences , 103 :103–114. DOI:10.1016/j.jseaes.2014.08.013
[] Zhang ZB, Li CY, Tu GC, Xia B, Wei ZQ. 2006. Geotectonic evolution background and ore-forming process of Pb-Zn deposits in Chuan-Dian-Qian area of Southwest China. Geotectonica et Metallogenia , 30 (3) :343–354.
[] Zheng MH, Wang XC. 1991. Ore genesis of the Daliangzi Pb-Zn deposit in Sichuan, China. Economic Geology , 86 (4) :831–846. DOI:10.2113/gsecongeo.86.4.831
[] Zhou CX, Wei CS, Guo JY, Li CY. 2001. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China:Pb-Sr isotope constraints. Economic Geology , 96 (3) :583–598. DOI:10.2113/gsecongeo.96.3.583
[] Zhou JX, Gao JG, Chen D, Liu XK. 2013a. Ore genesis of the Tianbaoshan carbonate-hosted Pb-Zn deposit, Southwest China:Geologic and isotopic (C-H-O-S-Pb) evidence. International Geology Review , 55 (10) :1300–1310. DOI:10.1080/00206814.2013.782973
[] Zhou JX, Huang ZL, Zhou MF, Li XB, Jin ZG. 2013b. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geology Reviews , 53 :77–92. DOI:10.1016/j.oregeorev.2013.01.001
[] Zhou JX, Huang ZL, Yan ZF. 2013c. The origin of the Maozu carbonate-hosted Pb-Zn deposit, Southwest China:Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. Journal of Asian Earth Sciences , 73 :39–47. DOI:10.1016/j.jseaes.2013.04.031
[] Zhou JX, Huang ZL, Bao GP. 2013d. Geological and sulfur-lead-strontium isotopic studies of the Shaojiwan Pb-Zn deposit, Southwest China:Implications for the origin of hydrothermal fluids. Journal of Geochemical Exploration , 128 :51–61. DOI:10.1016/j.gexplo.2013.01.007
[] Zhou JX, Huang ZL, Bao GP, Gao JG. 2013e. Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China. Journal of Earth Sciences , 24 (5) :759–771.
[] Zhou JX, Huang ZL, Zhou MF, Zhu XK, Muchez P. 2014a. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews , 58 :41–54. DOI:10.1016/j.oregeorev.2013.10.009
[] Zhou JX, Huang ZL, Lv ZC, Zhu XK, Gao JG, Mirnejad H. 2014b. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews , 63 :209–225. DOI:10.1016/j.oregeorev.2014.05.012
[] Zhou JX, Bai JH, Huang ZL, Zhu D, Yan ZF, Lv ZC. 2015. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, Southwest China. Journal of Asian Earth Sciences , 98 :272–284. DOI:10.1016/j.jseaes.2014.11.024
[] Zhou JX, Dou S, Huang ZL, Cui YL, Ye L, Li B, Gan T, Sun HR. 2016a. Origin of the Luping Pb deposit in the Beiya area, Yunnan Province, SW China:Constraints from geology, isotope geochemistry and geochronology. Ore Geology Reviews , 72 :179–190. DOI:10.1016/j.oregeorev.2015.07.015
[] Zhou JX, Luo K, Li B, Huang ZL, Yan ZF. 2016b. Geological and isotopic constraints on the origin of the Anle carbonate-hosted Zn-Pb deposit in northwestern Yunnan Province, SW China. Ore Geology Reviews , 74 :88–100. DOI:10.1016/j.oregeorev.2015.11.019
[] Zhu CW, Wen HJ, Zhang YX, Fan HF. 2016. Cadmium and sulfur isotopic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China. Ore Geology Reviews , 76 :152–162. DOI:10.1016/j.oregeorev.2016.01.010
[] 蔡露明. 2012.四川省会理县天宝山铅锌矿床构造控矿作用研究.硕士学位论文.成都:成都理工大学, 1-59 http://cdmd.cnki.com.cn/article/cdmd-10616-1015505862.htm
[] 成会章.2013a. 四川会理天宝山铅锌矿断裂构造研究及找矿实践. 矿产与地质 , 27 (4) :298–302.
[] 成会章.2013b. 天宝山铅锌矿床成因探讨. 四川有色金属 (3) :41–44.
[] 冯镜权, 李勇, 刘文周.2009. 会理天宝山铅锌矿矿床地质特征及控矿条件浅析. 四川地质学报 , 29 (4) :426–430.
[] 管士平, 李忠雄.1999. 康滇地轴东缘铅锌矿床铅硫同位素地球化学研究. 地质地球化学 , 27 (4) :45–54.
[] 黄智龙, 陈进, 韩润生, 李文博, 刘丛强, 张振亮, 马德云, 高德荣, 杨海林. 2004. 云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿的关系. 北京: 地质出版社 : 1 -214.
[] 胡瑞忠, 毛景文, 华仁民, 范蔚茗. 2015. 华南陆块陆内成矿作用. 北京: 科学出版社 : 387 -592.
[] 寇林林, 张森, 钟康惠.2015. 四川大梁子和天宝山铅锌矿床地球化学差异及地质意义. 地质与资源 , 24 (1) :26–32.
[] 李发源. 2003. MVT铅锌矿床中分散元素赋存状态和富集机理研究——以四川天宝山、大梁子铅锌矿床为例.硕士学位论文.成都:成都理工大学, 1-64
[] 刘洋. 2015.高精度磁测勘查天宝山铅锌矿的应用研究.硕士学位论文.成都:成都理工大学, 1-57
[] 涂首业. 2014.四川会理天宝山铅锌矿矿相学特征及意义.硕士学位论文.成都:成都理工大学, 1-50 http://cdmd.cnki.com.cn/article/cdmd-10616-1015522980.htm
[] 王峰, 陈进, 罗大锋. 2015. 川滇黔接壤区铅锌矿产资源潜力与找矿规律分析. 北京: 科学出版社 .
[] 王乾.2013. 四川天宝山铅锌矿床硫同位素特征研究. 矿物学报 , 33 (S2) :168.
[] 王小春.1992. 天宝山矿床成因分析. 成都地质学院学报 , 19 (3) :10–20.
[] 王则江.1985. 我国南方一些古岩溶洞穴沉积铅锌矿床的成矿特征. 矿物岩石 , 5 (1) :1–11.
[] 吴越. 2013.川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制.博士学位论文.北京:中国地质大学, 1-167 http://cdmd.cnki.com.cn/article/cdmd-11415-1013261806.htm
[] 叶霖, 李珍立, 胡宇思, 黄智龙, 周家喜, 樊海峰, DanyushevskiyL.2016. 四川天宝山铅锌矿床硫化物微量元素组成:LA-ICPMS研究. 岩石学报 , 32 (11) :3377–3393.
[] 余冲, 魏美丽, 胡广灿.2015. 四川会理县天宝山铅锌矿流体包裹体地球化学特征. 云南地质 , 34 (4) :531–538.
[] 喻磊. 2014.四川会理天宝山铅锌矿床流体包裹体特征及其成因意义.硕士学位论文.成都:成都理工大学, 1-58 http://cdmd.cnki.com.cn/article/cdmd-10616-1015522955.htm
[] 张长青. 2008.中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型.博士学位论文.北京:中国地质科学院, 1-167
[] 张志斌, 李朝阳, 涂光炽, 夏斌, 韦振权.2006. 川、滇、黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用. 大地构造与成矿学 , 30 (3) :343–354.