岩石学报  2016, Vol. 32 Issue (11): 3281-3294   PDF    
右江盆地晚侏罗世钾玄质高镁安山岩的厘定及其构造意义
甘成势, 王岳军, 张玉芝, 刘汇川, 张立敏     
中山大学地球科学与地质工程学院, 广东省地质过程与矿产资源勘查重点实验室, 广州 510275
摘要: 右江盆地在大地构造上处于特提斯和滨太平洋构造域的结合部位。本文报道了该盆地东部杨屯安山岩的岩相学、年代学和地球化学特征。杨屯安山岩具斑状结构和气孔状构造,斑晶主要为辉石,基质以针状斜长石微晶为主,含少量辉石。LA-ICP-MS锆石U-Pb定年结果表明杨屯安山岩的喷发时代为159.3±2.8Ma,即晚侏罗世。样品的SiO2含量为53.13%~55.71%,具高MgO(6.74%~8.85%)、Mg#值(63~72)、Cr(416×10-6~565×10-6)和Ni(207×10-6~246×10-6),低FeOT/MgO(0.83~1.23)等特征,与典型高镁安山岩的特征相似。所有样品具高K2O(3.39%~4.77%)和K2O/Na2O(1.31~2.33),同时也具钾玄质岩石的地球化学特征。样品强烈富集大离子亲石元素和轻稀土元素,而亏损高场强元素,具较高的Rb/Sr(0.20~0.46)和较低的Ba/Rb(7.17~9.30),富集的Sr-Nd同位素组成((87Sr/86Sr)i=0.70738~0.70739,εNdt)=-3.6~-3.4)。元素和同位素特征表明杨屯钾玄质高镁安山岩是含金云母的富集岩石圈地幔部分熔融的产物,形成于板内伸展环境而不是岛弧环境。晚侏罗世杨屯钾玄质高镁安山岩的厘定,反映了该时期右江地区处于岩石圈伸展-减薄阶段。
关键词: 右江盆地     杨屯     钾玄质高镁安山岩     岩石圈伸展-减薄     富集岩石圈地幔    
The identification and implications of the Late Jurassic shoshonitic high-Mg andesite from the Youjiang basin
GAN ChengShi, WANG YueJun, ZHANG YuZhi, LIU HuiChuan, ZHANG LiMin     
School of Earth Science and Geological Engineering, Key Lab of Geological Processes and Mineral Resource of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
Abstract: The Youjiang basin is located in the joint area of the paleo-Tethys and paleo-Pacific dynamic domains. This paper reports petrographic, geochronological and geochemical data of the Yangtun andesite from the eastern Youjiang basin. The andesite was characterized by porphyrotopic texture. LA-ICP-MS zircon U-Pb dating results give an eruption age of ca. 159Ma for the Yangtun andesite. The andesitic samples are geochemically marked by high MgO (6.74%~8.85%), Cr (416×10-6~565×10-6) and Ni (207×10-6~246×10-6) contents, high Mg# values (63~72) and low FeOT/MgO ratios (0.83~1.23), similar to those of typical high-magnesian andesite (HMA). The samples meanwhile belong to the shoshonitic rocks with high K2O (3.39%~4.77%) and K2O/Na2O (1.31~2.33). They are strongly enriched in large ion lithophile elements and depleted in high field strength elements, with high Rb/Sr (0.20~0.46) and low Ba/Rb (7.17~9.30) ratios. Isotopically, their (87Sr/86Sr)i ratios range from 0.70738 to 0.70739 and εNd(t) values from -3.6 to -3.4. Geochemical and isotopical data indicate that the Yangtun HMA was derived from partial melting of the phlogopite-bearing lithospheric mantle. The Yangtun HMA was generated in the within-plate setting, reflective of lithospheric extension in the Youjiang area during the Late Jurassic.
Key words: Youjiang Basin     Yangtun     Shoshonitic high-magnesian andesite     Lithospheric extension     Enriched lithospheric mantle    
1 引言

安山岩的概念主要源于南美安第斯山脉广泛分布的中性火山岩,其主要形成于大陆边缘弧和岛弧等地区,是板块汇聚边缘典型岩石的代表(Gill, 1981; Tatsumi and Eggins, 1995)。高镁安山岩是一种特殊类型的安山岩,其最经典的产地是日本Sectouchi火山带(Tatsumi, 1982; Tatsumi and Ishizaka, 1982)。它比普通的岛弧安山岩具更高的Mg#值、MgO、Cr、Ni和较低的Al2O3和CaO含量及FeOT/MgO比值(Tatsumi, 1982, 2001; Tatsumi and Ishizaka, 1982)。虽然现今高镁安山岩在地球上出露有限,但高镁安山岩的研究一直是国内外岩石学研究领域的热点(Tatsumi and Ishizaka, 1982; Kelemen, 1995; Hirose, 1997; Rapp et al., 1999; Tatsumi, 2001; Xu et al., 2002; Gao et al., 2004; Martin et al., 2005; Wood and Turner, 2009; Zhang et al., 2012b; 邓晋福等, 2010; 张玉芝等, 2015),它们的成因对揭示地壳的生长、地壳拆沉、洋壳的俯冲及流体/熔体与地幔橄榄岩之间的相互作用等过程具十分重要的意义(唐功建和王强, 2010)。绝大部分高镁安山岩分布于汇聚型板块边缘,而只有少量分布于板块内部(Gao et al., 2004; Rao et al., 2008; Wang et al., 2006, 2009; 黄华等, 2007),因此,高镁安山岩的厘定对区域大地构造演化具重要的指示作用。虽然华南板块东南地区侏罗纪岩浆活动强烈(Zhou et al., 2006; Wang et al., 2013a),但目前在右江盆地鲜有侏罗纪岩浆岩报道,特别是高镁安山岩,前人的研究主要集中于盆地晚古生代基性岩和三叠纪基性-中酸性岩(Fan et al., 2008;广西壮族自治区地质矿产局, 1985; 范蔚茗等, 2004; 覃小锋等, 2011; 胡丽沙等, 2012; 李政林等, 2015; 刘寅等, 2015)。本文报道了右江盆地东缘杨屯地区晚侏罗世高镁安山岩,并对其开展了系统的岩相学、年代学和地球化学研究,以查明其岩石成因及动力学机制,进而揭示右江盆地晚侏罗世的大地构造背景。

2 地质背景和样品描述

右江盆地在大地构造位置上处于华南板块西南部,是特提斯和滨太平洋构造域的结合部位(曾允孚等, 1995; 杜远生等, 2013)。在地理位置上,该盆地处于桂西、黔西南及滇东南的交接部位,是华南地区重要的多金属矿床富集地之一,广泛发育Au-As-Hg-Sb等低温热液矿床,以卡林型金矿床最为著名(Hu et al., 2002; Su et al., 2008, 2009a, b, 2012; Hu and Zhou, 2012; Chen et al., 2015;贵州地质矿产局, 1987; 广西壮族自治区地质矿产局, 1985; 云南省地矿局, 1990; 胡瑞忠等, 2007; 刘寅等, 2015)。盆地整体在轮廓上呈“菱形”,其东北边界为紫云-南丹断裂,东南端以凭祥-南宁断裂与十万大山盆地相连,西南侧以红河断裂与印支陆块相隔,西北侧以师宗-弥勒断裂与康滇古陆相连(图 1a)。盆地内缺失中元古界-下寒武统和奥陶系-下泥盆统下部地层,泥盆系、石炭系、二叠系和三叠系地层广泛出露于盆地内部,而侏罗系、上白垩统、第三系和第四系地层零星分布于盆地内部,中-晚寒武世地层仅出露于个别地区(广西壮族自治区地质矿产局, 1985; 贵州地质矿产局, 1987; 云南省地矿局, 1990)。该盆地自早泥盆世晚期开始强烈裂陷,形成了世界上罕见的台地-台间相间排列的盆地格局,该格局主要受北西向和北东向的同沉积断裂控制(陈洪德等, 1994; 秦建华等, 1996; 杨怀宇等, 2010; 杜远生等, 2013)。台地相以孤立的浅水碳酸盐岩台地为特征,而台间相以泥质岩、硅质岩等深水沉积为特征(史晓颖等, 2006; Lehrmann et al., 2007; 杜远生等, 2013)。虽然盆地晚古生代-早中生代的构造演化过程和盆地的属性存在强烈争议,但几乎都认为盆地于晚三叠世被重填而闭合,以三叠纪发育巨厚的复理石沉积为特征(曾允孚等, 1995; 秦建华等, 1996; 杜远生等, 2013; 刘寅等, 2015)。右江盆地中生代岩浆活动强烈,基性岩主要出露在隆林-巴马、那坡-靖西-凭祥、八布和富宁以及越东北的高平和Niu Chua等地区,而中酸性火山岩主要分布于峒中、扶隆、凭祥和崇左等地区(Fan et al., 2008;广西壮族自治区地质矿产局, 1985; 范蔚茗等, 2004; 陈懋弘等, 2009; 罗金海等, 2009; 覃小锋等, 2011; 胡丽沙等, 2012; 黄虎等, 2012; 李政林等, 2015; 刘寅等, 2015)。

图 1 右江盆地的构造简图(a, 据杜远生等, 2013修改)和杨屯地区地质概况及采样点位置(b, 据广西壮族自治区地质矿产局, 1970修改) F1-师宗-弥勒断裂; F2-紫云-南丹断裂; F3-凭祥-南宁断裂; F4-红河断裂 Fig. 1 Tectonic framework of the Youjiang basin (a, modified after Du et al., 2013) and geological map of the Yangtun area with sampling location (b, modified after BGMRG, 1970) F1-Shizong-Mile Fault; F2-Ziyun-Nandan Fault; F3-Pingxiang-Nanning Fault; F4-Red River Fault

本文研究区位于右江盆地东缘的武鸣地区,处于紫云-南丹断裂(F2)西南侧和凭祥-南宁断裂(F3)西北侧(图 1a)。区域上出露的地层主要包括石炭系、二叠系、三叠系、侏罗系和白垩系(图 1b)。样品采自武鸣县杨屯村,呈灰绿色,具斑状结构和气孔状构造,斑晶主要为辉石(5%~15%),基质以针状斜长石微晶为主,含少量辉石(图 2a, b)。

图 2 杨屯安山岩的显微照片 Pyr-辉石; Pl-斜长石 Fig. 2 Photomicrographs of the Yangtun andesite Pyr-pyroxene; Pl-plagioclase
3 分析方法 3.1 LA-ICP-MS锆石U-Pb定年

本文用于U-Pb定年的锆石全部分选自新鲜的全岩样品,锆石的分选主要采用人工重砂法进行。首先,在双目显微镜下,从用重砂法挑选出的锆石中挑选出自形程度高、无裂隙和透明干净的颗粒。使用环氧树脂将锆石颗粒制作成样品靶,再用磨抛机打磨样品靶直至锆石露出光滑的平面。然后,在显微镜下对锆石进行反射光和透射光照相; 最后,使用扫描电子显微镜上的阴极发光仪详细检查锆石内部结构,以选择最佳分析点。锆石阴极发光成像(CL)分析是在中国科学院地质与地球物理研究所CAMECA SX100型电子探针上完成的,使用的加速电压为15kV。

本文的锆石U-Pb定年分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。所用仪器包括美国Thermo Fisher Scientific公司的Neptune Plus型多接收电感耦合等离子体质谱仪(MC-LA-ICP-MS)和Resonetics公司的RESOlution M-50型193nm的激光剥蚀系统,关于仪器详细的基本情况参见Zhang et al. (2014)。实验过程中所用的激光束斑直径为24μm,频率为4Hz,能量密度约为5J/cm2。采样方式为单点剥蚀,以He作为剥蚀物质的载气; 采用高纯度的Ar和He气为工作气体。质谱采用离子计数器接收206Pb、207Pb和208Pb的信号,而法拉第杯接收232Th和238U的信号。积分时间设置为0.131s。208Pb气体背景空白小于100cps,238U背景空白小于0.2mv,202Hg背景空白小于2000cps。每个分析点的气体空白采集时间为28s,激光剥蚀时间为30s,共接收450组数据。采用标准锆石Plešovice (337.13±0.37Ma, Sláma et al., 2008)作为外部标准对同位素比值进行校正,采用标准锆石91500 (1062.4±0.6Ma, Wiedenbeck et al., 1995)作为监控样品。实验过程中每测试5个样品点测试2次Plešovice,每测试10个样品点需额外测试2次91500。实验开始和结束时均需测定2次Plešovice和2次91500。数据处理采用ICP-MS Data Cal 8.0软件(Liu et al., 2010)进行分析信号的选择和漂移校正。采用Isoplot (rev. 2.50)程序(Ludwig, 2009)进行U-Pb年龄计算及谐和图绘制。

3.2 主微量元素和Sr-Nd同位素分析

首先将无蚀变、无矿化的新鲜岩石样品破碎成拇指大小的碎块,然后置于稀盐酸溶液(浓度约5%)中浸泡至无气泡产生,以淋滤掉碳酸盐矿物,最后用清水冲洗干净并烘干; 将这些烘干的碎块用玛瑙研钵研磨成粒度细于200目的粉末,用于全岩主、微量元素和Sr-Nd同位素分析。全岩主、微量和Sr-Nd同位素分析均在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。全岩主量元素分析采用碱熔玻璃片方法,在Rigaku ZSX 100型荧光光谱仪(XRF)上完成,具体的分析流程参见Li et al. (2005)。样品主量元素含量由36种涵盖硅酸盐样品范围的参考标准物质双变量拟合的工作曲线确定。微量元素则用Perkin-Elmer Sciex Elan 6000型ICP-MS进行分析测试,详细的分析流程参见刘颖等(1996)。绝大多数微量元素的分析结果与推荐值之间的相对偏差小于10%,其中多数元素的相对偏差小于5% (刘颖等, 1996)。Sr-Nd同位素分析是在MicroMass Isoprobe型MC-ICP-MS上进行的,该仪器配有九个法拉第杯、四个粒子计数信道和一个电子倍增器共十四个接收器。详细的样品制备和分析流程参见韦刚健等(2002)梁细荣等(2003)

4 分析结果 4.1 LA-ICP-MS锆石U-Pb年代学特征

本文对采自广西省武鸣县杨屯安山岩样品(13YK-83A)进行了LA-ICP-MS锆石U-Pb定年分析,分析结果见表 1。分选自该样品的锆石呈浅褐或褐色,半透明或透明。大部分锆石呈短柱状,少量呈长柱状,长60~100μm,长宽比为2:1~4:1。锆石CL图像可见典型韵律环带结构,属于岩浆成因锆石。本文测定了18颗锆石,它们的Th/U比值为0.7~2.8,均大于0.1,表明为岩浆成因锆石(吴元保和郑永飞, 2004)。其中两个分析点的207Pb/235U表观年龄分别为2810Ma和738Ma,该两颗锆石应该是岩浆上升过程中捕获的围岩继承锆石。剩余16个分析点的206Pb/238U表观年龄变化范围为153.0~171.2Ma,加权平均年龄为159.3±2.8Ma (MSWD=0.7,n=16,图 3),该年龄代表了杨屯安山岩的喷发年龄。

图 3 杨屯安山岩(样品13YK-83A)的锆石U-Pb年龄谐和图 Fig. 3 U-Pb concordia diagram of zircon analyses of the Yangtun andesite (Sample 13YK-83A)

表 1 杨屯安山岩(样品13YK-83A)的LA-ICP-MS锆石U-Pb同位素测试结果 Table 1 LA-ICP-MS zircon U-Pb dating results of the Yangtun andesite (Sample 13YK-83A)
4.2 地球化学特征

杨屯安山岩的岩石地球化学分析结果见表 2。样品的SiO2含量变化范围为53.13%~55.71%(不含挥发分),Al2O3含量为14.44%~16.06%,FeOT含量为7.29%~8.29%,具较高的MgO (6.74%~8.85%)和TiO2 (1.17%~1.32%)而较低的CaO (3.24%~7.71%)含量。在TAS图解中,样品落入粗面安山岩范围内(图 4)。样品同时具高K2O (3.39%~4.77%)和全碱(5.97%~7.05%)含量,高K2O/Na2O (1.31~2.33)比值,落入钾玄质岩石区域(图 5a, b)。Tatsumi and Ishizaka (1982)Tatsumi(1982, 2001)认为高镁安山岩相对于典型岛弧安山岩具更高的MgO (>5%)和更低的FeOT/MgO ( < 1.5);也有学者提出高镁安山岩的SiO2含量为55%~65%,Mg#值大于30 (Kelemen, 1995)。杨屯安山岩具高MgO (6.74%~8.85%)和Mg#值(63~72),低FeOT/MgO (0.83~1.23),均符合上述高镁安山岩的定义(Tatsumi and Ishizaka, 1982; Tatsumi, 1982, 2001; Kelemen, 1995)。因此,杨屯安山岩具高镁安山岩和钾玄质岩石的地球化学特征。

图 4 杨屯安山岩的SiO2-Na2O+K2O图解 Fig. 4 SiO2 vs. Na2O+K2O diagram of the Yangtun andesite

图 5 杨屯安山岩的SiO2-K2O (a, 实线来源于Peccerillo and Taylor, 1976; 虚线来源于Middlemost, 1985)和Na2O-K2O (b)图解 Fig. 5 SiO2 vs. K2O (a, solid line is after Peccerillo and Taylor, 1976; dotted line is after Middlemost, 1985) and Na2O vs. K2O (b) diagrams of the Yangtun andesite

虽然样品具较高的Sr (455×10-6~721×10-6),但相对于典型的埃达克岩(Defant and Drummond, 1990),它们具较高的Y (20.8×10-6~25.6×10-6)和Yb (2.18×10-6~2.40×10-6),而较低的SiO2 (53.13%~55.71%)和Sr/Y (21.2~32.7) (表 2)。样品具较高的相容元素含量,它们的Cr含量为416×10-6~565×10-6,Ni含量为207×10-6~246×10-6 (表 2)。在稀土元素球粒陨石标准化图解上(图 6b),样品明显富集轻稀土元素而亏损重稀土元素,具较弱的Eu负异常(0.82~0.86)。从微量元素原始地幔标准化蛛网图中可知,样品富集Rb、Ba、Th等大离子亲石元素而亏损高场强元素,具明显的Nb-Ta、Sr和Ti负异常(图 6a)。

图 6 杨屯安山岩的微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分图(b) (OIB、E-MORB、原始地幔和球粒陨石标准化数据均引自Sun and McDonough, 1989) Fig. 6 Primitive mantle-normalized spidergram (a) and chondrite-normalized REE pattern (b) of the Yangtun andesite (data of OIB, E-MORB, primitive mantle and chondrite are from Sun and McDonough, 1989)

本文对杨屯安山岩的两件样品进行了Sr-Nd同位素分析,结果见表 2。测得它们的87Sr/86Sr比值为0.70876~0.70879,143Nd/144Nd比值为0.51236~0.51237。采用样品的喷发年龄(159Ma)计算它们的初始Sr-Nd同位素组成,其(87Sr/86Sr)i值变化范围为0.70738~0.70739,εNd(t)值变化范围为-3.6~-3.4,明显不同于云开地区马山和南渡钾玄质岩的同位素组成(图 7; 陈新跃等, 2013; 段瑞春等, 2013; 劳妙姬等, 2015)。

图 7 杨屯安山岩的Sr-Nd同位素组成(底图引自Wang et al., 2013b) 南渡正长岩数据来源于陈新跃等(2013),马山钾玄质岩数据来源于段瑞春等(2013)劳妙姬等(2015) Fig. 7 Sr-Nd isotopic compositions of the Yangtun andesite (modified after Wang et al., 2013b) Data of the Nandu syenite are from Chen et al. (2013), Mashan shoshonitic rocks from Duan et al. (2013) and Lao et al. (2015)

表 2 杨屯安山岩样品主量元素(wt%)、微量元素(×10-6)和Sr-Nd同位素测试结果 Table 2 Major (wt%) and trace (×10-6) elements compositions and Sr-Nd isotopic ratios of the Yangtun andesite
5 讨论 5.1 杨屯安山岩的形成时代

1:20万上林幅区调报告认为在李驴、仙湖、杨屯和六良等地区出露有燕山期辉绿玢岩,它们呈岩墙状产出于白垩纪地层中(广西壮族自治区地质矿产局, 1970)。但该报告也认为由于区域上白垩纪地层露头极差,缺少化石控制,关于其时代归属是臆测的(广西壮族自治区地质矿产局, 1970)。因此,为了确定该套“辉绿玢岩”的形成时代及其围岩地层时代,本文对杨屯地区的“辉绿玢岩”进行了详细的野外地质考察、地球化学及年代学分析。野外和镜下薄片鉴定均表明杨屯地区该套岩石具明显的斑状结构和气孔状构造,样品含辉石斑晶,它们的SiO2含量变化范围为53.13%~55.71% (>53%),该套岩石因此属于典型的安山岩而不是辉绿玢岩。本文样品的LA-ICP-MS锆石U-Pb定年结果(图 3)表明杨屯安山岩的喷发时代为晚侏罗世而不是白垩纪,说明原先臆测的白垩纪地层时代应该属于晚侏罗世。因此,在杨屯地区出露的该套岩石不是原先认为的“辉绿玢岩”而属于安山岩,形成于晚侏罗世; 而李驴、六良等地的“辉绿玢岩”是否也为晚侏罗世安山岩有待进一步研究。此外,杨屯安山岩的厘定为右江盆地存在侏罗纪岩浆活动记录提供了新的年龄证据。

5.2 岩石成因

杨屯安山岩具高镁安山岩典型的地球化学特征,目前高镁安山岩主要有以下五种岩石成因:(1) 岩浆混合作用的产物(Kawabata and Shuto, 2005; Guo et al., 2007; Streck et al., 2007);(2) 含水的地幔橄榄岩直接部分熔融的产物(Tatsumi, 1981; Hirose, 1997; Wood and Turner, 2009); (3) 拆沉下地壳部分熔融产生的熔体与地幔橄榄岩相互反应的产物(Kelemen et al., 1998; Xu et al., 2002; Gao et al., 2004; 黄华等; 2007);(4) 俯冲板片部分熔融产生的熔体与上覆地幔橄榄岩反应的产物(Yogodzinski et al., 1994, 1995; Kelemen, 1995; Rapp et al., 1999; Tatsumi, 2001; Tatsumi and Hanyu, 2003; Wang et al., 2006, 2009; Zhang et al., 2012b); (5) 富集地幔部分熔融的产物(Stern et al., 1989; Stern and Hanson, 1991)。

杨屯高镁安山岩的MgO和Nb/La之间无明显的正相关关系(图 8a),它们的Zr/Nb比值不随Nb/La比值的降低而降低(图 8b)。样品的Nb/La (0.31~0.39)和Ce/Pb (3.2~4.7)比值均小于地壳中的平均值(分别为0.40和6.15; Rudnick and Gao, 2003),具低SiO2 (53.13%~55.71%),高Mg#值(63~72),高MgO (6.74%~8.85%)、Cr (416×10-6~565×10-6)和Ni (207×10-6~246×10-6)含量,它们的Nb/La (0.31~0.39)、La/Sm (5.92~6.42)比值和εNd(t)值(-3.6~-3.4)变化不大。这些特征均说明杨屯高镁安山岩不太可能是岩浆混合的产物。实验岩石学结果表明无水的地幔橄榄岩部分熔融无法形成高镁安山岩(Wood and Turner, 2009),而含水的地幔橄榄岩在较低温度( < 1100℃,1GPa)部分熔融可以直接产生高镁安山质岩浆(Tatsumi, 1981; Hirose, 1997),该高镁安山质岩浆具较高的SiO2 (54.35%~60.26%)和Al2O3 (17.24%~21.70%)含量和较低FeOT (4.04%~4.65%)、MgO (5.77%~6.81%)和CaO(8.53%~9.99%)含量(Hirose, 1997)。而本文样品具较低的SiO2 (53.13%~55.71%)、Al2O3 (14.44%~16.06%)和较高的FeOT (7.29%~8.29%)、MgO (6.74%~8.85%)含量,明显不同于上述实验岩石学的结果(Hirose, 1997)。此外,虽然杨屯安山岩具高MgO、Cr和Ni含量,但它们的(87Sr/86Sr)i变化范围为0.70738~0.70739,εNd(t)值为-3.6~-3.4,具富集的Sr-Nd同位素组成(图 7),说明它们不可能是含水的地幔橄榄岩直接部分熔融的产物。

图 8 杨屯安山岩的MgO-Nb/La (a)和Nb/La-Zr/Nb (b)图解 Fig. 8 MgO vs. Nb/La (a) and Nb/La vs. Zr/Nb (b) diagrams of the Yangtun andesite

基性下地壳从麻粒岩相向榴辉岩相转变时会导致其密度增加,由于重力作用下地壳会发生拆沉作用(Kay and Kay, 1991; Jull and Kelemen, 2001; Gao et al., 2004),拆沉下地壳部分熔融产生的熔体与地幔橄榄岩相互反应可以形成高镁安山岩(Kelemen et al., 1998; Gao et al., 2004; 黄华等; 2007)。该模式可以解释高镁安山岩具高MgO、Cr和Ni含量的特征,产生的高镁安山岩一般具较高的SiO2、较低的K2O/Na2O和埃达克质岩的地球化学特征(Xu et al., 2002; Gao et al., 2004),而本文样品具较低的SiO2和高K2O/Na2O (1.31~2.33),且不具典型埃达克质岩石的地球化学特征(Defant and Drummond, 1990)。由榴辉岩相部分熔融的熔体通常具Sr和Eu正异常(Stern and Hanson, 1991),而本文样品具明显的Sr和Eu负异常(图 6a, b)。区域上侏罗纪地层并没有经历过高压-超高压变质作用,也缺乏地壳加厚的直接证据(广西壮族自治区地质矿产局, 1985; 贵州地质矿产局, 1987; 云南省地矿局, 1990)。所以,杨屯高镁安山岩也不可能是拆沉下地壳熔融产生的熔体与地幔橄榄岩相互反应的产物。由俯冲洋壳板片熔体与上覆地幔橄榄岩反应产生的高镁安山岩通常具埃达克岩的地球化学特征(Yogodzinski et al., 1994; Rapp et al., 1999; Tatsumi and Hanyu, 2003; Kamei et al., 2004)和类似MORB的同位素组成及高Pb/Nd比值(Class et al., 2000)。本文样品具较低的Pb/Nd (0.47~0.68)比值和明显的Sr、Eu负异常,且不具典型埃达克质岩的地球化学特征,它们的Sr-Nd同位素组成也明显不同于MORB(图 7)。而相比于由俯冲沉积物熔体与上覆地幔橄榄岩反应产生的高镁安山岩(Tatsumi, 2001; Zhang et al., 2012; 张玉芝等, 2015),杨屯高镁安山岩具较低的SiO2和较高的FeOT。区域上也并没有发现同时期的蛇绿岩或与俯冲相关的岩浆岩记录,且尚无地质证据表明在右江盆地存在约160Ma的俯冲板片。因此,同时期的俯冲板片熔体与地幔橄榄岩相互反应不能形成杨屯高镁安山岩。

杨屯高镁安山岩具高K2O和K2O/Na2O,属于典型的钾玄质岩石,说明它们的地幔源区存在金云母和钾质角闪石等富钾矿物(Foley, 1992; Ionov et al., 1997)。含钾质角闪石的地幔橄榄岩部分熔融所形成的熔体通常具较低Rb/Sr ( < 0.06)和较高Ba/Rb (>20)比值,而与含金云母的地幔橄榄岩相平衡的熔体则具较高的Rb/Sr (>0.1)和较低的Ba/Rb ( < 20)比值(Furman and Graham, 1999; Späth et al., 2001)。样品具较高的Rb/Sr (0.20~0.46)和较低的Ba/Rb (7.17~9.30)比值,说明其源区的富钾矿物主要为金云母(图 9a; Turner et al., 1996; Furman and Graham, 1999; Späth et al., 2001; Williams et al., 2004)。杨屯高镁安山岩强烈富集大离子亲石元素和轻稀土元素(图 6a, b),含尖晶石或者石榴子石的地幔橄榄岩部分熔融均形成轻稀土元素强烈富集的熔体(Mckenzie and O’Nions, 1991 )。重稀土元素在尖晶石中分配系数相对较低,故与尖晶石矿物相平衡的熔体一般具较低的Dy/Yb比值和较高的重稀土元素含量,而与石榴子石矿物相平衡的熔体常常具较低的重稀土元素含量和较高的Dy/Yb比值(Blundy et al., 1998; Duggen et al., 2005)。杨屯安山岩具相对平坦的重稀土元素配分模式(图 6b)以及较低的Dy/Yb比值(2.10~2.30),几乎全部落入尖晶石地幔橄榄岩区域(图 9b; Mckenzie and O’Nions, 1991;Miller et al., 1999)。此外,金云母在岩石圈地幔中普遍存在,它们的形成常常与流体/熔体交代岩石圈地幔作用相关(Turner et al., 1996; Rogers et al., 1998; Jiang et al., 2006)。杨屯高镁安山岩具明显富集的Sr-Nd同位素组成(图 7),具明显的Nb-Ta-Ti负异常(图 6a),说明其源区可能受过熔体/流体的交代作用。因此,杨屯高镁安山岩是含金云母的富集岩石圈地幔部分熔融的产物。

图 9 杨屯安山岩的Ba/Rb-Rb/Sr (a)和La/Yb-Dy/Yb (b, 底图引自Xu et al., 2001)图解 Fig. 9 Ba/Rb-Rb/Sr (a) and La/Yb-Dy/Yb (b, after Xu et al., 2001) diagrams of the Yangtun andesite
5.3 构造意义

扬子陆块和华夏陆块是华南板块的重要组成部分,二者于新元古代碰撞拼贴而形成统一的华南板块(Zhao and Cawood, 1999, 2012; Zhang et al., 2012b; Zhang and Wang, 2016)。华南板块自显生宙以来先后经历了广西运动、印支运动和燕山运动等三期重要的构造-热事件,并伴随着强烈的岩浆活动,其中以中生代岩浆活动最为强烈(Zhou et al., 2006; Wang et al., 2007, 2013a; Shu et al., 2009; Charvet et al., 2010; Zhang et al., 2012a)。晚侏罗世岩浆岩主要分布于华南内陆地区(Zhou et al., 2006; 孙涛, 2006; Wang et al., 2013a),少量出露于东南沿海(Yan et al., 2010; Sewell et al., 2012; Zhang et al., 2015)。一部分学者认为晚侏罗世的岩浆活动与古太平洋板块的俯冲作用紧密相关(Zhou et al., 2006; Li et al., 2007; Jiang et al., 2009, 2015),而另一部分学者则认为它们形成于与古太平洋板块俯冲无关的陆内环境(Wang et al., 2003, 2008, 2013a; Chen et al., 2008)。上述争议的关键在于晚侏罗世古太平洋板块是否已经俯冲至华南板块之下,华南板块底部的岩石圈地幔是否受到了俯冲板片的改造作用等等。

绝大部分高镁安山岩和钾玄质岩石产出于汇聚型板块边缘(Müller et al., 1992; Yogodzinski et al., 1994, 1995; Tatsumi, 2001; Tatsumi and Hanyu, 2003; Zhang et al., 2012b; Liu et al., 2015b; 张玉芝等, 2015),只有极少数高镁安山岩和钾玄质岩形成于板内环境(Gao et al., 2004; Hoang et al., 2009; Muravyeva et al., 2014; 李献华等, 2000, 2001; 陈新跃等, 2013)。杨屯安山岩具高镁安山岩和钾玄质岩石的地球化学特征,其源区为含金云母的富集岩石圈地幔。区域上也没有发现该时期与俯冲相关的岩浆岩记录(Wang et al., 2013a),且右江地区与古太平洋俯冲带相距甚远,说明晚侏罗世右江地区的岩石圈地幔并未受到古太平洋板块俯冲板片的影响。在右江盆地东部的两广交界地区,出露有一系列中晚侏罗世钾玄质岩石(154~166Ma),它们均属于典型的钾玄质岩,形成于板内伸展环境(Li et al., 2004; 李献华等, 2000, 2001; 陈新跃等, 2013; 许华等, 2014; 劳妙姬等, 2015)。在粤西南地区出露的中晚侏罗世高钾钙碱性花岗岩(159~166Ma)是软流圈地幔物质上涌导致地壳物质部分熔融的产物,形成于陆内伸展环境(Huang et al., 2013)。在南岭西部地区出露有晚侏罗世A型花岗岩(付建明等, 2004a, b; Jiang et al., 2009; Huang et al., 2011; Zhou et al., 2015),暗示该地区处于伸展环境。在湘南和桂东南地区出露有中晚侏罗世碱性玄武岩和正长岩,它们具OIB的地球化学特征,同样形成于陆内伸展环境(Li et al., 2004; 王岳军等, 2004)。在相关构造判别图解中,杨屯安山岩样品全部落入板内玄武岩区域内(图 10a, b)。因此,杨屯安山岩更可能形成于板内伸展环境而与岛弧环境无关。右江盆地东缘杨屯钾玄质高镁安山岩的厘定,说明右江盆地晚侏罗世处于板内伸展背景。结合华南板块东部中晚侏罗世岩浆活动特征,反映了华南板块晚侏罗世岩石圈伸展-减薄作用的过程。

图 10 杨屯安山岩的Zr-Zr/Y (a, 据Pearce and Norry, 1979)和Zr/4-Y-Nb×2 (b, 据Meschede, 1986)图解 Fig. 10 Zr-Zr/Y (a, after Pearce and Norry, 1979) and Zr/4-Y-Nb×2 (b, after Meschede, 1986) diagrams of the Yangtun andesite
6 结论

(1) 杨屯地区原先被描述成的“辉绿玢岩”属于安山岩,形成于晚侏罗世(159.3±2.8Ma)而不是白垩纪,该地区原先臆测的白垩纪地层时代应为晚侏罗统,属于侏罗纪地层。

(2) 杨屯火山岩具典型高镁安山岩和钾玄质岩的地球化学特征,是含金云母的富集岩石圈地幔部分熔融的产物。

(3) 杨屯安山岩形成于板内伸展环境,暗示晚侏罗世右江地区处于岩石圈伸展-减薄的环境。

致谢 特别感谢中国科学院广州地球化学研究所张乐博士在锆石U-Pb实验方面的帮助,刘颖和胡光黔高级工程师在主微量实验方面的帮助,马金龙高级工程师在同位素实验方面的帮助。审稿人和编辑为论文提出了建设性意见和建议,在此表示感谢!
参考文献
[] Blundy JD, Robinson JAC, Wood BJ. 1998. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth and Planetary Science Letters , 160 (3-4) :493–504. DOI:10.1016/S0012-821X(98)00106-X
[] Bureau of Geology and Mineral Resource of Guangxi Zhuang Autonomous Region (BGMRG). 1970. Geological Map of Guangxi, Scale 1:200000, Shanglin. Beijing:Geological Publishing House, 23-24 (in Chinese)
[] Bureau of Geology and Mineral Resource of Guangxi Zhuang Autonomous Region. 1985. Regional Geology of Guangxi Zhuang Autonomous Region. Beijing:Geological Publishing House, 1-853 (in Chinese)
[] Bureau of Geology and Mineral Resource of Guizhou Province. 1987. Regional Geology of Guizhou Province. Beijing:Geological Publishing House, 1-698 (in Chinese)
[] Bureau of Geology and Mineral Resource of Yunnan Province. 1990. Regional Geology of Yunnan Province. Beijing:Geological Publishing House, 1-729 (in Chinese)
[] Charvet J, Shu LS, Faure M, Choulet F, Wang B, Lu HF , Le Breton N. 2010. Structural development of the Lower Paleozoic belt of South China:Genesis of an intracontinental orogen. Journal of Asian Earth Sciences , 39 (4) :309–330. DOI:10.1016/j.jseaes.2010.03.006
[] Chen CH, Lee CY , Shinjo RI. 2008. Was there Jurassic paleo-Pacific subduction in South China? Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts. Lithos , 106 (1-2) :83–92. DOI:10.1016/j.lithos.2008.06.009
[] Chen HD, Zhang JQ , Liu WJ. 1994. Structure of Youjiang basin in Devonian-Carboniferous period and its evolution of lithofacies and palaeogeography. Guangxi Geology , 7 (2) :15–23.
[] Chen MH, Zhang W, Yang ZX, Lu G, Hou KJ , Liu JH. 2009. Zircon SHRIMP U-Pb age and Hf isotopic composition of Baiceng ultrabasic dykes in Zhenfeng County, southwestern Guizhou Province. Mineral Deposits , 28 (3) :240–250.
[] Chen MH, Mao JW, Li C, Zhang ZQ , Dang Y. 2015. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China. Ore Geology Reviews , 64 :316–327. DOI:10.1016/j.oregeorev.2014.07.019
[] Chen XY, Wang YJ, Zhang YZ, Zhang AM , Cao YJ. 2013. Geochronology and geochemical characteristics of the Nandu syenite in SE Guangxi and its implications. Geotectonica et Metallogenia , 37 (2) :284–293.
[] Class C, Miller DM, Goldstein SL , Langmuir CH. 2000. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems , 1 (6) :1004.
[] Defant MJ , Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature , 347 (6294) :662–665. DOI:10.1038/347662a0
[] Deng JF, Liu C, Feng YF, Xiao QH, Su SG, Zhao GC, Kong WQ , Cao WY. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA):Two igneous rock types related to oceanic subduction. Geology in China , 37 (4) :1112–1118.
[] Du YS, Huang H, Yang JH, Huang HW, Tao P, Huang ZQ, Hu LS , Xie CX. 2013. The basin translation from Late Paleozoic to Triassic of the Youjiang Basin and its tectonic signification. Geological Review , 59 (1) :1–10.
[] Duan RC, Ling WL, Li Q, Qiu XF, Yang HM, Liu CP , Lu SS. 2013. Geochemical and zircon U-Pb geochronological characteristics of the Mashan complex from southeastern Guangxi Province and their significance to the tectonic setting. Acta Geologica Sinica , 87 (9) :1221–1232.
[] Duggen S, Hoernle K, Van Den Bogaard P , Garbe-Schönberg D. 2005. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean:Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology , 46 (6) :1155–1201. DOI:10.1093/petrology/egi013
[] Fan WM, Wang YJ, Peng TP, Miao LC , Guo F. 2004. Ar-Ar and U-Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism. Chinese Science Bulletin , 49 (21) :2318–2327. DOI:10.1360/04wd0201
[] Fan WM, Zhang CH, Wang YJ, Guo F , Peng TP. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China:Evidence for plume-lithosphere interaction. Lithos , 102 (1-2) :218–236. DOI:10.1016/j.lithos.2007.09.019
[] Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos , 28 (3-6) :435–453. DOI:10.1016/0024-4937(92)90018-T
[] Fu JM, Ma CQ, Xie CF, Zhang YM , Peng SB. 2004a. The determination of the formation ages of the Xishan volcanic-intrusive complex in southern Hunan Province. Acta Geoscientica Sinica , 25 (3) :303–308.
[] Fu JM, Ma CQ, Xie CF, Zhang YM , Peng SB. 2004b. SHRIMP U-Pb zircon dating of the Jiuyishan composite granite in Hunan and its geological significance. Geotectonica et Metallogenia , 28 (4) :370–378.
[] Furman T , Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system:Geochemical evidence from the Kivu volcanic province. Lithos , 48 (1-4) :237–262. DOI:10.1016/S0024-4937(99)00031-6
[] Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC , Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature , 432 (7019) :892–897. DOI:10.1038/nature03162
[] Gill JB.1981. Orogenic Andesites and Plate Tectonics. Berlin Heidelberg: Springer-Verlag : 277 -278.
[] Guo F, Nakamuru E, Fan WM, Kobayoshi K , Li CW. 2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji area, NE China. Journal of Petrology , 48 (4) :661–692. DOI:10.1093/petrology/egl077
[] Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology , 25 (1) :42–44. DOI:10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
[] Hoang N, Yamamoto T, Itoh J , Flower MFJ. 2009. Anomalous intra-plate high-Mg andesites in the Choshi area (Chiba, Central Japan) produced during early stages of Japan Sea opening?. Lithos , 112 (3-4) :545–555. DOI:10.1016/j.lithos.2008.11.012
[] Hu LS, Du YS, Yang JH, Huang H, Huang HW , Huang ZQ. 2012. Geochemistry and tectonic significance of Middle Triassic volcanic rocks in Nalong, Guangxi Area. Geological Review , 58 (3) :481–494.
[] Hu RZ, Su WC, Bi XW, Tu GC , Hofstra A. 2002. Geology and geochemistry of Carlin type gold deposits in China. Mineralium Deposita , 37 (3) :378–392.
[] Hu RZ, Peng JT, Ma DS, Su WC, Shi CH, Bi XW , Tu GC. 2007. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif. Mineral Deposits , 26 (6) :583–596.
[] Hu RZ , Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita , 47 (6) :579–588. DOI:10.1007/s00126-012-0431-6
[] Huang H, Gao S, Hu ZC, Niu XM , Yuan HL. 2007. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning:Implication for delamination of newly formed lower crust. Science in China (Series D) , 50 (12) :1773–1786. DOI:10.1007/s11430-007-0121-x
[] Huang H, Yang JH, Du YS, Huang HW, Huang ZQ , Xie CX, Hu LS. 2012. LA-ICPMS U-Pb dating of zircons from tuffs of the Upper Permian-Middle Triassic in Youjiang basin, Guangxi Province and its geological significance. Earth Science , 37 (1) :125–138.
[] Huang HQ, Li XH, Li WX , Li ZX. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology , 39 (10) :903–906. DOI:10.1130/G32080.1
[] Huang HQ, Li XH, Li ZX , Li WX. 2013. Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong Province, SE China. Journal of Asian Earth Sciences , 74 :280–302. DOI:10.1016/j.jseaes.2012.09.009
[] Ionov DA, Griffin WL , O'Reilly SY. 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology , 141 (3-4) :153–184. DOI:10.1016/S0009-2541(97)00061-2
[] Jiang YH, Jiang SY, Ling HF , Dai BZ. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, East Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters , 241 (3-4) :617–633. DOI:10.1016/j.epsl.2005.11.023
[] Jiang YH, Jiang SY, Dai BZ, Liao SY, Zhao KD , Ling HF. 2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China:Implications for a continental arc to rifting. Lithos , 107 (3-4) :185–204. DOI:10.1016/j.lithos.2008.10.006
[] Jiang YH, Wang GC, Liu Z, Ni CY, Qing L , Zhang Q. 2015. Repeated slab advance-retreat of the Palaeo-Pacific plate underneath SE China. International Geology Review , 57 (4) :472–491. DOI:10.1080/00206814.2015.1017775
[] Jull M , Kelemen PB. 2001. On the conditions for lower crustal convective instability. Journal of Geophysical Research:Solid Earth , 106 (B4) :6423–6446. DOI:10.1029/2000JB900357
[] Kamei A, Owada M, Nagao T , Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:Evidence from clinopyroxene and whole rock compositions. Lithos , 75 (3-4) :359–371. DOI:10.1016/j.lithos.2004.03.006
[] Kawabata H , Shuto K. 2005. Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan:Implications for Archean TTG formation. Journal of Volcanology and Geothermal Research , 140 (4) :241–271. DOI:10.1016/j.jvolgeores.2004.08.013
[] Kay RW , Kay SM. 1991. Creation and destruction of lower continental crust. Geologische Rundschau , 80 (2) :259–278. DOI:10.1007/BF01829365
[] Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology , 120 (1) :1–19. DOI:10.1007/BF00311004
[] Kelemen PB, Hart SR , Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters , 164 (1-2) :387–406. DOI:10.1016/S0012-821X(98)00233-7
[] Lao MJ, Zou HP, Du XD , Ding RX. 2015. Geochronology and geochemistry of the Mashan Late Jurassic shoshonitic intrusives in Hengxian, Guangxi:With a discussion on Yanshanian tectonic settings of the southwestern segment of Qinzhou-Hangzhou metallogenic belt. Earth Science Frontiers , 22 (2) :95–107.
[] Lehrmann DJ, Pei DH, Enos P, Minzoni M, Ellwood BB, Orchard MJ, Zhang JY, Wei JY, Dillett P, Koeni J, Steffen K, Druke D, Druke J, Kessel B , Newkirk T. 2007. Impact of differential tectonic subsidence on isolated carbonate-platform evolution:Triassic of the Nanpanjiang Basin, South China. AAPG Bulletin , 91 (3) :287–320. DOI:10.1306/10160606065
[] Li XH, Zhou HW, Liu Y, Lee CY, Chen ZH, Yu JS , Gui XT. 2000. Mesozoic shoshonitic intrusives in the Yangchun Basin, western Guangdong, and their tectonic significance:I. Petrology and isotope geochronology. Geochimica , 29 (6) :513–520.
[] Li XH, Zhou HW, Liu Y, Lee CY, Chen ZH, Yu JS , Gui XT. 2001. Mesozoic shoshonitic intrusives in the Yangchun Basin, western Guangdong, and their tectonic significance:II. Trace elements and Sr-Nd isotopes. Geochimica , 30 (1) :57–65.
[] Li XH, Chung SL, Zhou HW, Lo CH, Liu Y and Chen CW. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi:40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. In:Fitton JG, Mahoney JJ, Wallace PJ and Saunders AD (eds.). Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publications, 226:193-215
[] Li XH, Qi CS, Liu Y, Liang XR, Tu XL, Xie LW , Yang YH. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block:New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin , 50 (21) :2481–2486. DOI:10.1360/982005-287
[] Li XH, Li WX , Li ZX. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin , 52 (14) :1873–1885. DOI:10.1007/s11434-007-0259-0
[] Li ZL, Liu XJ, Xu JF, Kang ZQ, Shi Y, Huang WL, Chen XF, Wu WN, Liang QD , Yao Y. 2015. Geochemical evolution characteristics and regional tectonic significance of mafic rocks from Youjiang Basin. Journal of Guilin University of Technology , 35 (4) :727–735.
[] Liang XR, Wei GJ, Li XH , Liu Y. 2003. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple collectors inductively coupled plasma mass spectrometer (MC-ICPMS). Geochimica , 32 (1) :91–96.
[] Liu Y, Liu HC , Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica , 25 (6) :552–558.
[] Liu Y, Hu K, Han SC , Sun ZH. 2015. Structural evolution of the Youjiang Basin and its controlling effects on the formation of Carlin-type gold deposits. Geological Journal of China Universities , 21 (1) :1–14.
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ , Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology , 51 (1-2) :537–571. DOI:10.1093/petrology/egp082
[] Liu Z, Jiang YH, Jia RY, Zhao P , Zhou Q. 2015. Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, Northwest China:Implications for Paleo-Tethys evolution. Gondwana Research , 27 (1) :326–341. DOI:10.1016/j.gr.2013.09.022
[] Ludwig K. 2009. Sqiud 2:A user's manual. Berkeley Geochron Center. Special Publication, 1-110
[] Luo JH, Che ZC, Guo AL, Cheng SY , Pei XZ. 2009. Late Cretaceous lithospheric extension in the Nandan-Hechi tectonic zone of northern Guangxi Province and its influence on hydrocarbon accumulation conditions. Oil & Gas Geology , 30 (5) :619–625.
[] Müller D, Rock NMS , Groves DI. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings:A pilot study. Mineralogy and Petrology , 46 (4) :259–289. DOI:10.1007/BF01173568
[] Martin H, Smithies RH, Rapp R, Moyen JF , Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos , 79 (1-2) :1–24. DOI:10.1016/j.lithos.2004.04.048
[] Mckenzie D , O'nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology , 32 (5) :1021–1091. DOI:10.1093/petrology/32.5.1021
[] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology , 56 (3-4) :207–218. DOI:10.1016/0009-2541(86)90004-5
[] Middlemost EAK.1985. Magmas and Magmatic Rocks:An Introduction to Igneous Petrology. London and New York: Longman .
[] Miller C, Schuster R, Klotzli U, Frank W , Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology , 40 (9) :1399–1424. DOI:10.1093/petroj/40.9.1399
[] Muravyeva NS, Belyatsky BV, Senin VG , Ivanov AV. 2014. Sr-Nd-Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift:Implications for magma mixing and source heterogeneity. Lithos , 210-211 :260–277. DOI:10.1016/j.lithos.2014.09.011
[] Pearce JA , Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology , 69 (1) :33–47. DOI:10.1007/BF00375192
[] Peccerillo A , Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology , 58 (1) :63–81. DOI:10.1007/BF00384745
[] Qin JH, Wu YL, Yan YJ , Zhu ZF. 1996. Hercynian-Indosinian sedimentary-tectonic evolution of the Nanpanjiang Basin. Acta Geologica Sinica , 70 (2) :99–107.
[] Qin XF, Wang ZQ, Zhang YL, Pan LZ, Hu GA , Zhou FS. 2011. Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi:Constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt. Acta Petrologica Sinica , 27 (3) :794–808.
[] Rao DVS, Balaram V, Raju KN , Sridhar DN. 2008. Paleoproterozoic boninite-like rocks in an intracratonic setting from Northern Bastar Craton, central India. Geochmica Et Cosmochimica Acta , 70 (18) :A516.
[] Rapp RP, Shimizu N, Norman MD , Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology , 160 (4) :335–356. DOI:10.1016/S0009-2541(99)00106-0
[] Rogers NW, James D, Kelley SP , DeMulder M. 1998. The generation of potassic lavas from the eastern Virunga province, Rwanda. Journal of Petrology , 39 (6) :1223–1247. DOI:10.1093/petroj/39.6.1223
[] Rudnick RL and Gao S. 2003. Composition of the continental crust. In:Holland HD and Turekian KK, (eds.). Treatise on Geochemistry. Oxford:Elsevier, 3:1-64
[] Sewell RJ, Davis DW , Campbell SDG. 2012. High precision U-Pb zircon ages for Mesozoic igneous rocks from Hong Kong. Journal of Asian Earth Sciences , 43 (1) :164–175. DOI:10.1016/j.jseaes.2011.09.007
[] Shi XY, Hou YA , Shuai KY. 2006. Late Paleozoic deep-water stratigraphic succession in central Youjiang basin:Constraints on basin evolution. Earth Science Frontiers , 13 (6) :153–170.
[] Shu LS, Zhou XM, Deng P, Wang B, Jiang SY, Yu JH , Zhao XX. 2009. Mesozoic tectonic evolution of the Southeast China Block:New insights from basin analysis. Journal of Asian Earth Sciences , 34 (3) :376–391. DOI:10.1016/j.jseaes.2008.06.004
[] Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN , Whitehouse MJ. 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology , 249 (1-2) :1–35. DOI:10.1016/j.chemgeo.2007.11.005
[] Späth A, LeRoex AP , Opiyo-Akech N. 2001. Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism:The Chyulu Hills Volcanic Province, southern Kenya. Journal of Petrology , 42 (4) :765–787. DOI:10.1093/petrology/42.4.765
[] Stern RA, Hanson GN , Shirey SB. 1989. Petrogenesis of mantle-derived, lile-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province. Canadian Journal of Earth Sciences , 26 (9) :1688–1712. DOI:10.1139/e89-145
[] Stern RA , Hanson GN. 1991. Archean high-Mg granodiorite:A derivative of light rare earth element-enriched monzodiorite of mantle origin. Journal of Petrology , 32 (1) :201–238. DOI:10.1093/petrology/32.1.201
[] Streck MJ, Leeman WP , Chesley J. 2007. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt. Geology , 35 (4) :351–354. DOI:10.1130/G23286A.1
[] Su WC, Xia B, Zhang HT, Zhang XC , Hu RZ. 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for the environment and processes of ore formation. Ore Geology Reviews , 33 (3-4) :667–679. DOI:10.1016/j.oregeorev.2007.10.002
[] Su WC, Heinrich CA, Pettke T, Zhang XC, Hu RZ , Xia B. 2009a. Sediment-hosted gold deposits in Guizhou, China:Products of wall-rock sulfidation by deep crustal fluids. Economic Geology , 104 (1) :73–93. DOI:10.2113/gsecongeo.104.1.73
[] Su WC, Hu RZ, Xia B, Xia Y , Liu YP. 2009b. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chemical Geology , 258 (3-4) :269–274. DOI:10.1016/j.chemgeo.2008.10.030
[] Su WC, Zhang HT, Hu RZ, Ge X, Xia B, Chen YY , Zhu C. 2012. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for gold depositional processes. Mineralium Deposita , 47 (6) :653–662. DOI:10.1007/s00126-011-0328-9
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1):313-345
[] Sun T. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China , 25 (3) :332–335.
[] Tang GJ , Wang Q. 2010. High-Mg andesites and their geodynamic implications. Acta Petrologica Sinica , 26 (8) :2495–2512.
[] Tatsumi Y. 1981. Melting experiments on a high-magnesian andesite. Earth and Planetary Science Letters , 54 (2) :357–365. DOI:10.1016/0012-821X(81)90017-0
[] Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth and Planetary Science Letters , 60 (2) :305–317.
[] Tatsumi Y , Ishizaka K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, Southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters , 60 (2) :293–304. DOI:10.1016/0012-821X(82)90008-5
[] Tatsumi Y and Eggins S. 1995. Subduction Zone Magmatism. Massachusetts, Morton:Blackwell Science
[] Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction:Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology , 29 (4) :323–326. DOI:10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2
[] Tatsumi Y , Hanyu T. 2003. Geochemical modeling of dehydration and partial melting of subducting lithosphere:Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochemistry, Geophysics, Geosystems , 4 (9) :1081.
[] Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P , Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology , 37 (1) :45–71. DOI:10.1093/petrology/37.1.45
[] Wang YJ, Fan WM, Guo F, Peng TP , Li CW. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China:Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. International Geology Review , 45 (3) :263–286. DOI:10.2747/0020-6814.45.3.263
[] Wang YJ, Liao CL, Fan WM , Peng TP. 2004. Early Mesozoic OIB-type alkaline basalt in central Jiangxi Province and its tectonic implications. Geochimica , 33 (2) :109–117.
[] Wang YJ, Fan WM, Zhang HF , Peng TP. 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains:Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos , 86 (3-4) :281–302. DOI:10.1016/j.lithos.2005.07.001
[] Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH , Peng TP. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:A case study in the Hunan Province. Lithos , 96 (3-4) :475–502. DOI:10.1016/j.lithos.2006.11.010
[] Wang YJ, Zhang YZ, Zhao GC, Fan WM, Xia XP, Zhang FF , Zhang AM. 2009. Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids (Shandong):Implications for Neoarchean subduction in the Eastern Block, North China Craton. Precambrian Research , 174 (3-4) :273–286. DOI:10.1016/j.precamres.2009.08.005
[] Wang YJ, Fan WM, Cawood PA , Li SZ. 2008. Sr-Nd-Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland. Lithos , 106 (3-4) :297–308. DOI:10.1016/j.lithos.2008.07.019
[] Wang YJ, Fan WM, Zhang GW , Zhang YH. 2013a. Phanerozoic tectonics of the South China Block:Key observations and controversies. Gondwana Research , 23 (4) :1273–1305. DOI:10.1016/j.gr.2012.02.019
[] Wang YJ, Zhang AM, Fan WM, Zhang YH , Zhang YZ. 2013b. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block:Geochronological and geochemical evidence. Lithos , 160-161 :37–54. DOI:10.1016/j.lithos.2012.11.004
[] Wei GJ, Liang XR, Li XH , Liu Y. 2002. Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICP-MS. Geochimica , 31 (3) :295–299.
[] Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC , Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter , 19 (1) :1–23. DOI:10.1111/ggr.1995.19.issue-1
[] Williams HM, Turner SP, Pearce JA, Kelley SP , Harris NBW. 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. Journal of Petrology , 45 (3) :555–607. DOI:10.1093/petrology/egg094
[] Wood BJ , Turner SP. 2009. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments. Earth and Planetary Science Letters , 283 (1-4) :59–66. DOI:10.1016/j.epsl.2009.03.032
[] Wu YB , Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin , 49 (15) :1554–1569. DOI:10.1007/BF03184122
[] Xu H, Huang BC, Ni ZX, Han SP, Huang Y , Gong Y. 2014. Zircon LA-ICP-MS U-Pb age, petrography, geochemistry and tectonic implications of the Guluo alkaline gabbroic rock in the Dayaoshan, Guangxi. Geology and Mineral Resources of South China , 30 (4) :342–351.
[] Xu JF, Shinjo R, Defant MJ, Wang Q , Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China:Partial melting of delaminated lower continental crust?. Geology , 30 (12) :1111–1114. DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
[] Xu YG, Menzies MA, Thirlwall MF , Xie GH. 2001. Exotic lithosphere mantle beneath the western Yangtze craton:Petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology , 29 (9) :863–866. DOI:10.1130/0091-7613(2001)029<0863:ELMBTW>2.0.CO;2
[] Yan QS, Shi XF, Liu JH, Wang KS , Bu WR. 2010. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea:Constraints on the basement nature. Journal of Asian Earth Sciences , 37 (2) :130–139. DOI:10.1016/j.jseaes.2009.08.001
[] Yang HY, Chen SY, Hao XL, Guo H, Li C , Yang Y. 2010. Sedimentary characteristics and evolutionary stages of Late Paleozoic Longlin isolated platform in Nanpanjiang depression. Geology in China , 37 (6) :1638–1646.
[] Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI , Matvenkov VV. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far Western Aleutians. Journal of Petrology , 35 (1) :163–204. DOI:10.1093/petrology/35.1.163
[] Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV , Kay SM. 1995. Magnesian andesite in the Western Aleutian Komandorsky region:Implications for slab melting and Processes in the mantle wedge. Geological Society of America Bulletin , 107 (5) :505–519. DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
[] Zeng YF, Liu WJ, Chen HD, Zheng RC, Zhang JQ, Li XQ , Jiang TC. 1995. Evolution of sedimentation and tectonics of the Youjiang composite basin, South China. Acta Geological Sinica , 69 (2) :113–124.
[] Zhang FF, Wang YJ, Zhang AM, Fan WM, Zhang YZ , Zi JW. 2012a. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos , 150 (5) :188–208.
[] Zhang L, Ren ZY, Nichols ARL, Zhang YH, Zhang Y, Qian SP , Liu JQ. 2014. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry , 29 (8) :1393–1405. DOI:10.1039/C4JA00088A
[] Zhang Y, Yang JH, Sun JF, Zhang JH, Chen JY , Li XH. 2015. Petrogenesis of Jurassic fractionated I-type granites in Southeast China:Constraints from whole-rock geochemical and zircon U-Pb and Hf-O isotopes. Journal of Asian Earth Sciences , 111 :268–283. DOI:10.1016/j.jseaes.2015.07.009
[] Zhang YZ, Wang YJ, Fan WM, Zhang AM , Ma LY. 2012b. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (~825Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications. Precambrian Research , 220-221 :139–157. DOI:10.1016/j.precamres.2012.07.003
[] Zhang YZ, Wang YJ, Guo XF, Gan CS, Xing XW , Song JJ. 2015. Geochronology and geochemistry of Cihua Neoproterozoic high-Mg andesites in Jiangnan Orogen and their tectonic implications. Earth Science , 40 (11) :1781–1795.
[] Zhang YZ , Wang YJ. 2016. Early Neoproterozoic (~840Ma) arc magmatism:Geochronological and geochemical constraints on the metabasites in the Central Jiangnan Orogen. Precambrian Research , 275 :1–17. DOI:10.1016/j.precamres.2015.11.006
[] Zhao GC , Cawood PA. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block; Implications for neoproterozoic collision-related assembly of the South China craton. American Journal of Science , 299 (4) :309–339. DOI:10.2475/ajs.299.4.309
[] Zhao GC , Cawood PA. 2012. Precambrian geology of China. Precambrian Research , 222-223 :13–54. DOI:10.1016/j.precamres.2012.09.017
[] Zhou XM, Sun T, Shen WZ, Shu LS , Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes , 29 (1) :26–33.
[] Zhou Y, Liang XQ, Wu SC, Cai YF, Liang XR, Shao TB, Wang C, Fu JG , Jiang Y. 2015. Isotopic geochemistry, zircon U-Pb ages and Hf isotopes of A-type granites from the Xitian W-Sn deposit, SE China:Constraints on petrogenesis and tectonic significance. Journal of Asian Earth Sciences , 105 :122–139. DOI:10.1016/j.jseaes.2015.03.006
[] 陈洪德, 张锦泉, 刘文均.1994. 泥盆纪-石炭纪右江盆地结构与岩相古地理演化. 南方国土资源 , 7 (2) :15–23.
[] 陈新跃, 王岳军, 张玉芝, 张爱梅, 曹有金.2013. 桂东南南渡正长岩年代学、地球化学特征及其构造意义. 大地构造与成矿学 , 37 (2) :284–293.
[] 陈懋弘, 章伟, 杨宗喜, 陆刚, 侯可军, 刘建辉.2009. 黔西南白层超基性岩墙锆石SHRIMP U-Pb年龄和Hf同位素组成研究. 矿床地质 , 28 (3) :240–250.
[] 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕.2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类. 中国地质 , 37 (4) :1112–1118.
[] 杜远生, 黄虎, 杨江海, 黄宏伟, 陶平, 黄志强, 胡丽沙, 谢春霞.2013. 晚古生代-中三叠世右江盆地的格局和转换. 地质论评 , 59 (1) :1–10.
[] 段瑞春, 凌文黎, 李青, 邱啸飞, 杨红梅, 刘重芃, 卢山松.2013. 桂东南马山杂岩体地球化学与锆石U-Pb同位素年代学特征及其对构造背景的指示意义. 地质学报 , 87 (9) :1221–1232.
[] 范蔚茗, 王岳军, 彭头平, 苗来成, 郭锋.2004. 桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束. 科学通报 , 49 (18) :1892–1900.
[] 付建明, 马昌前, 谢才富, 张业明, 彭松柏.2004a. 湘南西山花岗质火山-侵入杂岩形成时代的确定. 地球学报 , 25 (3) :303–308.
[] 付建明, 马昌前, 谢才富, 张业明, 彭松柏.2004b. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义. 大地构造与成矿学 , 28 (4) :370–378.
[] 广西壮族自治区地质矿产局. 1970. 1:20万上林福区域地质测量报告.北京:地质出版社, 23-24
[] 广西壮族自治区地质矿产局. 1985.广西壮族自治区区域地质志.北京:地质出版社, 1-853
[] 贵州地质矿产局. 1987.贵州省区域地质志.北京:地质出版社, 1-698
[] 胡丽沙, 杜远生, 杨江海, 黄虎, 黄宏伟, 黄志强.2012. 广西那龙地区中三叠世火山岩地球化学特征及构造意义. 地质论评 , 58 (3) :481–494.
[] 胡瑞忠, 彭建堂, 马东升, 苏文超, 施春华, 毕献武, 涂光炽.2007. 扬子地块西南缘大面积低温成矿时代. 矿床地质 , 26 (6) :583–596.
[] 黄华, 高山, 胡兆初, 柳小明, 袁洪林.2007. 辽西彰武地区中生代高镁安山岩地球化学及其对新生下地壳拆沉作用的指示. 中国科学(D辑) , 37 (10) :1287–1300.
[] 黄虎, 杨江海, 杜远生, 黄宏伟, 黄志强, 谢春霞, 胡丽沙.2012. 右江盆地上二叠统-中三叠统凝灰岩年龄及其地质意义. 地球科学 , 37 (1) :125–138.
[] 劳妙姬, 邹和平, 杜晓东, 丁汝鑫.2015. 广西横县马山晚侏罗世钾玄质侵入岩的年代学和地球化学研究:兼论钦杭成矿带西南段燕山期构造背景. 地学前缘 , 22 (2) :95–107.
[] 李献华, 周汉文, 刘颖, 李寄嵎, 陈正宏, 于津生, 桂训唐.2000. 粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅰ. 岩石学和同位素地质年代学.地球化学 , 29 (6) :513–520.
[] 李献华, 周汉文, 刘颖, 李寄嵎, 陈正宏, 于津生, 桂训唐.2001. 粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ. 微量元素和Sr-Nd同位素地球化学.地球化学 , 30 (1) :57–65.
[] 李政林, 刘希军, 许继峰, 康志强, 时毓, 黄文龙, 陈雪峰, 吴伟男, 梁琼丹, 姚野.2015. 右江盆地基性岩的地球化学演化特征及其区域构造意义. 桂林理工大学学报 , 35 (4) :727–7235.
[] 梁细荣, 韦刚健, 李献华, 刘颖.2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学 , 32 (1) :91–96.
[] 刘颖, 刘海臣, 李献华.1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学 , 25 (6) :552–558.
[] 刘寅, 胡凯, 韩善楚, 孙泽航.2015. 右江盆地构造和演化及对卡林型金矿床的控制作用. 高校地质学报 , 21 (1) :1–14.
[] 罗金海, 车自成, 郭安林, 程顺有, 裴先治.2009. 桂北南丹-河池构造带晚白垩世岩石圈伸展作用及其对油气成藏条件的影响. 石油与天然气地质 , 30 (5) :619–625.
[] 秦建华, 吴应林, 颜仰基, 朱忠发.1996. 南盘江盆地海西-印支期沉积构造演化. 地质学报 , 70 (2) :99–107.
[] 覃小锋, 王宗起, 张英利, 潘罗忠, 胡贵昂, 周府生.2011. 桂西南早中生代酸性火山岩年代学和地球化学:对钦-杭结合带西南段构造演化的约束. 岩石学报 , 27 (3) :794–808.
[] 史晓颖, 侯宇安, 帅开业.2006. 桂西南晚古生代深水相地层序列及沉积演化. 地学前缘 , 13 (6) :153–170.
[] 孙涛.2006. 新编华南花岗岩分布图及其说明. 地质通报 , 25 (3) :332–335.
[] 唐功建, 王强.2010. 高镁安山岩及其地球动力学意义. 岩石学报 , 26 (8) :2495–2512.
[] 王岳军, 廖超林, 范蔚茗, 彭头平.2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义. 地球化学 , 33 (2) :109–117.
[] 韦刚健, 梁细荣, 李献华, 刘颖.2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学 , 31 (3) :295–299.
[] 吴元保, 郑永飞.2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报 , 49 (16) :1589–1604.
[] 许华, 黄炳诚, 倪战旭, 韩淑朋, 黄英, 龚云.2014. 广西大瑶山古罗碱性辉长岩体LA-ICP-MS锆石U-Pb年龄、岩石学、地球化学及其构造意义. 华南地质与矿产 , 30 (4) :342–351.
[] 杨怀宇, 陈世悦, 郝晓良, 郭桦, 李聪, 杨勇.2010. 南盘江坳陷晚古生代隆林孤立台地沉积特征与演化阶段. 中国地质 , 37 (6) :1638–1646.
[] 云南省地矿局. 1990.云南省区域地质志.北京:地质出版社, 1-729
[] 曾允孚, 刘文均, 陈洪德, 郑荣才, 张锦泉, 李孝全, 蒋廷操.1995. 华南右江复合盆地的沉积构造演化. 地质学报 , 69 (2) :113–124.
[] 张玉芝, 王岳军, 郭小飞, 甘成势, 邢晓婉, 宋菁菁.2015. 江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义. 地球科学 , 40 (11) :1781–1795.