岩石学报  2016, Vol. 32 Issue (10): 3070-3082   PDF    
朝鲜半岛咸北地区晚二叠世基性火山岩的地球化学特征:岩石成因与地质意义
张晓晖1, 张艳斌1, 袁玲玲1,2, 李永植3, 崔远正3, 金宪3     
1. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029 ;
2. 中国科学院大学地球科学学院, 北京 100039 ;
3. 朝鲜国家科学院地质研究所, 平壤 3812100
摘要: 晚古生代火山作用既是探究朝鲜半岛北部大地构造归属的基本要素,又是认识东北亚大陆两大构造域转折之际地球动力学过程的关键窗口。针对咸北地区会宁基性火山岩开展的离子探针锆石U-Pb年代学和地球化学研究表明,其喷发时代为晚二叠世(257±3Ma);主要岩石类型包括玄武安山岩和安山岩,其SiO2含量介于51.9%~55.3%,Mg#变化于40~58,属于钙碱性系列;岩石富集大离子亲石元素、亏损高场强元素(如Nb,Ta,Ti),并具有高正的锆石εHft)(+10~+16)值。元素-同位素地球化学示踪指示该基性火山岩的岩浆源区为俯冲沉积物熔体交代而形成的不均一岩石圈地幔,其部分熔融则可能归因于俯冲后的板内伸展背景。会宁基性火山岩不仅为判定咸北地块属于中亚造山带在朝鲜半岛的东延部分提供了岩石学证据,而且与中国相邻地块上的同期岩浆事件一道,构成见证古亚洲洋东段沿西拉木伦-长春-延边一线断裂带最终闭合的空间标记。
关键词: 基性火山岩     岩石地球化学     岩石成因     晚二叠世     朝鲜半岛    
Late Permian mafic volcanic rocks in the Hambuk massif, Korean Peninsula:Geochemistry, origin and tectonic implications.
ZHANG XiaoHui1, ZHANG YanBin1, YUAN LingLing1,2, LI YongSik3, CHOI WonJong3, KIM Hon3     
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ;
2. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100039, China ;
3. Institute of Geology, State Academy of Sciences, Pyongyang 3812100, DPRK
Abstract: Constraining the Late-Paleozoic volcanism in the northern North Korea is critical not only for facilitating the tectonic division in the Korean Peninsula, but also for probing geodynamic process at the transitional stage of tectonic regimes in NE Asia. This geochronological and geochemical study documents the Late Permian mafic volcanic rocks from the Hambuk massif of North Korea. SIMS zircon U-Pb dating yields an eruption age at 257±3Ma. These rocks exhibit moderate enrichment in large ion lithophile elements and light REE, slightly negative Eu anomalies, and clear depletion in high field strength elements (e.g., Nb, Ta, Ti). They show a range of zircon εHf(t) values from+10 to+16. These geochemical features suggest that their generation most likely involves a precursory metasomatism stage of mantle peridotites by melts from subduction-related sediments and an immediate partial melting stage. With a depleted mantle parentage and possible tectonic link to post-orogenic extensional regime, these rocks could present a spatial hallmark not only for monitoring the extension of the eastern Central Asian Orogenic belt (CAOB) into the Korean Peninsula, but also for tracing the final location of the cryptic suturing zone of the Paleo-Asian Ocean.
Key words: Mafic volcanic rocks     Petro-geochemistry     Petrogenesis     Late Permian     Korean Peninsula    
1 引言

古生代-中生代之交是东北亚大陆演化的关键地质时段,其时,潘尼亚泛大陆正处于全盛时期(Cocks and Torsvik,2013)。一方面,古亚洲洋构造域内多个微陆块的汇聚拼贴趋于结束,跨越数亿年的古亚洲洋几近消减殆尽;另一方面,古太平洋构造域演化的帷幕正逐渐开启,纵横两亿平方千米的泛大陆处在裂解的前夜。驱动泛大陆聚散的大尺度剧烈核幔圈层变动不仅在地球表层系统招致了显生宙最大的生物灭绝事件,而且诱发了以大火山岩省为代表的全球规模的强烈火山活动(殷鸿福和宋海军,2013)。因此,厘定东北亚大陆古生代-中生代之交的火山喷发事件,既构成潘尼亚超大陆重建的关键制约因素之一,又是探究两大构造域转折之际复杂地球动力学过程的重要窗口。

二十一世纪以来随着离子探针等高精度测年手段的常规化运用,晚古生代-早中生代火山喷发事件在东北亚大陆主要组成地块之上的时空分布特征逐渐趋于明朗。它们定义了一个西起中蒙交界的索伦地区(Jian et al.,2010)、途经内蒙古林西-西拉木伦(Liu et al.,2012; Eizenhöfer et al.,2014)、辽宁开原(Grant,2005; Yuan et al.,2016)、东迄吉林桦甸(李承东等,2007)和珲春(曹花花等,2012)的晚二叠世-早三叠世火山岩带。一方面,该火山岩带在空间上与沿索伦-西拉木伦-长春-延吉一线延伸的深大断裂带基本一致(图 1a),后者目前被大多数学者公认为古亚洲洋最终闭合之地(Wu et al.,2007b2011; Zhou et al.,2009; Eizenhöfer et al.,2014);另一方面,该火山岩带以发育玄武岩和高镁安山岩为主要组成特征(李承东等,2007; Jian et al.,2010; Liu et al.,2012; 曹花花等,2012; Yuan et al.,2016),指示其形成应与古亚洲洋最终闭合后的后造山伸展环境相关。

图 1 东北亚大陆构造简图(a,据Zhou et al.,2009修改)、朝鲜半岛构造分区简图(b,据Zhao et al.,2006修改)和咸北地区地质简图(c,据IGSASDPRK,1993修改) Fig. 1 Sketch tectonic map of the northeastern Asia(a,after Zhou et al.,2009),tectonic subdivisions of the Korean Peninsula(b,after Zhao et al.,2006)and sketch geological map of the Hambuk massif(c,modified after IGSASDPRK,1993)

与该火山岩带在中国境内诸地块之上逐渐清晰的展布格局相对照,其在东北亚大陆重要组成单元之一的朝鲜半岛的时空分布特征仍缺乏系统刻画。为此,本研究拟以朝鲜北部咸北地区的晚古生代火山沉积建造为研究对象,采用SIMS锆石U-Pb测年方法确定该建造中火山岩单元的喷发时代,利用元素地球化学和锆石Hf同位素示踪其岩石成因,并籍此讨论其形成的构造环境和蕴涵的地质意义。

2 区域地质背景

朝鲜半岛与中国东北地区毗邻(图 1a)。就二者关系而论,“中朝克拉通”的称谓体现了朝鲜半岛与华北克拉通自太古宙以来的密切联系(张文佑,1986; 邵济安,1991; Paek et al.,1996; Rogers and Santosh,2006; Zhai et al.,2007a; Niu et al.,2015)。从地块组成来讲,朝鲜半岛大体呈现由三个前寒武地块与三个显生宙造山带间列分布的条块镶嵌格局(图 1b)。三个地块自北向南分别为狼林地块、京畿地块和岭南地块(Paek et al.,1996);后者则包括东北部的豆满江造山带(或图们江褶皱带)、中部东西向延展的临津江带和南部呈北东走向的沃川造山带(Cluzel,1992; Chang,1996; Paek et al.,1996; Chough et al.,2000; Cho et al.,2007; Zhai et al.,2007a)。此外,朝鲜半岛发育两个主要的古生代盆地,即北部的平南盆地和南部的庆尚盆地,二者均形成于前寒武纪变质基底之上(Lee and Lee,2003; Zhai et al.,2007a)。

朝鲜半岛北部涵盖三个构造单元:居中的狼林地块以及分列两翼的豆满江带与临津江带(图 1a)。狼林地块和临津江带的前寒武基底主要包括新太古代-古元古代表壳岩和TTG-花岗质深成变质杂岩。朝鲜学者依据岩石组合和变质程度的差别,将表壳岩分为新太古代狼林群(Rangnim Group)、古元古代早期的甑山群(Jungsan Group)以及古元古代晚期的摩天岭群(Machollyong Group)(Paek et al.,1996; 曹林和朱东,1999)。狼林群主要岩性包括富铝片麻岩、变粒岩夹少量斜长角闪岩、石英岩和大理岩,局部发育麻粒岩与超镁铁变质岩。甑山群是一套以富铝片麻岩和石墨片麻岩为主的孔兹岩系,具体包括下部的富铝质片岩和角闪岩、中部大理岩和片岩、以及上部长英质片麻岩和石英岩。摩天岭群主要呈NW-SE带状展布于狼林地块东部,自下而上包括三个岩石地层单元,即由大理岩、片岩和角闪岩互层组成的城津统、以厚层碳酸岩为主的北大川统和以陆源碎屑岩组合为主的南大川统(Paek et al.,1996)。与上述表壳岩密切伴生的深成侵入杂岩包括TTG片麻岩、石榴石/矽线石S型花岗岩、二长花岗岩、钾长花岗岩和斑状花岗岩等(Zhao et al.,2006; Wu et al.,2007a; Zhai et al.,2007b)。锆石U-Pb测年显示TTG片麻岩侵位于2.64~2.54Ga,S型花岗岩侵位于1.91~1.90Ga,而斑状花岗岩形成于1.87~1.81Ga(Zhao et al.,2006; Wu et al.,2007a; Zhai et al.,2007b)。

注意到前寒武变质岩系分布的不均一性和变质程度差异,朝鲜学者将发育有前寒武变质岩系的冠帽峰一带命名为冠帽(Kwanmo)地块(Paek et al.,1996; Chough et al.,2000),并将这些前寒武纪变质建造统称为冠帽杂岩。其主要由茂山群(Mushan)表壳岩和相关变质侵入杂岩组成。茂山群是一套经历低角闪岩相-角闪岩相变质作用的火山沉积建造,岩石组合主要包括条带状铁建造、石墨片岩、长英质片麻岩和斜长角闪岩。我们近期开展的锆石U-Pb测年显示变质侵入杂岩形成于2.54~2.52Ga(张晓晖等,2016)。除此之外,该地区90%以上的区域由主要形成于侏罗纪的冠帽峰复合岩基和新生代火山岩所占据。

豆满江造山带以输城川(Susongchon)断裂为界与冠帽地块毗邻(图 1c),也称之为咸北(Hambuk)地块(梁道俊等,2009; 金炳成等,2012)。与朝鲜半岛的总体演化趋势相一致,咸北地块自晚古生代以来进入活化期,以发育一系列的火山沉积建造和侵入岩浆活动为特征(Paek et al.,1996; Wu et al.,2007a),故得名豆满江造山带,被认为属于中亚造山带的东南延伸(Paek et al.,1996)。这些造山带型的岩浆沉积记录包括:大致形成于早二叠世-中三叠世的豆满群火山沉积建造(梁道俊等,2009; 金炳成等,2012)、形成于晚二叠世-侏罗纪的清津超基性-基性杂岩(作者未发表资料)、以花岗岩为主的豆满江中酸性侵入杂岩(Zhai et al.,2016)。

3 豆满群火山沉积建造与样品岩相学特征

咸北地块的豆满群自下而上分为岩基组、鸡笼山组和松上组(Paek et al.,1996; 金炳成等,2012)。岩基组主要分布于清津-罗津一带,覆盖在古老变质岩之上,是一套陆源碎屑岩和火山碎屑岩建造,主要岩性包括页岩、板岩、黑云母硅质片岩、变砂岩、角闪岩、硅质灰岩和结晶灰岩透镜体,厚度360~950m。灰岩透镜体中含珊瑚、腕足类和海百合化石碎片。鸡笼山组主要分布于清津、会宁和庆源地区,其中在庆源地区发育最佳;其以底部火山角砾岩与下伏岩基组分界,厚度570~1200m,大体上可分为上、下两段。下段主要是一套火山沉积和碎屑岩建造,产有丰富的腕足类、蜓类、苔藓虫和有孔虫类化石;上段主要岩性包括浅变质的中基性火山岩、火山碎屑岩和凝灰岩。松上组分布广泛,是一套陆源碎屑岩建造,主要包括粉砂岩、泥岩、页岩、凝灰质砂岩和灰岩等,厚达2680m(Paek et al.,1996; 金炳成等,2012)。

本文研究的样品采自会宁地区豆满群鸡笼山组火山岩段(图 2a),主要为玄武岩和玄武安山岩。呈暗绿色-灰黑色,斑状结构,块状构造,基质为交织结构(图 2b)。斑晶主要由自形-半自形的斜长石组成(含量15%~20%),可见碳酸盐化和绿泥石化;基质主要由细晶板条状斜长石、普通辉石微晶、隐晶质和不透明金属矿物组成。

图 2 朝鲜半岛咸北地块会宁晚二叠世火山岩的野外照片(a)及显微结构照片(b) Fig. 2 Field photograph(a)and sample photomicrograph(b)of the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula
4 分析方法 4.1 锆石U-Pb年龄测试

锆石采用常规磁选和重液方法分选,并且在双目镜下挑纯后,与标样锆石一起制靶。样品靶制成后,首先在光学显微镜下对被测样品进行照相(包括透射光和反射光),然后在扫描电镜实验室进行锆石阴极发光(CL)图像分析。锆石单矿物挑选在河北省廊坊市区域地质调查研究所实验室完成,制靶工作、反射光、透射光和CL阴极发光照片采集分别在中国科学院地质与地球物理研究所离子探针实验室和扫描电镜实验室完成。

锆石SIMS U-Pb分析在中国科学院地质与地球物理研究所离子探针实验室Cameca IMS-1280二次离子质谱仪上完成。应用SIMS进行U-Th-Pb分析的详细流程参见Li et al.(2009) 。应用标准锆石Plésovice(Sláma et al.,2008)进行元素间的分馏校正,应用标准锆石Qinghu(Li et al.,2013)检测数据精确度,实测204Pb值用于普通Pb校正;采用ISOPLOT软件进行数据处理和年龄计算(Ludwig,2001)。

4.2 全岩主量和微量元素分析方法

全岩主量元素在中国科学院地质与地球物理研究所岩矿制样与分析实验室完成,采用Shimadzu 1500型X荧光光谱仪,分析精度优于3%。微量元素在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,采用电感耦合等离子质谱(ICPMS)分析方法,具体分析流程参见Liu et al.(2012) ;测试期间针对国际标样BCR-2(玄武岩)和AGV-1(安山岩)的检测结果表明,微量元素的分析精度和准确度优于5%。

4.3 锆石原位Lu-Hf同位素分析

锆石Lu-Hf同位素测试在中国科学院地质与地球物理研究所配有193nm激光取样系统的Neptune多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,仪器运行条件与详细测试流程参见Wu et al.(2006) 。测试时采用锆石国际标样91500作为外标,激光束斑直径为63μm,激光脉冲速率为6~8Hz,激光束脉冲能量为100mJ;采用标样MUD(176Hf/177Hf=0.282833±25,2σ)和GJ-1(176Hf/177Hf=0.282020±25,2σ)监测仪器稳定性。

5 分析结果 5.1 锆石U-Pb定年

玄武安山岩样品13NK-1中的锆石呈半自形-自形短柱状,长50~150μm;阴极发光图像显示大部分锆石颜色较深,具有模糊的韵律环带(图 3a),符合典型基性岩浆岩中的锆石特征(Baines et al.,2009; Zhou et al.,2014);部分锆石呈现因固态重结晶形成的模糊核幔结构(图 3a)。针对9颗锆石的U-Pb测试结果表明(表 1),其Th、U含量分别为54×10-6~385×10-6和66×10-6~488×10-6,Th/U值变化于0.46~0.84;在一致曲线图上,6颗锆石点分布集中,得到的谐和年龄为257±3Ma(MSWD=0.13) (图 3b),可以代表玄武安山岩的喷发年龄,即晚二叠世。其余3颗锆石的206Pb/238Pb谐和年龄值分别为301±4Ma、353±5Ma和437±6Ma,可能代表了玄武安山岩中捕获锆石的年龄。

图 3 朝鲜半岛咸北地块会宁晚二叠世火山岩的锆石阴极发光图像(a)和U-Pb年龄图(b) Fig. 3 CL images(a)and U-Pb ages(b)of the zircons in the Late Permian volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula

表 1 朝鲜半岛咸北地块会宁晚二叠世火山岩的锆石U-Pb年龄 Table 1 SIMS zircon U-Pb data for the Late Permian volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula
5.2 元素地球化学特征

5个代表性样品的全岩主量与微量元素分析结果见表 2。鸡笼山组火山岩的SiO2含量介于51.9%~55.3%,Al2O3=15.1%~18.2%,MgO=2.87%~5.16%,Fe2O3T=7.13%~9.35%,TiO2=0.90%~1.52%,K2O=0.66%~2.42%和Na2O=2.68%~4.47%;Mg#变化于40~58。样品在Nb/Y-Zr/TiO2图中主要落入玄武安山岩区域(图 4a),属于中高钾钙碱性系列(图 4b)。

图 4 朝鲜半岛咸北地块会宁晚二叠世火山岩的Zr/TiO2-Nb/Y(a,据Winchester and Floyd,1976)和AFM(b,据Irvine and Baragar,1971)图解 Fig. 4 Plots of Zr/TiO2 vs. Nb/Y(a,after Winchester and Floyd,1976)and AFM(b,after Irvine and Baragar,1971)for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula

表 2 朝鲜半岛咸北地块会宁晚二叠世火山岩的主量元素(wt%)和微量元素(×10-6)组成 Table 2 Major(wt%)and trace(×10-6)element composition for the Late Permian volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula

在球粒陨石标准化稀土元素配分图中(图 5a),基性火山岩呈现LREE弱富集的配分模式((La/Yb)N=4.48~5.41) ,并具有弱负铕异常(Eu/Eu*=0.79~0.89) 。在原始地幔标准化蛛微量元素网图中(图 5b),所有样品均富集大离子亲石元素(LILE)Rb、Th、U,亏损高场强元素(HFSE),如Nb、Ta、Ti,并强烈富集Pb。

图 5 朝鲜半岛咸北地块会宁晚二叠世火山岩的REE配分模式(a)和微量元素蛛网图(b)(标准化值据Sun and McDonough,1989) Fig. 5 Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element spidergrams(b)for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula(normalization values after Sun and McDonough,1989)
5.3 锆石Hf同位素特征

锆石Hf同位素分析结果见表 3。6个代表火山岩喷发年龄的锆石分析点的176Lu/177Hf和176Hf/177Hf比值变化范围分别为0.000665~0.002338和0.282913~0.283074;计算得到的初始176Hf/177Hf比值介于0.282899~0.283061,εHf(t)值变化于+10.0~+16.0(图 6),锆石Hf亏损地幔模式年龄(tDMHf)为262~513Ma,地壳模式年龄(tDMC)介于262~639Ma之间。

图 6 朝鲜半岛咸北地块会宁晚二叠世火山岩的锆石Hf同位素图 图a中的中亚造山带和华北克拉通Hf同位素范围来自Yang et al.(2006) ;图b中延边地区二叠纪侵入岩Hf同位素范围来自曹花花等(2012) ;法库地区二叠纪侵入岩Hf同位素范围来自Zhang et al.(2010) Fig. 6 Plots of zircon εHf(t)vs. age for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula In Fig. 6a: the fields for the Central Asian orogenic belt and North China craton are from Yang et al.(2006) . In Fig. 6b: the Hf data for the Permian intrusions from the Yanbian region are from Cao et al.(2010b),and for the Permian intrusions from Faku of northern Liaoning are from Zhang et al.(2010)

表 3 朝鲜半岛咸北地块会宁晚二叠世火山岩的锆石Lu-Hf同位素组成 Table 3 In-situ zircon Lu-Hf isotopic data for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula
6 讨论 6.1 岩石成因

会宁基性火山岩虽然在喷发后经历过浅变质作用或热液蚀变影响,但大部分样品的主量分析结果显示较低的烧失量;结合大部分微量元素在原始地幔标准化图上的一致性变化特征来看,后期蚀变作用对它们的影响甚微。因此,除个别活动性较大的元素(如K)之外,大部分元素的丰度主要受控于原始岩浆过程,因而可以用来示踪岩浆源区。

会宁基性火山岩较高的Fe2O3T(7.13%~9.35%)、MgO(2.87%~5.16%)、Mg#(40~58) 、Cr(67×10-6~215×10-6)和V(150×10-6~283×10-6)等含量,有别于任何壳源物质(Rudnick and Gao,2003)或壳源熔体(Patiňo Douce and Beard,1995; Patiňo Douce and McCarthy,1998),显然代表幔源岩浆产物。然而,这些值又明显小于原始玄武质岩浆的相应特征值(Mg#=66~75) ,指示会宁基性火山岩可能在深部岩浆房或侵位过程中经历了富镁铁矿物的分离结晶作用。

会宁基性火山岩富集大离子亲石元素和轻稀土元素,而亏损高场强元素;因此具有高La/Nb(3.0~4.6) 、Ba/Nb(40~138) 和Zr/Nb(27~48) 以及低Ce/Pb(2.18~4.48) 。这些微量元素比率契合全球典型岛弧基性火山岩的特征范围(Stern,2002)。一般而言,此类元素地球化学特征可以归因于俯冲作用相关的交代岩石圈地幔楔的部分熔融或MORB型岩浆在侵位过程中同化地壳所致。但地壳同化过程通常形成无规律的地球化学特征,而非不相容亲石元素富集和相容高场强元素亏损的耦合印记(Zhou et al.,2004; Zhang et al.,2008a)。因此,会宁基性火山岩类似于岛弧基性火山岩的元素地球化学特征可能主要继承自俯冲作用形成的交代型岩石圈地幔源区。

大量研究案例表明,不同元素在不同交代介质下的活动性存在显著差异,例如,大离子亲石元素在流体中的活动性高于Th和LREE,沉积物熔体则倾向于富集Th、Zr等元素。因此,利用这种差异可以构造示踪俯冲带交代介质(如板片熔体、流体以及沉积物熔体)的特定元素对标记,譬如Ta/La和Hf/Sm(La Flèche et al.,1998),Ba/Th和La/Sm(Tatsumi,2006),Th/Nb和U/Th(Kohut et al.,2006)等。就会宁基性火山岩而言,其中等(Ta/La)N(0.21~0.39) 和(Hf/Sm)N(1.18~1.38) 比值可能反映沉积物流体和熔体的双重属性(图 7a),高La/Sm和低Ba/Th比值(图 7b)以及高Th/Nb和低U/Th比值(图 7c)都指示其岩浆源区以沉积物熔体交代为主。同时,会宁基性火山岩具有极低的Lu/Hf(0.07~0.08) (图 7d),暗示沉积物可能为富含碎屑的陆源沉积物(Marini et al.,2005)。

图 7 朝鲜半岛咸北地块会宁晚二叠世火山岩的(Ta/La)N-(Hf/Sm)N(a,据La Flèche et al.,1998)、Ba/Th-(La/Sm)N(b,据Tatsumi,2006)、Th/Nb-U/Th(c,据Kohut et al.,2006)和Lu/Hf-Sm/Nd(d,据Plank and Langmuir,1998)图解 Fig. 7 Diagrams of(Ta/La)N vs.(Hf/Sm)N(a,after La Flèche et al.,1998),Ba/Th vs.(La/Sm)N(b,after Tatsumi,2006),U/Th vs. Th/Nb(c,after Kohut et al.,2006)and(d)Lu/Hf vs. Sm/Nd(d,after Plank and Langmuir,1998)for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula In Fig. 7a: the field for basalts and high-Mg andesites from NE and SW Japan refers to data from Tatsumi(2006) and Sato et al.(2014) . In Fig. 7d: GLOSS and CHUR represent global subducting sediment and chondritic uniform reservoirs,respectively. Sediment type fields are from Patchett et al.(1984)

会宁基性火山岩具有高正的锆石εHf(t)和年轻的Hf模式年龄。这些特征不仅类似于邻区中国延边和法库地区同时期源自中亚造山带型岩石圈地幔的岩浆岩建造(Zhang et al.,2010; Cao et al.,2011; 曹花花等,2012),而且与中亚造山带东段地幔岩包体Os同位素显示的岩石圈地幔形成年龄相一致(0.4~0.7Ga)(Wu et al.,2003; Zhang et al.,2012a)。暗示会宁基性火山岩来源于俯冲沉积物熔体交代形成的、中亚造山带型亏损岩石圈地幔。

这种岩石圈地幔源区的矿物组成可以通过一些标志性元素来表征。一方面,由于全岩稀土含量主要受控于地幔组成以及部分熔融程度,而且其相容性呈现从轻稀土到重稀土逐渐增大的趋势,因此稀土元素的丰度和比值是示踪幔源岩石源区特征与熔融程度的良好指标(Aldanmaz et al.,2000; Green,2006)。会宁基性火山岩的La/Sm介于2.84~3.89,Sm/Yb介于1.94~2.30,在La/Sm-Sm/Yb和Sm/Yb-Sm图中与大陆岩石圈地幔石榴石+尖晶石二辉橄榄岩熔融曲线相一致(图 8ab),指示熔融程度介于5%~20%。另一方面,大量实验岩石学(Le Roux et al.,20102011)和案例研究(Xu et al.,2012; Dai et al.,2015)表明,基性-超基性岩浆的Fe-Mn-Zn丰度系统是表征其地幔源区矿物组成的替代指标。会宁基性火山岩呈现的高Zn/Fe(13~19) 和Fe/Mn(68~84) 比值,指示其地幔源区中存在石榴石和单斜辉石(Le Roux et al.,20102011)。

图 8 朝鲜半岛咸北地块会宁晚二叠世火山岩的Sm/Yb-Sm(a)和Sm/Yb-La/Sm(b)图解 图中矿物/基质分配系数以及DMM引自McKenzie and O'Nions(1991) ;每条曲线上的数字对应于给定地幔源区的部分熔融程度 Fig. 8 Sm/Yb vs. Sm(a)and Sm/Yb vs. La/Sm(b)plots for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula In Fig. 8ab: the melt curves were calculated with different starting materials(garnet lherzolite,garnet-spinel lherzolite and spinel lherzolite)using the non-modal batch melting equations of Shaw(1970) . The dashed and solid lines are the melting trends for depleted mantle(DM,Sm=0.3×10-6 and Sm/Yb=0.86,McKenzie and O'Nions,1991)and enriched subcontinental lithospheric mantle(SCLM,Sm=0.6×10-6 and Sm/Yb=0.96,Aldanmaz et al.,2000),respectively. Partition coefficients used in the modeling are from the compilation of McKenzie and O'Nions(1991) . Degrees of partial melting based on a given source are marked beside the curves
6.2 地质意义

咸北地区上古生界豆满群火山沉积建造分布广泛,面积达1600km2(Paek et al.,1996;金炳成等,2012);但各地豆满群在岩石组合方面存在显著差异。朝鲜学者一直根据区域地层对比和沉积岩层中的腕足动物群将含火山岩的地层划分为中二叠世鸡笼山组(Paek et al.,1996; 金炳成等,2012)。然而,由于标准生物化石通常历时较长,火山沉积建造的精细划分仍然需要精确的年代学制约,因此,本文首次取得的火山岩喷发年龄不仅为确定鸡笼山组的时代归属提供了重要依据,而且为区域地层和岩浆事件对比提供了重要参考。

朝鲜学者近期认为咸北地区鸡笼山组相当于中国吉林延边地区含火山岩地层的庙岭组(金炳成等,2012),但曹花花等(2012) 报道后者中玄武安山岩的喷发年龄为275±7Ma;而与鸡笼山组火山岩年龄比较一致的可能是喷发年龄为250±5Ma的图们关咀子山组玄武岩(曹花花等,2012)。事实上,晚二叠世火山喷发事件在中国邻区并不鲜见。譬如,吉中地区色洛河组约252Ma的高镁安山岩(李承东等,2007)、辽北开原地区约250Ma的玄武岩/高镁安山岩(Yuan et al.,2016)和流纹岩(Grant,2005)。同期侵入岩建造包括珲春256~250Ma的闪长岩-花岗岩系列(Cao et al.,2011),吉林南部辽源地区259~255Ma的辉长岩-花岗岩系列(Wu et al.,2011; Cao et al.,2013),辽北法库260~250Ma的双峰式碱性侵入杂岩(Zhang et al.,2010)、以及辽西地区257~252Ma的富闪深成岩-花岗岩系列(Zhang et al.,2012b)。

从空间分布上看,这些晚二叠世岩浆岩建造构成一条与沿索伦-西拉木伦-长春-延吉一线延伸的深大断裂带基本一致的岩浆岩带。就其形成背景而论,无论是与俯冲板片断离密切相关的高镁安山岩系列(李承东等,2007; Liu et al.,2012; Yuan et al.,2016),还是与岩石圈拆沉作用相关的高钾钙碱性-碱性侵入岩系列(Zhang et al.,2010; Cao et al.,2013),抑或是受控于区域走滑伸展断裂的富闪深成岩-花岗岩系列(Zhang et al.,2012b),它们均倾向形成于古亚洲洋闭合之后的造山后伸展背景。基于这种时空和成因耦合联系,这条岩浆岩带不仅可以作为识别古亚洲洋最终缝合的空间标志,而且可以作为判别古亚洲洋域演化结束的时间标记。一方面,这得到大地构造相分析(Xiao et al.,2003)、碎屑岩锆石年代学(Chen et al.,2014; Eizenhöfer et al.,2014; Han et al.,2015; Wang et al.,2016)和区域变质作用研究结果(Wu et al.,2007b)的佐证。另一方面,这也得到东北亚地区古太平洋俯冲开始于晚三叠世的一系列近期研究认识的间接支持(Zhou and Wilde,2013; Zhou et al.,20092014)。

会宁基性火山岩不仅具有与该岩浆岩带一致的形成时间和岩浆源区,而且呈现与之相契合的的地球化学印记:在诸多玄武岩构造环境判别图中基本落入板内玄武岩区域(图 9)。指示其形成于古亚洲洋闭合之后的造山后伸展环境,即豆满群归属于中亚造山带型火山沉积建造。

图 9 朝鲜半岛咸北地块会宁晚二叠世火山岩的构造环境判别图 (a)Ti-V(Shervais,1982);(b)Zr-Zr/Y(Pearce and Norry,1979);(c)Ti-Zr-Y(Meschede,1986);(d)Nb-Zr-Y(Floyd et al.,1991) Fig. 9 Tectonic discrimination diagrams for the Late Permian mafic volcanic rocks at Hoeryong of the Hambuk massif in Korean Peninsula (a)Ti vs. V(Shervais,1982);(b)Zr vs. Zr/Y(Pearce and Norry,1979);(c)Ti-Zr-Y(Meschede,1986);(d)Nb-Zr-Y(Floyd et al.,1991)

豆满群产出于华北克拉通北缘与中亚造山带东段的结合部位,其时代和构造归属对于评价朝鲜北部地块内涵、进而确定华北克拉通与中亚造山带在朝鲜北部的边界至关重要。豆满群属于造山带型火山沉积建造的研究认识表明,咸北地块属于中亚造山带在朝鲜半岛的东延部分,其在基底建造和岩浆作用特征方面,与中国吉林南部和龙地块(Zhang et al.,20042008b),松辽地块(Wu et al.,20012011; Pei et al.,2007; Cao et al.,2013),吉林东部兴凯地块(曹花花等,2012),辽北法库断凸(Zhang et al.,200520092010)等诸多地体存在密切的亲缘性。位于冠帽地块和豆满江造山带之间的输城川断裂,可能与中国吉林境内的富尔河-古洞河断裂一道,构成华北克拉通与中亚造山带东段的分界线。这一结论支持近期中朝学者提出的中亚造山带在经过吉林省以后转向南部而非一直向东延伸的建议(Zhang et al.,2005; 金炳成等,2012)。

7 结论

(1) 朝鲜北部咸北地区基性火山岩形成于晚二叠世,其锆石U-Pb年龄为257±3Ma。

(2) 会宁基性火山岩具斑状结构,基质为交织结构,斑晶主要由自形-半自形的斜长石组成;主要岩石类型包括玄武安山岩和安山岩。岩石富集大离子亲石元素、亏损高场强元素,并具有高正的锆石εHf(t)值。元素-同位素地球化学示踪指示安宁基性火山岩源于俯冲沉积物熔体交代而成的岩石圈地幔的部分熔融。

(3) 会宁基性火山岩不仅为判定咸北地块属于中亚造山带在朝鲜半岛的东延部分提供了岩石学证据,而且与中国相邻地块上的同期岩浆事件一道,构成见证古亚洲洋东段沿西拉木伦-长春-延边缝合带最终闭合的空间标记。

致谢 刘富博士参与了朝鲜野外地质考察工作;锆石Hf同位素分析得到王浩铮博士的帮助;周建波教授和张连昌研究员的建设性修改意见使文章臻于完善;在此谨致衷心谢忱。
参考文献
[1] Aldanmaz E, Pearce JA, Thirlwall MF and Mitchell JG. 2000. Petrogenetic evolution of Late Cenozoic,post-collision volcanism in western Anatolia,Turkey. Journal of Volcanology and Geothermal Research , 102 (1-2) :67–95. DOI:10.1016/S0377-0273(00)00182-7
[2] Baines AG, Cheadle MJ, John BE, Grimes CB, Schwartz JJ and Wooden JL. 2009. SHRIMP Pb/U zircon ages constrain gabbroic crustal accretion at Atlantis Bank on the ultraslow-spreading Southwest Indian Ridge. Earth and Planetary Science Letters , 287 (3-4) :540–550. DOI:10.1016/j.epsl.2009.09.002
[3] Cao HH, Xu WL, Pei FP and Zhang XZ. 2011. Permian tectonic evolution in southwestern Khanka Massif:Evidence from zircon U-Pb chronology,Hf isotope and geochemistry of gabbro and diorite. Acta Geologica Sinica , 85 (6) :1390–1402. DOI:10.1111/j.1755-6724.2011.00594.x
[4] Cao HH, Xu WL, Pei FP, Guo PY and Wang F. 2012. Permian tectonic evolution of the eastern section of the northern margin of the North China Plate:Constraints from zircon U-Pb geochronology and geochemistry of the volcanic rocks. Acta Petrologica Sinica , 28 (9) :2733–2750.
[5] Cao HH, Xu WL, Pei FP, Wang ZW, Wang F and Wang ZJ. 2013. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos , 170-171 :191–207. DOI:10.1016/j.lithos.2013.03.006
[6] Cao L and Ju D. 1999. The comparison and evolutionary phases of the Early Precambrian metamorphic rock system in eastern China-Korea palaeocontinent. World Geology , 18 (2) :36–46.
[7] Chang EZ. 1996. Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Science , 13 (3-5) :267–277. DOI:10.1016/0743-9547(96)00033-5
[8] Chen C, Ren YS, Zhao HL, Zou XT, Yang Q and Hu ZC. 2014. Permian age of the Wudaogou Group in eastern Yanbian:Detrital zircon U-Pb constraints on the closure of the Palaeo-Asian Ocean in Northeast China. International Geology Review , 56 (14) :1754–1768. DOI:10.1080/00206814.2014.956348
[9] Cho M, Kim Y and Ahn J. 2007. Metamorphic evolution of the Imjingang belt,Korea:Implications for Permo-Triassic collisional orogeny. International Geology Review , 49 (1) :30–51. DOI:10.2747/0020-6814.49.1.30
[10] Chough SK, Kwon ST, Ree JH and Choi DK. 2000. Tectonic and sedimentary evolution of the Korean Peninsula:A review and new view. Earth-Science Reviews , 52 (1-3) :175–235. DOI:10.1016/S0012-8252(00)00029-5
[11] Cluzel D. 1992. Ordovician bimodal magmatism in the Ogcheon belt (South Korea):Intracontinental rift-related volcanic activity. Journal of Southeast Asian Earth Science , 7 (2-3) :195–209. DOI:10.1016/0743-9547(92)90054-F
[12] Cocks LRM and Torsvik TH. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth Science Reviews , 117 :40–79. DOI:10.1016/j.earscirev.2012.12.001
[13] Dai LQ, Zhao ZF and Zheng YF. 2015. Tectonic development from oceanic subduction to continental collision:Geochemical evidence from post-collisional mafic rocks in the Hong'an-Dabie orogens. Gondwana Research , 27 (3) :1236–1254. DOI:10.1016/j.gr.2013.12.005
[14] Eizenhöfer PR, Zhao GC, Zhang J and Sun M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone:Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics , 33 (4) :441–463. DOI:10.1002/2013TC003357
[15] Floyd PA, Kelling G, G kçen SL and G kçen N. 1991. Geochemistry and tectonic environment of basaltic rocks from the Misis Ophiolitic Mélange,South Turkey. Chemical Geology , 89 (3-4) :263–280. DOI:10.1016/0009-2541(91)90020-R
[16] Grant ML. 2005. Geochronology,geochemistry and petrography of Late Archaean to Early Cretaceous magmatic rocks in Northeast China:Implications for development of the Central Asian Orogenic belt. Ph.D.Dissertation.Curtin,Australia:Curtin University of Technology :1–460.
[17] Green NL. 2006. Influence of slab thermal structure on basalt source regions and melting conditions:REE and HFSE constraints from the Garibaldi volcanic belt,northern Cascadia subduction system. Lithos , 87 (1-2) :23–49. DOI:10.1016/j.lithos.2005.05.003
[18] Han J, Zhou JB, Wang B and Cao JL. 2015. The final collision of the CAOB:Constraint from the zircon U-Pb dating of the Linxi Formation,Inner Mongolia. Geoscience Frontiers , 6 (2) :211–225. DOI:10.1016/j.gsf.2014.06.003
[19] IGSASDPRK (Institute of Geology, State Academy of Sciences, DPR of Korea).1993. 1:1000000 Geological Map of Korea. Pyongyang: Foreign Languages Books Publishing House .
[20] Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences , 8 (5) :523–528. DOI:10.1139/e71-055
[21] Jian P, Liu DY, Kr ner A, Windley BF, Shi YR, Zhang W, Zhang FQ, Miao LC, Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone,Central Asian Orogenic Belt,China and Mongolia. Lithos , 118 (1-2) :169–190. DOI:10.1016/j.lithos.2010.04.014
[22] Jin BC, Liu YJ, Han GQ and Jin CY. 2012. Late Paleozoic sedimentary characteristics in Yanji-Jilin-Hambuk area,Korea and its significance to tectonic evolution. Journal of Jilin University (Earth Science Edition) , 42 (S1) :296–305.
[23] Kohut EJ, Stern RJ, Kent AJR, Nielsen RL, Bloomer SH and Leybourne M. 2006. Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contributions to Mineralogy and Petrology , 152 (2) :201–221. DOI:10.1007/s00410-006-0102-7
[24] La Flèche MR, CamiréG and Jenner GA. 1998. Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen islands,Québec,Canada. Chemical Geology , 148 (3-4) :115–136. DOI:10.1016/S0009-2541(98)00002-3
[25] Le Roux V, Lee CTA and Turner SJ. 2010. Zn/Fe systematics in mafic and ultramafic systems:Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta , 74 (9) :2779–2796. DOI:10.1016/j.gca.2010.02.004
[26] Le Roux V, Dasgupta R and Lee CTA. 2011. Mineralogical heterogeneities in the Earth's mantle:Constraints from Mn,Co,Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters , 307 (3-4) :395–408. DOI:10.1016/j.epsl.2011.05.014
[27] Lee YI and Lee JI. 2003. Paleozoic sedimentation and tectonics in Korea:A review. The Island Arc , 12 (2) :162–179. DOI:10.1046/j.1440-1738.2003.00388.x
[28] Li CD, Zhang FQ, Miao LC, Xie HQ and Xu YW. 2007. Zircon SHRIMP geochronology and geochemistry of Late Permian high-Mg andesites in Seluohe area,Jilin Province,China. Acta Petrologica Sinica , 23 (4) :767–776.
[29] Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry,Geophysics,Geosystems , 10 (4) . DOI:10.1029/2009GC002400
[30] Li XH, Tang GQ, Gong B, Yang YH, Hou KJ, Hu ZC, Li QL, Liu Y and Li WX. 2013. Qinghu zircon:A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin , 58 (36) :4647–4654. DOI:10.1007/s11434-013-5932-x
[31] Liang DJ, Liu YJ, Li JJ, Bai JZ and Liu CX. 2009. Stuctural framework of Korean Peninsula in Middle Paleozoic-Early Mesozoic. Global Geology , 28 (2) :157–165.
[32] Liu YS, Wang XH, Wang DB, He DT, Zong KQ, Gao CG, Hu ZC and Gong HJ. 2012. Triassic high-Mg adakitic andesites from Linxi,Inner Mongolia:Insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction. Chemical Geology , 328 :89–108. DOI:10.1016/j.chemgeo.2012.03.019
[33] Ludwig KR.2001. Squid 1.02:A User Manual. Berkeley: Berkeley Geochronological Center Special Publication : 19 .
[34] Marini JC, Chauvel C and Maury RC. 2005. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contributions to Mineralogy and Petrology , 149 (2) :216–232. DOI:10.1007/s00410-004-0645-4
[35] McKenzie D and O'Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology , 32 (5) :1021–1091. DOI:10.1093/petrology/32.5.1021
[36] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology , 56 (3-4) :207–218. DOI:10.1016/0009-2541(86)90004-5
[37] Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY and Zhang Y. 2015. Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin , 60 (18) :1598–1616. DOI:10.1007/s11434-015-0891-z
[38] Paek RJ, Kang HG and Jon GP.1996. Geology of Korea. Pyongyang: Foreign Languages Books Publishing House .
[39] Patchett PJ, White WM, Feldmann H, Kielinczuk S and Hofmann AW. 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth and Planetary Science Letters , 69 (2) :365–378. DOI:10.1016/0012-821X(84)90195-X
[40] Patiňo Douce AE and Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology , 36 (3) :707–738. DOI:10.1093/petrology/36.3.707
[41] Patiňo Douce AE and McCarthy TC.1998. Melting of crustal rocks during continental collision and subduction.In:Hacker BR and Liou JG (eds.).When Continents Collide:Geodynamics and Geochemistry of Ultrahigh-pressure Rocks. Netherlands: Springer : 27 -55.
[42] Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti,Zr,Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology , 69 (1) :33–47. DOI:10.1007/BF00375192
[43] Pei FP, Xu WL, Yang DB, Zhao QG, Liu XM and Hu ZC. 2007. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao basin. Chinese Science Bulletin , 52 (7) :942–948. DOI:10.1007/s11434-007-0107-2
[44] Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology , 145 (3-4) :325–394. DOI:10.1016/S0009-2541(97)00150-2
[45] Rogers JJW and Santosh M. 2006. The Sino-Korea Craton and supercontinent history:Problems and perspectives. Gondwana Research , 9 (1-2) :21–23. DOI:10.1016/j.gr.2005.04.001
[46] Rudnick RL and Gao S.2003. Composition of the continental crust.In:Rudnick RL (ed.).The Crust,Treatise in Geochemistry.Vol.3. Amsterdam: Elsevier : 1 -64.
[47] Sato M, Shuto K, Nohara-Imanaka R, Takazawa E, Osanai Y and Nakano N. 2014. Repeated magmatism at 34Ma and 23~20Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island,NE Japan arc. Lithos , 205 :60–83. DOI:10.1016/j.lithos.2014.06.008
[48] Shao JA.1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing: Publishing House of Peking University : 1 -134.
[49] Shaw DM. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta , 34 (2) :237–243. DOI:10.1016/0016-7037(70)90009-8
[50] Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters , 59 (1) :101–118. DOI:10.1016/0012-821X(82)90120-0
[51] Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology , 249 (1-2) :1–35. DOI:10.1016/j.chemgeo.2007.11.005
[52] Stern RJ. 2002. Subduction zones. Reviews of Geophysics , 40 (4) :3–1.
[53] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publication , 42 (1) :528–548.
[54] Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt,southwestern Japan:Analogy to Archean magmatism and continental crust formation. Annual Review of Earth and Planetary Sciences , 34 (1) :467–499. DOI:10.1146/annurev.earth.34.031405.125014
[55] Wang B, Zhou JB, Wilde SA, Zhang XZ and Ren SM. 2016. The timing of final closure along the Changchun-Yanji suture zone:Constraints from detrital zircon U-Pb dating of the Triassic Dajianggang Formation,NE China. Lithos , 261 :216–231. DOI:10.1016/j.lithos.2015.11.017
[56] Winchester JA and Floyd PA. 1976. Geochemical magma type discrimination:Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters , 28 (3) :459–469. DOI:10.1016/0012-821X(76)90207-7
[57] Wu FY, Sun DY, Li HM and Wang XL. 2001. The nature of basement beneath the Songliao Basin in NE China:Geochemical and isotopic constraints. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy , 26 (9-10) :793–803. DOI:10.1016/S1464-1895(01)00128-4
[58] Wu FY, Walker RJ, Ren XW, Sun DY and Zhou XH. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology , 196 (1-4) :107–129. DOI:10.1016/S0009-2541(02)00409-6
[59] Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology , 234 (1-2) :105–126. DOI:10.1016/j.chemgeo.2006.05.003
[60] Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG and Park SC. 2007a. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology , 238 (3-4) :232–248. DOI:10.1016/j.chemgeo.2006.11.012
[61] Wu FY, Zhao GC, Sun DY, Wilde SA and Yang JH. 2007b. The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences , 30 (3-4) :542–556. DOI:10.1016/j.jseaes.2007.01.003
[62] Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences , 41 (1) :1–30. DOI:10.1016/j.jseaes.2010.11.014
[63] Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt. Tectonics , 22 (6) :1069. DOI:10.1029/2002TC001484
[64] Xu Z, Zhao ZF and Zheng YF. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China:Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos , 146 .
[65] Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt,North China. Earth and Planetary Science Letters , 246 (3-4) :336–352. DOI:10.1016/j.epsl.2006.04.029
[66] Yin HF and Song HJ. 2013. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Science China (Earth Sciences) , 56 (11) :1791–1803. DOI:10.1007/s11430-013-4624-3
[67] Yuan LL, Zhang XH, Xue FH, Lu YH and Zong KQ. 2016. Late Permian high-Mg andesite and basalt association from northern Liaoning,North China:Insights into the final closure of the Paleo-Asian Ocean and the orogen-craton boundary. Lithos , 258 .
[68] Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Hou QL and Fan QC. 2007a. Linking the Sulu UHP belt to the Korean Peninsula:Evidence from eclogite,Precambrian basement,and Paleozoic sedimentary basins. Gondwana Research , 12 (4) :388–403. DOI:10.1016/j.gr.2007.02.003
[69] Zhai MG, Guo JH, Peng P and Hu B. 2007b. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif,North Korea. Geological Magazine , 144 (3) :547–552. DOI:10.1017/S0016756807003287
[70] Zhai MG, Zhang YB, Zhang XH, Li QL, Peng P, Wu FY, Hou QL, Li TS and Zhao L. 2016. Renewed profile of Mesozoic magmatism in Korean Peninsula:Regional correlation and broader implication for cratonic destruction in North China Craton. Science China . DOI:10.1007/s11430-016-0107-0
[71] Zhang M, Yang JH, Sun JF, Wu FY and Zhang M. 2012a. Juvenile subcontinental lithospheric mantle beneath the eastern part of Central Asian Orogenic Belt. Chemical Geology , 328 :109–122. DOI:10.1016/j.chemgeo.2012.07.010
[72] Zhang WY.1986. Continental-oceanic Geotectonics of China and Adjacent Areas. Beijing: Scientific Press : 45 -56.
[73] Zhang XH, Wang H and Li TS. 2005. 40Ar/39Ar geochronology of the Faku tectonites:Implications for the tectonothermal evolution of the Faku block,northern Liaoning. Science in China (Series D) , 48 (5) :601–612. DOI:10.1360/03yd0208
[74] Zhang XH, Zhang HF, Tang YJ, Wilde SA and Hu ZC. 2008a. Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia,North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology , 249 (3-4) :262–281. DOI:10.1016/j.chemgeo.2008.01.005
[75] Zhang XH, Zhang HF, Zhai MG, Wilde SA and Xie LW. 2009. Geochemistry of middle Triassic gabbros from northern Liaoning,North China:Origin and tectonic implications. Geological Magazine , 146 (4) :540–551. DOI:10.1017/S0016756808005530
[76] Zhang XH, Zhang HF, Wilde SA, Yang YH and Chen HH. 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning,North China:Petrogenesis and implications for Phanerozoic continental crustal growth. Lithos , 117 (1-4) :283–306. DOI:10.1016/j.lithos.2010.03.005
[77] Zhang XH, Xue FH, Yuan LL, Ma YG and Wilde SA. 2012b. Late Permian appinite-granite complex from northwestern Liaoning,North China Craton:Petrogenesis and tectonic implications. Lithos , 155 :201–217. DOI:10.1016/j.lithos.2012.09.002
[78] Zhang XH, Wang HZ, Park HN, Yang JH and Kim JN. 2016. Basement affinity of the Kwanmo Massif,North Korea:Evidence from zircon U-Pb geochronology and petro-geochemistry of the Yindedong meta-intrusive complex. Acta Petrologica Sinica , 32 (10) :2965–2980.
[79] Zhang YB, Wu FY, Wilde SA, Zhai MG, Lu XP and Sun DY. 2004. Zircon U-Pb ages and tectonic implications of ‘Early Paleozoic’granitoids at Yanbian,Jilin Province,Northeast China. The Island Arc , 13 (4) :484–505. DOI:10.1111/iar.2004.13.issue-4
[80] Zhang YB, Wu FY, Zhai MG and Lu XP. 2005. Tectonic setting of the Helong Block:Implications for the northern boundary of the eastern North China Craton. Science in China (Series D) , 48 (10) :1599–1612. DOI:10.1360/02YD0282
[81] Zhang YB, Wu FY, Wilde SA, Zhai MG, Lu XP and Zhang HF. 2008b. Geochronology and tectonic implications of the "Proterozoic" Seluohe Group at the northern margin of the North China craton. International Geology Review , 50 (2) :135–153. DOI:10.2747/0020-6814.50.2.135
[82] Zhao GC, Cao L, Wilde SA, Sun M, Choe WJ and Li SZ. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters , 251 (3-4) :365–379. DOI:10.1016/j.epsl.2006.09.021
[83] Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics , 478 (3-4) :230–246. DOI:10.1016/j.tecto.2009.08.009
[84] Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research , 23 (4) :1365–1377. DOI:10.1016/j.gr.2012.05.012
[85] Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion:Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex,NE China. Tectonics , 33 (12) :2444–2466. DOI:10.1002/2014TC003637
[86] Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district,Eastern Xinjiang,Northwest China:Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology , 209 (3-4) :233–257. DOI:10.1016/j.chemgeo.2004.05.005
[87] 曹花花, 许文良, 裴福萍, 郭鹏远, 王枫.2012. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约. 岩石学报 , 28 (9) :2733–2750.
[88] 曹林, 朱东.1999. 中朝古大陆东部早前寒武纪变质岩系对比及其演化阶段划分. 世界地质 , 18 (2) :36–46.
[89] 金炳成, 刘永江, 韩国卿, 金才英.2012. 吉林-延吉-朝鲜咸北地区晚古生代沉积特征及其构造演化意义. 吉林大学学报(地球科学版) , 42 (增1) :296–305.
[90] 李承东, 张福勤, 苗来成, 颉航强, 许雅雯.2007. 吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征. 岩石学报 , 23 (4) :767–776.
[91] 梁道俊, 刘永江, 李俊杰, 白晶哲, 刘城先.2009. 朝鲜半岛古生代中期-中生代早期构造格局. 世界地质 , 28 (2) :157–165.
[92] 邵济安. 1991. 中朝板块北缘中段地壳演化. 北京: 北京大学出版社 : 1 -134.
[93] 殷鸿福, 宋海军.2013. 古、中生代之交生物大灭绝与泛大陆聚合. 中国科学(地球科学) , 43 (10) :1539–1552.
[94] 张文佑. 1986. 中国及邻区海陆大地构造. 北京: 科学出版社 : 45 -46.
[95] 张晓晖, 王浩铮, 朴贤旭, 杨正赫, 金正男.2016. 朝鲜冠帽地块的基底属性:来自银德洞变质侵入杂岩的锆石U-Pb年代学和岩石地球化学证据. 岩石学报 , 32 (10) :2965–2980.