岩石学报  2016, Vol. 32 Issue (10): 2993-3018   PDF    
朝鲜~19亿年侵入岩的岩石类型与构造背景初探
彭澎1,2, 王冲1,2, 杨正赫1,3, 金正男3     
1. 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室, 北京 100029 ;
2. 中国科学院大学地球科学学院, 北京 100049 ;
3. 朝鲜国家科学院地质研究所, 平壤 3812100
摘要: 朝鲜半岛北部广泛发育~19亿年侵入岩,这些岩浆岩可以分为三个系列,分别为似斑状花岗岩系列(多为I型,以妙香山岩体为代表,年龄1900~1840Ma)、S型花岗岩系列(以嘉山岩体为代表,本文获得1862±5Ma锆石U-Pb年龄)和正长岩系列(以龙浦岩体为代表,本文获得1857±2Ma锆石U-Pb年龄)。似斑状花岗岩系列(I型花岗岩)大致对应朝鲜地质学家定义的Myohyangsan(妙香山)杂岩,以发育钾长石巨斑为特征,与麻粒岩相变质的火山岩-沉积岩系关系密切;S型花岗岩系列大致对应Ryonhwasan(莲花山)杂岩,以发育石榴石和堇青石等矿物为特征,与麻粒岩相变质的副变质岩共生:这说明前者可能与变质火山岩系相关,而后者可能和副变质岩相关。正长岩系列,朝鲜地质学家称为Sakju(朔州)杂岩,分布较为局限,仅见于朔州以及博川-定州之间,也见于邻区辽东,多为岩株。这三个系列岩浆岩稍早或者同期于角闪岩相-麻粒岩相变质(本文获得甑山“群”变质锆石U-Pb年龄1844±2Ma)。邻区辽东-吉南及胶东地区也发育这三个系列岩浆岩,但这两个地区~21亿年岩浆作用更为广泛。朝鲜半岛南部发育大量同期岩浆岩,但岩石类型以似斑状花岗岩为主,并发育紫苏花岗岩和斜长岩。我们推测,朝鲜半岛南北两侧基底属性存在差异,可能对应不同的古陆(华北与华南古陆)。综合分析表明,朝鲜~19亿年前广泛发育I型和S型花岗岩,并有幔源岩浆作用,同时发育正长岩类,并且这些岩浆活动与区域高级变质作用时代接近。考虑到本区存在太古宙基底,我们推测本区在古元古代可能处于类似现今活动大陆边缘弧背景。
关键词: 华北古陆     朝鲜半岛     古元古代     S型花岗岩     似斑状花岗岩(I型花岗岩)     正长岩    
A preliminary study on the rock series and tectonic environment of the~1.9Ga plutonic rocks in DPR Korea.
PENG Peng1,2, WANG Chong1,2, YANG JongHyok1,3, KIM JongNam3     
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ;
2. School of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China ;
3. Institute of Geology, State Academy of Sciences, Pyongyang 3812100, DPRK
Abstract: There are widespread~1.9Ga plutonic rocks in DPR Korea, which can be subdivided into three series, a porphyritic granite series (I-type granites, e.g., the Myohyangsan pluton, 1900~1840Ma), S-type granite series (e.g., the Gasan pluton, a 1862±5Ma zircon U-Pb age is obtained) and the syenite series (the Ryongpo pluton as an example, a 1857±2Ma zircon U-Pb age is obtained). The I-type granite series is called the Myohyangsan Complex by local geologists, and is characterized by megacrysts of K-feldspar and is closely occurred with the granulite facies meta-volcanics/sediments; whereas the S-type granite series is called the Ryonhwasan Complex, and is characterized by containing garnet and cordierite and is distributed in the high-grade paragneisses. This indicates that the S-type granites could be originated from paragneisses; while the porphyritic granite series (I-type granite) could be associated with the volcanic-containing supracrustal rocks. The syenite series is called as the Sakju Complex by local geologists, and is limitedly distributed in Sakju and Tokchong-Chongju and the neighbouring Liaodong Peninsula, and appears as stocks. These plutons are slightly older or basically coeval with the metamorphism timing of the regional amphibolite-granulite facies metamorphism (a 1844±2Ma zircon U-Pb age is obtained from paragneiss of the Jungsan ‘Group’). The syenite series could be originated from high-pressure melting of crustal materials. There are also similar series of plutons in the neighboring Liaodong-Jinan and Jiaodong areas, where the~2.1Ga igneous rocks are more prominent. There are also widespread~1.9Ga plutons in southern Korean Peninsula; however, these are dominantly porphyritic granites with a few charnockite and anorthosite. It may indicate different basements for the north and south part of the peninsula, i.e., they may belong to different paleo-continents (North and South China blocks). The widespread~1.9Ga I-type and S-type granites with locally syenites and some mantle-derived igneous rocks in northern Korean Peninsula are coeval with the regional high-grade metamorphism. Considering the existence of Archean basement, we suggest that the region was possibly similar to modern continent marginal arc at the Paleoproterozoic.
Key words: North China block     Korean Peninsula     Paleoproterozoic     S-type granite     Porphyritic granite (I-type granite)     Syenite    
1 引言

朝鲜半岛可以划分成数个构造单元,从北至南依次为冠帽地块、狼林地块、平南盆地、临津江带、京畿地块、沃川带、太白盆地、岭南地块和庆尚盆地(Paek et al.,1996;Chough et al.,2000)。传统上认为,华北陆块东部边界为临津江带(Yin and Nie,1993;徐嘉炜和朱光,1995;Ree et al.,1996)。随着三叠纪早期退变榴辉岩的发现,一般认为,华北陆块东部边界穿过京畿地块(Oh et al.,20062015;Zhai et al.,2007a;Oh and Kusky,2007;Kim et al.,2011a)。但是,部分学者认为,整个朝鲜半岛主体上和华北更具亲缘性(Chang and Park,2001; Ishiwatari and Tsujimori,2003;Zhai et al.,2007a),三叠纪退变榴辉岩为标志的造山带可能只是代表华南陆块呈楔形嵌入朝鲜半岛(Zhai et al.,2007a)。但是,无论哪种模式,都认为狼林地块和冠帽地块与邻近的辽宁和吉林东部相似(吴福元等,2016),而平南盆地与大连盆地类似(Peng et al.,2011)。

吴福元等(2016) 根据发源并流经狼林地块河流中河沙的碎屑锆石年龄数据,提出狼林地块的主体岩石可能是ca.19~18亿年的花岗质岩石。这与一系列已发表的数据是吻合的(Zhao et al.,2006;Wu et al.,2007;Zhai et al.,2007b)。然而,邻区辽宁和吉林东部地区岩浆岩以~21.8亿年的A型花岗岩和~21.2亿年的基性岩床/火山岩等为特征(Lu et al.,2006;董春艳等,2012;Li and Chen,2014;Yuan et al.,2015;Wang et al.,2016),ca.18~19亿年的岩浆岩报道较少(杨进辉等,2007);南部毗邻的山东半岛29~25亿年的胶东杂岩中虽然有一些19~18亿年的岩浆岩,但其分布并不广泛(图 1)。朝鲜(狼林地块)内部是否以~19亿年岩浆岩为主?这些岩浆岩有哪些主要类型?与朝鲜半岛南部(京畿地块、岭南地块)内部同时期岩浆岩有何异同?它们形成于何种构造背景?这些问题对进一步揭示朝鲜半岛构造格局,理解华北陆块东部构造演化有重要意义。结合我们目前所获得的朝鲜的数据,本文将探讨以上问题。

图 1 郯庐断裂以东朝鲜及邻区基底(太古宙-古元古代)和三叠纪年龄数据分布简图(数据见表 1) Fig. 1 Published ages for Archean-Paleoproterozoic and Triassic rocks in Korea and the adjacent areas east to the Tan-Lu fault(see Table 1 for data sources)

表 1 朝鲜半岛及邻区太古宙-古远古代及三叠年龄数据表 Table 1 Archean-Paleoprozoic and Triassic ages from Korean Peninsula snd the adjacent areas
2 研究背景

朝鲜基底出露区研究程度较低,Zhao et al.(2006) 报道2个太古宙岩石出露点,分别位于开城和高城附近,岩性为英云闪长质-花岗闪长质片麻岩。这2个露头点与Cho et al.(2008b)报道的朝鲜半岛南部目前仅有的1个太古宙岩石年龄(Daeijak岛;~25亿年)基本一致。这3个出露点均位于京畿地块北缘或者狼林地块南缘。

已经获得的古元古代岩浆岩年龄包括~19亿年的S型花岗岩(Zhao et al.,2006)、~18.5亿年的斑状二长花岗岩(Zhao et al.,2006)、ca.1895~1839Ma环斑花岗岩(Han et al.,19982004;Han,2011;Zhai et al.,2007b)、~18.5亿年的花岗闪长岩(Wu et al.,2007)、~20.9亿年和~16.5亿年的黑云母花岗岩(Wu et al.,2007)等。其中,~20.9亿年和~16.5亿年的黑云母花岗岩分布在鸭绿江沿岸。另外,表壳岩系以狼林群、甑山群、摩天岭群等为主,这些岩石都经历了古元古代晚期麻粒岩相-角闪岩相变质作用(李秋立等,2016;赵磊等,2016)。

朝鲜半岛南部基底主体为ca.18~19亿年花岗质岩石和一系列记录~18.5亿年变质的副片麻岩,也见斜长岩类(Kim et al.,20122014)。花岗质岩石多为似斑状花岗岩-花岗质片麻岩,形成时代多为~18.5亿年。另外,京畿地块北缘德积岛报道了~25亿年花岗质片麻岩(Cho et al.,2008b)。

邻区辽宁和吉林东部地区基底岩石包括ca.38~30亿年鞍山TTG质片麻岩以及~25亿年TTG质岩石和表壳岩系为主的鞍山-本溪、清原和辽南太古宙基底。古元古代岩浆岩,主要包括~21.8亿年的A型花岗岩(Lu et al.,2004ab;Li and Zhao,2007)、~21.2亿年海城基性岩床(董春艳等,2012;Yuan et al.,2015;Wang et al.,2016)和同时期火山岩系和少量~18.5亿年正长岩(杨进辉等,2007)。古元古代地层主体为辽河群,经历ca.19~18亿年角闪岩相变质(Lu et al.,2006;Luo et al.,2008)。

邻区山东半岛基底主体为29~25亿年的胶东杂岩。古元古代地层包括荆山群和粉子山群。荆山群为一套变质火山沉积岩系,粉子山群则是一套变质沉积岩系,两者都发生19.5~18亿年麻粒岩相变质(Wu et al.,2014a)。本区还有高压基性麻粒岩出露(Zhao et al.,2015)。古元古代岩浆岩主体活跃时代为~18.5亿年,岩性包括正长花岗岩、花岗片麻岩和混合岩;另外,也见报道有~21.8亿年的二长花岗片麻岩(Liu et al.,2014b)和基性岩(Wang et al.,2014)。

已经发表的朝鲜及邻区基底岩浆岩部分年龄数据见表 1。样品采样位置见图 2

图 2 朝鲜半岛平安南道-平安北道地质简图(据Paek et al.,1996修改) Fig. 2 Simplified geological map of the South and North Pyong’an provinces in Korean Peninsula(revised after Paek et al.,1996)
3 朝鲜古元古代岩浆岩类型

朝鲜地质学家将朝鲜古元古代岩浆岩称为Ryonhwasan(莲花山)杂岩体和Sakju(朔州)杂岩体(Paek et al.,1996)。

莲花山杂岩体分为三类岩体群(Paek et al.,1996),或者分成Na-K质系列、K质系列和Na质系列(Han and Em,2002; Han et al.,2004; Han,2011)。第一类岩体群主要分布在狼林地块中部,西部、东部、平原-安岳隆起带、安边隆起带等均有分布,主体为石榴石-堇青石-黑云母花岗岩/二长岩以及一些片麻状花岗岩、片麻状花岗闪长岩等,以过铝为特征,K和Na的含量接近(Na-K质系列)。岩体整体上不规则,狼林群基底变质表壳岩系呈残余块状出露于这些岩体中,狼林"群"残片和该类岩体比例大致为18∶82,因此被朝鲜地质学家认为是沉积岩部分熔融的产物(Paek et al.,1996)。本文归为S型花岗岩系列。

第二类岩体群主要分布在狼林地块周缘,主要岩石类型以似斑状花岗岩为主;成分以过碱为特征,K的含量一般都大于Na(K质系列);有时与第一类岩群(S型花岗岩系列)边界不明显,并且,该类岩体常侵位于甑山"群"中,部分边界不清楚(Paek et al.,1996)。后来,Han et al.(19982004)、Han(2011) 将其从莲花山杂岩中分离,单独建立Myohayngsan(妙香山)杂岩。由于这一类岩体群以似斑状花岗岩和眼球状片麻岩为主,本文称为似斑状花岗岩(I型花岗岩)系列。第三类岩体群规模较小,多呈岩床和岩墙等产出,岩性主要为淡色花岗岩,尚不清楚其与前两者的关系;因其以过铝和钠质为特征,本文暂且将其归于S型花岗岩系列。

朔州杂岩主体为正长岩,本文称为正长岩系列。该类岩体主要分布在朔州、博川和定州等地,呈岩株状产出,出露面积为50km2或稍大,主要由正长辉石岩、霓辉正长岩、碱性正长岩、霞石岩、辉石霞石岩、微斜正长岩、钠长正长岩、碱性伟晶岩、钠长斑岩、石英正长岩、碱性煌斑岩等组成(Paek et al.,1996;金正男等,2016)。除了如石英正长岩和煌斑岩等以岩墙状产出的岩相,其他岩相为过渡关系,岩相边界不明显;岩体边部多为石英正长岩和正长辉石岩,而岩体中心部位多为霞石正长岩和霞石岩(Paek et al.,1996)。

另外,甑山"群"/杂岩(Jungsan Group,Paek et al.,1996)分布于平南盆地周缘及狼林地块北西缘,变质级别高达麻粒岩相(Paek et al.,1996;李秋立等,2016),可以分为4个"组"/单元,包括石榴石夕线石片麻岩单元(富铝片麻岩为主)、斜长角闪岩单元(斜长角闪岩及角闪斜长片麻岩为主;基性火山岩?)、长英质片麻岩单元(黑云母片麻岩、黑云斜长片麻岩及混合岩等;酸性火山岩?)以及变质碎屑岩单元(黑云斜长片麻岩、石榴石夕线石片麻岩、石英岩等)。

4 样品描述

本文样品分别来自嘉山岩体、妙香山岩体、龙浦岩体和甑山群/杂岩副片麻岩。

嘉山岩体位于狼林地块西部博川郡以西(图 2),属于莲花山杂岩(Paek et al.,1996),本文归属S型花岗岩系列。岩体近东西向延长,岩体大小约10×60km2。本次采集样品两件,岩性为石榴石堇青石二长岩和透辉石花岗岩(露头及岩石外貌见图 3a,b)。前者为斑状结构,含有大小粒径不等的石榴石斑晶(直径达~1cm),含量约10%~20%;基质斜长石和钾长石含量基本相当(钾长石稍多),石英含量变化大,见堇青石(图 3i)。透辉石花岗岩采自岩体脉状均匀细粒部分,等粒结构,石英含量多(45%),含粒状透辉石(15%)(图 3j)。用于定年的样品(P14NK23)为石榴石堇青石二长岩(图 3i)。

妙香山岩体属于莲花山杂岩体中的第二类岩体群(Paek et al.,1996),或者Han et al.(19982004)、Han(2011) 定义的妙香山杂岩,本文归属似斑状花岗岩(I型花岗岩)系列。妙香山岩体是妙香山杂岩的代表岩体(Han et al.,1998)。该岩体位于妙香山附近,呈三角形,面积约600 km2。岩性以似斑状花岗岩为主(图 3c,k),岩体边部糜棱岩化(图 3d),Zhai et al.(2007b)称其为环斑花岗岩。本次分析了Zhai et al.(2007b)中样品的微量元素含量。

龙浦岩体属于Sakju(朔州)杂岩(Paek et al.,1996),本文归属正长岩系列。龙浦岩体侵入到S型花岗岩之中(图 2;Paek et al.,1996),岩体大小~20km2。岩性以正长岩为主,以含萤石和独居石等矿物为特征。本次采集的样品,岩性包括正长辉石岩(图 3l)、含萤石霓辉正长岩(图 3m)、辉石正长岩及其晚期的石英正长斑岩脉(图 3n)。用于定年的样品(P14NK11)为正长辉石岩,含有普通辉石和正长石(图 3l),并有萤石和独居石副矿物。

另外,本次工作还采集甑山群副片麻岩样品,用于测定变质作用时代。样品采自甑山郡附近(图 3g,h),属于石榴石夕线石片麻岩单元,岩性为黑云母夕线石榴片麻岩(图 3o)。

图 3 代表性露头野外照片及代表性样品显微结构照片 (a)石榴石堇青石花岗岩露头,可见弱的片麻理;(b)石榴石堇青石花岗岩近照;(c)似斑状花岗岩,长石有弱的定向;(d)糜棱岩化似斑状花岗岩;(e)正长岩露头;(f)正长岩近照;(g)甑山群夕线榴片麻岩露头;(h)夕线榴片麻岩近照;(i)石榴石堇青石二长岩(单偏光,样品号:P14NK23);(j)透辉石花岗岩(单偏光,样品号P14NK24);(k)似斑状花岗岩显微照片(正交光,样品号05NK02A);(l)正长辉石岩(正交光,样品号P14NK11);(m)含萤石霓辉正长岩(单偏光,样品号P14NK12);(n)石英正长斑岩(单偏光,样品号P14NK14);(o)黑云石榴夕线片麻岩(单偏光,样品号P14NK1).(j-o)比例尺为200μm. Kfs-钾长石;Qtz-石英;Pl-斜长石;Bi-黑云母;Sill-夕线石;Grt-石榴石;Cpx-单斜辉石;Or-正长石;Aeg-霓辉石;Flu-萤石;Cord-堇青石;Di-透辉石 Fig. 3 Photos of the representative outcrops and micro-images of selected samples
5 分析测试方法

锆石年代学分析使用Cameca IMS-1280双离子源多接受器二次离子质谱仪。O2-离子束通过13kV加速电压,使用常规束斑(20×30μm)轰击样品表面。普通Pb采用现代地壳的平均Pb同位素组成(Stacey and Kramers,1975),用测量的204Pb进行校正。分析结果如表 2。全岩主量元素分析使用X-射线荧光光谱仪(XRF-1500),采用标准曲线法(经验系数法),基体效应采用数学模型校正。分析精度为~1%(含量>10%)到~10%(含量<1.0%)。通过湿化学滴定法测定FeO含量。全岩微量元素分析通过ICP-MS ELEMENT质谱计分析,相对标准偏差RSD≤2.5%。标样为GSR1、GSR2和GSR3。全岩主量微量元素分析结果见表 3。以上测试均在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室完成。

6 分析结果 6.1 代表性样品的年龄

样品P14NK23为石榴石堇青石花岗岩。锆石浑圆状,见冷杉叶状结构,直径多为100μm,见非常弱的环带结构(图 4a)。锆石U、Th和Pb含量分别为393×10-6~1657×10-6、34×10-6~210×10-6(2号点为1079×10-6)和157×10-6~720×10-6,Th/U比为0.04~0.34(2号点为1.15)(表 2)。19个数据点的207Pb/206Pb表面年龄为1838~1878Ma,1个点(2号点)为2137Ma(表 2)。所有点的谐和度均在95%以上。19个数据点构成一条不一致线,给出1869+82/-13Ma的上交点年龄和~950Ma的下交点年龄,MSWD=1.18。上交点年龄与207Pb/206Pb加权平均年龄一致(图 4a);去掉3个点(点2、12、15),计算得到其他17个数据点207Pb/206Pb加权平均年龄为1862±5Ma(MSWD=7.6)(图 4a)。岩石为S型花岗岩,锆石年龄保留有~21亿年的信息,代表原岩中的碎屑锆石,由于锆石多为浑圆状,与麻粒岩相变质锆石类似,推测~1860Ma的年龄代表S型花岗岩的形成时代,同时也近似为本区麻粒岩相变质时代。

图 4 U-Pb年龄谐和图 (a)石榴石堇青石二长岩(P14NK23,嘉山岩体);(b)正长辉石岩(P14NK11,龙浦岩体);(c)黑云夕线石榴片麻岩(P14NK1,甑山"群").插图示年龄样品代表性锆石阴极发光照片 Fig. 4 U-Pb concodia diagram of the representative samples Insets are selected cathodeluminescence(CL)images of representative zircons

样品P14NK11为正长辉石岩。锆石多为短柱状(长宽比接近1∶1),少数为长柱状,短柱的边长约~0.2mm。锆石阴极发光较弱,但部分颗粒仍可见韵律环带(图 4b)。锆石U、Th和Pb含量分别为295×10-6~931×10-6、66×10-6~323×10-6和120×10-6~378×10-6,Th/U比为0.14~0.48(表 2)。20个数据点的207Pb/206Pb表面年龄为1849~1864Ma,比较集中,且所有点的谐和度均在95%以上(表 2)。计算得到20个点的207Pb/206Pb加权平均年龄为1857±2Ma(MSWD=1.7),与谐和年龄基本一致(图 4b)。由于锆石多为柱状且成分韵律环带发育,加上岩石为岩浆岩,确定其年龄代表结晶时代。

样品P14NK1为甑山"群"黑云夕线石榴片麻岩。锆石多为浑圆状,直径50~100μm,环带结构不发育,阴极发光颜色较暗(图 4c)。锆石U、Th和Pb含量分别为174×10-6~659×10-6(3号点为1278×10-6)、54×10-6~419×10-6和70×10-6~529×10-6,Th/U比为0.12~1.11(表 2)。20个数据点的207Pb/206Pb表面年龄为1823~1852Ma(表 2)。所有点的谐和度均在95%以上。计算得到20个数据点的207Pb/206Pb加权平均年龄为1844±2Ma(MSWD=1.4;图 4c)。岩石属于变质岩(见本期关于甑山"群"的研究,李秋立等,2016),锆石具有变质锆石特征,推测~1840Ma的年龄代表岩石的变质年龄。

表 2 锆石 U-Pb SIMS 数据表 Table 2 SIMS zircon U-Pb data
6.2 代表性岩体的岩石化学特征

嘉山岩体主体岩性为石榴石堇青石花岗岩系列(S型花岗岩)。2件石榴石堇青石二长岩样品,SiO2含量为~55%、TiO2为~0.9%、Al2O3为~22%、Fe2O3T为~11%、MgO为~4%、CaO、Na2O和K2O含量变化较大,分别为0.9%~2.5%、1.7%~2.7%和0.9%~4.7%;1件样品为透辉石花岗岩(岩体中的细粒部分),SiO2含量73%、TiO2为0.5%、Al2O3为11.1%、Fe2O3T为5.7%、MgO为2.7%、CaO为6.2%、Na2O为0.4%、K2O为0.1%、P2O5为0.2%(图 5表 3)。这些岩石的微量元素变化较小,总稀土元素含量180×10-6~459×10-6,球粒陨石标准化稀土元素配分图上,显示明显的轻稀土富集((La/Yb)N=8~15),Eu明显负异常(Eu*=0.4~0.6)(图 6);原始地幔标准化微量元素蛛网图上,样品显示明显的高场强元素负异常(如Nb、Ta、Zr、Hf和Ti),并且显示明显的Sr和Ti等元素的负异常(图 6)。

图 5 代表性样品部分主量、微量元素与SiO2含量相关图解 Fig. 5 Selected major/trace elements vs. SiO2 covariation plots

图 6 球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989) 矿洞沟岩体数据杨进辉等(2007) Fig. 6 Chondrite-normalized trace element diagram(a)and primitive mantle-normalized trace element spidergram(b)(normalization values after Sun and McDonough,1989)

妙香山岩体岩性为似斑状花岗岩,本文2件样品SiO2含量66%~68%、TiO2为~0.3%、Al2O3为~15.8%、Fe2O3T 为1.8%~2.5%、MgO为0.3%~0.4%、CaO为1.2%~1.8%、Na2O为2.1%~2.9%、K2O为5.8%~8.4%、P2O5为0.1%~0.2%(图 5表 3)。总稀土元素含量315×10-6~818×10-6,球粒陨石标准化稀土元素配分图上,显示明显的轻稀土富集(La/Yb)N =16~17),Eu明显负异常(Eu*=0.2~0.5)(图 6);原始地幔标准化微量元素蛛网图上,样品显示明显的高场强元素负异常(如Nb、Ta、Zr、Hf和Ti),并且显示明显的Sr和Ti等元素的负异常(图 6)。

表 3 全岩主量(wt%)和微量(×10-6)数据表 Table 3 Whole-tock major (wt%) and element (×10-6) data

龙浦岩体主体为正长岩(正长辉石岩、辉石正长岩、霓辉正长岩等),晚期脉体岩性为石英正长斑岩。主体岩石(正长岩)SiO2含量为55.3%~59.9%、TiO2含量多小于0.4(样品P14NK18为1.35%)、Al2O3为14.8%~15.3%、Fe2O3T为3.6%~11%、MgO为0.1%~0.3%(样品P14NK18为1.75%)、CaO为2.7%~7.2%、Na2O为4.1%~5.6%、K2O为4.9%~5.6%、P2O5为0.1%~0.7%、Sr为209×10-6~634×10-6、Ba为43×10-6~844×10-6、U为2.5×10-6~20×10-6、Zr为51×10-6~415×10-6、La为150×10-6~529×10-6、Y为33×10-6~58×10-6、Cr为41×10-6~68×10-6、Ni为7.1×10-6~50×10-6(图 5表 3)。总稀土元素含量高(1100×10-6~3800×10-6),球粒陨石标准化稀土元素配分图上,显示明显的轻稀土富集(La/Yb)N =13~51),Eu中度负异常(Eu*=0.5~0.7),个别样品正异常(P14NK17)(图 6);原始地幔标准化微量元素蛛网图上,样品显示明显的高场强元素负异常(如Nb、Ta、Zr、Hf和Ti),并且显示明显的Sr和Ti等元素的负异常(图 6)。花岗斑岩-石英斑岩与石英正长岩相比,SiO2(65%~75%)较高,TFe2O3(~1%)、Zr(35×10-6~51×10-6)、La(9×10-6~84×10-6)和Y(10×10-6~21×10-6)等均明显要低(图 5表 3);总轻稀土含量明显低(71×10-6~356×10-6),其中石英斑岩样品显示强烈的Eu 负异常(Eu*=0.1)(图 6)。

7 讨论 7.1 朝鲜~19亿年岩浆岩的岩石系列及其与邻区岩浆岩类型比较

综合前人研究,我们将朝鲜~19亿年的岩浆岩分为三类,分别为S型花岗岩系列(以嘉山岩体为代表,对应Han(2011) 划分的Myohyangsan(妙香山)杂岩体,或者Paek et al.(1996) 划分的Ryonhwasan(莲花山)杂岩体第一和第三类岩群)、似斑状花岗岩系列(I型花岗岩)(以妙香山岩体为代表,对应Paek et al.(1996) 划分的Ryonhwasan(莲花山)杂岩体第二类岩群)和正长岩系列(以龙浦岩体为代表,对应Paek et al.(1996) 划分的Sakju(朔州)杂岩体)。其中,S型花岗岩主要分布在狼林地块和主要隆起带中,与麻粒岩相变质的甑山"群"、狼林"群"副变质岩共生。也见报道于朝鲜东海岸高城一带(Zhao et al.,2006)。另外,我们考察了咸兴-端川一带,这里的岩石产状与南浦一带S型花岗岩类似,产出于狼林"群"或摩天岭群之中,但还需要进一步工作。S型花岗岩系列的岩石类型以(黑云母)石榴石堇青石二长岩和(黑云母)石榴石堇青石花岗岩、石榴石花岗岩为主;部分样品石榴石和堇青石含量很高(达20%),富石英部分与富石榴石部分分离,因此全岩成分偏中性(~55%),本文仍称为S型花岗岩系列。似斑状花岗岩(I型花岗岩)系列分布较广,见于主要基底岩石出露区(图 1),岩石以发育钾长石巨斑为特征,主要矿物组合为钾长石、斜长石、石英和黑云母。与麻粒岩相变质的甑山"群"关系密切。正长岩系列主要分布在朔州、博川和定州等地,呈岩株状产出,主要由正长辉石岩、霓辉正长岩、碱性正长岩、霞石岩、辉石霞石岩、微斜正长岩、钠长正长岩、碱性伟晶岩、钠长斑岩、石英正长岩、碱性煌斑岩等组成。

辽宁和吉林东部与朝鲜相比,最大的不同是,这些地区以发育~21.8亿年A型花岗岩和~21.2亿年基性岩床为主,ca.18~19亿年的岩石较少,只有个别岩体时代接近,如矿洞沟正长岩(~1870Ma;杨进辉等,2007)等;S-型花岗岩不发育。显示这两个地区岩浆岩类型存在整体差异。不过,辽宁和吉林东部地区同样经历了ca.19~18亿年变质作用(表 1及文献),变质级别多为角闪岩相。显示两个相邻地区~21亿年时构造背景不同,而ca.18~19亿年期间,可能属于同样的构造背景,只是深熔作用程度不同。辽东-吉南地区变质作用较低可能是导致由沉积岩系部分熔融形成的花岗岩并不发育的原因。

山东半岛与朝鲜相比,岩浆岩类型同样不发育S型花岗岩,但发育其他类型的花岗岩,这些花岗岩,可能和混合岩化有一定关系(Liu et al.,2014a)。另外,山东半岛同样发育~21亿年岩浆岩(Liu et al.,2014b;Wang et al.,2014)。从变质作用的角度来看,山东半岛经历较强的ca.19.5~18亿年变质作用(表 1及文献),该地区变质时代延续较长,但是否是同一期变质,还是属于两期不同变质,尚不清楚(Peng et al.,2014)。山东半岛和辽东-吉南一样,都经历了不同程度的ca.18~19亿年的变质作用的影响:辽东-吉南地区变质作用的古元古代建造主要是辽河群火山沉积岩(Lu et al.,2006;Luo et al.,2008;Li and Zhao,2007);山东半岛记录变质作用的古元古代建造主要是荆山群(火山沉积岩系)和粉子山群(沉积岩系)(Tam et al.,2011;Wu et al.,2014b;Zhao et al.,2015)。朝鲜的古元古代建造如甑山"群"(变质火山沉积岩系:李秋立等,2016)和摩天岭群(变质火山沉积岩系;廖鑫等,2016);狼林"群"被认为属于太古宙(Paek et al.,1996),但新的年代学数据显示其可能为古元古代沉积建造(赵磊等,2016)。由此看来,山东半岛与朝鲜半岛北部可能更具有可对比性。

朝鲜半岛南部同样发育~19亿年岩浆岩,然而,从目前的数据来看,其岩石类型以似斑状花岗岩为主,并有少量紫苏花岗岩,Kim et al.(2014) 认为这些岩浆岩发育于岛弧背景,与陆块聚合过程有关。长期以来,华北和华南陆块在朝鲜半岛的边界存在争议(Yin and Nie,1993;徐嘉炜和朱光,1995;Ree et al.,1996;Chang and Park,2001; Oh et al.,2006; Oh,2012;Ishiwatari and Tsujimori,2003;Zhai et al.,2007a;Oh and Kusky,2007;Kim et al.,2011a)。从~19亿年前后的岩浆的研究表明,狼林地块及京畿地块北侧(图 1)均发育~19亿年S型花岗岩和似斑状花岗岩,同时,京畿地块北缘还发育~25亿年基底岩系,这与京畿地块南侧-岭南地块仅发育似斑状花岗岩存在明显差异。这可能暗示两者的基底属性存在差异。研究表明,晚三叠纪的变质作用区域横穿朝鲜半岛中部(图 1表 1),主要分布在京畿地块范围(图 1);同时三叠纪岩浆岩(正长岩-二长岩)也贯穿朝鲜半岛中部,覆盖锆石年龄记录的同期变质作用范围,并且覆盖狼林地块南侧和岭南地块(图 1)。彭澎等(2016) 认为这一区域可能对应华北和华南两个地块在朝鲜的界线,这一认识与~19亿年岩浆岩朝鲜半岛南北部存在差异是一致的。

7.2 朝鲜~19亿年岩浆岩的岩石成因分析

根据本文及前人已经发表的数据(表 1),这三类岩浆岩系列的形成时代为~18.5亿年。而这些地区都经历了~18.5亿年的高级变质作用(Paek et al.,1996;赵磊等,2016;李秋立等,2016;翟明国,2016)。本文得到的变质作用U-Pb年龄(1844Ma)略小于岩浆岩的形成时代;但是,考虑到锆石年龄可能代表变质作用退变质时代(赵磊等,2016;李秋立等,2016),我们推测,岩浆岩的形成时代可能与麻粒岩相变质作用进变质时代接近。

我们认为,S型花岗岩的原岩与副片麻岩密切相关,其形成与同期区域麻粒岩相变质作用存在因果联系,这是因为:1)S型花岗岩均分布在麻粒岩相变质副片麻岩中(如,嘉山岩体分布于狼林"群"中);2)S型花岗岩与副片麻岩多为过渡关系,边界不清楚(Paek et al.,1996);3)S型花岗岩非常富铝(如A/CNK=~3:图 7a),表明其原岩为沉积岩。不过,这些岩浆岩的MgO含量比较高,SiO2比较低(~55%)。同时,岩体内部富石英部分和富石榴石部分有分离的迹象。我们认为,这些"二长岩"可能是原地熔融熔体的一部分抽离后转熔反应形成矿物与残余熔体的"混合"。当然,考虑到即使是细粒富石英部分的MgO含量和Mg#值均较高(SiO2为~74%,MgO~3%,Mg#=100×Mg/(Fe2++Mg)摩尔比=47),不排除有幔源岩浆的贡献。

图 7 A/NK-A/CNK图解(a)和Sr/Y-Y图解(b)(据Defant et al.,2002) A=Al2O3;NK=Na2O+K2O;CNK=CaO+Na2O+K2O Fig. 7 A/NK vs. A/CNK(molar)diagram(a)and Sr/Y vs. Y diagram(b)(after Defant et al.,2002)

似斑状花岗岩(I型花岗岩)系列与S型花岗岩相比,不含堇青石或者夕线石,石榴石含量少或者无;主量成分上,铁镁含量明显低很多;微量元素配分型式大体相似,似斑状花岗岩轻稀土稍微富集一些。似斑状花岗岩成分相对均匀,并且多发育于原岩为变质火山-沉积岩系的甑山"群"中,其来源可能就是火山岩系。大量火山岩作为源岩可能是导致似斑状花岗岩成分上更类似I型花岗岩的原因。我们认为,二者有成因联系,可能都以表壳岩系作为源岩,所不同的是,S型花岗岩更为富铝,可能来自泥质岩或者副变质岩,而似斑状花岗岩则可能来自火山岩或者正变质岩。

正长岩系列MgO含量低(<2%),相容元素如V、Cr和Ni含量低(表 3);其Na2O含量和稀土含量明显高于S型花岗岩和似斑状花岗岩(图 5);与S型花岗岩相比,明显高的Na2O+K2O含量(>9%);与似斑状花岗岩相比,K2O/Na2O比较小(大致为1)。虽然正长岩可以来源于富集的岩石圈地幔部分熔融(Brown and Becker,1986;Sutcliffe et al.,1990;Yang et al.,2005),但是鉴于嘉山正长岩非常低的MgO和相容元素含量,我们认为这一岩体来源于地幔的可能性较低。实验岩石学研究表明,正长岩可以形成于高压下地壳物质的部分熔融(如Huang and Wyllie,1981;Johannes and Holts,1990),我们推测其可能来源于陆壳物质的相对高压下的部分熔融。其高的(La/Yb)N(图 6a)比和相对低的Y元素含量(图 7b)支持其源区有石榴石残留,但其低的Sr/Y比(图 7b)则可能说明源区亦有长石残留,或者与岩体内部的结晶分异过程有关。当然这一推断还有待结合其他岩相进一步讨论。

朝鲜发育~19亿年岩浆岩,岩石类型以S型花岗岩、似斑状花岗岩为主,并有少量正长岩,这一地区同时经历了区域性高级变质作用。强烈的岩浆-热事件导致本区发生深熔作用,并可能形成大量的、原地就位的壳熔岩浆岩(S型花岗岩和似斑状花岗岩)。正长岩的发育,可能是由于部分地壳被加厚,并发生部分熔融,当然,也不排除幔源的可能。我们认为,这些岩浆活动可能发育于活动大陆边缘,也可能形成于造山后伸展背景。然而,鉴于岩浆活动和麻粒岩相变质作用基本同期或者稍早,变质作用后期缺少岩浆活动证据,我们偏向于认为这些岩浆岩形成于大陆边缘弧背景。其低的Sr/Y值和高的Y含量(图 7b)支持形成于活动大陆边缘岩浆弧背景。Han(2011) 根据Ryonhwasan(莲花山)杂岩第一类K质系列花岗岩体群的特征提出这些岩石形成于同造山大陆边缘环境。S型花岗岩-二长岩和似斑状花岗岩两个系列,类似的组合报道于华北凉城-集宁一带,被认为与活动大陆边缘岩浆弧的活动有关(Peng et al.,2012)。因此,Peng et al.(2014) 曾称山东半岛-辽东半岛-朝鲜半岛相关岩浆岩组成~19亿年的朝鲜岩浆弧。实际上,I型花岗岩和S型花岗岩的组合见于新生代俯冲体系(如,Pe-Piper,2000)和陆-陆碰撞造山带中(如,Chappell,1999;Atherton and Ghani,2002)。

8 结论

通过统计朝鲜及邻区~19亿年岩浆岩数据,结合对朝鲜三个代表性岩体的研究,得出如下初步结论:

(1) 本文获得嘉山岩体(S型花岗岩)1862±5Ma(MSWD=7.6,n=17)、龙浦岩体(正长岩)1857±2Ma(MSWD=1.7,n=20)和甑山群夕线榴片麻岩1844±2Ma(MSWD=1.4,n=20)的锆石U-Pb年龄;岩体年龄代表形成时代,夕线榴片麻岩年龄代表区域变质年龄;推测岩体形成时代与区域(麻粒岩相)变质作用进变质时代接近。

(2) 研究表明,S型花岗岩可能和狼林"群"变质表壳岩相关,可能是副变质岩部分熔融的产物;似斑状花岗岩(I型花岗岩)与含有大量火山岩系的甑山"群"等表壳岩系关系密切;正长岩系列可能来自加厚地壳物质的部分熔融;同时,不排除这些岩浆岩有地幔物质的加入。

(3) 统计分析表明,朝鲜半岛北部基底发育大量古元古代岩浆岩,大致可以分为三类,S型花岗岩、似斑状花岗岩和正长岩,主体活动时代为~19亿年(19~18.5亿年),与区域麻粒岩相变质的时代基本接近;邻区辽东-吉南及胶东地区~19亿年的岩浆活动基本相似,但~21亿年岩浆作用更为广泛;朝鲜半岛南部同样发育~19亿年岩浆岩,但岩石类型以似斑状花岗岩为主,并发育紫苏花岗岩和斜长岩,推测朝鲜半岛南北两侧基底属性存在差异。

(4) 朝鲜半岛北部~19亿年前广泛发育壳熔花岗岩就位,可能伴随有幔源岩浆作用,并且伴随区域高级变质作用,这些都说明本区在古元古代可能为活动大陆边缘岩浆弧背景。

致谢 本文是翟明国研究员带领的中国科学院地质与地球物理研究所中朝地质对比研究团队集体成果。除署名作者外,翟明国研究员、李秋立研究员、吴福元研究员、侯泉林教授、张晓辉研究员、张艳斌副研究员以及赵磊博士参加了野外工作,对本文有实质贡献。感谢朝鲜国家科学院地质学研究所给予的帮助。感谢韩国吴昌桓教授、崔善奎教授、柳寅昌教授等的帮助。感谢薛丁帅、刘艳红、刘宇、凌潇潇、马红霞、郭巨杰等在实验过程中的帮助。感谢杜利林博士和张华锋博士等对初稿的修改意见。
参考文献
[1] Atherton MP, Ghani AA. 2002. Slab breakoff:A model for Caledonian, late granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos , 62 (3-4) :65–85. DOI:10.1016/S0024-4937(02)00111-1
[2] Bai X, Liu SW, Yan M, Zhang LF, Wang W, Guo RR, Guo BR. 2014. Geological event series of Early Precambrian metamorphic complex in South Fushun area, Liaoning Province. Acta Petrologica Sinica , 30 (10) :2905–2924.
[3] Brown PE, Becker SM. 1986. Fractionation, hybridisation and magma-mixing in the Kialineq centre East Greenland. Contributions to Mineralogy and Petrology , 92 (1) :57–70. DOI:10.1007/BF00373963
[4] Chang KH, Park SO. 2001. Paleozoic Yellow Sea transform fault:Its role in the tectonic history of Korea and adjacent regions. Gondwana Research , 4 (4) :588–589.
[5] Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos , 46 (3) :535–551. DOI:10.1016/S0024-4937(98)00086-3
[6] Cho DL, Lee SR, Armstrong R. 2008a. Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea:Occurrence of ca. 220Ma post-orogenic alkali granites and their tectonic implications. Lithos , 105 (3-4) :191–200.
[7] Cho M, Kim H, Lee Y, Horie K, Hidaka H. 2008b. The oldest (ca. 2.51Ga) rock in South Korea:U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal , 12 (1) :1–6.
[8] Chough SK, Kwon ST, Ree JH, Choi DK. 2000. Tectonic and sedimentary evolution of the Korean peninsula:A review and new view. Earth-Science Reviews , 52 (1-3) :175–235. DOI:10.1016/S0012-8252(00)00029-5
[9] Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites:Some variations on a theme. Acta Petrologica Sinica , 18 (2) :129–142.
[10] Dong CY, Ma MZ, Liu SJ, Xie HQ, Liu DY, Li XM, Wan YS. 2012. Middle Paleoproterozoic crustal extensional regime in the North China Craton:New evidence from SHRIMP zircon U-Pb dating and whole-rock geochemistry of meta-gabbro in the Anshan-Gongchangling area. Acta Petrologica Sinica , 28 (9) :2785–2792.
[11] Han RY, Choi UJ, Kim and JN. 1998. The lithological characteristics and forming condition of rapakivi granite in myohyangsan complex. Geological and Geographical Science , 2 :7–11.
[12] Han RY, Em HC. 2002. Some problems in study on the granitoids of ryonhwasan complex. Geological and Geographical Science , 3 :36–38.
[13] Han RY, Kim JN, Pang YH. 2004. Converting partion of second group granites in ryonhwasan complex to myoh yangsan complex. Bulletin of Kim Il Sung University (Natural Science) , 50 (1) :167–169.
[14] Han RY. 2011. Geology of Korea. Science and Technical Publishing House, 200-2-290 (in Korean)
[15] Huang WL, Wyllie PJ. 1981. Phase relationships of S-type granite with H2O to 35kbar:Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research:Solid Earth , 86 (B11) :10515–10529. DOI:10.1029/JB086iB11p10515
[16] Ishiwatari A, Tsujimori T. 2003. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia:A synthesis. Island Arc , 12 (2) :190–206. DOI:10.1046/j.1440-1738.2003.00390.x
[17] Jiang CC.1987. Precambrian Geology of Eastern Part of Liaoning and Jilin. Shenyang: Liaoning Science and Technology Publishing House .
[18] Johannes W, Holtz F. 1990. Formation and composition of H2O-undersaturated granitic melts. In:Ashworth JR and Brown M (eds.). High-temperature Metamorphism and Crustal Anatexis. Springer :87–104.
[19] Kim J, Yi K, Jeong YJ, Cheong CS. 2011c. Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean Peninsula. Gondwana Research , 20 (2-3) :608–620. DOI:10.1016/j.gr.2010.12.005
[20] Kim JN, Han RY, Zhao L, Li QL, Kim SS. 2016. Study on the petrographic and SIMS zircon U-Pb geochronological characteristics of the magmatic rocks associated with the Jongju and Cholsan REE deposits in northern Korean Peninsula. Acta Petrologica Sinica , 32 (10) :3123–3138.
[21] Kim N, Cheong CS, Park KH, Kim J, Song YS. 2012. Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research , 21 (4) :865–875. DOI:10.1016/j.gr.2011.10.003
[22] Kim SW, Williams IS, Kwon SH, Oh CW. 2008. SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea:Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research , 162 (3-4) :475–497. DOI:10.1016/j.precamres.2007.10.006
[23] Kim SW, Kwon S, Koh HJ, Yi K, Jeong Y, Santosh M. 2011a. Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research , 20 (4) :865–889. DOI:10.1016/j.gr.2011.05.005
[24] Kim SW, Kwon S, Santosh M, Williams IS, Yi K. 2011b. A Paleozoic subduction complex in Korea:SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Research , 20 (4) :890–903. DOI:10.1016/j.gr.2011.05.004
[25] Kim SW, Kwon SH, Yi KW, Santosh M. 2014. Arc magmatism in the Yeongnam massif, Korean Peninsula:Imprints of Columbia and Rodinia supercontinents. Gondwana Research , 26 (3-4) :1009–1027. DOI:10.1016/j.gr.2013.08.020
[26] Kong QB. 2009. Zircon U-Pb dating, REE and Lu-Hf isotopic characteristics of Paleoproterozoic orthogneiss in Sulu UHP terrane, eastern China. Geological Bulletin of China , 28 (1) :51–62.
[27] Lee BC, Oh CW, Kim TS, Yi K. 2016. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula. Lithos , 256-257 :109–131. DOI:10.1016/j.lithos.2016.03.019
[28] Lee SR, Cho M, Yi K, Stern RA. 2000. Early Proterozoic granulites in central Korea:Tectonic correlation with Chinese cratons. Journal of Geology , 108 (6) :729–738. DOI:10.1086/317951
[29] Lee YY, Cho M, Cheong W, Yi K. 2014. A massif-type (~1. 86Ga) anorthosite complex in the Yeongnam Massif, Korea:Late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova , 26 (5) :408–416.
[30] Li JJ, Shen BF. 2000. Geochronology of Precambrian continental crust in Liaoning Province and Jilin Province. Progress in Precambrian Research , 23 (4) :242–249.
[31] Li QL, Zhao L, Zhang YB, Yang JH, Kim JN, Han RY. 2016. Zircon-titanite-rutile U-Pb system from metamorphic rocks of Jungshan "Group" in Korea:Implications of tectono-thermal events from Paleoproterozoic to Mesozoic. Acta Petrologica Sinica , 32 (10) :3019–3032.
[32] Li SZ, Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research , 158 (1-2) :1–16. DOI:10.1016/j.precamres.2007.04.001
[33] Li Z, Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao-Liao-Ji Belt, North China Craton:Implications for petrogenesis and tectonic setting. Precambrian Research , 255 :653–667. DOI:10.1016/j.precamres.2014.07.003
[34] Liao X, Zhang XH, Kim SH, Park U, Jong C. 2016. Detrital zircon U-Pb ages of the Machollyong Group in Korean Peninsula:Regional correlation and tectonic implications. Acta Petrologica Sinica , 32 (10) :2981–2992.
[35] Liu FL, Liu PH, Wang F, Liu JH, Meng E, Cai J, Shi JR. 2014a. U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton:Constraints on the timing and nature of partial melting. Precambrian Research , 245 :80–99. DOI:10.1016/j.precamres.2014.01.001
[36] Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F, Meng E. 2013. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton:Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research , 224 :287–303. DOI:10.1016/j.precamres.2012.10.003
[37]
[38] Liu PH, Liu FL, Yang H, Wang F, Liu JH. 2012. Protolith ages and timing of peak and retrograde metamorphism of the high-pressure granulites in the Shandong Peninsula, eastern North China Craton. Geoscience Frontiers , 3 (6) :923–943. DOI:10.1016/j.gsf.2012.04.001
[39] Lu XP, Wu FY, Lin JQ, Sun DY, Zhang YB, Guo CL. 2004a. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the North China Craton. Chinese Journal of Geology , 39 (1) :123–138.
[40] Lu XP, Wu FY, Zhang YB, Zhao CB, Guo CL. 2004b. Emplacement age and tectonic setting of the Paleoproterozoic Liaoji granites in Tonghua area, southern Jilin Province. Acta Petrologica Sinica , 20 (3) :381–392.
[41] Lu XP, Wu FY, Guo JH, Wilde SA, Yang JH, Liu XM, Zhang XO. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern Block in the North China Craton. Precambrian Research , 146 (3-4) :138–164. DOI:10.1016/j.precamres.2006.01.009
[42] Lu XP.2009. Geochronology of the granites and Archaean crustal growth and evolution in South Jilin area, North China Craton. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences : 1 -83.
[43] Luo Y, Sun M, Zhao GC, Li SZ, Ayers JC, Xia XP, Zhang JH. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe groups:Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research , 163 (3-4) :279–306. DOI:10.1016/j.precamres.2008.01.002
[44] Meng E, Liu FL, Liu JH, Liu PH, Cui Y, Liu CH, Yang H, Wang F, Shi JR, Kong QB, Lian T. 2013. Zircon U-Pb and Lu-Hf isotopic constraints on Archean crustal evolution in the Liaonan Complex of Northeast China. Lithos , 177 :164–183. DOI:10.1016/j.lithos.2013.06.020
[45] Oh CW, Kim SW, Williams IS. 2006. Spinel granulite in Odesan area, South Korea:Tectonic implications for the collision between the North and South China Blocks. Lithos , 92 (3-4) :557–575. DOI:10.1016/j.lithos.2006.03.051
[46] Oh CW, Kusky T. 2007. The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review , 49 (7) :636–657. DOI:10.2747/0020-6814.49.7.636
[47] Oh CW. 2012. The tectonic evolution of South Korea and Northeast Asia from Paleoproterozoic to Triassic. The Journal of the Petrological Society of Korea , 21 (2) :59–87. DOI:10.7854/JPSK.2012.21.2.059
[48] Oh CW, Imayama T, Lee SY, Yi SB, Yi K, Lee BC. 2015. Permo-Triassic and Paleoproterozoic metamorphism related to continental collision in Yangpyeong, South Korea. Lithos , 216 .
[49] Paek RJ, Kang HG, Jon GP. 1996. Geology of Korea. Pyongyang:Foreign Languages Books Publishing House , 1 .
[50] Peng P, Zhai MG, Guo JH, Zhang HF, Zhang YB. 2008. Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton:An example from North Korea. Geological Magazine , 145 (5) :637–647.
[51] Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS, Zhang YB. 2011. Neoproterozoic (~900Ma) Sariwon sills in North Korea:Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research , 20 (1) :243–254. DOI:10.1016/j.gr.2010.12.011
[52] Peng P, Guo JH, Zhai MG, Windley BF, Li TS, Liu F. 2012. Genesis of the Hengling magmatic belt in the North China Craton:Implications for Paleoproterozoic tectonics. Lithos , 148 :27–44. DOI:10.1016/j.lithos.2012.05.021
[53] Peng P, Wang XP, Windley BF, Guo JH, Zhai M, Li Y. 2014. Spatial distribution of ca. 1950~1800Ma metamorphic events in the North China Craton:Implications for tectonic subdivision of the craton. Lithos , 202-203 :250–266.
[54] Peng P, Wang C, Wang XP, Yang SY. 2015. Qingyuan high-grade granite-greenstone terrain in the Eastern North China Craton:Root of a Neoarchaean arc. Tectonophysics , 662 :7–21. DOI:10.1016/j.tecto.2015.04.013
[55] Peng P, Yang SY, Wang XP. 2016. A preliminary study on the distribution, magma series and petrogenesis of the Triassic igneous rocks in Middle-South Korean Peninsula. Acta Petrologica Sinica , 32 (10) :3083–3097.
[56] Pe-Piper G. 2000. Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece. European Journal of Mineralogy , 12 :859–875. DOI:10.1127/ejm/12/4/0859
[57] Ree JH, Cho M, Kwon ST, Nakamura E. 1996. Possible eastward extension of Chinese collision belt in South Korea:The Imjingang belt. Geology , 24 (12) :1071–1074. DOI:10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
[58] Seo J, Choi SG, Oh CW. 2010. Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research , 18 (2-3) :479–496. DOI:10.1016/j.gr.2009.12.009
[59] Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters , 26 (2) :207–221. DOI:10.1016/0012-821X(75)90088-6
[60] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ. (eds.). Magmatism in the Ocean Basins. Geological Society of London, Special Publications , 42 (1) :313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[61] Sutcliffe RH, Smith AR, Doherty W, Barnett RL. 1990. Mantle derivation of Archean amphibole-bearing granitoid and associated mafic rocks:Evidence from the southern Superior Province, Canada. Contributions to Mineralogy and Petrology , 105 (3) :255–274. DOI:10.1007/BF00306538
[62] Suzuki K. 2009. CHIME dating and age mapping of monazite in granulites and paragneisses from the Hwacheon area, Korea:Implications for correlations with Chinese cratons. Geosciences Journal , 13 (3) :275–292. DOI:10.1007/s12303-009-0027-z
[63] Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M, Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research , 19 (1) :150–162. DOI:10.1016/j.gr.2010.05.007
[64] Wan YS, Song B, Yang C, Liu DY. 2005. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geologica Sinica , 79 (1) :78–87.
[65] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research , 149 (3-4) :249–271. DOI:10.1016/j.precamres.2006.06.006
[66] Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY, Ma MZ. 2012. Multiple 3. 8~3.1Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences , 54-55 :18–30.
[67] Wang W, Zhai MG, Li TS, Santosh M, Zhao L, Wang HZ. 2014. Archean-Paleoproterozoic crustal evolution in the eastern North China Craton:Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei Terrane. Precambrian Research , 241 :146–160. DOI:10.1016/j.precamres.2013.11.011
[68] Wang XP, Peng P, Wang C and Yang SY. 2016. Petrogenesis of the 2115Ma Haicheng mafic sills from the Eastern North China craton:Implications for an intra-continental rifting. Gondwana Research, doi:10.1016/j.gr.2016.01.009 https://www.researchgate.net/publication/295092156_Petrogenesis_of_the_2115_Ma_Haicheng_mafic_sills_from_the_Eastern_North_China_Craton_Implications_for_an_intra-continental_rifting
[69] Wang YF, Li XH, Jin W, Zhang JH. 2015. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Research , 263 :88–107.
[70] Williams IS, Cho DL, Kim SW. 2009. Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi massif, South Korea:Constraints on Triassic post-collisional magmatism. Lithos , 107 (3-4) :239–256. DOI:10.1016/j.lithos.2008.10.017
[71] Wu FY, Han RY, Yang JH, Wilde SA, Zhai MG, Park SC. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology , 238 (3-4) :232–248. DOI:10.1016/j.chemgeo.2006.11.012
[72] Wu FY, Zhang YB, Yang JH, Xie LW, Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research , 167 (3-4) :339–362. DOI:10.1016/j.precamres.2008.10.002
[73] Wu FY, Li QL, Yang JH, Kim JN, Han RH. 2016. Crustal growth and evolution of Rangnim Massif, northern Korean Peninsula. Acta Petrologica Sinica , 32 (10) :2933–2947.
[74] Wu ML, Zhao GC, Sun M, Bao ZA, Tam PY, He YH. 2014a. Tectonic affinity and reworking of the Archean Jiaodong Terrane in the Eastern Block of the North China Craton:Evidence from LA-ICP-MS U-Pb zircon ages. Geological Magazine , 151 (2) :365–371. DOI:10.1017/S0016756813000721
[75] Wu ML, Zhao GC, Sun M, Li SZ, Bao ZA, Tam PY, Eizenhöefer PR, He YH. 2014b. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane:Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos , 190-191 :71–84. DOI:10.1016/j.lithos.2013.12.004
[76] Xiang H, Zhang ZM, Lei HC, Qi M, Dong X, Wang W, Lin YH. 2014. Paleoproterozoic ultrahigh-temperature pelitic granulites in the northern Sulu orogen:Constraints from petrology and geochronology. Precambrian Research , 254 :273–289. DOI:10.1016/j.precamres.2014.09.004
[77] Xu JW, Zhu G. 1995. Discussion on tectonic models for the Tan-Lu fault zone, eastern China. Journal of Geology and Mineral Resources North China , 10 (2) :121–134.
[78] Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH, Fan HR. 2005. Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China:Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology , 214 (1-2) :99–125. DOI:10.1016/j.chemgeo.2004.08.053
[79] Yang JH, Wu FY, Xie LW, Liu XM. 2007. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, east North China Croton:Constraints from in-situ zircon U-Pb ages and Hf isotopes. Acta Petrologica Sinica , 23 (2) :263–276.
[80] Yi K, Cheong CS, Kim J, Kim N, Jeong YJ, Cho M. 2012. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea:SHRIMP zircon geochronology and geochemistry. Lithos , 153 :129–141. DOI:10.1016/j.lithos.2012.02.007
[81] Yin A, Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, Eastern Asia. Tectonics , 12 (4) :810–813.
[82] Yuan LL, Zhang XH, Xue FH, Han CM, Chen HH, Zhai MG. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning Province, North China Craton:Petrogenesis and tectonic implications. Precambrian Research , 264 :119–139. DOI:10.1016/j.precamres.2015.04.017
[83] Zhai MG, Ni ZY, Oh CW, Guo JH, Choi SG. 2005. SHRIMP zircon age of a Proterozoic rapakivi granite batholith in the Gyeonggi massif (South Korea) and its geological implications. Geological Magazine , 142 (1) :23–30. DOI:10.1017/S001675680400994X
[84] Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Hou QL, Fan QC. 2007a. Linking the Sulu UHP belt to the Korean Peninsula:Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research , 12 (4) :388–403. DOI:10.1016/j.gr.2007.02.003
[85] Zhai MG, Guo JH, Peng P, Hu B. 2007b. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine , 144 (3) :547–552. DOI:10.1017/S0016756807003287
[86] Zhai MG. 2016. Comparative study of geology in North China and Korean Peninsula:Research advances and key issues. Acta Petrologica Sinica , 32 (10) :2915–2932.
[87] Zhang YF, Liu JD, Xiao RG, Wang SZ, Wang J, Bao DJ. 2010. The hyalotourmalites of Houxianyu borate deposit in eastern Liaoning:Zircon features and SHRIMP dating. Earth Science , 35 (6) :985–999.
[88] Zhao GC, Cao L, Wilde SA, Sun M, Choe WJ, Li SZ. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters , 251 (3-4) :365–379. DOI:10.1016/j.epsl.2006.09.021
[89] Zhao L, Li TS, Peng P, Guo JH, Wang W, Wang HZ, Santosh M, Zhai MG. 2015. Anatomy of zircon growth in high pressure granulites:SIMS U-Pb geochronology and Lu-Hf isotopes from the Jiaobei Terrane, eastern North China Craton. Gondwana Research , 28 (4) :1373–1390. DOI:10.1016/j.gr.2014.10.009
[90] Zhao L, Zhang YB, Wu FY, Li QL, Yang JH, Kim JN, Choi WJ. 2016. Paleoproterozoic high temperature metamorphism and anatexis in the northwestern Korean Peninsula:Constraints from petrology and zircon U-Pb geochronology. Acta Petrologica Sinica , 32 (10) :3045–3069.
[91] Zhou XW, Zhao GC, Wei CJ, Geng YS, Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science , 308 (3) :328–350. DOI:10.2475/03.2008.06
[92] 白翔, 刘树文, 阎明, 张立飞, 王伟, 郭荣荣, 郭博然.2014. 抚顺南部早前寒武纪变质杂岩的地质事件序列. 岩石学报 , 30 (10) :2905–2924.
[93] 董春艳, 马铭株, 刘守偈, 颉颃强, 刘敦一, 李雪梅, 万渝生.2012. 华北克拉通古元古代中期伸展体制新证据:鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学. 岩石学报 , 28 (2) :2785–2792.
[94] 姜春潮. 1987. 辽吉东部前寒武纪地质. 沈阳: 辽宁科学与技术出版社 .
[95] 孔庆波.2009. 苏鲁地体古元古代花岗质片麻岩锆石的U-Pb定年、REE和Lu-Hf同位素特征. 地质通报 , 28 (1) :51–62.
[96] 金正男, 韩龙渊, 赵磊, 李秋立, 金石山.2016. 朝鲜半岛北部定州与铁山稀土矿相关碱性岩和花岗岩的岩石学和SIMS锆石U-Pb年代学特征研究. 岩石学报 , 32 (10) :3123–3138.
[97] 李俊建, 沈保丰.2000. 辽吉地区早前寒武纪大陆壳的地质年代表. 前寒武纪研究进展 , 23 (4) :242–249.
[98] 李秋立, 赵磊, 张艳斌, 杨正赫, 金正男, 韩龙渊.2016. 朝鲜甑山"群"变质岩中锆石-榍石-金红石U-Pb体系:古元古代-中生代构造-热事件记录. 岩石学报 , 32 (10) :3019–3032.
[99] 廖鑫, 张晓晖, 金胜贤, 朴雄, 郑哲寿.2016. 朝鲜半岛古元古代摩天岭群的碎屑锆石U-Pb年龄及其地质意义. 岩石学报 , 32 (10) :2981–2992.
[100] 路孝平, 吴福元, 林景仟, 孙德有, 张艳斌, 郭春丽.2004a. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架. 地质科学 , 39 (1) :123–138.
[101] 路孝平, 吴福元, 张艳斌, 赵成弼, 郭春丽.2004b. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景. 岩石学报 , 20 (3) :381–392.
[102] 路孝平. 2009. 吉林省南部地区太古宙地质体年龄格架及地壳演化. 博士后出站报告. 北京: 中国科学院地质与地球物理研究所 .
[103] 彭澎, 杨书艳, 王欣平.2016. 朝鲜半岛中南部三叠纪岩浆岩的分布、系列与成因浅析. 岩石学报 , 32 (10) :3083–3097.
[104] 万渝生, 宋彪, 杨淳, 刘敦一.2005. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义. 地质学报 , 79 (1) :78–87.
[105] 吴福元, 李秋立, 杨正赫, 金正男, 韩龙渊.2016. 朝鲜北部狼林地块构造归属与地壳形成时代. 岩石学报 , 32 (10) :2933–2947.
[106] 徐嘉炜, 朱光.1995. 中国东部郯庐断裂带构造模式讨论. 华北地质矿产杂志 , 10 (2) :121–134.
[107] 杨进辉, 吴福元, 谢烈文, 柳小明.2007. 辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U-Pb年龄和Hf同位素制约. 岩石学报 , 23 (2) :263–276.
[108] 翟明国. 朝鲜半岛与华北地质之对比研究:进展与问题. 岩石学报 , 32 (10) :2915–2932.
[109] 张艳飞, 刘敬党, 肖荣阁, 王生志, 王瑾, 包德军.2010. 辽宁后仙峪硼矿区古元古代电气石岩:锆石特征及SHRIMP定年. 地球科学-中国地质大学学报 , 35 (6) :985–999.
[110] 赵磊, 张艳斌, 吴福元, 李秋立, 杨正赫, 金正男, 崔元正.2016. 朝鲜半岛西北部古元古代高温变质-深熔作用:宏观和微观岩石学以及锆石U-Pb年代学制约. 岩石学报 , 32 (10) :3045–3069.