岩石学报  2016, Vol. 32 Issue (9): 2823-2838   PDF    
华北克拉通北部迁安紫苏花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及地质意义
韩鑫1, 裴磊1, 郑媛媛1,2, 刘俊来1     
1. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083 ;
2. 河南省地质矿产勘查开发局第二地质勘查院, 郑州 450000
摘要: 紫苏花岗岩是太古宙高级变质地体的主要物质组成,对其开展岩石成因与年代学研究,可深入理解早期大陆生长及其机制。本文以迁安紫苏花岗岩为窗口,探讨其成因与机制,通过精确的LA-ICP-MS锆石U-Pb测年获得其成岩年龄为2544±22 Ma,指示了新太古代晚期的一次岩浆活动。岩石变质年龄为2475±87 Ma,证明随后的高级变质作用年龄范围为2439~2501 Ma。岩石地球化学研究表明:迁安紫苏花岗岩SiO2=59.14%~66.97%,MgO=1.62%~3.12%,富Ba(574×10-6~1572×10-6),LREE((La/Yb)N=22.3~79.0),亏损HFSE,不存在Eu负异常(δEu=1.76~3.43),其高Sr/Y值(85~179)与(La/Yb)N值指示了与TTG的相关性。结合样品地球化学特征及锆石U-Pb年龄分析,并与本区域大地构造背景相结合,迁安紫苏花岗岩可能是角闪岩相条件下偏中性含水玄武质原岩高温部分熔融的产物,应当形成于地幔柱背景。
关键词: 锆石U-Pb定年     地球化学     迁安紫苏花岗岩     华北克拉通     地幔柱    
Zircon U-Pb geochronology and geochemistry of charnockitic rocks from Qian'an in the northern part of North China Craton: Implications for petrogenesis and tectonic setting
HAN Xin1, PEI Lei1, ZHENG YuanYuan1,2, LIU JunLai1     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China ;
2. No.2 Geo-exploration Institute, Henan Provincial Bureau of Geo-exploration and Mineral Development, Zhengzhou 450000, China
Abstract: Charnockite, one of the dominant lithologies in many Precambrian high-grade metamorphic terranes around the world, provides important clues for the history and mechanism of early crustal growth. However, its genesis is still debated. Charnockitic rocks in Qian'an are outcropped in eastern Hebei, in the northern part of the Eastern Block of the North China Craton. LA-ICP-MS U-Pb dating of zircon grains from the charnockitic rocks shows that 22 dated spots can be subdivided into two groups. A first group of 6 spots with a weighted mean age of 2544±22 Ma is suggested to represent the ages of magmatic crystallization. Another group of 16 spots is interpreted to represent a later thermal event, attesting to a major phase of a metamorphism during 2439~2501 Ma, with a weighted mean age of 2475±87 Ma, subsequent to the Late Neoarchean magmatism. The charnockitic rocks have SiO2 of 59.14%~66.97%, MgO of 1.62%~3.12%, with enrichment in Ba(574×10-6~1572×10-6), LREE((La/Yb)N=22.3~79.0)and depletion in HFSE, and weak or no negative Eu anomalies(δEu=1.76~3.43). In general, their high Sr/Y(85~179)and (La/Yb)N values are attributed to their TTG affinities. Combined geochemical and zircon U-Pb age analysis, and field and petrographic observations suggest that the charnockitic rocks from Qian'an were originated from high-temperature melting of moderately hydrous basaltic source rocks at amphibolite facies. A mantle plume model is favored from the geochemical characteristics, which well explains the petrogenesis of charnockites, and many other geological features in the Eastern Block of the North China Craton as well.
Key words: LA-ICP-MS zircon U-Pb dating     Geochemistry     Charnockitic rocks in Qian'an     North China Craton     Mantle plume    
1 引言

紫苏花岗岩是在无水(或低水活度)条件下形成的一种含斜方辉石的中粗粒花岗质岩石,通常出现在前寒武纪高级变质岩区中,是大陆中下地壳的重要组成部分(Holland, 1900)。紫苏花岗岩常与TTG岩系、麻粒岩相变质岩紧密伴生,是研究地壳深部作用过程的窗口,据此可探讨其岩石成因与形成的构造环境,对于阐明早期地壳的生长及演化具有重要的研究意义(Frost et al., 2000; Janardhan et al., 1982; Kar et al., 2003; Rajesh, 2012; Rajesh and Santosh, 2012; Santosh and Yoshida, 1992; Yang et al., 2014; Zhang et al., 2010)。

华北克拉通是全球最古老的克拉通之一,其早前寒武纪变质基底可分为东部陆块(the Eastern Block)、西部陆块(the Western Block)和中部造山带(the Trans-North China Orogen)(Zhao et al., 1998, 2005)(图 1a),具有漫长的构造演化史。与世界上其他古老克拉通不同,华北克拉通在新太古代晚期经历了复杂多样的构造-热事件(约2.5~2.6 Ga),形成大量的TTG岩系与紫苏花岗岩(Fang, 1998; Jahn and Zhang, 1984; Kröner et al., 1988, 1998; Wan et al., 2011; Wang et al., 2009; Zhai and Santosh, 2011; Zhao et al., 2012)。其中,东部陆块冀东地区的紫苏花岗岩主要分布在迁西、太平寨、迁安及滦河附近。早期通过Rb-Sr全岩等时线法获得的迁安水厂地区紫苏花岗岩年龄为2.65 Ga(王凯怡等,1984)。近年来,通过锆石U-Pb法测年获得的紫苏花岗岩年龄主要集中在~2.5 Ga,例如Bai et al.(2015)报道了冀东紫苏花岗岩的锆石U-Pb年龄为2515±22 Ma~2527±28 Ma,Yang et al.(2016)则获得锆石U-Pb年龄为2536±8 Ma~2578±7.3 Ma。这些年龄为该区紫苏花岗岩的成因探讨提供十分重要的年代学约束。


图 1 华北克拉通构造单元划分(a,据Zhao et al,2005修改)和冀东前寒武区域地质图(b,据Lv et al,2012修改) Fig. 1 Generalized tectonic framework of the North China Craton showing the major crustal blocks(a, modified after Zhao et al, 2005) and simplified geological maps showing different Early Precambrian rock units in eastern Hebei(b, modified after Lv et al, 2012) The study area of Fig 2 is shown by box

前人对冀东紫苏花岗岩的成因存在多种不同认识:①围岩深熔混合岩化的产物(钱祥麟等, 1985; 孙大中, 1984; 王凯怡等, 1984; 张贻侠等, 1986);②英云闪长岩-花岗闪长岩在富CO2流体条件下,经麻粒岩相变质作用而成(耿元生等, 1990);③结晶分异作用而成(王安建, 1992),④地壳基性岩石部分熔融的产物(Bai et al., 2015)。就其形成背景而言,冀东紫苏花岗岩的区域构造环境又分为大陆岩浆弧俯冲环境(Bai et al., 2015; Yang et al., 2016)与地幔柱环境(Zhao et al., 2001, 2005)两种截然不同的学术观点。认识差异的原因可能是该区紫苏花岗岩本就存在成因上的多样性,也可能是年代学、地球化学等资料尚不够丰富所致。

本文试以华北克拉通冀东地区的迁安紫苏花岗岩为研究对象,在详细的野外地质调查研究基础上,对其进行精确的锆石U-Pb年代学与岩石地球化学分析,旨在探讨其岩石成因与形成的构造环境,从而为查明冀东地区新太古代晚期的构造环境提供佐证。

2 区域地质背景

华北克拉通北东缘的冀东地区广泛出露早前寒武岩石,主要由新太古代以及少量古太古代-中太古代片麻岩组成,且部分被新元古代-新生代沉积序列覆盖,或被中生代花岗岩侵入。该区的太古宙岩石单元划分为遵化杂岩、迁西杂岩、迁安片麻岩、青龙杂岩系、安子岭岩体、界口岭变质闪长岩以及卢龙片麻岩(Lv et al., 2012; Nutman et al., 2011; Sun et al., 2010; Liu et al., 1992, 2007, 2013Jahn and Zhang, 1984; Jahn et al., 1987; Wilde et al., 2008; Wu et al., 2005)(图 1b)。受后期构造-热事件广泛改造,区域内只有极少量古太古代基底岩石出露,未明确分出岩石单元;局部出露改造强烈的中太古代岩石(3.2~2.8 Ga),主要以迁西杂岩和曹庄地区的正片麻岩为代表(Nutman et al., 2011),约占冀东基底出露岩石的15%。

相比之下,新太古代岩石以TTG片麻岩、深成岩体(2.5~2.6 Ga),以及少量表壳岩(2.5~2.8 Ga)为主要组成,占冀东基底出露岩石的85%(Jahn et al., 1987; Lv et al., 2012)。迁西杂岩中的渔户寨紫苏英云闪长岩、遵化杂岩中的秋花峪奥长花岗质片麻岩和迁西杂岩中的崔杖子片麻岩等地区的年龄分别为2550 Ma、2515 Ma和2492 Ma(Geng et al., 2012, 2006),安子岭花岗岩体的成岩年龄为2515~2526 Ma(Yang et al., 2008)。Bai et al.(2014)报道了冀东闪长质片麻岩、奥长花岗岩以及富含石英的奥长花岗质片麻岩的侵位年龄集中为2513~2535 Ma。除此之外,尚有少量变质火山岩的成岩年龄报道,如迁西洒河桥中基性变质火山岩原岩结晶年龄为2518~2614 Ma(Guo et al., 2013),青龙杂岩系中的朱杖子岩群变质酸性火山岩年龄为2511±12 Ma(Lv et al., 2012),双山子岩群变基性岩、双山子群变质安山岩和双山子群变质流纹岩年龄分别为2503±13 Ma(Lv et al., 2012)、2514±16 Ma和2522±8 Ma(郭荣荣等, 2014)。Nutman et al.(2011)对新太古代杂岩的研究认为其经历了3次峰期热事件,分别为2550~2535 Ma,2530~2520 Ma以及2500~2490 Ma,其中第3次热事件伴随强烈的麻粒岩相变质作用。

迁安紫苏花岗岩位于迁安市西北,滦河西畔,产出于冀东新太古代迁安片麻岩和混合岩中(图 1b图 2)。迁安片麻岩原岩属基性-中酸性火山岩-铁硅质建造。出露的主要岩石类型有:长英质片麻岩、黑云斜长片麻岩、斜长角闪岩及含BIF片麻岩,变质程度达高角闪岩相至麻粒岩相。区内岩石均经受不同程度的混合岩化作用,局部变形叠加强烈。


图 2 迁安紫苏花岗岩分布图(据Yang et al., 2016修改) Fig. 2 Geological map shows charnockitic rocks in Qian'an(modified after Yang et al., 2016) The sample locations for of this study are also shown
3 岩相学特征

迁安地区的紫苏花岗岩多为中粗粒花岗结构,在新鲜露头中呈现深灰色,块状构造发育,亦可见片麻状构造。主要矿物成分为:斜长石(50%~60%)、石英(15%~25%)、斜方辉石(10%)、黑云母(5%)、石榴子石(5%),根据岩相学特征可判断为紫苏花岗闪长岩(图 3)。围岩主要为TTG质片麻岩,多数紫苏花岗岩均有包体,包体成分复杂,有黑云变粒岩、麻粒岩、斜长角闪岩及磁铁石英岩等,有些包体显示出褶皱变形的特征。


图 3 迁安紫苏花岗岩野外照片及显微照片 Pl-斜长石; Grt-石榴子石; Qtz-石英; Bt-黑云母; Opx-斜方辉石 Fig. 3 Field photographs and photomicrographs of charnockitic rocks in Qian'an Pl-plagioclase; Grt-garnet; Qtz-quartz; Bt-biotite; Opx-orthopyroxene
4 测试方法

分析样品均采自基岩露头,样品新鲜,无蚀变,采集位置避开了研究区内的接触带、蚀变带、断裂破碎带等。主量元素在长安大学西部矿产资源与地质工程教育部重点实验室采用X射线荧光光谱(XRF)方法分析完成,XRF溶片法按照国家标准GB/T 14506.28-1993执行,分析的相对偏差小于5%,烧失量(LOI)在烘箱中经1000 ℃高温烘烤90 min后称重获得。微量元素在长安大学西部矿产资源与地质工程教育部重点实验室采用Thermo-X7电感耦合等离子体质谱仪进行样品测定,仪器工作参数:Power:1200w,Nebulizer gas:0.64 L/min,Auxiliary gas:0.80 L/min,Plasma gas:13 L/min。除Nb和Ta的分析的相对偏差小于10%外,其余小于5%。

用于LA-ICP-MS锆石U-Pb测年的紫苏花岗岩样品编号为QA1439ZR-1。锆石单矿物分离挑选在河北区调队(廊坊)完成,先将大约10kg的样品粉碎至80~100目,经过常规的重液浮选和电磁分离方法,然后在双目镜下根据锆石颜色、自形程度、形态和透明度等特征初步分类,挑选出具有代表性的锆石。锆石的制靶及激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)锆石原位U-Pb定年测试方法均在中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室完成。将锆石样品分别用双面胶粘在载玻片上,放上PVC环,然后将环氧树脂和固化剂进行充分混合后注入PVC环中,待树脂充分固化后将样品座从载玻片上剥离,并对其进行抛光,直到样品露出一个光洁的平面,进行锆石显微(反射光和透射光)照相。然后用体积百分比为3%的稀HNO3清洗样品制成样品靶样。实验采用的ICP-MS为美国Agilent公司生产的Agilent 7500a,激光剥蚀系统为美国NewWave公司生产的UP193FX型193nm ArF准分子系统,激光器来自于德国ATL公司,激光器波长为193nm,脉冲宽度 < 4ns,束斑直径为10~125 μm可调,测试所用到的束斑直径为35 μm,脉冲频率为7Hz。锆石标样采用Plesovice (其年龄为337±0.37 Ma; Sláma et al., 2008),成分标样采用NIST SRM 612,其中29Si作为内标元素(Ballard et al., 2001; Horn et al., 2000; Košler et al., 2002; 袁洪林等, 2003; 黄波等, 2009)。样品的同位素比值及元素含量计算采用GLITTER(ver 4.0, Macquarie University)程序,普通铅校正采用Andersen(2002)提出的校正程序。年龄加权平均计算、U-Pb谐和图以及年龄分布频率图绘制均采用Ludwig(2003)程序完成,数据误差为1σ

5 分析结果 5.1 主、微量元素地球化学特征

主、微量元素岩石化学分析结果及有关参数见表 1,样品的SiO2=59.14%~66.97%,表现出从闪长岩到花岗闪长岩的成分变化,并具有亚碱性的特点(图 4a)。相对富铝(Al2O3=15.08%~16.48%),全碱(K2O+Na2O)为5.54%~7.19%,K2O/Na2O比值变化较小(0.52%~1.17%),A/CNK=1.03~1.14,A/NK=1.66~2.05,为相对过铝质系列(图 4b);MgO=1.62%~3.12%,Mg#指数(Mg#=Mg/(Mg+Fe2+),Fe2+=0.89×totalFe)为40~50,在SiO2-(K2O+Na2O-CaO)图解中,样品大多数落在了钙-碱性范围(图 4c),在SiO2-FeOT/(FeOT+MgO)图解(图 4d)中归属镁质区域。TiO2,MnO及P2O5则含量较低,分别为0.41%~0.82%,0.03%~0.07%和0.02%~0.12%。



表 1 迁安紫苏花岗岩地球化学数据表(主量元素:wt%;微量元素:×10-6) Table 1 The geochemical compositions from charnockitic rocks in Qian'an area (major elements: wt%; trace elements: ×10-6)

图 4 迁安紫苏花岗岩地球化学分类图 (a)SiO2-(Na2O+K2O)图(Le Bas et al., 1986); (b)A/CNK-A/NK图(Frost et al., 2001); (c)SiO2 -(K2O+Na2O-CaO)图(Jensen, 1976); (d)SiO2-FeOT/(FeOT+MgO)图(Frost et al., 2001) Fig. 4 Geochemical classification diagrams of charnockitic rocks from Qian'an area

迁安紫苏花岗岩的稀土元素总量(ΣREE)为78.79×10-6~104.9×10-6,大部分样品在球粒陨石标准化配分曲线中为明显的右倾型模式,轻重稀土元素分馏明显,以LREE富集(69.11×10-6~91.37×10-6)和HREE几乎平坦((La/Yb)N=22.3~79.0,平均值46.7)及不存在Eu负异常(δEu=1.76~3.43)为特征(图 5)。


图 5 迁安紫苏花岗岩球粒陨石标准化稀土模式图与原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite normalized REE patterns and primitive mantle-normalized trace element spider diagrams for charnockitic rocks from Qian'an area(normalization values after Sun and McDonough, 1989)

在原始地幔标准化的微量元素蛛网图中,紫苏花岗岩表现为亏损Nb、Ta、Th、U及Ti等高场强元素,富集Ba、K、Rb等大离子亲石元素(图 5),且具有高Sr(477×10-6~681×10-6,平均569×10-6)、低Yb(在0.21×10-6~0.73×10-6,平均0.43×10-6)及较高的Sr/Y(85~179)、Nb/Ta(22.2~41.5)比值(表 1)。

5.2 锆石U-Pb年代学结果

采用LA-ICP-MS锆石U-Pb测年,从紫苏花岗岩中挑选了16颗锆石颗粒进行22个分析点测试(表 2),样品中的大部分锆石呈自形-半自形柱状,粒径为100~200 μm。阴极发光图像具有典型的核-边结构,锆石核部主要呈暗色调,内部结构较复杂,韵律环带不清,但部分锆石仍保留有岩浆结晶环带,表明其为岩浆成因(Pidgeon et al., 1998; 吴元保和郑永飞, 2004)。变质增生边内部结构及色调较均匀,部分边部较宽(图 6)。



表 2 迁安紫苏花岗岩(样品QA1439ZR-1)LA-ICP-MS锆石U-Pb数据表 Table 2 LA-ICP-MS U-Pb data fpr zircon from charnockitic rocks (Sample QA1439ZR-1)in Qian'an area

图 6 迁安紫苏花岗岩(样品QA1439ZR-1)锆石微区阴极发光图像及U-Pb年龄 蓝圈为核部分析点;白圈为边部分析点 Fig. 6 CL images of zircons from the charnockitic rock (Sample QA1439ZR-1) from Qian'an area The blue circles and the white circles indicate the spot of U-Pb analysis from zircon core and rim, respectively

从锆石U-Pb谐和线图与年龄密度直方图可知(图 7),22点可以分为2组:第一组来自锆石核部的6个分析点,其Th/U比值大于0.8(表 2),加权平均年龄为207Pb/206Pb=2544±22 Ma(n=6, MSWD=0.011),指示了新太古代晚期的一次岩浆活动。其余来自锆石边部16个分析点的加权平均年龄为207Pb/206Pb=2475±87 Ma,(n=16, MSWD=1.4),这被解释为随后的热事件,证明随后的高级变质作用年龄为2439~2501 Ma(表 2)。


图 7 迁安紫苏花岗岩(样品QA1439ZR-1)锆石U-Pb谐和线图及年龄密度直方图 Fig. 7 Zircon U-Pb concordia plots and age data histograms with probability curves for charnockitic rock (Sample QA1439ZR-1) from Qian'an area
6 讨论 6.1 岩石成因

来自样品QA1439ZR-1的锆石颗粒显示其具有较为复杂的结构和成因,核部残留原岩锆石,其年龄表明迁安紫苏花岗岩的岩浆侵位年龄范围为2511±12 Ma~2558±7 Ma,与毗邻区域的TTG片麻岩的岩浆侵位年龄(2512±35 Ma~2538±14 Ma)相似(Bai et al., 2014),因此迁安紫苏花岗岩可能不是TTG片麻岩重熔作用的产物。

迁安紫苏花岗岩呈亚碱性、镁质以及相对过铝质的特征,使之具有与其同时代印度半岛(Rajesh, 2007, 2012),以及世界上其他前寒武纪紫苏花岗岩相似而显著的地球化学特征(Frost and Frost, 2008),其高Sr/Y值(85~179)与(La/Yb)N值则暗示了与TTG联系密切(图 8)。结合稀土元素不存在Eu负异常的证据(δEu=1.76~3.43),表明它不可能形成于先期镁铁质岩浆的AFC过程。因为结晶分异形成的花岗质岩浆在REE分配模式下应具有负Eu异常特征,且露头紧邻处并没有同时代辉长质岩石产出的地质事实,说明它与AFC过程无关。


图 8 迁安紫苏花岗岩Y-Sr/Y图解(据Drummond and Defant, 1990)和YbN-(La/Yb)N图解(据Moyen and Martin, 2012) Fig. 8 Y vs. Sr/Y(after Drummond and Defant, 1990) and YbN vs. (La/Yb)N (after Moyen and Martin, 2012)diagrams for charnockitic rocks from Qian'an area to show the protolith properties

迁安紫苏花岗岩的哈克图解显示(图 9),其成分与熔体中的TiO2、K2O(Sisson et al., 2005)、Fe2O3、CaO(Rapp and Watson, 1995)与Al2O3、Na2O(Beard and Lofgren, 1991)密切关联。且样品相对过铝质的特征与高温含水熔体成分具有一致性(Sisson et al., 2005)(图 10),这表明研究区紫苏花岗岩可能具有一个含水玄武质原岩,后者具有Beard and Lofgren(1991)Rapp and Watson(1995)以及Sisson et al.(2005)实验岩石样品的混合成分。实验岩石学业已证明:在压力宽泛,T=750~1000 ℃的条件下,角闪岩发生脱水熔融作用能够形成TTG质岩浆,且实验生成的组分与TTG岩浆的天然组分接近一致,考虑到迁安紫苏花岗岩与TTG相关性很强,因此具有与角闪质岩石原岩熔体相同的特征(图 11)(Beard and Lofgren, 1991; Rapp and Watson, 1995; Rapp et al., 1991; Rushmer, 1991; Springer and Seck, 1997; Wolf and Wyllie, 1994; Chen et al., 2015)。


图 9 迁安紫苏花岗岩哈克图解 其中,角闪岩脱水熔体区域据Beard and Lofgren(1991)Rapp and Watson(1995); 高温含水熔体区域据Sisson et al.(2005); 含斜方辉石变质脱水带据Rajesh et al.(2011) Fig. 9 Representative major and trace element variation diagrams for charnockitic rocks from Qian'an area Amphibolite dehydration melts from Beard and Lofgren(1991)and Rapp and Watson(1995), and high-temperature hydrous melts from Sisson et al.(2005)are shown for comparison. The references used to compile the compositional range of orthopyroxene-bearing metamorphic dehydration zones are referred to Rajesh et al.(2011)

图 10 迁安紫苏花岗岩SiO2-A/CNK图解(据Rajesh et al., 2011) Fig. 10 SiO2 vs. A/CNK plot for charnockitic rocks from Qian'an area(after Rajesh et al., 2011)

图 11 迁安紫苏花岗岩(CaO+Al2O3)-CaO/Al2O3图解和(Na2O+K2O+FeO+MgO+TiO2)-(Na2O+K2O)/(FeO+MgO+TiO2)图解(据Douce, 1999) Fig. 11 CaO+Al2O3 vs. CaO/Al2O3 plot and Na2O+K2O+FeO+MgO+TiO2 vs. (Na2O+K2O)/(FeO+MgO+TiO2) plot for charnockitic rocks from Qian'an area(after Douce, 1999)

此外,鉴于其Sr/Y比值和(La/Yb)N比值变化较大,迁安紫苏花岗岩可能形成于一个过渡的压力状态下,较低重稀土分馏模式的样品可能代表熔体来自于低压下贫石榴石源区,较高重稀土分馏模式的样品和正Eu异常的样品表明其压力增大且石榴子石比例在增加(Rapp et al., 2003)。至于样品的结晶温度,使用Fe-Ti氧化物与磷灰石饱和温度计判断形成温度为800~900 ℃(Harrison and Watson, 1984; Green and Pearson, 1986)(图 12)。


图 12 迁安紫苏花岗岩SiO2-TiO2图解与SiO2-P2O5图解 左图等温线显示7.5kbar条件下,Fe-Ti氧化物的饱和温度(Harrison and Watson, 1984); 右图等温线显示7.5kbar条件下,磷灰石的饱和温度(Green and Pearson, 1986) Fig. 12 SiO2 vs. TiO2 plot and SiO2 vs. P2O5 plot for charnockitic rocks from Qian'an area The isotherms in left Fig. 12 showing Fe-Ti oxide saturation temperature at 7.5kbar(Harrison and Watson, 1984), while those in right Fig. 12 illustrating apatite saturation temperature at 7.5kbar(Green and Pearson, 1986)

结合岩相学与锆石U-Pb年龄数据,均表明迁安紫苏花岗岩经历了麻粒岩相变质作用。Liu(1995, 1996)和Liu et al.(1991)发现,冀东地区的麻粒岩在T=~850 ℃和P=~10kbar时发生峰期变质作用,此时的流体包裹体成分表现为几乎均质的CO2,验证了无水的变质作用条件。另据Rutter and Wyllie(1988)英云闪长岩样品熔融实验(P=10kbar)报道:在无外来水与挥发份加入的条件下,当T=~825 ℃,样品开始熔融。当T=~875 ℃时,熔体生成率 < 10%。Skjerlie and Johnston(1992)对太古代英云闪长质片麻岩样品熔融实验(P=10kbar)也有类似的报道:在无外来水与挥发份加入的条件下,当T=~875 ℃时,样品开始熔融,当T=950 ℃时,熔体生成率仍 < 10%。实验岩石学表明:当熔体的百分比小于10%,生成的熔体赋存于矿物边界,而不是以相互聚集而作为独立的岩浆形式出现(Arzi, 1978)。因此,迁安紫苏花岗岩可能并不是TTG片麻岩遭受麻粒岩相变质作用的产物。

结合前人对迁安及邻区的紫苏花岗岩进行过部分锆石Lu-Hf同位素体系的研究,εHf值为+1.0~+7.5;单阶段Hf模式年龄tDM为2748~3071 Ma(表 3Bai et al., 2015; Yang et al., 2016)。统计表明其εHf值均为正值,模式年龄略老于岩浆结晶时代,共同指示其为年轻下地壳的部分熔融,而非源于地幔的部分熔融或古老陆核的部分熔融。


表 3 冀东迁安及邻区紫苏花岗岩Lu-Hf同位素εHf(t)及模式年龄统计表 Table 3 Summary of tDM ages and εHf(t) values from charnockitic rocks in Qian'an and related region

综上,可以认为迁安紫苏花岗岩可能形成于偏中性含水玄武质源岩的高温部分熔融,和印度南部Nagercoil紫苏花岗岩具有相似的特征(Rajesh et al., 2011)。

6.2 区域构造意义

广泛分布于冀东地区的紫苏花岗岩及同时期的岩浆活动、高级变质作用,反映了华北克拉通在新太古代(2.5~2.6 Ga)发生了重要的构造-热事件,这被认为是大规模幔源岩浆底垫与侵位的结果(Bohlen, 1991; Wells, 1980),该构造-热事件可能与大陆岩浆弧背景(Guo et al., 2013, 2015; Lv et al., 2012; Nutman et al., 2011; Polat et al., 2006a, b; Sandiford and Powell, 1986; Wang et al., 2012)、大陆裂谷环境(Sandiford and Powell, 1986),或者地幔柱模式(Geng et al., 2006; Han et al., 2014; Wu et al., 2012, 2014a, b; Zhao et al., 1998, 1999, 2001)有关。根据Zhao et al.(2001, 2005)总结,华北克拉通东部主要出露2.5~2.6 Ga TTG片麻岩、超镁铁质-镁铁质岩石,~2.52 Ga闪长质、花岗闪长质、二长花岗质以及钾长花岗质侵入体,~2.5 Ga同构造紫苏花岗岩,且伴有少量的2.50~2.55 Ga双峰式火山岩发育。结合前人最新的锆石U-Pb年龄,本文认为冀东地区紫苏花岗质岩浆活动范围为2.53~2.58 Ga (Bai et al., 2015; Yang et al., 2016),随后发生区域内发生强烈的变形与变质作用(2.44~2.50 Ga)(Bai et al., 2014, 2016; Jahn and Zhang, 1984; Kröner et al., 1998; Li et al., 2010; Pidgeon, 1980; Shen et al., 1994; Wu et al., 1991; Yang et al., 2008; Zhao and Zhai, 2013)。

主微量元素分析结果显示(表 1),迁安紫苏花岗岩主要为亚碱性、镁质及过铝质特点,且富集大离子亲石元素(Ba、K、Rb、Sr)和亏损高场强元素(Nb、Ta、Th、U、Ti),与现代岛弧分布的安山岩特征相似(Tatsumi, 2006),但这样的地球化学特征并不具有弧环境的专属性(Moyen and Martin, 2012; Pearce and Peate, 1995),且样品的MgO=1.62%~3.12%,Mg#=40~50,与同为太古代的赞岐岩明显不同(Shirey and Hanson, 1984; Stern, 1989; Stern and Hanson, 1991),后者的地球化学行为与高镁玻安岩(Crawford et al., 1989)、玻安质闪长岩侵入体(Kemp, 2003)以及高镁安山岩(Tatsumi, 1982, 2006)类似,具有MgO >6%, Mg# >60, Cr >100×10-6, Sr与Ba均>500×10-6的特征。因此,迁安紫苏花岗岩的地球化学特征可能表明了古老地壳物质的贡献,并不是俯冲板片脱水流体或熔体与地幔楔相互作用的结果(Martin et al., 2005; Moyen et al., 2001; Stern and Kilian, 1996)。

如前文所述,迁安紫苏花岗岩的地球化学特征与TTG岩系相关性密切,具有高SiO2、Sr、Sr/Y、(La/Yb)N值及低Y、YbN的特征。最近的研究显示,新太古代TTG片麻岩同现代大陆边缘弧的钙碱性岩体相比具有相似的地球化学亲和性(Wang et al., 2012; Zhang et al., 2012)。然而,根据Zhao et al.(1999)的分析,该模式不能合理地解释新太古代晚期基底岩石的地质特征,原因如下:(1) 与现代大陆岛弧的正常宽度相较,冀东地区麻粒岩带的横向出露过于宽广(宽度>800 km),华北克拉通东部的新太古代岩浆作用在区域内短周期(2.5~2.6 Ga)超常大规模活动,且并没有系统而递进的年龄分布规律,很难用弧俯冲模型进行有效的解释;(2) 大陆岩浆弧模型不能够合理的解释华北克拉通地区反常高温科马提岩的形成原因,后者与基性麻粒岩联系紧密,熔融温度高达1600 ℃;(3) 与世界其他克拉通晚太古宙岩石组合相似,华北克拉通东部陆块的晚太古代基底尽管含有大量钙碱性TTG深成侵入体,但缺少与显生宙以来的以安山岩为主的岩浆弧组合;(4) 由于冀东地区存在与底辟作用相关的穹状构造,且后者缺乏与裂谷作用相关的碱性侵入岩,因此,大陆裂谷模型亦不适用于华北克拉通东部地区(Zhao et al., 2001)。

基于以上原因,Zhao et al.(1998)首次提出应用地幔柱模型解释新太古代晚期东部地块基底岩石的形成与演化。随后,Geng et al.(2006)用以解释新太古代晚期冀东地区在如此短时间内TTG质岩浆侵位与麻粒岩相变质作用产生的缘由。最近,Wu et al.(2012)认为:地幔柱在新太古代晚期沿着位于东部地块的鲁西地区大规模上涌,导致该区上地幔与下地壳大面积熔融发生TTG质岩浆活动,随后的麻粒岩相变质作用具有逆时针P-T-t轨迹的等压冷却特征。

在本文研究中,迁安紫苏花岗岩与冀东地区新太古代TTG岩系密切相关,虽然本文提供的数据不能严谨限定冀东地区的大地构造模式,但地幔柱模式能够很好的诠释其所具有的地质特征,也能合理地阐释冀东地区紫苏花岗岩的源区与形成。同时能够合理地解释华北克拉通东部2.5~2.6 Ga TTG岩系与紫苏花岗岩的大规模出露,以及随后以逆时针P-T-t轨迹为特征的区域变质作用。笔者认为,温度相对较低的地幔柱头以地幔上涌的方式对地壳初始升温,使下地壳部分熔融形成TTG岩系与紫苏花岗岩,较高温的柱尾则随后进一步加热,引起华北克拉通东部陆块发生麻粒岩相变质作用(Wu et al., 2012)。

7 结论

(1) 迁安紫苏花岗岩为镁质紫苏花岗岩,显示了从闪长岩到花岗闪长岩的成分变化,具过铝质、亚碱性的特征。其富Ba、LREE,亏损HFSE,Eu正异常明显,其高Sr/Y与(La/Yb)N值暗示了与TTG的亲缘性,可能是偏中性含水玄武质原岩高温部分熔融的产物。

(2) 迁安紫苏花岗岩的锆石U-Pb测年数据显示:核部结晶年龄为207Pb/206Pb=2544±22 Ma,指示了新太古代晚期的一次岩浆活动,边部变质年龄为207Pb/206Pb=2475±87 Ma,这被解释为随后的热事件。

(3) 地幔柱模式有利于解释冀东地区紫苏花岗岩以及相关TTG岩石的成因,该模式不仅可以有效揭示冀东地区紫苏花岗岩的源区,而且能够合理解释其形成与演化。

致谢 感谢王冉博士、张颖慧博士和王东升博士对本文初稿提出的建设性意见;感谢长安大学西部矿产资源与地质工程教育部重点实验室对主微量元素测试实验的帮助;也感谢中国科学院青藏高原研究所宋培平博士在年代学测试中给予的指导。
参考文献
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology , 192 (1-2) :59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Arzi AA. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics , 44 (1-4) :173–184. DOI:10.1016/0040-1951(78)90069-0
[] Bai X, Liu SW, Guo RR, Zhang LF, Wang W. 2014. Zircon U-Pb-Hf isotopes and geochemistry of Neoarchean dioritic-trondhjemitic gneisses, eastern Hebei, North China Craton: Constraints on petrogenesis and tectonic implications. Precambrian Research , 251 :1–20. DOI:10.1016/j.precamres.2014.05.027
[] Bai X, Liu SW, Guo RR, Wang W. 2015. Zircon U-Pb-Hf isotopes and geochemistry of two contrasting Neoarchean charnockitic rock series in eastern Hebei, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Research , 267 :72–93. DOI:10.1016/j.precamres.2015.06.004
[] Bai X, Liu SW, Guo RR, Wang W. 2016. A Neoarchean arc-back-arc system in eastern Hebei, North China Craton: Constraints from zircon U-Pb-Hf isotopes and geochemistry of dioritic-tonalitic-trondhjemitic-granodioritic (DTTG) gneisses and felsic paragneisses. Precambrian Research , 273 :90–111. DOI:10.1016/j.precamres.2015.12.003
[] Ballard JR, Palin JM, Williams IS, Campbell IH, Faunes A. 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology , 29 (5) :383–386. DOI:10.1130/0091-7613(2001)029<0383:TAOPIR>2.0.CO;2
[] Beard JS, Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology , 32 (2) :365–401. DOI:10.1093/petrology/32.2.365
[] Bohlen SR. 1991. On the formation of granulites. Journal of Metamorphic Geology , 9 (3) :223–229. DOI:10.1111/jmg.1991.9.issue-3
[] Chen YP, Wei CJ, Zhang JR, Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin , 60 (19) :1698–1707. DOI:10.1007/s11434-015-0890-0
[] Crawford AJ, Falloon TJ and Green DH. 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed.). Boninite and Related Rocks. London: Unwin Hyman, 1-49
[] Douce AEP. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C and Vigneresse JL (eds.). Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168(1): 55-75
[] Drummond MS, Defant MJ. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research , 95 (B13) :21503–21521. DOI:10.1029/JB095iB13p21503
[] Fang L, Friend CRL, Li Q, Li SZ, Liu W, Powell D, Thirwall MF, Yang ZS, Zhang QH.1998. Geology of the Santunying Area of Eastern Hebei Province. Beijing: Geological Publishing House : 1 -134.
[] Frost BR, Frost CD, Hulsebosch TP, Swapp SM. 2000. Origin of the charnockites of the Louis lake Batholith, wind River Range, Wyoming. Journal of Petrology , 41 (12) :1759–1776. DOI:10.1093/petrology/41.12.1759
[] Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology , 42 (11) :2033–2048. DOI:10.1093/petrology/42.11.2033
[] Frost BR, Frost CD. 2008. On charnockites. Gondwana Research , 13 (1) :30–44. DOI:10.1016/j.gr.2007.07.006
[] Geng YS, Shen QH, Chen T. 1990. Geochemistry and origin of charnockites in Qianan-Qianxi area, eastern Hebei. Acta Petrologica et Mineralogica , 9 (3) :193–202.
[] Geng YS, Liu FL, Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica , 80 (6) :819–833.
[] Geng YS, Du LL, Ren LD. 2012. Growth and reworking of the early growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research , 21 (2-3) :517–529. DOI:10.1016/j.gr.2011.07.006
[] Green TH, Pearson NJ. 1986. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chemical Geology , 54 (3-4) :185–201. DOI:10.1016/0009-2541(86)90136-1
[] Guo RR, Liu SW, Santosh M, Li QG, Bai X, Wang W. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Research , 24 (2) :664–686. DOI:10.1016/j.gr.2012.12.025
[] Guo RR, Liu SW, Bai X, Zhang LF, Wang W, Hu FY, Yan M. 2014. Geochemistry and zircon U-Pb chronology of Shuangshanzi Group in the eastern Hebei Province, North China Craton: Constraints on petrogenesis and tectonic setting. Acta Petrologica Sinica , 30 (10) :2885–2904.
[] Guo RR, Liu SW, Wyman D, Bai X, Wang W, Yan M, Li QG. 2015. Neoarchean subduction: A case study of arc volcanic rocks in Qinglong-Zhuzhangzi area of the eastern Hebei Province, North China Craton. Precambrian Research , 264 :36–62. DOI:10.1016/j.precamres.2015.04.007
[] Han CM, Xiao WJ, Su BX, Chen ZL, Zhang XH, Ao SJ, Zhang JE, Zhang ZY, Wan B, Song DF, Wang ZM. 2014. Neoarchean Algoma-type banded iron formations from eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting. Precambrian Research , 251 :212–231. DOI:10.1016/j.precamres.2014.06.019
[] Harrison TM, Watson EB. 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta , 48 (7) :1467–1477. DOI:10.1016/0016-7037(84)90403-4
[] Holland TH. 1900. The charnockite series, a group of Archean hypersthenic rocks in peninsular India. Memoirs of the Geological Survey of India , 28 :119–249.
[] Horn I, Rudnick RL, McDonough WF. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chemical Geology , 164 (3-4) :281–301. DOI:10.1016/S0009-2541(99)00168-0
[] Huang B, Liang HY, Mo JH, Xie YW. 2009. Zircon LA-ICP-MS U-Pb age of the Jinping-Tongchang porphyry associated with Cu-Mo mineralization and its geological implication. Geotectonica et Metallogenia , 33 (4) :598–602.
[] Jahn BM, Zhang ZQ. 1984. Archean granulite gneisses from eastern Hebei Province, China: Rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology , 85 (3) :224–243. DOI:10.1007/BF00378102
[] Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH, Liu DY. 1987. 3.5 Ga old amphibolites from eastern Hebei Province, China: Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Research , 34 (3-4) :311–346. DOI:10.1016/0301-9268(87)90006-4
[] Janardhan AS, Newton RC, Hansen EC. 1982. The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contributions to Mineralogy and Petrology , 79 (2) :130–149. DOI:10.1007/BF01132883
[] Jensen LS.1976. A new cation plot for classifying subalkalic volcanic rocks. Toronto: Ontario Department of Ministry of Natural Resources, Miscellaneous : 1 -66.
[] Kar R, Bhattacharya S, Sheraton JW. 2003. Hornblende-dehydration melting in mafic rocks and the link between massif-type charnockite and associated granulites, Eastern Ghats Granulite Belt, India. Contributions to Mineralogy and Petrology , 145 (6) :707–729. DOI:10.1007/s00410-003-0468-8
[] Kemp AIS. 2003. Plutonic boninite-like rocks in an anatectic setting: Tectonic implications for the Delamerian orogen in southeastern Australia. Geology , 31 (4) :371–374. DOI:10.1130/0091-7613(2003)031<0371:PBLRIA>2.0.CO;2
[] Košler J, Fonneland H, Sylvester P, Tubrett M, Pedersen RB. 2002. U-Pb dating of detrital zircons for sediment provenance studies: A comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology , 182 (2-4) :605–618. DOI:10.1016/S0009-2541(01)00341-2
[] Kröner A, Compston W, Zhang GW, Guo AL, Todt W. 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology , 16 (3) :211–215. DOI:10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2
[] Kröner A, Cui WY, Wang SQ, Wang CQ, Nemchin AA. 1998. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences , 16 (5-6) :519–532. DOI:10.1016/S0743-9547(98)00033-6
[] Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology , 27 (3) :745–750. DOI:10.1093/petrology/27.3.745
[] Li TS, Zhai MG, Peng P, Chen L, Guo JH. 2010. Ca.2.5 billion year old coeval ultramafic-mafic and syenitic dykes in eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Research , 180 (3-4) :143–155. DOI:10.1016/j.precamres.2010.04.001
[] Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology , 20 (4) :339–342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[] Liu DY, Wan YS, Wu JS, Wilde SA, Zhou HY, Dong CY and Yin XY. 2007. Eoarchean rocks and zircons in the North China Craton. In: Developments in Precambrian Geology. Amsterdam: Elsevier, 15: 251-273
[] Liu SJ, Wan YS, Sun HY, Nutman AP, Xie HQ, Dong CY, Ma MZ, Liu DY, Jahn BM. 2013. Paleo-to Eoarchean crustal evolution in eastern Hebei, North China Craton: New evidence from SHRIMP U-Pb dating and in-situ Hf isotopic study of detrital zircons from paragneisses. Journal of Asian Earth Sciences , 78 :4–17. DOI:10.1016/j.jseaes.2013.07.041
[] Liu SW, Lin Q, Cao L. 1991. The P-T-t trajectory recorded by the compositional zonations of amphibole in eastern Hebei Province. Journal of Changchun University of Earth Science , 12 (2) :129–142.
[] Liu SW. 1995. Study on fluid inclusions from high grade metamorphic rocks in East Hebei Province. Acta Petrologica Sinica , 11 (4) :375–385.
[] Liu SW. 1996. Fluid evolution during high-grade metamorphism in East Hebei. Acta Petrologica Sinica , 12 (1) :48–58.
[] Ludwig KR.2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication : 1 -70.
[] Lv B, Zhai MG, Li TS, Peng P. 2012. Zircon U-Pb ages and geochemistry of the Qinglong volcano-sedimentary rock series in eastern Hebei: Implication for~2500 Ma intra-continental rifting in the North China Craton. Precambrian Research , 208-211 :145–160. DOI:10.1016/j.precamres.2012.04.002
[] Martin H, Smithies RH, Rapp R, Moyen JF, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos , 79 (1-2) :1–24. DOI:10.1016/j.lithos.2004.04.048
[] Moyen JF, Martin H, Jayananda M. 2001. Multi-element geochemical modelling of crust-mantle interactions during Late-Archaean crustal growth: The Closepet granite (South India). Precambrian Research , 112 (1-2) :87–105. DOI:10.1016/S0301-9268(01)00171-1
[] Moyen JF, Martin H. 2012. Forty years of TTG research. Lithos , 148 :312–336. DOI:10.1016/j.lithos.2012.06.010
[] Nutman AP, Wan YS, Du LL, Friend CRL, Dong CY, Xie HQ, Wang W, Sun HY, Liu DY. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research , 189 (1-2) :43–65. DOI:10.1016/j.precamres.2011.04.005
[] Pearce JA, Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences , 23 :251–285. DOI:10.1146/annurev.ea.23.050195.001343
[] Pidgeon RT. 1980. Isotopic ages of the zircons from the Archean granulite facies rocks, eastern Hebei, China. Geological Review , 26 :198–207.
[] Pidgeon RT, Nemchin AA, Hitchen GJ. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology , 132 (3) :288–299. DOI:10.1007/s004100050422
[] Polat A, Herzberg C, Münker C, Rodgers R, Kusky T, Li JH, Fryer B, Delaney J. 2006a. Geochemical and petrological evidence for a suprasubduction zone origin of Neoarchean (ca.2.5 Ga) peridotites, central orogenic belt, North China craton. The Geological Society of America Bulletin , 118 (7-8) :771–784. DOI:10.1130/B25845.1
[] Polat A, Li J, Fryer B, Kusky T, Gagnon J, Zhang S. 2006b. Geochemical characteristics of the Neoarchean (2800~2700 Ma) Taishan greenstone belt, North China Craton: Evidence for plume-craton interaction. Chemical Geology , 230 (1-2) :60–87. DOI:10.1016/j.chemgeo.2005.11.012
[] Qian XL, Cui WY, Wang SQ, Wang GY.1985. Geology of Precambrian Iron Ores in Eastern Hebei Province, China. Shijiazhuang: Hebei Science and Technology Press : 1 -273.
[] Rajesh HM. 2007. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: A case study from southern India. Contributions to Mineralogy and Petrology , 154 (5) :591–606. DOI:10.1007/s00410-007-0211-y
[] Rajesh HM, Santosh M, Yoshikura S. 2011. The Nagercoil charnockite: A magnesian, calcic to calc-alkalic granitoid dehydrated during a granulite-facies metamorphic event. Journal of Petrology , 52 (2) :375–400. DOI:10.1093/petrology/egq084
[] Rajesh HM. 2012. A geochemical perspective on charnockite magmatism in Peninsular India. Geoscience Frontiers , 3 (6) :773–788. DOI:10.1016/j.gsf.2012.04.003
[] Rajesh HM, Santosh M. 2012. Charnockites and charnockites. Geoscience Frontiers , 3 (6) :737–744. DOI:10.1016/j.gsf.2012.07.001
[] Rapp RP, Watson EB, Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research , 51 (1-4) :1–25. DOI:10.1016/0301-9268(91)90092-O
[] Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology , 36 (4) :891–931. DOI:10.1093/petrology/36.4.891
[] Rapp RP, Shimizu N, Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature , 425 (6958) :605–609. DOI:10.1038/nature02031
[] Rushmer T. 1991. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology , 107 (1) :41–59. DOI:10.1007/BF00311184
[] Rutter MJ, Wyllie PJ. 1988. Melting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust. Nature , 331 (6152) :159–160. DOI:10.1038/331159a0
[] Sandiford M, Powell R. 1986. Deep crustal metamorphism during continental extension: Modern and ancient examples. Earth and Planetary Science Letters , 79 (1-2) :151–158. DOI:10.1016/0012-821X(86)90048-8
[] Santosh M, Yoshida M. 1992. A petrologic and fluid inclusion study of charnockites from the Lützow-Holm Bay region, East Antarctica: Evidence for fluid-rich metamorphism in the lower crust. Lithos , 29 (1-2) :107–126. DOI:10.1016/0024-4937(92)90036-X
[] Shen BF, Luo H, Han GG, Dai XY, Jin WS, Hu XD, Li SB, Bi SY.1994. Archaean Geology and Mineralization of Northern Liaoning and Southern Jilin Province. Beijing: Geological Publishing House : 1 -255.
[] Shirey SB, Hanson GN. 1984. Mantle-derived Archaean monozodiorites and trachyandesites. Nature , 310 (5974) :222–224. DOI:10.1038/310222a0
[] Sisson TW, Ratajeski K, Hankins WB, Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology , 148 (6) :635–661. DOI:10.1007/s00410-004-0632-9
[] Skjerlie KP, Johnston AD. 1992. Vapor-absent melting at 10kbar of a biotite-and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology , 20 (3) :263–266. DOI:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
[] Sláma J, Košler J, Condon DJ, et al. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology , 249 (1-2) :1–35. DOI:10.1016/j.chemgeo.2007.11.005
[] Springer W, Seck HA. 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology , 127 (1-2) :30–45. DOI:10.1007/s004100050263
[] Stern CR, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology , 123 (3) :263–281. DOI:10.1007/s004100050155
[] Stern RA.1989. Petrogenesis of the Archean Sanukitoid Suite. New York: State University at Stony Brook : 1 -275.
[] Stern RA, Hanson SN. 1991. Archean high-Mg granodiorite: A derivative of light rare earth element-enriched monzodiorite of mantle origin. Journal of Petrology , 32 (1) :201–238. DOI:10.1093/petrology/32.1.201
[] Sun DZ. 1984. Tianjin: Tianjin Science and Technology Press. The Early Precambrian Geology of the Eastern Hebei :1–273.
[] Sun HY, Dong CY, Xie HQ, Wang W, Ma MZ, Liu DY, Nutman A, Wan YS. 2010. The formation age of the Neoarchean Zhuzhangzi and Dantazi groups in the Qinglong area, eastern Hebei Province: Evidence from SHRIMP U-Pb zircon dating. Geological Review , 56 (6) :888–898.
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
[] Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, Southwest Japan, Ⅱ.Melting phase relations at high pressures. Earth and Planetary Science Letters , 60 (2) :305–317. DOI:10.1016/0012-821X(82)90009-7
[] Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: Analogy to Archean magmatism and continental crust formation?. Annual Review of Earth and Planetary Sciences , 34 :467–499. DOI:10.1146/annurev.earth.34.031405.125014
[] Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH, Diwu CR. 2011. ~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research , 186 (1-4) :169–180. DOI:10.1016/j.precamres.2011.01.015
[] Wang AJ. 1992. Geochemistry and genesis of the sodium-charnockitic gneisses, eastern Hebei Province, China. Acta Geologica Sinica , 66 (1) :15–34.
[] Wang KY, Bai YL, Yang RY, Huang ZX. 1984. Rare earth element geochemistry of Qianan charnockite. Scientia Geologica Sinica (3) :330–340.
[] Wang W, Liu SW, Wilde SA, Li QG, Zhang J, Bai X, Yang PT, Guo RR. 2012. Petrogenesis and geochronology of Precambrian granitoid gneisses in western Liaoning Province: Constraints on Neoarchean to Early Paleoproterozoic crustal evolution of the North China Craton. Precambrian Research , 222-223 :290–311. DOI:10.1016/j.precamres.2011.10.023
[] Wang YJ, Zhang YZ, Zhao GC, Fan WM, Xia XP, Zhang FF, Zhang AM. 2009. Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids (Shandong): Implications for Neoarchean subduction in the Eastern Block, North China Craton. Precambrian Research , 174 (3-4) :273–286. DOI:10.1016/j.precamres.2009.08.005
[] Wells PRA. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters , 46 (2) :253–265. DOI:10.1016/0012-821X(80)90011-4
[] Wilde SA, Valley JW, Kita NT, Cavosie AJ, Liu DY. 2008. SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago. American Journal of Science , 308 (3) :185–199. DOI:10.2475/03.2008.01
[] Wolf MB, Wyllie PJ. 1994. Dehydration-melting of amphibolite at 10kbar: The effects of temperature and time. Contributions to Mineralogy and Petrology , 115 (4) :369–383. DOI:10.1007/BF00320972
[] Wu FY, Yang JH, Liu XM, Li TS, Xie LW, Yang YH. 2005. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton . Chinese Science Bulletin , 50 (21) :2473–2480. DOI:10.1360/982005-629
[] Wu JS, Geng YS, Shen QH, Liu DY, Li ZL, Zhao DM.1991. The Early Precambrian Significant Geological Events in the North China Craton. Beijing: Geological Publishing House : 1 -115.
[] Wu ML, Zhao GC, Sun M, Yin CQ, Li SZ, Tam PY. 2012. Petrology and P-T path of the Yishui mafic granulites: Implications for tectonothermal evolution of the western Shandong Complex in the Eastern Block of the North China Craton. Precambrian Research , 222-223 :312–324. DOI:10.1016/j.precamres.2011.08.008
[] Wu ML, Zhao GC, Sun M, Bao ZA, Tam PY, He YH. 2014a. Tectonic affinity and reworking of the Archaean Jiaodong Terrane in the Eastern Block of the North China Craton: Evidence from LA-ICP-MS U-Pb zircon ages. Geological Magazine , 151 (2) :365–371. DOI:10.1017/S0016756813000721
[] Wu ML, Zhao GC, Sun M, Li SZ, Bao ZA, Tam PY, Eizenhöefer PR, He YH. 2014b. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos , 190-191 :71–84. DOI:10.1016/j.lithos.2013.12.004
[] Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin , 49 (15) :1554–1569. DOI:10.1007/BF03184122
[] Yang JH, Wu FY, Wilde SA, Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research , 167 (1-2) :125–149. DOI:10.1016/j.precamres.2008.07.004
[] Yang QY, Santosh M, Tsunogae T. 2014. First report of Paleoproterozoic incipient charnockite from the North China Craton: Implications for ultrahigh-temperature metasomatism. Precambrian Research , 243 :168–180. DOI:10.1016/j.precamres.2014.01.004
[] Yang QY, Santosh M, Collins AS, Teng XM. 2016. Microblock amalgamation in the North China Craton: Evidence from Neoarchaean magmatic suite in the western margin of the Jiaoliao Block. Gondwana Research , 31 :96–123. DOI:10.1016/j.gr.2015.04.002
[] Yuan HL, Wu FY, Gao S, Liu XM, Xu P, Sun DY. 2003. Determination of U-Pb age and trace element of zircons of Cenozoic intrusion in NE by laser-ablation inductively coupled plasma mass spectrometry. Chinese Science Bulletin , 48 (22) :2411–2421.
[] Zhai MG, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research , 20 (1) :6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhang LC, Zhai MG, Zhang XJ, Xiang P, Dai YP, Wang CL, Pirajno F. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Research , 222-223 :325–338. DOI:10.1016/j.precamres.2011.09.007
[] Zhang YX, Ye TS, Yan HS, Zheng SY.1986. The Archean Geology and Banded Iron Formation of Jidong, Hebei Province. Beijing: Geological Publishing House : 1 -149.
[] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research , 17 (4) :615–631. DOI:10.1016/j.gr.2009.10.007
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review , 40 (8) :706–721. DOI:10.1080/00206819809465233
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics , 310 (1-4) :37–53. DOI:10.1016/S0040-1951(99)00152-3
[] Zhao GC, Wilde SA, Cawood PA, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research , 107 (1-2) :45–73. DOI:10.1016/S0301-9268(00)00154-6
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research , 136 (2) :177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research , 222-223 :55–76. DOI:10.1016/j.precamres.2012.09.016
[] Zhao GC, Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research , 23 (4) :1207–1240. DOI:10.1016/j.gr.2012.08.016
[] 耿元生, 沈其韩, 陈涛.1990. 冀东迁西-迁安地区紫苏花岗岩的地球化学特征及其成因. 岩石矿物学杂志 , 9 (3) :193–202.
[] 郭荣荣, 刘树文, 白翔, 张立飞, 王伟, 胡方泱, 阎明.2014. 冀东双山子群变质火山岩的地球化学、锆石U-Pb年代学及其对岩石成因和构造背景的制约. 岩石学报 , 30 (10) :2885–2904.
[] 黄波, 梁华英, 莫济海, 谢应雯.2009. 金平铜厂铜钼矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄及意义. 大地构造与成矿学 , 33 (4) :598–602.
[] 刘树文, 林强, 曹林.1991. 冀东角闪石成分环带记录的P-T-t轨迹. 长春地质学院学报 , 12 (2) :129–142.
[] 刘树文.1995. 冀北高级变质岩石的流体包裹体研究. 岩石学报 , 11 (4) :375–385.
[] 刘树文.1996. 冀东高级变质作用中流体演化. 岩石学报 , 12 (1) :48–58.
[] 钱祥麟, 崔文元, 王时麒, 王关玉. 1985. 冀东前寒武纪铁矿地质. 石家庄: 河北科学技术出版社 : 1 -273.
[] 沈保丰, 骆辉, 韩国刚, 戴薪义, 金文山, 胡小蝶, 李双保, 毕守业. 1994. 辽北-吉南太古宙地质及成矿. 北京: 地质出版社 : 1 -255.
[] 孙大中. 1984. 冀东早前寒武纪地质. 天津: 天津科学技术出版社 : 1 -273.
[] 孙会一, 董春艳, 颉颃强, 王伟, 马铭株, 刘敦一, Allen N, 万渝生.2010. 冀东青龙地区新太古代朱杖子群和单塔子群形成时代:锆石SHRIMP U-Pb定年. 地质论评 , 56 (6) :888–898.
[] 王安建.1992. 冀东钠质紫苏花岗片麻岩系地球化学特征及其成因. 地质学报 , 66 (1) :15–34.
[] 王凯怡, 白益良, 杨瑞英, 黄忠祥.1984. 迁安紫苏花岗岩的稀土元素地球化学. 地质科学 (3) :330–340.
[] 吴元保, 郑永飞.2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报 , 49 (16) :1589–1604.
[] 伍家善, 耿元生, 沈其韩, 刘敦一, 厉子龙, 赵敦敏. 1991. 华北陆台早前寒武纪重大地质事件. 北京: 地质出版社 : 1 -115.
[] 袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有.2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报 , 48 (14) :1511–1520.
[] 张贻侠, 叶廷松, 阎鸿铨, 郑松彦. 1986. 冀东太古代地质及变质铁矿. 北京: 地质出版社 : 1 -149.