岩石学报  2016, Vol. 32 Issue (9): 2579-2608   PDF    
区域变质作用与中国大陆地壳的形成与演化
耿元生, 沈其韩, 杜利林, 宋会侠     
中国地质科学院地质研究所, 北京 100037
摘要: 在编制1:500万中国变质地质图的基础上,本文总结了中国主要变质带的演化以及各变质带与中国大陆地壳形成演化之间的内在联系。虽然在华北和华南克拉通都有古太古代到中太古代的变质年代记录,但是由于后期改造其变质作用的特点及与区域构造背景的联系已难以追索。新太古代末-古元古代初期的变质作用在华北克拉通表现最明显,这期变质作用紧随大规模的TTG岩浆作用,普遍具有逆时针的P-T演化轨迹,反映了地幔柱主导的岩浆-变质事件特点。古元古代晚期的变质事件在华北、华南、塔里木克拉通都有强烈反映。这期变质作用以形成具有顺时针P-T演化轨迹的高压麻粒岩为特点,与形成Columbia超大陆的一些造山带的特点类似,但是这三个不同克拉通在与Columbia聚合的时间和空间方位上存在差异。华南克拉通是相对年轻的克拉通,是沿新元古代江南造山带扬子和华夏地块拼合的产物。新元古代江南造山带的火山岩形成时代和变质作用程度从北东向南西迁移,反映了造山过程逐渐迁移和剪刀式闭合的特点。形成华南克拉通后,在其东南缘又先后经历了加里东期和印支期的变质改造,并且由北西向南东变质带从加里东期转变为印支期,但是这两期变质作用的构造背景尚不很清楚。中国南北大陆的聚合首先从西昆仑-阿尔金-北祁连-北秦岭-桐柏开始,所反映的变质作用是早古生代的蓝片岩相和榴辉岩相变质岩相伴产出,表明经历了从洋壳俯冲到陆陆碰撞的演化过程。中国东部的南北大陆到印支期才最终汇聚,相应的变质作用以南部出现高压蓝片岩相、北部出现超高压的榴辉岩相变质带为特点,表明南方大陆向北方大陆的俯冲。超高压带内普遍含有柯石英,意味着大规模的陆壳深俯冲。华北克拉通和塔里木克拉通以北的中亚造山带内存在多条从早古生代到晚古生代的变质带和多条蓝片岩相变质带,表明这是一个由多阶段、多条变质带组成的造山区。但是其变质作用的空间和时间演化还有待进一步深入。青藏高原变质带具有北老南新的空间分布特点,最北部的印支期龙木错-双湖-澜沧江变质带反映了原特提斯和古特提斯洋的碰撞拼合过程,北部的燕山期班公湖-怒江变质带和中部的喜马拉雅早期雅鲁藏布江变质带反映了新特提斯洋的两次碰撞拼合过程,南部喜马拉雅晚期的高喜马拉雅变质带反映了印度板块向北俯冲导致的高原快速隆升过程。
关键词: 区域变质作用     变质单元     P-T轨迹     变质事件     地壳生长和演化     陆块聚合    
Regional metamorphism and continental growth and assembly in China
GENG YuanSheng, SHEN QiHan, DU LiLin, SONG HuiXia     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Based on compilation of the Metamorphic Geological Map of China (at the scale of 1:5 million), we have summarized in this paper the evolutionary history of the major metamorphic belts in China and the intrinsic relationship between the metamorphic belts and continental formation and evolution in China. Although the North China and South China cratons keep the metamorphic ages from Paleoarchean to Mesoarchean, it is difficult for us to trace the link between the original metamorphism and tectonic setting due to intensive overprinting of late deformation and metamorphism. Late Neoarchean to Early Paleoproterozoic metamorphism is extensive in the North China Craton which displayed the anti-clockwise P-T paths following the widespread TTG magmatism, suggesting that mantle plumes led to the magmatism and metamorphism. The Late Paleoproterozoic metamorphic events, occurring widely in North China, South China and Tarim cratons, are represented by the high-pressure granulite facies metamorphism with clockwise P-T path and are similar to the metamorphic events in typical orogens in Columbian supercontinent of the same period. However, there are still some different aspects in time and space for the three cratons (North China, South China and Tarim cratons) during their amalgamation with Columbian supercontinent. South China craton is relatively young and was assembled by Yangtze and Cathaysia blocks along the Jiangnan Orogen in Neoproterozoic. Younging of magmatism and decreasing intensity of metamorphism from the northeast to southwest along the Jiangnan Orogen reflected the migration of orogenic process in this belt. After formation, the South China Craton underwent the Caledonian and Indosinian metamorphism from the northwest to southeast along its' southeastern margin, but the tectonic settings for metamorphism are unclear. The amalgamation of the North China and South China cratons initiated along the western Kunlun-North Qilian-North Qinling-Tongbai belt, and metamorphism along this belt was represented by the Early Palaeozoic blueschist and eclogite facies, indicating the evolutionary process from subduction to continent-continent collision. In the eastern China, the North China and South China cratons amalgamated along the Dabie-Sulu Orogen in Indosinian, when the blueschist and eclogite facies rocks occurred at the south and north of the belt, respectively, suggesting the South China Craton subducted beneath the North China Craton. Coesite is widely distributed in this ultra-high pressure belt, implying the large scale continental subduction. The Central Asian Orogenic Belt, located to the north of the North China Craton and Tarim Craton, contains several metamorphic belts from Early to Late Paleozoic with local blueschist facies metamorphism, which indicate that the Central Asian Orogenic Belt is an orogenic region including several metamorphic belts of different stages of metamorphism. However, the time and space evolution of this metamorphic belt still need further research. The Tibet Plateau metamorphic belts change from old to young in space from north to south. The northern most Indosinian Lungmu Co-Shuanghu-Lancangjiang metamorphic belt represented the collisional process of Paleo-Tethys. The north Yanshanian Bangong Co-Nujiang metamorphic belt and the middle Early Himalayan Yarlung Zangbo belt exhibited two collisional processes of Neo-Tethys. However, the south High Himalayan metamorphic belt in Late Himalayan represented quick uplift process resulted from the north-ward subduction of the Indian Plate to Eurasia Plate.
Key words: Regional metamorphism     Metamorphic unit     P-T path     Metamorphic event     Continent formation and evolution     Amalgamation of continental blocks    

区域变质作用常发生在特定的构造部位,通过变质作用演化特点的研究可以追索变质岩系在变质作用发生的过程中所处的构造环境。板块构造学说提出以后,变质作用的形成和演化与板块离散、俯冲、碰撞等机制联系日益紧密(Smish, 1984; Bucher and Frey, 1994; Barker,1998; Brown, 2001; 张立飞,2007)。中国大陆是由一些差异克拉通化的大小块体通过多时代的造山带(或称褶皱系)连接在一起的。其中华北、塔里木和华南三个陆块最为重要,这三个陆块克拉通化前有各自的演化历史,记录了不同的陆壳形成、生长、稳定化过程,随后这三个克拉通与周边块体(造山带)的相互作用, 最终形成了现今的中国大陆(Zhai,2013)。不论是三个古老陆块的形成过程,还是这三个古老陆块与周围造山带的相互作用都伴随有不同类型的区域变质作用,因此通过变质作用的演化可以追索古老陆块的形成以及中国大陆的形成过程。

本文在1∶500万中国变质地质图编制的基础上,系统总结了中国主要区域变质带与大陆形成与演化的关系,试图揭示变质作用与大陆地壳的形成演化的相互关系、建立中国变质作用的时空演化规律及其大陆动力学机制之间的关联。

1 中国变质岩系的时空分布

中国变质岩系分布广泛,西起喀喇昆仑,东南到台湾岛;北从阿尔泰山、黑龙江畔南至海南岛,西南至云南三江都有不同时代的变质岩系出露。粗略统计,变质岩系出露面积约占国土陆地面积的五分之一,时代跨度从始太古代一直到中新生代。中国早前寒武纪中深变质岩系更是十分发育,多数组成克拉通的古老基底,不同时代和不同类型的变质岩系大都与造山作用密切相关。根据变质岩系的原岩组成、变质作用特征、变质作用时代等可将中国的变质岩系划分为变质地区、变质地块和变质地带三级变质单元,其中一级变质单元(变质地区)9个,二级变质单元(变质地块)27个,三级变质单元(变质地带)83个,各变质单元的分布见图 1。根据变质作用发生的时间可以将中国变质岩系划分为中太古期、新太古期、古元古期、中元古期、新元古期、兴凯期(泛非期)、加里东期、华力西期、印支期、燕山期和喜马拉雅期等11个变质作用期,各变质作用期所形成的变质岩系的分布如图 1所示。


图 1 中国变质单元的划分及不同时代变质带的分布 Ⅰ天山-兴蒙变质地区:Ⅰ-1阿尔泰-天山变质地块:1-1阿尔泰变质地带,1-2准噶尔-北天山变质地带,1-3中天山变质地带,1-4伊犁变质地带,1-5西南天山变质地带,1-6南天山变质地带,1-7北山-柳园变质地带;Ⅰ-2额济纳-乌力吉变质地块:1-8额济纳-哈日敖日布格变质地带,1-9恩格尔乌苏变质地带,1-10包尔乌拉-乌力吉变质地带;Ⅰ-3包尔汗图-白乃庙变质地块:1-11宝音图变质地带,1-12包尔汗图变质地带,1-13白乃庙变质地带,1-14镶黄旗-多伦变质地带;Ⅰ-4索伦山-西拉木伦变质地块:1-15查干乌拉-迪彦庙变质地带,1-16林西变质地带,1-17温都尔庙变质地带;Ⅰ-5大兴安岭变质地块:1-18新林-红花尔基变质地带,1-19东乌旗-多宝山变质地带,1-20黑河-贺根山变质地带,1-21锡林浩特变质地带;Ⅰ-6额尔古纳变质地块:1-22漠河变质地带,1-23莫尔道嘎变质地带;Ⅰ-7通辽-延吉变质地块:1-24通辽-佳木斯绿片岩相变质地带,1-25四平-延吉变质地带;Ⅰ-8佳木斯-虎林变质地块:1-26萝北-牡丹江变质地带,1-27麻山-密山变质地带,1-28那丹哈达岭变质地带;Ⅱ塔里木变质地区:Ⅱ-1塔里木元古代变质地块:2-1阿克苏变质地带,2-2库鲁克塔格-星星峡变质地带,2-3西昆仑北变质地带;Ⅱ-2敦煌-阿拉善变质地块:2-4敦煌-北山变质地带,2-5阿拉善变质地带;Ⅲ华北变质地区:Ⅲ-1阴山变质地块:3-1乌拉特中旗-白云鄂博-化德变质地带,3-2色尔腾山-围场变质地带;Ⅲ-2集宁-鄂尔多斯变质地块:3-3集宁-贺兰山变质地带,3-4吕梁-延安变质地带;Ⅲ-3冀鲁变质地块:3-5辽西-中条变质地带,3-6冀东变质地带,3-7鲁西-蚌埠变质地带,3-8胶东变质地带;Ⅲ-4辽宁变质地块:3-9辽北-吉南太古宙变质地带,3-10辽河古元古代变质地带;Ⅳ西昆仑-柴达木-秦岭变质地区:Ⅳ-1西昆仑变质地块:4-1西昆仑南变质地带;Ⅳ-2阿尔金-祁连-柴达木变质地块:4-2北阿尔金-北祁连早古生代变质地带,4-3中阿尔金-祁连元古代变质地带,4-4欧龙布鲁克古元古代变质地带,4-5南阿尔金-柴北缘早古生代变质地带,4-6柴达木-昆北元古代-早古生代变质地带;Ⅳ-3西秦岭变质地块:4-7西秦岭变质地带;Ⅳ-4秦岭变质地块:4-8北秦岭-东秦岭变质地带,4-9南秦岭变质地带;Ⅴ大别-苏鲁变质地区:Ⅴ-1大别山(大别)变质地块:5-1南大别高压-超高压变质地带,5-2北大别变质核杂岩变质地带;Ⅴ-2苏鲁变质地块:5-3苏鲁高压变质地带,5-4苏鲁超高压变质地带;Ⅵ羌北-昌都变质地区:Ⅵ-1喀喇昆仑-巴彦喀拉变质地块:6-1巴彦喀拉-甘孜变质地带,6-2玉树-中甸变质地带;Ⅵ-2羌北-昌都-兰坪变质地块:6-3羊湖-金沙江-哀牢山变质地带,6-4羌北-昌都-兰坪变质地带;Ⅶ羌南-冈底斯-喜马拉雅-滇西变质地区:Ⅶ-1羌南-保山变质地块:7-1龙木错-双湖-澜沧江变质地带,7-2羌南-左贡变质地带;Ⅶ-2冈底斯-腾冲变质地块:7-3班公湖-怒江变质地带,7-4班戈-洛隆变质地带,7-5冈底斯-察隅变质地带,7-6腾冲变质地带;Ⅶ-3喜马拉雅变质地块:7-7雅鲁藏布江变质地带,7-8北喜马拉雅变质地带,7-9高喜马拉雅变质地带,7-10低喜马拉雅变质地带;Ⅷ扬子变质地区:Ⅷ-1扬子西缘变质地块:8-1康滇变质地带,8-2滇中变质地带,8-3南盘江-右江变质地带;Ⅷ-2扬子变质地块:8-4黄陵变质地带,8-5扬子变质地带,8-6江南隆起变质地带;Ⅸ华夏变质地区:Ⅸ-1武夷山变质地块:9-1古元古代变质地带,9-2古生代加里东期变质地带,9-3中生代印支期变质地带;Ⅸ-2南岭-云开变质地块:9-4加里东期变质地带,9-5华力西期变质地带,9-6印支期变质地带;Ⅸ-3海南变质地块:9-7加里东期变质地带,9-8华力西-印支期变质地带; Ⅸ-4东南沿海和台湾变质地块: 9-9燕山期变质地带,9-10喜山期变质地带.H喜马拉雅期变质,Y燕山期变质,I印支期变质,V华力西期变质,C加里东期变质,X兴凯期(泛非期)变质,PЄE新元古期变质,PЄD中元古期变质,PЄC古元古期变质,PЄB新太古期变质,PЄE+H新元古期+喜马拉雅期变质,I-Y印支期到燕山期变质,V-I华力西期到印支期变质,C-V加里东期到华力西期变质,PЄC+V古元古期加华力西期变质,PЄD+C中元古期加加里东期变质,PЄE+C新元古期加加里东期变质,PЄD-E中元古期到新元古期变质,PЄC-E古元古期到新元古期变质,PЄC-D古元古期到中元古期变质,PЄB-C新太古期到古元古期变质 Fig. 1 Subdivitiong of the metamorphic units and distribution of the metamorphic belts formed at distinct geological stages in China Ⅰ Tianshang-Mongolia-Hinggan Mt. (Metamorphic) Province:Ⅰ-1 Altay-Tianshan Mt. Block: 1-1 Altay Mt. Zone. 1-2 Junggar-NorthTianshan Mt. Zone, 1-3 Central Tianshan Mt. Zone,1-4 Ili Mt. Zone,1-5 Northwest Tianshan Mt. Zone,1-6 South Tianshan Mt. Zone,1-7 Beishan-Liuyuan Mt. Zone;Ⅰ-2 Ejin-Wuliji Mt. Block:1-8 Ejin-Har Erebug Mt. Zone,1-9 Engger Us Mt. Zone,1-10 Bor Ul- Olji Mt. Zone;Ⅰ-3 Baoerhantu-Bainaimiao Mt. Block:1-11 Buyant Mt. Zone,1-12 Baoerhantu Mt. Zone,1-13 Bainaimiao Mt. Zone,1-14 Xianghuang Qi- Duolun Mt. Zone;Ⅰ-4 Solon-Xar Moron Mt. Block:1-15 Qagan Ul-Dinaimiao Mt. Zone,1-16 Linxi Mt. Zone,1-17 Ondor Miao Mt. Zone;Ⅰ-5 Da Hinggan Ling Mt. Block:1-18 XinLin-Honghuaeji Mt. Zone,1-19 Dong Ujimqin-Duobaoshan Mt. Zone,1-20 Heihe-Hegenshan Mt. Zone,1-21 Xinlinhot Mt. Zone;Ⅰ-6 Ergun Mt. Block:1-22 Mohe Mt. Zone,1-23 Moridaga Mt. Zone;Ⅰ-7 Tongliao-Yanji Mt. Block:1-24 Tongliao-Jiamusi Mt. Zone,1-25 Siping-Yanji Mt. Zone;Ⅰ-8 Jiamusi-Hulin Mt. Block:1-26 Luobei-Mudanjiang Mt. Zone,1-27 Mashan-Mishan Mt. Zone,1-28 Nadanhadaling Mt. Zone;Ⅱ Tarim Mt. Province:Ⅱ-1 Tarim Proterozoic Mt. Block:2-1 Aksu Mt. Zone,2-2 Kuruk Tag-Xingxingxia Mt. Zone,2-3 North margin Mt. Zone in West Kunlun;Ⅱ-2 Dunhuang-Alxa Mt. Block:2-4 Dunhuang- Beishan Mt. Zone,2-5 Alxa Mt. Zone;Ⅲ North China Mt. Province:Ⅲ-1 Yinshang Mt. Block:3-1 Urad Zhongqi-Bayan Obo-Huade Mt. Zone,3-2 Sertengshan-Weichang Mt. Zone;Ⅲ-2 Jining-Ordos Mt. Block:3-3 Jining-Helanshan Mt. Zone,3-4 Lüliang-Yan’an Mt. Zone;Ⅲ-3 Hebei-Shandong Mt. Block:3-5 West Liaoning- Zhongtiao Mt. Zone,3-6 East Hebei Mt. Zone,3-7 West Shandong- Bangbu Mt. Zone,3-8 Jiaodong Mt. Zone;Ⅲ-4 Liaoning Mt. Block:3-9 North Liaoning-South Jilin Mt. Zone,3-10 Paleoproterozoic Liaohe Mt. Zone;Ⅳ West Kunlun- Qaidam-Qinling Mt. Province:Ⅳ-1 West Kunlun Mt. Block:4-1 South margin Mt. Zone in West Kunlun;Ⅳ-2 Altun-Qilian-Qaidam Mt. Block:4-2 North Altun-North Qilian Early Paleozoic Mt. Zone,4-3 Central Altun-Qilian Proterozoic Mt. Zone,4-4 Oulongbuluke Paleoproterozoic Mt. Zone,4-5 South Altun-North Qaidam Early Paleozoic Mt. Zone,4-6 Qaidam-North Kunlun Proterozoic-Early Paleozoic Mt. Zone;Ⅳ-3 West Qinling Mt. Block:4-7 West Qinling Mt. Zone;Ⅳ-4 Qinling Mt. Block:4-8 North Qinling- East Qinling Mt. Zone,4-9 South Qinling Mt. Zone;Ⅴ Dabie-Sulu Mt. Province:Ⅴ-1 Dabieshan(Dabie) Mt. Block:5-1 South Dabie HP-UHP Mt. Zone,5-2 North Dabie Mt. Zone;Ⅴ-2 Sulu Mt. Block:5-3 Sulu HP Mt. Zone,5-4 Sulu UHP Mt Zone;Ⅵ North Qiangtang-Qando Mt. Province:Ⅵ-1 Barakorun-Bayan Har Mt. Block:6-1 Bayab Har-Garze Mt Zone, 6-2 Yushu-Zhongdian Mt. Zone;Ⅵ-2 North Qianagtang-Qamdo-Lanping Mt. Block:6-3 Yanghu -Jinshajiang-Ailaoshan Mt. Zone,6-4 North Qiangtang-Qamdo-Langping Mt. Zone;Ⅶ South Qiangtang-Kangdise-Himalaya-West Yunnan Mt. Province:Ⅶ-1 South Qiangtang-Baoshan Mt. Block:7-1 Lungmu Co-Shuanghu-Lancangjiang Mt. Zone,7-2 South Qiangtang-Zogang Mt. Zone;Ⅶ-2 Kangdise-Tengchong Mt. Block:7-3 Bangong Co-Nujiang Mt. Zone,7-4 Baingoin-Lhorong Mt. Zone,7-5 Kangdise-Chayu Mt. Zone,7-6 Tengchong Mt. Zone;Ⅶ-3 Himala Mt. Block:7-7 Yarlung Zangbo Jiang Mt. Zone,7-8 North Himalaya Mt. Zone,7-9 High Himalaya Mt. Zone,7-10 Low Himalya Mt. Zone;Ⅷ Ynagtze Mt. Province:Ⅷ-1 West margin of Yangtze Mt. Block:8-1 Kangdian Mt. Zone,8-2 Central Yunnan Mt. Zone,8-3 Nanpanjiang-Youjiang Mt. Zone;Ⅷ-2 Yangtze Mt. Block:8-4 Huangling Mt. Zone,8-5 Yangtze Mt. Zone,8-6 Jiangnan Orogen Mt.Zone;Ⅸ Cathysia Mt. Province:Ⅸ-1 Wuyishang Mt. Block:9-1 Paleoproterozoic Mt. Zone,9-2 Paleozoic Caledonian Mt. Zone,9-3 Mesozoic Indosinian Mt. Zone;Ⅸ-2 Nanling-Yunkai Mt. Block:9-4 Caledonian Mt. Zone,9-5 Variscian Mt. Zone,9-6 Indosinian Mt. Zone;Ⅸ-3 Hainan Mt. Block:9-7Caledonian Mt. Zone,9-8 Variscian-Indosinian Mt. Zone; Ⅸ-4 Southeastern Coast-Taiwan Mt. Block: 9-9 Yanshanian Mt. Zone,9-10 Himalayan Mt. Zone. H-Himayayan Metamorphism,Y-Yanshanian Metamorohism,I-Indosinian Metamorphism,V-Variscian Metamorphism,C-Caledonian Metamorphism,X-Xingkaian (Pan-African) Metamorphism,PЄE-Neoproterozoin Metamorphism,PЄD-Mesoproterozoic Metamorphism,PЄC-Paleoproterozoic Metamorphism,PЄB-Neoarchean Metamorphism,PЄE+H-Neoproterozoic+Himalayan Metamorphism,I-Y-Indosinian-Yanshanian Metamorphism,V-I- Variscian-Indosinian Metamorphism,C-V-Caledonian-Variscian Metamorphism,PЄC+V-Paleoproterozoic+Variscian Metamorphism,PЄD+C-Mesoproterozoic+Caledonian Metamorphism,PЄE+C-Neoproterozoic+Caledonian Metamorphism,PЄD-E-Meso-Neoproterozoic Metamorphism,PЄC-E-Paleo-Neoproterozoic Metamorphism,PЄC-D-Paleo-Mesoproterozoic Metamorphism,PЄB-C-Neoarchean-Paleoproterozoic Metamorphism
2 形成古老陆块的区域变质作用

太古宙的变质岩系在华北、塔里木和华南克拉通均有分布,由于后期强烈的变质变形改造,塔里木和华南克拉通出露的相对较少,华北克拉通出露较多。华北克拉通也称为华北陆块,尽管与世界其它克拉通相比面积相对较小,但是由于其具有约3.8~4.1Ga的漫长历史,经历了复杂的多阶段构造演化(Goodwin, 1991; Windley, 1995; Rogers and Santosh, 2003Zhao et al., 2005; Zhai, 2011), 记录了几乎所有的地球早期发生的重大地质事件(Zhai and Santosh, 2011Zhai,2013), 因此受到国内外地质学家的关注,也是讨论中国早期变质作用的重点。

2.1 古老变质作用的年代学记录

在华北克拉通西南缘(北秦岭西段)奥陶纪草滩沟组火山碎屑岩中曾发现捕获的4079±5Ma岩浆锆石,同时发现有4007±29Ma和3751±30Ma的变质锆石 (第五春荣等,2010)。最近在华夏地块武夷山地区龙泉岩群的云母石英片岩中发现了两颗冥古宙的碎屑锆石,其中1颗锆石发育核幔边结构,核部的岩浆锆石年龄为4148±8Ma,锆石幔部的Th/U比值≤0.05属于变质成因,其中1个分析点的207Pb/206Pb年龄为4063±15Ma (Th/U=0.05), 这是中国最古老变质作用的年代学记录(Xing et al., 2014邢光福等,2015)。尽管仅根据锆石的年龄无法推断变质作用的条件,但至少说明在冥古宙期间部分地区已经具有相当规模面积和相当厚度的地壳,具备了发生区域变质作用的条件。

华北克拉通最古老岩系是在辽宁鞍山等地出露的始太古-中太古代TTG岩系,主要由奥长花岗质片麻岩、石英闪长质片麻岩和花岗岩等组成,其最大年龄达3.8Ga(Liu et al., 1992Song et al., 1996Wan et al., 2005, 刘敦一等,2007)。该变质岩系的主体分布在辽宁鞍山一带,其中残留有古太古代变质表壳岩,称为陈台沟表壳岩,由斜长角闪岩、黑云变粒岩、黑云斜长片麻岩、直闪石铁英岩、直闪石石英岩等组成,原岩主要是一套基性和酸性火山岩以及不纯硅铁质化学沉积岩,岩层的主体变质已达角闪岩相,部分已退变为绿片岩相,原岩时代为3300Ma,属古太古代。这些岩石经历了漫长的演化历史,早期变质的矿物组合已经很难确定,但在3.77Ga的条带状奥长花岗岩中获得有3.56Ga的变质年龄,在一些古太古代片麻岩中获得有3.0~3.3Ga的变质年龄(Wan et al., 2012董春艳等,2013)。这些资料表明,在古太古代期间鞍山地区的TTG岩系及陈台沟表壳岩曾经历过多期的变质改造,尽管早期变质的矿物组合、变质的温度压力条件、变质作用发生的构造背景已很难追溯,但是锆石原位定年的结果揭示了鞍本地区古太古代的岩系在古太古代期间曾发生过变质改造。一些作者根据TTG片麻岩的地球化学特征,推断鞍本地区3.5~3.6Ga的TTG片麻岩形成时的地热梯度>30℃/km (Wan et al., 2005);有的作者推断鞍山地区古太古代的奥长花岗质片麻岩的岩浆源区的温度条件为950~1000℃,压力可以达到1.3~1.4GPa(Wang et al., 2015a)。这样的地壳地热梯度和岩浆源区的温度压力条件,说明古太古代期间鞍本地区已经具有相当的地壳厚度,具备了发生区域变质作用的条件。

2.2 新太古代的变质作用与地壳增生和再造

大量的全岩Sm-Nd模式年龄和锆石Hf的模式年龄揭示2.7~2.8Ga是华北克拉通最主要的地壳增生时间(Wu et al., 2005Geng et al., 2012),并且在鲁西地区既有厚层基性火山岩,又有较广泛的TTG片麻岩(Jahn et al., 1988; 杜利林等, 2003, 2010; 陆松年等, 2008; Wan et al., 2011)。在胶东地区也出露许多同时代的片麻岩及表壳岩(Jahn et al., 2008谢士稳等, 2015王惠初等, 2015)。在中部带的河南鲁山地区有2838~2845Ma的基性火山岩,也有2829~2832Ma的TTG片麻岩形成,它们都经历了2.77Ga的变质改造(Liu et al., 2009a)。中部带的赞皇地区、阜平地区、恒山地区、中条地区,西部陆块的阴山地区也陆续发现有2.7~2.8Ga的TTG片麻岩(Guan et al., 2002; Kröner et al., 2005a, b董晓杰等,2012马铭株等,2013Yang et al., 2013; Zhu et al., 2013; 路增龙等,2014; Jahn et al., 2008),进而证明2.7~2.8Ga是华北陆块最主要的地壳增生时期。在华北陆块南缘的河南鲁山地区,英云闪长岩和角闪岩形成于2830~2845Ma期间,变质锆石形成于2638~2792Ma期间。值得注意的是变质锆石中有单斜辉石、角闪石、斜长石和石英的包体,这些包裹体矿物被认为是在早期变质阶段形成的(Liu et al., 2009a)。由此可以推断在大规模地壳增生过程中伴随有较广泛的中高温区域热流变质作用,由于单斜辉石的出现,其变质程度至少应在高角闪岩相。在鲁西含十字石榴黑云石英片岩变质锆石的207Pb/206Pb加权平均年龄为2643±32Ma,代表了新太古代早期的变质作用时代。其多数变质锆石的176Lu/177Hf比值小于0.001,锆石变质边部的176Lu/177Hf比值皆高于核部岩浆锆石的176Lu/177Hf比值,反映变质过程中Lu-Hf同位素之间发生了分异(杜利林等,2010)。造成Lu-Hf同位素分异也表明这一阶段变质作用的温度条件较高。

在2.8~2.7Ga大规模的地壳增生之后,新生的地壳在2.55~2.50Ga发生了明显的再造,形成了华北克拉通大规模的TTG片麻岩和花岗质片麻岩,同时在一些地区形成了具有类似绿岩带特点的表壳岩系,这是一次最重要的地壳再造事件。几乎与大规模TTG片麻岩和花岗质片麻岩形成的同时华北陆块发生了广泛的区域变质作用。以TTG片麻岩为主(包含少量表壳岩)的一些高级变质地体多经历了麻粒岩相的变质改造,如冀东地区、辽北清原地区、辽西建平地区、山东沂水地区、内蒙古西乌兰不浪等地区。在这些高级变质地区变质峰期的变质温度一般达800~850℃或更高,压力达0.5~0.9GPa,P-T轨迹为逆时针型(图 2),属于中压麻粒岩相。而一些花岗绿岩带变质程度则相对较低,多为绿片岩相到角闪岩相, 如鲁西地区、鞍本地区、冀东的青龙地区、山西的五台地区等。在这类地区变质峰期的温度为550~700℃,压力为0.45~0.85GPa,属于中低压绿片岩相-角闪岩相变质。这一阶段的变质作用通常具有以下一些特点,一是不论高级区还是类似的花岗-绿岩带变质演化通常具有逆时针的P-T演化轨迹,二是变质作用的时代与TTG片麻岩形成时代非常接近(Grant et al., 2009; Yang et al., 2008),三是这期变质作用普遍伴随有深熔作用和混合岩化作用,四是不论是东部陆块、西部陆块这一阶段的变质演化特点非常类似。特别是逆时针的变质演化轨迹和区域上面状的广泛分布特点很难用线状构造热体制(造山带)解释,构造上以卵形构造最为特征(李三忠等,2015a)。所以根据新太古代末期变质的特点,本文认为,华北克拉通在太古宙晚期处于地幔柱构造热体制下,底侵基性岩浆产生的大量热导致先存中下地壳的部分熔融,形成深熔系列的正片麻岩(包括钾质花岗岩),同时大量的热源使中下地壳岩石发生区域变质改造。在这种构造热体制下,由于深熔岩石母岩成分的差异可以近于同时产生不同成分的正片麻岩。并且由于热向上传导,在已存地壳和刚形成的片麻岩可以很快经历区域变质改造。因此,地幔柱底侵的构造热体制是导致华北克拉通在新太古代末-古元古代初形成的根本机制(耿元生等,2010)。


图 2 华北陆块基底太古宙麻粒岩的代表性P-T轨迹 1-大青山-乌拉山地区(Zhao et al., 1999);2-固阳-武川地区(Zhao et al., 1999); 3-冀东地区(Zhao et al., 1998); 4-密云地区(陈能松等, 1994); 5-山东沂水地区(苏尚国等,1997);6、7-辽宁抚顺地区(孙德育等,1993);8-吉南地区(葛文春等,1994) Fig. 2 The P-T paths of Archean granulite terrain in North China Craton 1-Daqingshang-Wulashan region (Zhao et al., 1999); 2-Guyang-Wuchuan region (Zhao et al., 1999); 3-eastern Hebei region (Zhao et al., 1998); 4-Miyun region (Chen et al., 1994); 5-Yishui region, Shandong Province (Su et al., 1997); 6 and 7-Fushun region, Liaoning Province (Sun et al., 1993); 8-southern Jilin Province (Ge et al., 1994)

在华南克拉通的黄陵地区也出露有形成年龄在3.2~2.8Ga的高级变质地体,其主要由闪长质-英云闪长-奥长花岗质-花岗闪长质片麻岩(DTTG)和花岗质片麻岩组成, 其次为变沉积岩、斜长角闪岩及少量基性麻粒岩等组成的表壳岩系(Qiu et al., 2000Gao et al., 2001, 2011; Zhang et al., 2006aChen et al., 2013; Guo et al., 2014, 2015; Li et al., 2014)。变沉积岩主要为含或不含石墨的条带状黑云变粒岩和片麻岩, 并发育石榴夕线石英(片)岩、石榴夕线黑云片麻岩等富铝岩石、石墨片岩、大理岩、钙硅酸岩、石英岩及磁铁石英岩等, 显示出孔兹岩建造特征。该区变泥质岩石经历了三个阶段的变质演化,M1阶段的共生组合为Bt+Ms+Chl+Pl +Qtz,变质温度在400~550℃之间,属于较低温的绿片岩相;M2阶段典型的共生组合为And+St+Alm+Bt+Ms+Pl+Qtz,变质温度在520~ 580℃之间,压力在0.3~ 0.5GPa之间,属于低角闪岩相变质;M3阶段特征的变质矿物组合为Sil+Alm+Pl+Qtz,变质温度为640~700℃,变质压力在0.3~0.5GPa,由于局部见有麻粒岩,这一阶段属于高角闪岩相-麻粒岩相。三个阶段的变质作用条件反映了一个递进的变质演化过程(卢良兆等,1996)。在斜长角闪岩中有2.7~2.8Ga和2.55Ga两期变质锆石(魏君奇和王建雄, 2012; Li et al., 2014),显然它们经历了新太古代两期变质改造,至于孔兹岩系逆时针的变质演化是哪一期形成的目前还没有确切的证据。这种逆时针的变质演化轨迹与华北陆块的新太古代晚期麻粒岩地体的变质特点非常类似,所以本文倾向于它们至少经历了新太古代晚期的变质作用改造。也有作者认为这套孔兹岩系主要经历了古元古代的变质改造(Yin et al., 2013)。但古元古代晚期的变质作用多具有顺时针的P-T演化轨迹(见下文),与早期逆时针的演化轨迹明显不同。因此,这套岩石很可能经历了新太古代和古元古代两期变质改造。在华南克拉通,除了崆岭地区出露有古太古代-新太古代的地质体之外,近些年在湖北钟祥的胡集、华南克拉通北缘的陡岭杂岩、鱼洞子杂岩中都发现有新太古代的正片麻岩(Wang et al., 2013Hu et al., 2013; Wu et al., 2014; 张欣等,2010),表明扬子陆块的新太古代地体出露范围应该比较广泛。值得注意的是在鱼洞子杂岩花岗岩的变质锆石中获得了2647±65Ma (n=9)年龄(张欣等, 2010)、陡岭群的黑云斜长片麻岩变质增生的锆石边部获得了2460±21Ma (MSWD=0.29, n=4)的变质年龄(Hu et al., 2013),表明它们也经历了新太古代晚期-古元古代初期的变质改造。但是这些地区相应的变质沉积地层的研究还很薄弱,需进一步研究。

在塔里木克拉通的库鲁克塔格地区、阿尔金山阿克塔什塔格地区以及敦煌地区都出露有中太古代到新太古代的TTG片麻岩和少量的表壳岩(Hu and Rogers, 1992; Hu et al., 2000; 郭召杰等,2003胡霭琴和韦建刚,2006陆松年,1992Long et al., 2011)。在库鲁克塔格地区这些太古宙的岩石多经历了高角闪岩相的变质改造,混合岩化发育。在阿尔金山及敦煌地区,部分太古宙的岩石经历了麻粒岩相的变质改造,变质温度为682~889℃,变质压力为0.75GPa(陆松年等, 2006; Lu et al., 2008),属于中压麻粒岩相,与华北陆块新太古代晚期麻粒岩地体的变质条件类似。目前还没有塔里木克拉通内太古宙变质作用更详细的资料,需要进一步研究。

上述资料表明不论是华北、塔里木还是扬子克拉通古老的变质基底都经历了新太古末-古元古代初的变质作用改造,后两个克拉通基底的变质作用研究还较薄弱。但是根据华北克拉通相关变质作用及岩浆作用的研究以及相关克拉通的有关信息,可以推断在新太古代末-古元古代初古老陆块基底经历了较高级的变质作用改造,这一阶段的变质作用特点是,通常与岩浆作用紧密相随,具有逆时针的演化轨迹,表明新太古代末-古元古代初是中国古老大陆地壳的重要生长改造期,同时在岩浆作用之后通常伴随有较高级的变质作用改造。

2.3 与哥伦比亚超大陆会聚有关的古元古代晚期的变质作用

古元古代晚期的变质事件对于华北、华南和塔里木克拉通的形成都具有非常重要的意义。通过新太古代末期的构造-岩浆-变质热事件,在华北形成了一些微陆块或克拉通的雏形,经过2.45~2.3Ga的构造岩浆静寂期后,从2.3Ga开始在克拉通雏形内部或边缘发生了大规模的裂解事件(翟明国和卞爱国,2000; Zhai, 2011),或者在东部陆块、西部陆块及阴山陆块间的洋盆开始发育(Zhao et al., 2005, 2012; 李三忠等,2015b)。在华北克拉通北缘沉积了一套富铝的孔兹岩系,在华北中部、南部形成了以滹沱群、甘陶河群和中条群等为代表的火山沉积岩系,2.15~1.94Ga期间,在辽宁-胶北形成了以辽河群和粉子山群为代表的火山沉积岩系(Li and Zhao, 2007)。有的研究者将这三套组合称为三个活动带(Zhai, 2011, 2013)。其中的火山岩岩石通常具有双峰式特点, 具有裂谷的岩石组合性质, 部分岩石显示了岛弧的特点。岩石在1.95~1.80Ga 期间经历了两期变质作用(局部麻粒岩相),有造山后的花岗岩侵入。

华北克拉通北缘变质孔兹岩系在西段的贺兰山-千里山地区见有中低压麻粒岩(Zhao et al., 1999)和高压泥质麻粒岩(Yin, 2010Yin et al., 2011; 周喜文等, 2010),在中-东段的大青山和集宁及其相邻地区见有高压基性麻粒岩,而在大青山东坡和集宁的土贵乌拉和和林格尔地区见有具假蓝宝石+石英组合和尖晶石+石英组合,变质温度达到950~1000℃的超高温泥质麻粒岩(Guo et al. 2012; Santosh et al., 2006, 2007a, b, 2009a, b, 2013; Santosh and Kusky, 2010; Tsunogae et al., 2011; 刘守偈等,2008Liu et al., 2012a)。现有的同位素年代学数据显示,华北北缘孔玆岩带在1950Ma前后经历了高压/中低压的麻粒岩相变质,在1920Ma左右大青山东坡和集宁地区孔兹岩系中富铝的泥质岩石遭受到超高温麻粒岩相改造。1920Ma的变质向西可以延伸到千里山地区,但是该地区未发现超高温的泥质麻粒岩。

孔玆岩带内中压/高压麻粒岩的变质演化轨迹均显示出等温降压的顺时针轨迹(图 3ac),其中超高温泥质麻粒岩由于起始的温度压力不同变质作用演化轨迹有所区别,但都经历过较快速的降温过程 (图 3b),它们是在不同变质条件下连续发展过程中形成的。另外在中部带的承德-恒山也出露一些高压麻粒岩(以石榴基性麻粒岩为主),它们也具有顺时针的变质演化轨迹(图 3c, d)。赵国春(2009)Zhao et al.(2005)提出,华北克拉通北缘孔玆岩带是由阴山陆块与鄂尔多斯陆块在1950Ma左右相互碰撞、地壳加厚,导致了高压麻粒岩相变质作用;在地壳回返过程中,1920Ma左右地幔上涌带来的热源导致超高温麻粒岩相的变质。同时,有的作者提出在华北北缘存在古元古代的内蒙-冀北造山带(Kusky et al., 2007a, b),华北中部造山带与内蒙孔兹岩高温麻粒岩带在古元古代相向俯冲碰撞的模式(Santosh et al., 2007b)。这些构造模式的一个基本出发点是将鄂尔多斯作为太古宙的基底,但最近对鄂尔多斯盆地深部钻孔岩芯的研究显示,鄂尔多斯盆地深部出露的岩石主要是古元古代岩石(Hu et al., 2012Wan et al., 2013Zhang et al., 2015a),其中部分钻孔显示它们与北缘出露的孔兹岩系基本一致。如果鄂尔多斯盆地深部主要是古元古代的岩石,那么它们就可能与北部的孔玆岩带等古元古代的岩石总体呈面状分布。只是贺兰山-千里山-大青山的岩石出露地表,而鄂尔多斯地区的古元古代的岩系被深埋地下,其上被寒武-奥陶纪和中生代地层所覆盖。阴山陆块与鄂尔多斯陆块碰撞之说成了疑问,需要进一步深入研究。


图 3 华北克拉通古元古代中高压变质岩的P-T轨迹 (a)西北部孔玆岩带地区, 其中1-贺兰山群中压麻粒岩(Zhao et al., 1999); 2-千里山群高压泥质麻粒岩(Yin et al., 2011); 3、4-贺兰山群高压泥质麻粒岩(周喜文等,2010Yin, 2010); 5-大青山-乌拉山孔兹岩系(Liu et al., 1993); 6-乌拉山孔兹岩系(徐学纯,1991); 7-大青山-乌拉山孔兹岩系(金巍等, 1991);8-大青山孔兹岩系(蔡佳等,2013);(b)孔玆岩带中的超高温麻粒岩,其中1、3-大青山东坡(Tsunogae et al., 2011Guo et al., 2012); 2、4-集宁土贵乌拉(Santosh et al., 2009a刘守偈等, 2008); 5-大青山沙尔沁(Jiao et al., 2015);(c)集宁-大同地区,其中1-集宁孔兹岩系(Zhao et al., 1999);2-集宁基性麻粒岩(Zhao et al., 1999); 3-集宁孔兹岩系第一次变质事件的P-T轨迹(卢良兆等,1992);4-集宁孔兹岩系第二次变质事件的P-T轨迹(卢良兆等,1992);5-大同以东孔兹岩系 (刘福来,1997);6-集宁孔兹岩中高压泥质麻粒岩(Wang et al., 2011); 7-大同孤山高压石榴基性麻粒岩 (王洛娟等,2011); 8-集宁孔兹岩系中石榴石岩 (Jiao et al., 2013); 9-集宁三岔口孔兹岩 (蔡佳等,2014);(d)承德-恒山地区,其中1、2-桑干地区(Guo et al., 2012); 3、4-恒山地区(O’Brien et al., 2005); 5-怀安地区基性麻粒岩(Zhang et al., 1994; 刘福来, 1995); 6-怀安地区富铝片麻岩(刘福来, 1995) Fig. 3 The P-T paths of the Paleoproterozoic middle-high pressure granulites in North China Craton (a) Khondalite belt, 1-MP granulite, Helanshan Group (Zhao et al., 1999); 2- HP pelitic granulte, Qianlishan Group (Yin et al., 2011); 3 and 4-HP pelitic granulte in Helanshan (Zhou et al., 2011; Yin, 2010); 5-Khondalite series in Daqingshan-Wulashan (Liu et al., 1993); 6-Khondalite series in Wulashan (Xu, 1991); 7-Khondalite series in Daqingshan-Wulashan (Jin et al., 1991); 8-Khondalite series in Daqingshan (Cai et al., 2013); (b) UHT granulites in khondalite belt, 1 and 3-Dongpo, Daqingshan (Tsunogae et al., 2011Guo et al., 2012); 2 and 4-Tuguiwula, Jining (Santosh et al., 2009aLiu et al., 2008); 5-Shaerqin, Daqingshan, (Jiao et al., 2015); (c) Jining-Datong region, 1-Jining khondalite (Zhao et al., 1999); 2- Jining basic granulite (Zhao et al., 1999); 3-P-T path of first metamorphic epoch (Lu et al., 1992); 4-P-T of secant metamorphic epoch (Lu et al., 1992); 5-khondalite in eastern Datong (Liu, 1997); 6-HP pelitic granulite in Jining khondalite (Wang et al., 2011); 7-HP garnet basic granulite in Gushan, Datong (Wang et al., 2011); 8-granulite in Jining khondalite (Jiao et al., 2013); 9-khondalite in Sanchakou, Jining (Cai et al., 2014); (d) Chengde-Hengshan Gegion, 1and 2-Sanggan area (Guo et al., 2012); 3 and 4-Hengshan area (O’Brien et al., 2005); 5-basic granulite in Huai’an area (Zhang et al., 1994; Liu, 1995); 6-rich-Al gneiss in Huai’an area (Liu, 1995)

中部带(Zhao et al., 2002, 2005)内的古元古代变质的杂岩包括含有高压基性麻粒岩的承德变质杂岩、怀安变质杂岩、恒山变质杂岩,以及不含高压基性麻粒岩的阜平湾子群、中条群、赞皇群等。北部含有高压基性麻粒岩的变质杂岩在古元古代晚期(~1.85Ga)发生了高压麻粒岩相变质,许多高压基性麻粒岩保存了Grt(高Ca核部)+Pl+Cpx+Qtz的高压麻粒岩相矿物组合(M1),Grt+Pl+Cpx+Opx+Qtz的中压麻粒岩相矿物组合(M2), Opx+Cpx+Pl+Qtz的低压麻粒岩相组合(M3)和Hbl+Pl的角闪岩相矿物组合。高压基性麻粒岩的峰期温度一般在780~850℃,压力达1.3~1.5GPa。变质过程组成的P-T轨迹显示为顺时针轨迹,峰期后显示近等温降压,之后为降温降压(图 3d)。这个带南部古元古代的变质岩系,尽管不含高压基性麻粒岩,但是在古元古代晚期经历的变质作用同样具有顺时针的P-T轨迹(蒋宗胜等, 2011; Lu et al., 2013, 2014; Wang et al., 2014; Chen et al., 2015) 。

胶-辽-吉活动带以辽宁的辽河群,吉林南部的老岭群、集安群及胶北地区的荆山群为代表。胶-辽-吉活动带是在新太古代活动大陆边缘基底上发育的裂谷系(李三忠等, 2003), 其中在辽宁和吉林地区主要由火山岩、碎屑岩、大理岩等组成,其中含有硼矿和菱镁矿。尽管对于该活动带内不同地区古元古代地层的划分、对比及形成环境还存在不同认识。但是这些岩系都经历了古元古代末期(~1.85Ga)的区域变质作用改造,北辽河群、老岭群及粉子山群的变质P-T-t轨迹(图 4)表明,它们在碰撞期间出现快速升温升压,温度压力同时达到峰期之后经历了快速减压、缓慢降温的过程。而南辽河群、集安群及荆山群的p-T-t轨迹则表明在进变质阶段升压幅度较小,温度有较大幅度升高,峰期之后它们都经历了近等压的快速降温过程。同一个活动带不同部位变质作用演化的差异反映了它们在变质作用发生时处于不同的构造部位,有的研究者认为两种形式的P-T轨迹构成了双变质带,反映了古元古代晚期的碰撞造山过程(赵国春,2009)。近年的研究表明,胶北地区的荆山群中部分变泥质岩石和基性岩经历了麻粒岩相的变质改造,变质峰期温度压力可以达到T=780~890℃、P=1.31~1.51GPa (Tam et al., 2012a, b; Liu et al., 2013), 都具有顺时针的P-T演化轨迹(Liu et al., 2013; Tam et al., 2012a, b, c; 刘文军等,1998; Zhou et al., 2004; 周喜文等, 2007; 王舫等,2010)。


图 4 胶-辽-吉古元古代变质岩带中变质作用演化的P-T轨迹(据Zhao et al., 2012) Fig. 4 The P-T paths of metamorphic evolution of Paleoproterozoic Jiao-Liao-Ji metamorphic belt (after Zhao et al., 2012)

华北克拉通内三个古元古代活动带的变质演化历史反映了裂谷盆地俯冲-碰撞的演化历史,这个构造过程可能代表了规模有限的初始板块构造(李三忠等, 2015a, b), 即构造机制与板块构造相似, 但是规模要小得多(Zhai, 2011, 2013)。古元古代的造山运动是华北克拉通前寒武纪演化的关键地质事件之一。

古元古代晚期的构造热事件在华北陆块表现最为完整,虽然在华南克拉通、塔里木克拉通这期构造热事件没有以完整的活动带或造山带的形式表现出来,但是也可以从古老岩系或古元古代的变质岩系中发现这期变质作用留下的痕迹。

在华南克拉通西北缘出露的后河杂岩下部的混合片麻岩中的斜长角闪岩以普通角闪石+斜长石为主,偶见次透辉石和紫苏辉石残晶,因此其早期可能经历了麻粒岩相的变质改造, 之后经历了角闪岩相的退变质(何大伦等,1995)。锆石原位定年揭示这套岩石形成于2081±9Ma左右(Wu et al., 2012), 而不整合覆盖在后河杂岩之上的浅变质的火地垭群形成时代为中元古代早期(Ling et al., 2003)。因此,可以认为后河杂岩早期的麻粒岩相变质和角闪岩相的退变质应发生在古元古代晚期,但其变质演化特点和反映的构造背景还需进一步研究。在华南克拉通北部的崆岭地区,其中的孔兹岩系以往认为属于太古宙(Qiu et al., 2000), 近年在其中发现了少量的2.1~2.2Ga的碎屑锆石,从而认为其形成于古元古代(Yin et al., 2013)。其中的高压基性麻粒岩、石榴角闪岩和变泥质岩的变质过程都具有顺时针的P-T轨迹(图 5; Yin et al., 2013; Wu et al., 2009)。大量数据表明崆岭地区的太古宙-古元古代变质岩系经历了古元古代晚期(1.9~2.0Ga)的岩浆变质事件改造(Qiu et al., 2000Gao et al., 2001, 2011; Zhang et al., 2006a, b; Wu et al., 2009; Yin et al., 2013; Li et al., 2016)。值得注意的是,该地区代表拉伸阶段的圈椅埫钾质花岗岩形成年龄为1.85Ga (Xiong et al., 2009Peng et al., 2012),侵入到太古宙片麻岩和变质地层中的基性岩脉形成年龄为1.85Ga(Peng et al., 2009),在湖北钟祥华山观发现有1851±18Ma的环斑花岗岩(Zhang et al., 2011)。这些岩石的出露意味着当时华南最起码有一部分已经完成了刚性块体的稳定化,而1.92~2.02Ga期间的变质作用及后续岩浆事件的发生意味着华南陆块在元古代晚期阶段通过弧-陆碰撞发生了陆块的聚合(Zhang et al., 2006c)。


图 5 湖北崆岭群(1据Yin et al., 2013; 2据Wu et al., 2009)、浙江遂昌八都群(3据赵磊和周喜文,2012)和甘肃敦煌群(4据Zhang et al., 2012)古元古代变质岩带中变质作用演化的P-T轨迹 Fig. 5 P-T paths of metamorphic evolution of Paleoproterozoic Kongling Group from Hubei Province (1 after Yin et al., 2013; 2 after Wu et al., 2009), Badou Group from Zhejiang Province (3 after Zhao and Zhou, 2012) and Dunhuang Group from Gansu Province (4 after Zhang et al., 2012)

在华南克拉通的华夏地块中出露于浙西南的八都群作为目前华夏地块古老的变质基底,呈“窗口状”出露于中生代火山岩盖层之中,主要由一系列陆源碎屑沉积的变质表壳岩和花岗岩组成,混合岩化发育,具有2.0~2.4Ga的碎屑锆石年龄和1.85~1.95Ga的花岗岩侵入年龄(胡雄健等,1991甘晓春等, 1993, 1995Liu et al., 2009b; Zhao et al., 2014, 2015a),属古元古代。对八都群中夕线石榴黑云片麻岩、石榴角闪斜长片麻岩和石榴二辉麻粒岩的详细研究表明,由于后期的强烈改造三种岩石早期进变质阶段的PT条件已被峰期以及峰后变质阶段所掩盖,三种岩石估算的变质作用峰期阶段的温度都达到800℃以上,压力大致在0.70GPa以上,达到了中地壳深度(赵磊和周喜文,2012)。值得注意的是,三种岩石峰期后都呈现了顺时针样式的P-T演化轨迹(见图 5),说明它们经历的相同的构造演化过程。这种顺时针样式的P-T演化轨迹往往反映一种碰撞造山过程,说明早元古界八都群很可能形成于某一板块汇聚边缘。目前的年代学研究表明,八都群的变质作用主要发生发生在1.87~1.9Ga期间。

在塔里木克拉通除太古宙的变质杂岩之外还有一些古元古代的变质岩系,如敦煌群的孔兹岩系及侵入到太古宙米兰岩群中的片麻状闪长岩(2135Ma)、片麻状花岗闪长岩(2052Ma)、二长花岗岩(2050Ma)等(辛后田等,2011)。这些岩石普遍发生了角闪岩相到麻粒岩相的变质改造。 Zhang et al. (2012)通过对敦煌岩群中的基性麻粒岩的详细岩相学研究,揭示出基性麻粒岩经历了三个阶段的变质作用,早期阶段的变质矿物组合为Grt+Hbl+Pl+Qtz, 变质的温度压力条件为660~700℃, 0.85~0.92GPa, 峰期(高压阶段)变质的矿物组合是Grt+Cpx+Pl +Qtz, 变质温度为760~820℃,压力为1.10~1.25GPa。减压阶段产生的矿物组合为Grt+Opx+Hbl +Pl+Qtz, 变质温压条件为700~770℃和0.6~0.7GPa,形成了一条顺时针的变质演化轨迹(图 5),区域变质作用主要发生在1.85~1.82Ga期间(Zhang et al., 2013b; 赵燕等,2013)。辛后田等(2011, 2013)认为阿克塔什塔格地区米兰群古元古代的变质作用主要发生在1931~1986Ma期间。此外在库鲁克塔格地区一些新太古代变质岩中也存在古元古代晚期变质作用的记录(胡霭琴和韦刚健,2006)、在塔里木克拉通西南缘铁克里克地区基底岩系中深熔的长英质条带的形成年龄在1.9Ga左右(Zhang et al., 2007), 是古元古代晚期变质作用的反映。塔里木克拉通古元古代晚期变质事件所反映的顺时针P-T-t轨迹以及变质作用发生的时间都与华北克拉通类似。

上述资料表明,华北克拉通、华南克拉通和塔里木克拉通都经历了古元古代晚期的变质作用改造,普遍具有顺时针的变质作用演化轨迹,说明这一阶段的变质作用与碰撞造山作用有关。但是三个克拉通的变质演化还存在一定差异。华北克拉通古元古代晚期的变质作用大体可划分为两个阶段,1.95Ga左右的变质作用主要发生在北缘的孔兹岩带,而1.85Ga左右的变质作用则分布较广,克拉通化后表示拉张阶段的环斑花岗岩形成于1.7Ga左右(Rämö et al., 1995; 杨进辉等,2005刘振锋等,2006高维等,2008和政军等,2011)。华南克拉通古元古代晚期的变质作用主要发生在1.9~2.0Ga期间,代表拉张环境的圈椅埫花岗岩和环斑花岗岩则形成于1.85Ga左右(Xiong et al., 2009Peng et al., 2012; Zhang et al., 2011)。这种差异意味着华南克拉通克拉通化的时间较华北更早一些。塔里木克拉通古元古代晚期的变质事件可能具有分带性,偏西的米兰杂岩区域变质作用发生在2.05~1.93Ga期间(辛后田等,2011),偏东的敦煌杂岩的变质作用主要发生在1.85~1.82Ga期间(Zhang et al., 2013b; 赵燕等,2013),与华北克拉通古元古代晚期的变质事件类似。

从全球看,在2.0~1.8Ga期间波罗地地盾、乌克兰地盾、亚马逊克拉通、西澳伊尔冈克拉通、印度地盾等通过造山作用汇聚拼合形成了哥伦比亚超大陆(Zhao et al., 2002, 2003Rogers and Santosh, 2002, 2003李三忠等,2016a), 在这一过程中在克拉通、地盾之间的造山带形成了大量的高压麻粒岩,可以作为识别碰撞拼合的标志。从华北克拉通呈带状分布的高压麻粒岩、塔里木克拉通南缘和北缘断续分布的高压麻粒岩或相应的变质事件到华南克拉通北缘和东缘的高压麻粒岩,它们尽管发生的时间有一些差异,但是都在2.0~1.85Ga期间,变质作用都具有造山带所具有的顺时针P-T-t轨迹,这些都说明华北、华南以及塔里木克拉通古元古代晚期的变质事件是与全球哥伦比亚超大陆的形成有较密切的关系。但是不同陆块与形成超大陆的汇聚作用事件有先后,所处位置有所不同。

3 与扬子克拉通形成演化有关的区域变质作用

华北克拉通和塔里木克拉通在经历了古元古代晚期的变质事件之后都有中元古代未变质的盖层,所以是古元古代晚期形成的克拉通。但是华南克拉通与华北克拉通和塔里木克拉通不同,尽管在扬子北部和华夏都有古元古代晚期的岩浆事件和变质事件,但是没有中元古代未变质的盖层,且新元古代地层还经历了广泛的绿片岩相的区域变质作用,因此有的研究者认为,太古宙-古元古代在华南是多块体的离散拼合过程,经过0.85~0.82Ga的晋宁运动Ⅱ幕的碰撞拼合才完成了克拉通化(Zhang et al., 2013c)。但是也有的研究者认为扬子和华夏作为古老的陆块,它们的结晶基底代表它们各自的克拉通化时间,所以它们至少应在1.9~1.8Ga之前,或者在~2.5Ga之前已经克拉通化(Zhai,2013)。前已述及扬子地块北部崆岭和华夏地块北部太古宙-古元古代的岩浆-变质热事件的特点,至于它们是否意味着早期的克拉通化还需看后期是否有较稳定的盖层,因此,还需对其整个地质演化进行研究。本节重点讨论华南克拉通新元古代的变质作用与江南造山带的关系以及加里东期和印支期的变质作用。

华南的新元古代的变质岩系主要出露在江南造山带(江南隆起带)。江南造山带是指长江以南,从桂北、黔东南经湘西北、赣北和皖南到浙西,呈“S”形的晚前寒武纪变质岩系出露区。区内的前寒武纪地质体除一些花岗岩类的侵入体之外,主要由巨厚的火山沉积岩系组成。这套火山沉积岩系往往具有双层结构,其中下构造层在不同省分别称为四堡群(广西)、梵净山群(贵州)、冷家溪群(湖南)、溪口群(安徽)、双溪坞群(浙江)、平水群(浙江),上构造层在不同省分别称为丹洲群(广西)、下江群(贵州)、板溪群(湖南)、历口群(安徽)、河上镇群(浙江)。在以往的文献中,通常把下构造层作为中元古代的地层(程裕淇,1994; 广西地质矿产局, 1985; 湖南省地质矿产局, 1988; 江西省地质矿产局, 1984; 浙江省地质矿产局, 1989; Li et al., 2007; 徐有华等,2008), 但是,近年大量的锆石原位U-Pb年龄数据表明这些岩群形成于新元古代早期。两套构造层在变质和变形上存在着显著差异,显示出双层结构特点。其间的不整合称“武陵运动”(亦称四堡运动)。其中下构造层的变质一般为绿片岩相,常见的变质矿物组合有Chl+Ser+Qtz+Pl、Ser+Chl+Pl+Qtz、Chl+Ep+Act+Pl+Qtz、Bt(雏晶)+Ser+Chl +Qtz、Act+Scp+Chl+Qtz等。变质程度为低绿片岩相的绢云母-绿泥石级,变质温度一般为300~400℃,变质压力为0.3~0.5GPa(朱明新和王河锦, 2001; 李民和章泽军, 2006), 属于区域低温动力变质作用。局部变质较深,变质温度420~570℃, 压力0. 3~0.57GP,属于低角闪岩相(叶瑛等,1996; 张海祥等, 2003)。在江南带的东部皖浙赣交界地区的双溪坞群为一套以中基性到中酸性熔岩和火山碎屑岩为主的火山岩建造, 夹有砂质、硅质和炭质页岩和灰岩透镜体。一些研究者认为,这套组合具有蛇绿混杂岩的特征(周国庆等,1989; Zhou and Zhao, 1991; Zhou, 1997; Zhou et al., 1990; 沈渭洲等, 1992; Li et al., 1994; 赵建新等,1995), 并在其中发现了蓝片岩(周国庆等, 1989; 高俊,2001)。高压的变质岩石包括文石硬玉蓝片岩(舒良树和周国庆, 1988周国庆等, 1989)、含硬玉霓辉石钠长角闪片岩、含硬玉霓辉石石英钠长石岩、蓝闪石石英钠长片岩、镁钠闪石石英片岩(高俊,2001),它们峰期变质的温度在400℃左右,压力超过1.2GPa,并经历了快速降压的P-T演化轨迹(周国庆等, 1989; Zhou, 1997; 高俊,2001)。这种大面积的低级变质、局部出现低温高压变质的区域特点反映了一种怎样的大地构造环境?

在江南带普遍发生绿片岩相的变质改造,并没有像世界典型的陆-陆碰撞造山带那种高级变质岩石,只有在江南带东北段局部出现高压变质岩石(周国庆等, 1989; Zhou, 1997; 高俊,2001)。江南带中大面积的岩层只经历绿片岩相变质改造意味着江南带的碰撞模式与典型的陆-陆碰撞模式有所区别。再者,目前高精度的锆石原位定年数据表明,江南造山带的火山岩从东到南西有逐渐变年轻的趋势(图 6),东北段形成时代较早(995~848Ma; Li et al., 2009; 陈志洪等, 2009; Shu et al., 2011; Wang et al., 2015b), 中段的双桥山群和冷家溪群形成于880~830Ma(Wang et al., 2008高林志等,2008),到西南部冷家溪群、梵净山群和四堡群则形成于855~822Ma (高林志等, 2011a, b; 柏道远等,2010Zhou et al., 2009; Zhang et al., 2015b)。另外,上构造层与下构造层尽管存在不整合关系,但它们的形成年龄(820~780Ma)很接近,表明下构造层变形之后很快就接受了上构造层的沉积。根据这些地质特征,笔者认为扬子地块与华夏地块之间的洋最初(891~926Ma)是在江南带的北东端首先闭合,并伴有一定深度的俯冲,因此即保留了大洋残片的蛇绿岩(周国庆等,1989; Zhou and Zhao, 1991; Zhou, 1997; Zhou et al., 1990; 沈渭洲等, 1992; Li et al., 1994; 赵建新等,1995)也形成了局部的高压变质的蓝片岩(周国庆等, 1989; Zhou, 1997; 高俊,2001)。之后洋壳的削减逐渐向西南迁移,随着洋壳的削减,扬子地块与华夏地块拼合到一起,但是没有陆壳的俯冲,只有陆壳之间的软碰撞(soft-docking)。所以,江南造山带发育的绿片岩相变质岩是与造成扬子地块与华夏地块汇聚的构造作用有关。当然,从构造角度、从岩浆演化角度不同学者对于江南造山带的起源、构成、在扬子地块与华夏地块之间的作用等提出了不同的认识(Li et al., 2003a, 2006Zhou et al., 2006a, bWang et al., 2006, 2007; Zhao et al., 2011Zheng et al., 2007, 2008Zhao and Cawood, 2012; Zhang et al., 2013c, 2015c; Zhao, 2015), 因此关于江南造山带的认识还需要通过综合研究进一步深入。


图 6 江南造山带火山岩年龄分布图 图中数据来源:1-Shu et al., 2011; 2、3-陈志洪等, 2009; 4-Li et al., 2009; 5、6-丁炳华等, 2008; 7、8-Zhang et al. 2013a; 9-高林志等,2008; 10-Wang et al., 2008; 11-高林志等, 2011b; 12-高林志等, 2011a; 13~15-Zhang et al., 2015b; 16~18-Zhou et al., 2009; 19-Li et al., 1999; 20-高林志等, 2010; 21、22-Wang et al., 2015b Fig. 6 The age distribution of magmatic rocks in Jiangnan Oregen

扬子地块与华夏地块经过新元古代的构造岩浆变质热事件形成了华南克拉通之后又经历早古生代和印支期两期构造热事件,其中早古生代的热事件主要沿江南造山带的东南侧分布,这期构造热事件在华夏地块的陈蔡群、麻源群、周潭组、闵西南桃溪组、赣南寻乌岩组、云开杂岩、海南岛的抱板群等岩群中都有记录(Zhao et al., 2015a, b),并在江绍断裂带附近发现有加里东期变质的榴闪岩(汪建国等,2014)。从浙西南的陈蔡群到武夷山的麻源群变质一般为角闪岩相,而从南岭东段到云开杂岩,这一阶段的变质达到麻粒岩相(于津海等,2003陈斌和庄育勋,1994)。陈蔡群、麻源群、周潭群、桃溪组、云开杂岩等不论是变质程度为角闪岩相还是麻粒岩相,多具有顺时针的P-T-t演化轨迹(Zhao and Cawood, 1999; 于津海等, 2003, 2007)。华南地区古生代变质作用可以概括为以下几个特点,一是呈带状分布,多沿江南造山带的东南侧分布;二是不同地区变质程度尽管有所差异但是多具有顺时针的变质作用P-T演化轨迹;三是这期变质事件与混合岩化作用和一些岩浆作用紧密相伴;四是变质事件相对集中,主要集中与460~430Ma期间。根据这些特点,本文认为华南古生代加里东期的变质作用与造山作用和快速隆升有关。对于这期变质作用和构造作用的性质还有不同的认识,一些研究者认为古生代的加里东期构造热事件才是扬子和华夏地块最终聚合的事件(丘元禧等, 1999; 马力等, 2004; Li et al., 2010);也有的研究者认为华南加里东期的构造事件是陆内两个地块相互作用的陆内造山事件(任纪舜等, 1990; 舒良树, 2012; Zhang et al., 2013李三忠等,2016b)。

在华夏地块印支期的变质事件对已有岩石的影响和改造非常明显,从浙西南的八都群、武夷山中部分麻源群、粤中增城的片麻岩一直到云开地区加里东期的麻粒岩等都留下了这期变质改造的踪迹,主要表现为在一些已变质变形岩石中的锆石形成了变质增生边,大量的数据表明变质增生边主要形成于250~230Ma(陈多福等, 1998; Yu et al., 2009; Li et al., 2009; Wang et al., 2012; Xia et al., 2012; Zhao et al., 2015a)。由于是对先前变质岩系的改造,因此反映该期变质的矿物组合很难确定。只是在松阳地区见有高压基性麻粒岩(Grt+Cpx+Pl+Qtz)和泥质高压麻粒岩(Grt+Ky+Kfs),并且年代学只显示了250Ma左右的变质事件,可以认为这种组合代表了印支期变质的组合特征。由于这类组合反映了高压组合特点,因此印支期的变质作用很可能和局部的碰撞有关。这期变质事件尽管在年代学上有很多证据,但是典型的岩相学特点和变质作用演化的特点还需深入研究。

新元古代的变质作用主要沿着江南造山带分布,加里东期的变质带位于江南造山带的东南部华夏地块的西北缘(有的研究者认为加里东期造山带由东南向北西迁移,李三忠等,2016b),到印支期的变质作用继续向南东迁移,完全位于华夏地块内部。三个不同时期的变质作用,不断地向南东迁移,有可能反映了华南陆块随时间的演变在增生-碰撞-增生-碰撞过程中不断地向南东方向扩展。

4 与中国南北大陆汇聚有关的区域变质作用

中国南北大陆是什么时间、以什么方式形成中国大陆的基本构造格局一直是中国地质工作者关注的重要问题。有的强调扬子运动的作用(黄汲清和陈炳蔚,1987白瑾等,1996);有的研究者强调多旋回的过程(任纪舜等,1999);有的强调从中新元古代就开始活动的复式造山作用(程裕淇,1994),有的强调古生代-中生代的中央复合造山过程(杨经绥等,2010)。本节仅从变质地质的特点讨论中国南北大陆的聚合过程。

近20年来,在中央造山带的西部(为叙述方便本文暂将苏鲁-大别-秦岭-柴达木-祁连-阿尔金统称为中央造山带)北秦岭、北阿尔金-祁连、南阿尔金、柴北缘等地陆续发现了高压-超高压的变质岩石(Liu et al., 2002, 2005a, 2007; Zhang et al., 2002a, 2005a, 2008Song et al., 2003, 2004)。超高压的岩石主要有榴辉岩、含蓝晶石石榴石泥质片麻岩、含菱镁矿的石榴二辉橄榄岩、含钾长石的石榴辉石岩和含石榴石花岗质片麻岩等,高压的岩石有石榴基性麻粒岩、夕线石榴黑云片麻岩、含蓝晶石夕线石榴二长片麻岩、蓝片岩、含蓝闪石绿片岩等。岩石学和地球化学特征表明这些高压-超高压变质的原岩主要是蛇绿混杂岩、基性-超基性火山岩、火山碎屑岩、碎屑岩、碳酸盐岩、超基性杂岩体等。详细的岩相学研究表明,在超高压变质岩(以榴辉岩为代表)中多可以追索出三期变质,在一些可以追索到进变质阶段榴辉岩可以发现Grt(核部)+Gln+Ep+Act±Lws的组合,由于蓝闪石和硬柱石的出现,进变质阶段的矿物组合代表了硬柱石蓝片岩相/绿帘蓝片岩相变质条件,变质的温度压力条件为T=567~644℃,P=1.0~1.46GPa。峰期变质阶段常见的矿物组合有Grt+Omp+Phg+Qtz, Grt+Omp+Lws+Phg+Rt+Qtz等,普遍出现绿辉石和多硅白云母,变质的温度压力条件为T=630~830℃,P=1.85~3.2GPa。在一些榴辉岩中发现有柯石英(Yang et al., 2002; Song et al., 2003张建新等,2009Zhang et al., 2010Liu et al., 2012b),在经历了超高压变质的长英质片麻岩的石榴石中发现了长柱状斯石英(或假象),认为其形成的压力可以达到10.0GPa之上(Liu et al., 2007; 刘良等,2013b),这样的压力意味着俯冲深度要达到300km以上。之后这些高压和超高压变质岩石又经历了角闪岩相/麻粒岩相的退变质,麻粒岩相的退变质以Grt+Cpx+Pl+Qtz矿物组合为代表,角闪岩相的退变质以Grt+Sil+Bt+Kfs+Pl+Qtz组合为代表,形成的温度压力条件分别为P=1.0~1.4GPa,T=750~865℃(Zhang et al., 2005b)和P=0.67~0.86GPa, T=705~800℃ (Zhang et al., 2008)。从中可以看出在退变质阶段温度很少变化或略有增高,而变质压力明显下降,显示出明显的近等温降压的顺时针P-T演化轨迹(图 7)。大量的年代学资料表明,中央造山带西段的变质作用发生在早古生代,其中高压超高压变质主要发生在~500Ma左右,之后在~450Ma和~420Ma遭受了中压麻粒岩相和或角闪岩相退变质作用的叠加(图 8a)。但是从该图也可以看出在西段,超高压变质的时间并不相同,北秦岭、北祁连超高压变质的时间较早,而南阿尔金超高压变质的时间要晚50Myr左右(刘良等,2013b),所以中央造山带西段超高压变质的时代并不相同,意味着它们是早古生代不同阶段造山作用的产物。从中央造山带西段变质岩和变质演化的特点可以看出以下几点,一是在一些地段存在原岩具有蛇绿混杂岩特点的蓝片岩,表明在一些地段曾发育有新元古代的洋壳,经过洋壳俯冲形成了蓝片岩;二是不论是榴辉岩还是榴辉岩的围岩普遍经历了变质压力超过2.3GPa的超高压变质,说明在碰撞的后期已经转变为陆壳的深俯冲和碰撞;三是在超高压变质之后在很短的时间就发生了麻粒岩相或角闪岩相的退变质,说明陆壳深俯冲和碰撞之后很快就发生了两次连续的快速抬升;四是南阿尔金与柴北缘、北秦岭反映陆陆碰撞的超高压变质的时代并不相同。


图 7 中央造山带西段高压-超高压变质岩的P-T演化轨迹 1-北祁连榴辉岩(Zhang and Meng, 2006);2-北阿尔金榴辉岩(Zhang and Meng, 2006);3-鱼卡榴辉岩(Zhang et al., 2005a, 2009a); 4-石榴橄榄岩(Song et al., 2005); 5-锡铁山榴辉岩(Zhang et al., 2001, 2005b); 6-都兰高压麻粒岩(Song et al., 2003; Zhang et al., 2009a); 7-都兰高压麻粒岩(Yu et al., 2011); 8-南阿尔金榴辉岩(Zhang et al., 2001); 9-南阿尔金榴辉岩(Liu et al., 2012b); 10-南阿尔金石榴橄榄岩(Liu et al., 2002); 11-南阿尔金高压麻粒岩(Zhang et al., 2005a) Fig. 7 P-T paths of HP-UHP metamorphic rocks in western segment of the Central Orogenic Belt of China 1-eclogite in North Qilian (Zhang et al., 2006); 2-eclogite in North Altyn Tagh (Zhang et al., 2006); 3-eclogite in Yuka area (Zhang et al., 2005a, 2009a); 4-garnet-peridotite (Song et al., 2005); 5-eclogite in Xitieshan area (Zhang et al., 2001, 2005b); 6-HP granulite in Dulan area (Song et al., 2003, Zhang et al., 2009a); 7-HP granulite in Dulan area (Yu et al., 2011); 8-eclogite in South Altyn Tagh (Zhang et al., 2001); 9-eclogite in South Altyn Tagh (Liu et al., 2012b); 10-garnet-peridotite in South Altyn Tagh (Liu et al., 2002); 11-HP granulite in South Altyn Tagh (Zhang et al., 2005a)

图 8 中央造山带西段(a)和东段(b)变质作用年龄直方图 图a的数据主要来源于刘良等(2013a, b)和张建新等(2007); 图b是大别苏鲁地区正片麻岩中榴辉岩和角闪岩的变质年龄,引自Liu and Liou (2011) Fig. 8 Histogram of ages for UHP-HP metamorphism in western segment (a) and eastern segment (b) of the Central Orogenic Belt of China Age data in Fig. 8a from Liu et al.(2013a, b) and Zhang et al. (2007); Fig. 8b showing ages of UHP and retrograde zircon domains from Dabie-Sulu eclogite and amphibolite lenses in orthogneiss (after Liu and Liou, 2011)

在中央造山带的东段(桐柏-大别-苏北-鲁东)的高压超高压变质岩可以分为南部分布的高压变质带和北部分布的超高压变质带,这种变质带的分布明确指示华南大陆是向华北大陆俯冲的。在南带分布的高压变质岩石主要有含蓝晶石的石英岩-大理岩、含蓝晶石和白云母片岩、含金云母大理岩与含钠长石的副片麻岩,及少量的含绿帘石、黑云母、角闪石的石英片岩,局部可见蓝片岩(Zhang et al., 1995, 2002b; Liu et al., 2004)。典型的高压变质矿物包体为:Grt+Arg+Phg+Qtz、Grt+Phg+Ab+Qtz+Ap;而在大理岩的锆石中,仅仅少数锆石微区含有高压变质矿物组合文石+石英。位于北部的超高压变质带主体是新元古代的正副片麻岩,其中存在夹层状与透镜状的榴辉岩、斜长角闪岩和大理岩。大小不等的超镁铁质透镜体在整个苏鲁超高压变质带中也广泛分布。对榴辉岩等变质作用的研究表明,超高压岩石多经历了深俯冲石英榴辉岩相进变质、超高压峰期变质、构造折返初期石英榴辉岩相退变质和构造折返晚期角闪岩相退变质四个变质演化阶段,在超高压变质阶段变质的温度压力条件为T=720~866℃,P>5.5GPa,在榴辉岩和其围岩中普遍含有柯石英。大量的年代学资料表明(Liu and Liou, 2011Li et al., 2011),中央造山带东段的超高压变质岩的原岩主要形成于新元古代,在246~244Ma期间开始俯冲发生石英榴辉岩相进变质;在235~225Ma期间,俯冲的深度至少达到了170km的地幔深处,发生了峰期柯石英榴辉岩相超高压变质;在219~216Ma期间,抬升至75km的深处,并经历了石英榴辉岩相退变质作用的改造;在212~205Ma期间,抬升至25km中-下地壳深处,并叠加了角闪岩相退变质作用(图 9)。


图 9 中央造山带东段高压-超高压变质岩的P-T演化轨迹 (a)中央造山带东段苏鲁地区,1-高压变质岩,2、3-含柯石英的超高压变质岩石 (据Liu et al., 2009c), 4-苏鲁大别地区超高压变质岩(据Liu and Liou, 2011); (b)中央造山带东段大别地区,1-红安地区,2-大别地区 (据Zhang et al., 2009b), 3-南大别地区,4-中大别地区,5-北大别地区(据Liu and Liou, 2011) Fig. 9 P-T paths of HP-UHP metamorphic rocks in eastern segment of the Central Orogenic Belt of China (a) Su-Lu region, 1-HP metamorphic rock, 2 and 3-UHP metamorphic rocks (after Liu et al., 2009c), 4-UHP metamorphic rock (after Liu and Liou, 2011); (b) Dabie region, 1-Hong’an area, 2-Dabie area (after Zhang et al., 2009b), 3-South Dabie, 4-Central Dabie, 5-North Dabie (after Liu and Liou, 2011)

中央造山带的西段和东段都经历了高压超高压变质作用,对形成中国大陆的基本格架起到了重要作用,但是分析对比一下就可以发现,西段和东段在变质岩石学方面还有一定的区别。比如西段的部分地段(如北祁连-北阿尔金)以由蓝片岩和榴辉岩组成的高压/低温变质带主要分布在北祁连中段的清水沟-百经寺一带,呈构造岩片分布在经历绿片岩相变质作用的蛇绿混杂岩或弧火山岩杂岩中,表明它们的原岩以洋壳为主。而中央造山带的东部榴辉岩的围岩多是同样经历了超高压变质改造的正、副片麻岩,其原岩具有地壳岩石组合的特点。从变质峰期的温度看,西部带变质峰期的变质温度多在~600℃左右,属于低温榴辉岩相,而东部变质峰期的温度则达到800℃左右,属于高温榴辉岩相。最主要的差别是西部和东部高压超高压变质作用发生的时间明显不同,西部主要发生在古生代的早期,约500Ma左右,而东部超高压则主要发生在三叠纪的235~225Ma期间。

从目前的资料分析,中央造山带西段西起西昆仑,经北阿尔金、北祁连、北秦岭,向东可延伸到桐柏地区。而中央造山带西段东起威海-烟台,向南西经大别、桐柏,可以延伸到南秦岭。所以这两个不同时代的高压-超高压变质带并不是完全平行分布的。

综合以上分析,本文认为尽管中央造山带西段和东段的超高压变质作用都与形成中国大陆基本构造格架有关,但是西段是在古生代早期先由洋壳俯冲,随着洋壳消减继而发生了陆陆碰撞,先形成了中国的西部大陆。到三叠纪随着华南陆块快速向北俯冲形成了东段的超高压变质岩石,并完成了华南和华北克拉通的拼合,形成了中国大陆构造的基本格局。

5 与中国北方大陆地壳增生有关的变质作用

长期以来多认为华北克拉通-塔里木克拉通与西伯利亚克拉通之间广阔的地区是中亚造山系(造山带),并属于增生造山带(Şengör et al., 1993)。对于增生造山带来说,其变质作用常常具有由洋壳俯冲形成的以蓝片岩、低温榴辉岩为特征的高压/低温(HP/LT)变质带和广泛分布的低压/中低温变质带。从区域上看,由西伯利亚克拉通向南地质体年代由老向新的增生带清楚,但是从华北和塔里木克拉通向北这种地质体由老向新的增生特征并不明显。

天山兴蒙变质地区是华北克拉通和塔里木克拉通以北广泛出露的一套低级变质岩系,其原岩形成时代差别较大,原岩的形成环境有较大差异,但是它们普遍经历了晚古生代的区域变质作用改造,形成了大面积分布的绿片岩相-低绿片岩相的变质岩系。尽管一些研究者认为从佳木斯-内蒙古中部一些晚古生代地层并未遭受到区域变质作用改造(张兴州等,2008胡大千等,2011),但是本文认为该区的晚古生代地层还是经历了低绿片岩相-亚绿片岩相变质改造。一方面表明这些岩石经历了较(极)低级变质作用改造,另一方面也表明这些岩石多数变质级别在低绿片岩相之下,主要属于亚绿片岩相。尽管在本次编图中将这一广大的地区都划为天山兴蒙变质地区,但是详细分析不同地区的变质作用演化还是有一定区别的。

在天山兴蒙变质区(中亚造山系)中有一些变质较深的地块,如佳木斯地块、虎头地块、额尔古纳地块、兴安地块等,由于其变质程度较深(一般为角闪岩相-麻粒岩相)以往多认为其形成时代较老,属于卷入造山带的老地块(黑龙江省地质矿产局,1993赵春荆等,1995王友琴,1996)。但是近年的研究表明,佳木斯地块中的麻山杂岩、兴安地块和额尔古纳地块中的兴华渡口群主要由孔兹岩系组成。岩石组合均以含石墨大理岩、夕线石榴片麻岩、大理岩、斜长角闪岩等为主要标志,属孔兹岩系。其中麻山群为佳木斯地块的代表性变质基底,由石墨夕线石堇青石片麻岩,含石墨大理岩,长英质片麻岩以及石榴花岗片麻岩组成,具顺时针变质P-T轨迹(姜继圣,1992; Lennon et al., 1997),变质温压条件的峰值可达850℃和0.74GPa (姜继圣,1992),表明经历了麻粒岩相变质。而漠河杂岩和兴华渡口杂岩的变质作用还没有专门的研究,但是从岩石组合、矿物共生组合和变质事件分析,它们与麻山群应为相同构造背景的产物(Zhou et al., 2010a, b, 2011a, b)。详细的年代学资料表明,这些老地块中尽管有少量的古老地质体(孙立新等,2013),但其主体形成新元古代中晚期(周建波等,2011Zhou et al., 2011a), 变质作用主要发生在~500Ma(Wilde et al., 2003; 周建波等,2011董策和周建波,2012)。周建波等(2011)认为,这些~500Ma变质的地块沿虎林、鸡西、萝北、兴华渡口和漠河一线分布,并称其为“中国东北孔兹岩带”。而这些变质块体与西伯利亚板块具有较好的亲缘性,是晚泛非期形成的西伯利亚板块南缘造山带的一部分(Zhou et al., 2010a, 2011b; 周建波等,2011)。但李三忠等(2016b, c)依据构造复原与重建,认为其属于大华南陆块的组成部分,是亲冈瓦纳的陆块。

在广阔的晚古生代变质的中亚造山带内还有一些450Ma左右变质的变质地体,如阿尔泰在早古生代变质的震旦系-奥陶系变质岩带,它是早-中古生代 (460~370Ma)弧-陆碰撞造山作用的产物,相应的变质作用产生了蓝晶石型中压变质带;北山-柳园地区经早古生代变质的中-新元古代地层,其变质达到了低温榴辉岩相,变质演化具有顺时针的P-T轨迹,是塔里木板块和古哈萨克斯坦板块俯冲-碰撞的产物;包尔汗图和白乃庙地区经过早古生代变质的早古生代地层,其变质程度为绿片岩相到绿帘角闪岩相,但是包尔汗图的变质岩带形成于岛弧带,而白乃庙变质岩带则形成于弧后盆地环境;在温都尔庙地区奥陶纪-志留纪地层在450Ma左右发生了蓝片岩相变质,蓝闪石、硬柱石、文石、多硅白云母等矿物的出现, 说明这里的蓝闪片岩相是典型的高压相系,属于俯冲增生杂岩。

兴蒙造山系的主体是在华力西期阶段拼合完成的,但是在从西伯利亚克拉通到华北-塔里木克拉通之间广袤的区域中不论是变质作用还是原岩建造的组合特点都反映了不同的构造背景。如同是华力西期的造山变质作用,阿尔泰造山带反映的是弧-陆碰撞的构造环境,西南天山反映的是大陆俯冲碰撞的构造环境,南天山则反映了洋壳俯冲的构造环境,大兴安岭带反映了弧盆碰撞的环境,索伦山-西拉木伦带则反映了洋-陆结合带的特点,额济纳旗-乌力吉带则反映了弧-盆体系的特点。在不同地点多处出现蛇绿混杂岩带,如南天山、恩格尔乌苏、镶黄旗-多伦、温都尔庙、索伦山、柯丹山、新林-红花尔基、贺根山和迪彦庙(李英杰等, 2012, 2013)等处。这些蛇绿混杂岩多变质比较浅,常为绿片岩相-低绿片岩相,但在一些蛇绿混杂岩带内发育有蓝片岩,如南天山、温都尔庙、红花尔基等地都发育有蓝片岩,反映经历了低温高压变质改造,其变质作用的发生多与洋壳俯冲有关。多处的蛇绿混杂岩、多处的蓝片岩表明在兴蒙造山带即使在华力西期也是一个复杂的造山过程,因此兴蒙造山带是一个多条造山带组合在一起的造山系。

在兴蒙造山系的东南端(四平-延吉一带)出露的变质地层包括黑龙江群、呼兰群、青龙村群和下二台子群等。它们沿四平-延吉断裂带以北断续分布,常被中生代岩体吞噬,出露不完整。这些变质岩形成于早古生代-晚古生代,多经历了印支期的变质改造,变质程度达到角闪岩相,而变质作用主要发生在220~230Ma期间(周建波等,2013),所以是一个印支期的变质带。而黑龙江群中的蓝片岩变质温度压力条件可达350~550℃,1.0~1.4GPa (李伟民等,2014),其原岩主要形成于二叠纪,并有少量三叠纪和早古生代地层岩石混杂而成,变质作用峰期发生在200~180Ma期间(周建波等,2013)。另外在该带局部发现有含多硅白云母的蓝晶石片岩(施性明和兰玉琦,1985)、Cld+Cph+Phg组合(吴汉泉等,2003)。有的研究者认为这些高压岩石构成了吉林-黑龙江高压变质带,是佳木斯-兴凯地块晚印支-早侏罗世向西俯冲与松辽地块之间形成的增生杂岩(周建波等,2013)。但是这种高压组合目前还仅在局部发现,是否能构成一个高压变质带还需更深入的研究。

由以上分析可以看出,尽管兴蒙变质地区是以晚古生代的变质为主体的,但是其中还包括了黑龙江地区500Ma左右的麻粒岩相变质带,在一些地区出露有450Ma左右变质的岩系,它们形成于不同的构造背景,同时在局部还有印支期变质岩系的出露。因此,兴蒙变质地区具有变质演化历史长、形成环境与变质条件和变质时代有较大差异、洋壳/岛弧/增生带叠复出现的特点。这种特点说明兴蒙变质地区是一个复杂的增生变质地带,它的形成演化构筑了中国华北克拉通-塔里木克拉通以北的构造格局和变质格局。当然这样一个复杂的变质地区还有许多问题尚未解决,需要进一步完善。

6 与青藏高原形成、隆升有关的变质作用

青藏高原地区的变质岩系主要是在中生代以来形成的,所以说青藏高原是中国最年轻的大陆地壳。在这些中新生代的大陆地壳岩石中也还存在一些老的变质岩系,可以追索青藏高原早期的演化历史。在青藏高原北部的巴颜喀拉-甘孜变质带中有古-中元古代的下村岩群、在羌北-昌都-兰坪变质地块中有古元古代的布伦阔勒岩群、中元古代的甜水海岩群、岔路口岩群、宁多岩群、雪龙山岩群等,新的区域地质调查资料表明这些岩群多由不同时代的变质岩石所组成,但是其中保留一些老的变质基底,这些老的变质基底有的经历了古元古代晚期的变质改造(西藏地矿局区域地质调查队邓柯分队, 1994;四川地矿局区域地质调查队四分队, 1994;Ji et al., 2011),有的经历了新元古代晚期的变质改造 (辜平阳等,2012何世平等, 2012, 2013),变质程度多达到角闪岩相。从建造组合和变质特点看,与华南克拉通变质基底具有较大的相似性,可能属于华南克拉通结晶基底的组成部分。青藏高原南部羌南-冈底斯-喜马拉雅-滇西变质地区的基底变质岩系由变质表壳岩系和古老的变质深成侵入体组成,包括新元古代的吉塘岩群、崇山岩群、聂拉木岩群、念青唐古拉岩群、拉轨岗日岩群等,近年的研究表明这些岩群多由不同时代的变质岩组成(李才等,2009张泽明等,2010张修政等,2013),很多还经历了中-新生代的变质改造(解超明等,2013董昕等,2009)。其中古老的变质岩多形成于中-新元古代(Hu et al., 2005张泽明等,2010张修政等,2013),这些变质表壳岩原岩主要为泥砂质陆缘碎屑岩夹碳酸盐岩和中基性火山岩建造,应属于印度地台的边缘沉积,普遍经历了新元古代晚期的变质改造,变质程度达到角闪岩相。这些岩群多经历了500Ma左右的泛非期变质改造(董昕等,2013Zhang et al., 2014),与印度克拉通的变质基底有相似性。综合分析,青藏高原的变质基底北部与华南克拉通的基底具有相似性,可能属于华南克拉通的组成部分,而青藏高原南部的变质基底与印度地盾的变质基底具有相似性,普遍经历了泛非期的变质改造。基底的这种差异表明青藏高原的形成早期(北部)与扬子地块有密切关系,晚期(南部)与印度陆块向北的俯冲拼贴有较密切的关系。

①西藏地矿局区域地质调查队邓柯分队.1994. 1∶20万邓柯幅区域地质调查报告

②四川地矿局区域地质调查队四分队.1994. 1∶20万类乌齐幅、拉多幅区域地质调查报告

晚三叠世以前,冈瓦纳古陆与华南克拉通之间为古特提斯洋相隔,目前在羌塘中部红脊山-戈木日-角木日-玛依岗日-恰格勒拉段具有板块缝合带特点的蛇绿混杂岩的形成时代为中寒武世-早中二叠世,代表了古特提斯洋洋壳的形成时代。随着古特提斯洋的消减,最终于三叠纪末期发生了两大陆块的碰撞,形成了含蓝片岩和榴辉岩(张修政等,2014)的具有高压变质作用的特点的龙木错-双湖-澜沧江变质地带,该带中的榴辉岩主要经历了3 期变质作用:①峰期榴辉岩相变质作用阶段,以石榴子石、绿辉石和多硅白云母为特征,变质温度和压力分别为500℃和2.3GPa;②绿帘角闪岩相变质作用阶段,以后期形成的冻蓝闪石、镁红闪石、绿帘石、钠长石等交代早期矿物为特征;③绿片岩相变质作用阶段,以毛发状阳起石等为特征(翟庆国等,2009)。榴辉岩的变质演化过程代表了青藏高原北部古特提斯洋俯冲消减和冈瓦纳与劳亚大陆碰撞造山的过程。该期碰撞作用使华南克拉通与冈瓦纳古陆拼合到了一起,同时也使缝合带两侧的羌南-左贡和昌都两地块的三叠系及下伏地层发生了中低压绿片岩相变质作用。在古特提斯洋闭合的同时在羌南-冈底斯-喜马拉雅地区开始了拉张,使盆地的沉积作用得以持续,同时,在雅鲁藏布江一带从早中三叠世迅速扩张,至晚三叠世已形成宽阔的大洋, 是新特提斯洋的主域。晚三叠世末期到侏罗纪时沿班公湖-怒江一线, 形成新特提斯另一初始洋盆并迅速扩张,形成了扩张的洋脊和深海平原,代表了新特提斯洋的北域。到中-晚侏罗世,随着班公湖-怒江洋洋壳的向南俯冲,于早白垩世发生最终的碰撞,形成班公湖-怒江变质地带。受碰撞作用的影响,该变质地带两侧的羌南-左贡地区和冈底斯-念青唐古拉地区均出现了中低压绿片岩相变质作用。晚侏罗-早白垩世之后,洋壳向冈底斯陆块下俯冲,在渐新世全面碰撞,形成了雅鲁藏布江变质地带,属于低温高压变质带,该变质地带分为南北两个亚带,北亚带主体变质程度为蓝片岩相,南亚带为蓝闪绿片岩相,可能与当时所处的具体构造环境有关。该阶段在喜马拉雅东构造结、喜马拉雅造山带的中段形成了一些高压麻粒岩,具有较陡的顺时针变质演化轨迹(图 10),反映了新特提斯洋的俯冲碰撞以及亚洲板块与印度板块碰撞的过程。中新世末,印度板块沿西瓦里克带发生陆内俯冲, 形成了一系列逆冲推覆带, 高喜马拉雅变质地带陆壳缩短、垂向加积增厚, 急剧隆升,进而诱发了浅层次的隆升和伸展,同时也导致了相关变质作用的发生和不同类型变质岩石的形成。直到现在,印度陆块的俯冲作用仍在持续进行,地壳内仍在发生着新的变质作用,形成着新的变质岩石。


图 10 喜马拉雅造山带高压麻粒岩的P-T演化轨迹 1、2-喜马拉雅东构造结高压麻粒岩(Ding and Zhong, 1999张泽明等,2007); 3、4-喜马拉雅造山带中段高压麻粒岩(季建清等,2004Liu et al., 2005b) Fig. 10 P-T path of HP granulites in the Himalayan Orogen, Tibet 1 and 2-HP granulites in the Namjabarwa area (after Ding and Zhong, 1999; Zhang et al., 2007); 3 and 4-HP granulites in the central part of the Himalayan Orogen (after Ji et al., 2004; Liu et al., 2005b)

由此可见青藏高原的形成是从北向南迁移的,变质作用也是从北向南逐渐迁移的,最北部是印支期的变质带,反映了古特提 斯洋碰撞造山过程。向南为燕山期的变质带,反映了新特提斯洋沿班公湖-怒江带碰撞拼合的历史,到喜马拉雅早期,变质带继续向南迁移,反映了新特提斯洋沿雅鲁藏布江碰撞拼合的历史。到喜马拉雅晚期,随着新特提斯洋的闭合,高原的快速隆升,变质带向南迁移到高喜马拉雅一带(图 11)。变质带的这种迁移反映了地壳从北向南的生长过程。


图 11 青藏高原变质带演化图 Fig. 11 The evolution of the metamorphic belts in Tibet
7 结论

过以上对中国不同时代变质带特征和演化的分析,初步可以得出以下几点结论。

(1)新太古代之前,在中国三个主要的克拉通局部已经存在具有相当厚度的地壳,具备了发生区域变质作用的条件,4.0Ga到2.9Ga变质锆石的发现证明了古老变质所用的存在。由于后期的强烈改造,早期的变质作用特点已经很难追索。

(2)新太古代末期的变质事件与岩浆事件紧密相随,变质作用的演化以逆时针的P-T轨迹为主,反映了地幔柱作用的特点。

(3)古元古代晚期的变质事件在华北、华南、塔里木都广泛存在,变质作用演化以顺时针的P-T轨迹为主,反映了这三个古老克拉通的形成都与古元古代的Columbia超大陆的形成和裂解有关,但是这三个克拉通古元古代变质作用发生的时间存在一定差异,表明它们与Columbia超大陆的聚合并不是同时完成的。

(4)华南古陆是一个相对年轻的克拉通,新元古代中期的造山作用导致了扬子地块与华夏地块的拼合,同时伴有相应的区域变质作用,这次造山运动才形成了较为稳定的华南克拉通,之后在其东南缘先后受到加里东期和印支期的变质改造。加里东期和印支期的变质是否与广泛的造山运动有关尚需进一步研究。

(5)变质作用特点和变质作用时代的差异表明所谓的中央造山带实际是由西部加里东期的造山带和东部的印支期造山带所组成,在加里东期中国南北大陆的碰撞主要发生在西部地区,变质所用过程反映了从洋壳俯冲到陆壳俯冲的过程。在印支期中国东部的南北大陆才发生碰撞,并且变质所用特点揭示这一过程主要是陆陆碰撞的过程。

(6)中亚造山区是由多个从加里东期到华力西期的造山带所组成,不同造山带的变质作用特点有所不同。但是由于该造山区范围广泛,研究程度相对较低,因此不同造山带之间的关系、不同造山带的变质作用特点还有待深入研究。

(7)青藏高原变质带的分布具有北老南新的空间分布特点,这一特点反映了古特提斯洋从北闭合,新特提斯洋在其南部发育,并于燕山期和喜马拉雅早期发生了两次拼合,早期以班公湖-怒江变质带为代表,晚期以雅鲁藏布江变质带为代表,也反映了由北向南迁移的过程。到喜马拉雅晚期随着高原的快速隆升,在高喜马拉雅多处发生了高压麻粒岩相的变质改造,同时对喜马拉雅早期的北喜马拉雅变质带进行了叠加改造。

致谢 本文是在1∶500万中国变质地质图编制基础上对中国不同变质带演化与中国大陆地壳形成演化关系的总结。在1∶500万中国变质地质图的编制过程中,北京大学张立飞教授、魏春景教授、天津地质调查中心王惠初研究员、吉林大学董永胜教授、中国地质科学院地质研究所刘福来研究员、杨崇辉研究员、张建新研究员、薛怀民研究员、任留东研究员、周喜文研究员提供了大量的资料和素材,这些资料和素材是本文的重要依据。初稿完成后任留东研究员、董永胜教授、杨崇辉研究员对文稿提出了修改意见,在此向这些同志表示衷心的感谢!匿名审稿人对本文的修改提出很多有益的建议,在此一并致谢! 本文第一作者师从杨振升老师,今年适逢导师杨振升先生85寿辰和献身地质事业65周年,仅以此文作为对老师生日的祝福。
参考文献
[] Bai DY, Jia BH, Liu W, Chen BH, Liu YR, Zhang XY. 2010. Zircon SHRIMP U-Pb dating of the igneous rocks from Chengbu, Hunan: Constraint on the Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica , 84 (12) :1715–1726.
[] Bai J, Huang XG, Wang HC, Guo JJ, Yan YG, Xiu QY, Dai FY, Xu WZ, Wang GF.1996. The Precambrian Evolution of China.2nd Edition. Beijing: Geological Publishing House : 1 -259.
[] Barker AJ. 1998. Introduction to Metamorphic Textures and Microstructures. United Kingdom: Routledge
[] Bureau of Geology Mineral Resources of Guangxi Province.1985. Regional Geology of Guangxi Autonomous Region. Beijing: Geological Publishing House : 1 -853.
[] Bureau of Geology and Mineral Resources of Heilongjiang Province.1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House : 1 -734.
[] Bureau of Geology Mineral Resources of Hunan Province.1988. Regional Geology of Hunan Province. Beijing: Geological Publishing House : 1 -718.
[] Bureau of Geology Mineral Resources of Jiangxi Province.1984. Regional Geology of Jiangxi Province. Beijing: Geological Publishing House : 1 -921.
[] Bureau of Geology Mineral Resources of Zhejiang Province.1989. Regional geology of Zhejiang Province. Beijing: Geological Publishing House : 1 -688.
[] Brown M. 2001. From microscope to mountain belt: 150 years of petrology and its contribution to understanding geodynamics, particularly the tectonics of orogens. Journal of Geodynamics , 32 (1-2) :115–164. DOI:10.1016/S0264-3707(01)00018-7
[] Bucher K, Frey M.1994. Petrogenesis of Metamorphic Rocks.6th Edition. Heidelberg: Springer Publishing .
[] Cai J, Liu PH, Liu FL, Liu JH, Wang F, Shi JR. 2013. Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area, Daqingshan-Wulashan metamorphic complex belt. Acta Petrologica Sinica , 29 (2) :437–461.
[] Cai J, Liu FL, Liu PH, Shi JR. 2014. Metamorphic P-T conditions and U-Pb dating of the sillimanite-cordierite-garnet paragneisses in Sanchakou, Jining area, Inner Mongolia. Acta Petrologica Sinica , 30 (2) :472–490.
[] Chen B, Zhuang YX. 1994. The petrology and petrogenesis of Yunlu charnockite and its granulite inclusion, West Guangdong, South China. Acta Petrologica Sinica , 10 (2) :139–150.
[] Chen DF, Li XH, Pan JM, Dong WQ, Chen GQ, Chen XP. 1998. Metamorphic newly produced zircons, SHRIMP ion microprobe U-Pb age of amphibolite of Hexi Group, Zhejiang and its implications. Acta Mineralogica Sinica , 18 (4) :396–400.
[] Chen HX, Wang J, Wang H, Wang GD, Peng T, Shi YH, Zhang Q, Wu CM. 2015. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton. Precambrian Research , 264 :156–178. DOI:10.1016/j.precamres.2015.04.013
[] Chen K, Gao S, Wu YB, Guo JL, Hu ZC, Liu YS, Zong KQ, Liang ZW, Geng XL. 2013. 2.6~2.7Ga crustal growth in Yangtze craton, South China. Precambrian Research , 224 :472–490. DOI:10.1016/j.precamres.2012.10.017
[] Chen NS, Wang RJ, Shan WY, Zhong ZQ. 1994. Isobaric cooling (IBC) P-T-t path for the western portion of Archaean Miyun complex, Beijing: Constraints and its geodynamic genesis. Scientia Geologica Sinica , 29 (4) :355–365.
[] Chen ZH, Xing GF, Guo KY, Dong YG, Chen R, Zeng Y, Li LM, He ZY, Zhao L. 2009. Petrogenesis of keratophyes in the Pingshui Group, Zhejiang: Constraints from zircon U-Pb ages and Hf isotopes. Chinese Science Bulletin , 54 (9) :1570–1578.
[] Cheng YQ.1994. An Introduction to Regional Geology of China. Beijing: Geological Publishing House : 1 -517.
[] Ding BH, Shi RD, Zhi XC, Zheng L, Chen L. 2008. Neoproterozoic (~850Ma) subduction in the Jiangnan orogen: Evidence from the SHRIMP U-Pb dating of the SSZ-type ophiolite in southern Anhui Province. Acta Petrologica et Mineralogica , 27 (5) :375–388.
[] Ding L, Zhong DL. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China (Series D) , 42 (5) :491–505. DOI:10.1007/BF02875243
[] Diwu CR, Sun Y, Dong ZC, Wang HL, Chen DL, Chen L, Zhang H. 2010. In situ U-Pb geochronology of Hadean zircon xenocrust (4.1~3.9Ga) from the western of the Northern Qinling Orogenic Belt. Acta Petrologica Sinica , 26 (4) :1171–1174.
[] Dong C, Zhou JB. 2012. Geochemistry of ~500Ma Pan-African khondalite series in west of NE China and its tectonic implications. Acta Petrologica Sinica , 28 (9) :2866–2878.
[] Dong CY, Wan YS, Zhang YH, Yang ZQ, Liu DY. 2013. 3.3~3.1Ga magmatism recorded in an outcrop of the Dongshan Complex in the Anshan area, North China Craton: Evidence from geochemistry and SHRIMP zircon dating. Acta Petrologica Sinica , 29 (2) :414–420.
[] Dong X, Zhang ZM, Wang JL, Zhao GC, Liu F, Wang W, Yu F. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane,Tibetan Plateau: Petrology and zircon U-Pb geochronology. Acta Petrologica Sinica , 25 (7) :1678–1694.
[] Dong X, Zhang ZM, Xiang H, He ZY. 2013. Metamorphism and dynamics of the Lhasa terrane, South Tibet. Acta Geoscientica Sinica , 34 (3) :257–262.
[] Dong XJ, Xu ZY, Liu ZH, Sha Q. 2012. 2.7Ga granitic gneiss in the northern foot of Daqingshan Mountain, central Inner Mongolia, and its geological implications. Chinese Journal of Geology , 37 (Suppl.) :20–27.
[] Du LL, Zhuang YX, Yang CH, Wan YS, Wang XS, Wang SJ, Zhang LF. 2003. Characters of zircons in the Mengjiatun Formation in Xintai of Shandong and their chronological significance. Acta Geologica Sinica , 77 (3) :359–366.
[] Du LL, Yang CH, Zhuang YX, Wei RZ, Wan YS, Ren LD, Hou KJ. 2010. Hf isotopic compositions of zircons from 2.7Ga metasedimentary rocks and biotite-plagioclase gneiss in the Mengjiatun Formation Complex, western Shandong Province. Acta Geologica Sinica , 84 (7) :991–1001.
[] Gan XC, Li HM, Sun DZ, Zhuang JM. 1993. Geochronological study on the Precambrian metamorphic basement in northern Fujian. Geology of Fujian , 12 (1) :17–32.
[] Gan XC, Li HM, Sun DZ, Jin WS, Zhao FQ. 1995. A geochronological study on Early Proterozoic granitic rocks, southwestern Zhejiang. Acta Petrologica et Mineralogica , 14 (1) :1–8.
[] Gao J. 2001. Rock types, mineral constituents and metamorphic process of high-pressure metamorphic rocks in northeastern Jiangxi Province. Acta Petrologica et Mineralogica , 20 (2) :134–145.
[] Gao LZ, Yang MG, Ding XZ, Liu YX, Liu X, Ling LH, Zhang CH. 2008. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China: Constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt. Geological Bulletin of China , 27 (10) :1744–1751.
[] Gao LZ, Dai CG, Liu YX, Wang M, Wang XH, Chen JS, Ding XZ, Zhang CH, Cao Q, Liu JH. 2010. Zircon SHRIMP U-Pb dating of tuff bed of the Sibao Group in southeastern Guizhou-northern Guangxi area, China and its stratigraphic implication. Geological Bulletin of China , 29 (9) :1259–1267.
[] Gao LZ, Ding XZ, Pang WH, Liu YX, Lu SN, Liu YR, Chen J, Zhang YH. 2011a. SHRIMP zircon U-Pb dating of metamorphic tuff from the Precambrian Cangxi Complex-Group in northeastern Hunan. Geological Bulletin of China , 30 (10) :1479–1484.
[] Gao LZ, Chen J, Ding XZ, Liu YR, Zhang CH, Zhang H, Liu YX, Pang WH, Zhang YH. 2011b. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups, northeastern Hunan: Constraints on the Wuling Movement. Geological Bulletin of China , 30 (7) :1001–1008.
[] Gao S, Qiu YM, Ling WL, McNaughton NJ, Groves DI. 2001. Single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: evidence for >3.2Ga old continental crust in the Yangtze craton. Science in China (Series D) , 44 (4) :326–335. DOI:10.1007/BF02907103
[] Gao S, Yang J, Zhou L, Li M, Hu ZC, Guo JL, Yuan HL, Gong HJ, Xiao GQ, Wei JQ. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3Ga granitoid gneisses. American Journal of Science , 311 (2) :153–182. DOI:10.2475/02.2011.03
[] Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM, Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China , 27 (6) :793–798.
[] Ge WC, Sun DY, Wu FY, Lin Q. 1994. The metamorphic PTt path of Archean granulites in Huadian area, Jilin Province. Acta Petrologica et Mineralogica , 13 (4) :309–318.
[] Geng YS, Shen QH, Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica , 26 (7) :1945–1966.
[] Geng YS, Du LL, Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constrants from zircon Hf isotopes. Gondwana Research , 21 (2-3) :517–529. DOI:10.1016/j.gr.2011.07.006
[] Goodwin A.1991. Precambrian Geology. London: Academic Press : 1 -666.
[] Grant ML, Wilde SA, Wu FY, Yang JH. 2009. The application of zircon catholuminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology , 261 (1-2) :155–171. DOI:10.1016/j.chemgeo.2008.11.002
[] Gu PY, Li RS, He SP, Zha XF, Yu PS, Shi C, Pan SJ, Wang Y. 2012. The amphibolite from Nyainrong Rock Group in northern Nagqu: Geological records of break-up of the supercontinent Rodinia. Acta Petrologica et Mineralogica , 31 (2) :145–154.
[] Guan H, Sun M, Wilde SA, Zhou XH, Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping complex: Implications for formation and assembly of the North China craton. Precambrian Research , 113 (1-2) :1–18. DOI:10.1016/S0301-9268(01)00197-8
[] Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research , 222-223 :124–142. DOI:10.1016/j.precamres.2011.07.020
[] Guo JL, Gao S, Wu YB, Li M, Chen K, Hu ZC, Liang ZW, Liu YS, Zhou L, Zong KQ, Zhang W, Chen HH. 2014. 3.4Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Research , 242 :82–95. DOI:10.1016/j.precamres.2013.12.018
[] Guo JL, Wu YB, Gao S, Jin ZM, Zong KQ, Hu ZC, Chen K, Chen HH, Liu YS. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3~2.0Ga) granitoid magmatism in Yangtze Craton, South China: Implications for Late Archean tectonics. Precambrian Research , 270 :246–266. DOI:10.1016/j.precamres.2015.09.007
[] Guo ZJ, Zhang ZC, Liu SW, Li HM. 2003. U-Pb geochronological evidence for the Early Precambrian complex of the Tarim Craton, NW China. Acta Petrologica Sinica , 19 (3) :537–542.
[] He DL, Liu DZ, Deng MS, Zhou Y. 1995. Age of crystalline basement of Yangtze Platform in the Michang Mountains, Sichuan. Acta Geologica Sichuan , 15 (3) :176–183.
[] He SP, Li RS, Yu PS, Gu PY, Wang C, Yang YW, Zhang WJ. 2012. The age of Youxi Formation of Jitang Rock Group in Taniantaweng Mountains, northern Qiangtang, Qinghai-Tibet Plateau. Acta Geologica Sinica , 86 (6) :985–993.
[] He SP, Li RS, Wang C, Gu PY, Yu PS, Shi C, Zha XF. 2013. Research on the formation age of Ningduo rock group in Changdu Block: Evidence for the existence of basement in the North Qiangtang. Earth Science Frontiers , 20 (5) :15–24.
[] He ZJ, Niu BG, Zhang XY, Zhao L, Liu RY. 2011. Discovery of the paleo-weathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating. Geological Bulletin of China , 30 (5) :798–802.
[] Hu AQ, Rogers G. 1992. Discovery of 3.3Ga Archean rocks in North Tarim Block of Xinjiang, western China. Chinese Science Bulletin , 37 (18) :1546–1549.
[] Hu AQ, Jahn BM, Zhang GX, Chen YB, Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotope evidence: Part I. Isotopic characterization of basement rocks. Tectonophysics , 328 (1-2) :15–51. DOI:10.1016/S0040-1951(00)00176-1
[] Hu AQ, Wei GJ. 2006. On the age of the Neo-Archean Qingir gray gneisses from the northern Tarim Basin, Xinjiang, China. Acta Geologica Sinica , 80 (1) :126–134.
[] Hu DG, Wu ZH, Jiang W, Shi YR, Ye PS, Liu QS. 2005. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet. Science in China (Series D) , 48 (9) :1377–1386. DOI:10.1360/04yd0183
[] Hu DQ, Liu Y, Hong Y, Xie XT. 2011. Research on coexisting clay minerals in the Upper Paleozoic argillaceous rocks in Northeast China. Journal of Jilin University (Earth Science Edition) , 41 (5) :1458–1465.
[] Hu J, Liu XC, Chen LY, Qu W, Li HK, Geng JZ. 2013. A ~2.5Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen. Chinese Science Bulletin , 58 (28-29) :3564–3579. DOI:10.1007/s11434-013-5904-1
[] Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Liang HJ, Chen H. 2012. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin , 58 (1) :118–127.
[] Hu XJ, Xu JK, Tong CX, Chen CH.1991. The Precambrian Geology of Southwestern Zhejiang Province. Beijing: Geological Publishing House : 1 -278.
[] Huang JQ, Chen BW.1987. The Evolution of the Tethys in China and Adjacent Regions. Beijing: Geological Publishing House : 1 -187.
[] Jahn BM, Auvray B, Shen QH, Liu DY, Zhang ZQ, Dong YJ, Ye XJ, Zhang QZ, Cornichet J, Mace J. 1988. Archean crustal evolution in China: The Taishan Complex, and evidence for juvenile crustal addition from longterm depleted mantle. Precambrian Research , 38 (4) :381–403. DOI:10.1016/0301-9268(88)90035-6
[] Jahn BM, Liu DY, Wan YS, Song B, Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science , 308 (3) :232–269. DOI:10.2475/03.2008.03
[] Ji JQ, Zhong DL, Song B, Zhu MF, Wen DR. 2004. Metamorphism, geochemistry and U-Pb zircon SHRIMP geochronology of the high-pressure granulites in the central greater Himalayas. Acta Petrologica Sinica , 20 (5) :1283–1300.
[] Ji WH, Li RS, Chen SJ, He SP, Zhao ZM, Bian XW, Zhu HP, Cui JG, Ren JG. 2011. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance. Science China (Earth Sciences) , 54 (1) :61–72. DOI:10.1007/s11430-010-4043-7
[] Jiang JS. 1992. Regional metamorphism and evolution of Mashan khondalite series. Acta Petrologica et Mineralogica , 11 (2) :97–110.
[] Jiang ZS, Wang GD, Xiao LL, Diwu CR, Lu JS, Wu CM. 2011. Paleoproterozoic metamorphic P-T-t path and tectonic significance of the Luoning metamorphic complex at the southern terminal of the Trans-North China Orogen,Henan Province. Acta Petrologica Sinica , 27 (12) :3701–3717.
[] Jiao SJ, Guo JH, Harley SL, Windley BF. 2013. New constraints from garnetite on the P-T path of the Khondalite Belt: Implications for the tectonic evolution of the North China Craton. Journal of Petrology , 54 (9) :1725–1758. DOI:10.1093/petrology/egt029
[] Jiao SJ, Guo JH, Wang LJ, Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research , 269 :31–57. DOI:10.1016/j.precamres.2015.08.002
[] Jin W, Li SX, Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica , 7 (4) :27–36.
[] Kröner A, Wilde SA, Li JH, Wang KY. 2005a. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences , 24 (5) :577–595. DOI:10.1016/j.jseaes.2004.01.001
[] Kröner A, Wilde SA, O'Brien PJ, Li JH, Passchier CW, Walte NP, Liu DY. 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archean to Paleoproterozoic lower crustal section in the Hengshan terrain of northern China. Acta Geologica Sinica , 79 (5) :605–629.
[] Kusky TM, Li JH, Santosh M. 2007a. The Paleoproterozoic North Hebei Orogen: North China Craton's collisional suture with the Columbia supercontinent. Gondwana Research , 12 (1-2) :4–28. DOI:10.1016/j.gr.2006.11.012
[] Kusky TM, Windley BF, Zhai MG. 2007b. Tectonic evolution of the North China Block: From orogen to craton to orogen. In: Zhai MG, Windley BF, Kusky T and Meng QR (eds.). Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society, London, Special Publications , 280 :1–34.
[] Lennon RG, Wilde SA, Yang T. 1997. The Mashan Group: A 500Ma granulite facies terrain within the Jiamusi massif, Heilongjiang Province, North-eastern China. In: Cox R and Ashwal LD (eds.). Proterozoic Geology of Madagascar, Proceedings of UNESCO-IUGSIGCP 348/368 International Field Workshop. Antananarivo, Madagascar: Gondwana Research Group, Publication , 5 :45–46.
[] Li C, Xie YW, Dong YS, QiangBa ZX, Jiang GW. 2009. Discussion on the age of Jitang Group around Leiwuqi area, eastern Tibet, China and primary understanding. Geological Bulletin of China , 28 (9) :1178–1180.
[] Li LM, Lin SF, Davis DW, Xiao WJ, Xing GF, Yin CQ. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research , 255 :30–47. DOI:10.1016/j.precamres.2014.09.009
[] Li M, Zhang ZJ. 2006. The metamorphic deformational temperature-pressure conditions of the folded basement in the Jiangnan uplift. Acta Geoscientica Sinica , 27 (6) :543–550.
[] Li SZ, Hao DF, Han ZZ, Zhao GC, Sun M. 2003. Paleoproterozoic deep processes and tectono-thermal evolution in Jiao-Liao Massif. Acta Geologica Sinica , 77 (3) :328–340.
[] Li SZ, Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research , 158 (1-2) :1–16. DOI:10.1016/j.precamres.2007.04.001
[] Li SZ, Kusky TM, Zhao GC, Liu XC, Wang L, Kopp H, Hoernle K, Zhang GW, Dai LM. 2011. Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie-Sulu orogen, east-central China. Tectonophysics , 504 (1-4) :25–42. DOI:10.1016/j.tecto.2011.01.017
[] Li SZ, Dai LM, Zhang Z, Guo LL, Zhao SJ, Zhao GC, Zhang GW. 2015a. Precambrian geodynamics (Ⅳ): Pre-plate regime. Earth Science Frontiers , 22 (6) :46–64.
[] Li SZ, Li XY, Dai LM, Liu X, Zhang Z, Zhao SJ, Guo LL, Zhao GC, Zhang GW. 2015b. Precambrian geodynamics (Ⅵ): Formation of North China Craton. Earth Science Frontiers , 22 (6) :77–96.
[] Li SZ, Zhao GC, Sun M. 2016a. Paleoproterozoic amalgamation of the North China Craton and the assembly of the Columbia supercontinent. Science Bulletin , 61 (9) :919–925.
[] Li SZ, Li XY, Zhao SJ, Yang Z, Liu X, Guo LL, Wang YM, Hao Y, Zhang J, Hu MY. 2016b. Global Early Paleozoic Orogens (Ⅲ): Intracontinental orogen in South China. Journal of Jilin University (Earth Science Edition) , 46 (4) :1005–1025.
[] Li SZ, Yang Z, Zhao SJ, Li XY, Suo YH, Guo LL, Yu S, Dai LM, Li SJ, Mu DL. 2016c. Global Early Paleozoic Orogens (II): Subduction-accretionary-type Orogeny. Journal of Jilin University (Earth Science Edition) , 46 (4) :968–1004.
[] Li WM, Liu YJ, Takasu A, Zhao YL, Wen QB, Guo XZ, Zhang L. 2014. Pressure(P)-temperature(T)-time(t) paths of the blueschists from the Yilan area, Heilongjiang Province. Acta Petrologica Sinica , 30 (10) :3085–3099.
[] Li XH, Zhou GQ, Zhao JX, Fanning CW, Compston W. 1994. SHRIMP ion microprobe zircon U-Pb age and Sm-Nd isotopic characteristics of the NE Jiangxi ophiolite and its tectonic implications. Chinese Journal of Geochemistry , 13 (4) :317–325. DOI:10.1007/BF02838521
[] Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y, Wingate MTD. 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825Ma?. Precambrian Research , 122 (1-4) :45–83. DOI:10.1016/S0301-9268(02)00207-3
[] Li XH, Li ZX, Sinclair JA, Li WX, Carter G. 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research , 151 (1-2) :14–30. DOI:10.1016/j.precamres.2006.07.009
[] Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research , 174 (1-2) :117–128. DOI:10.1016/j.precamres.2009.07.004
[] Li YH, Zheng JP, Xiong Q, Wang W, Ping XQ, Li XY, Tang HY. 2016. Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Research , 276 :158–177. DOI:10.1016/j.precamres.2016.01.028
[] Li YJ, Wang JF, Li HY, Dong PP, Liu YC, Liu DW, Bai H. 2012. Recognition of Diyanmiao ophiolite in Xi U jimqin Banner, Inner Mongolia. Acta Petrologica Sinica , 28 (4) :1282–1290.
[] Li YJ, Wang JF, Li HY, Dong PP, He QL, Zhang HC, Song P. 2013. Geochemical characteristics of Baiyinbulage ophiolite in Xi U jimqin Banner,Inner Mongolia. Acta Petrologica Sinica , 29 (8) :2719–2730.
[] Li ZX, Li XH, Kinny PD, Wang J. 1999. The breakup of Rodinia: Did it start witha mantle plume beneath South China?. Earth and Planetary Science Letters , 173 (3) :171–181. DOI:10.1016/S0012-821X(99)00240-X
[] Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou W. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research , 122 (1-4) :85–109. DOI:10.1016/S0301-9268(02)00208-5
[] Li ZX, Wartho JA, Occhipinti S, Zhang CL, Li XH, Wang J, Bao CM. 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precambrian Research , 159 (1-2) :79–94. DOI:10.1016/j.precamres.2007.05.003
[] Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL, Bao C. 2010. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin , 122 (5-6) :772–793. DOI:10.1130/B30021.1
[] Ling WL, Gao S, Zhang BR, Li HM, Liu Y, Cheng JP. 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research , 122 (1-4) :111–140. DOI:10.1016/S0301-9268(02)00222-X
[] Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of ≥3800Ma crust in the Chinese part of the Sino-Korean craton. Geology , 20 (4) :339–342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[] Liu DY, Wan YS, Wu JS, Wilde SA, Dong CY, Zhou HY, Yin XY. 2007. Archean crustal evolution and the oldest rocks in the North China Craton. Geological Bulletin of China , 26 (9) :1131–1138.
[] Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Yang CH, Zhang YX, Gao LZ. 2009a. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton: Reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology , 261 (1-2) :140–154. DOI:10.1016/j.chemgeo.2008.10.041
[] Liu FL. 1995. Metamorphic mineral-fluid evolution and tectonic environments of the granulite-facies terrane in the Huai'an-Datong area. Ph. D. Dissertation. Changchun: Changchun University of Science and Technology (in Chinese with English summary)
[] Liu FL. 1997. The metamorphic reaction and water activity of basic granulite in the Datong-Huai'an region. Acta Petrologica Sinica , 13 (1) :27–43.
[] Liu FL, Xu ZQ, Liou JG. 2004. Tracing the boundary between UHP and HP metamorphic belts in the southwestern Sulu terrane, eastern China: Evidence from mineral inclusions in zircons from metamorphic rocks. International Geology Review , 46 (5) :409–425. DOI:10.2747/0020-6814.46.5.409
[] Liu FL, Gerdes A, Xue HM. 2009c. Differential subduction and exhumation of crustal slices in the Sulu HP-UHP metamorphic terrane: Insights from mineral inclusions, trace elements, U-Pb and Lu-Hf isotope analyses of zircon in orthogneiss. Journal of Metamorphic Geology , 27 (9) :805–825. DOI:10.1111/jmg.2009.27.issue-9
[] Liu FL, Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences , 40 (1) :1–39. DOI:10.1016/j.jseaes.2010.08.007
[] Liu L, Sun Y, Xiao PX, Che ZC, Luo JH, Chen DL, Wang Y, Zhang AD, Chen L, Wang YH. 2002. Discovery of ultrahighpressure magnesite-bearing garnet lherzolite (3.8GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin , 47 (11) :881–885. DOI:10.1360/02tb9197
[] Liu L, Chen DL, Zhang AD, Sun Y, Wang Y, Yang JX, Luo JH. 2005a. Ultrahigh pressure (>7GPa) gneissic K-feldspar (-bearing) garnet clinopyroxenite in the Altyn Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Science in China (Series D) , 48 (7) :1000–1010. DOI:10.1360/04yd0166
[] Liu L, Zhang JF, Green II HW, Jin ZM, Bozhilov KN. 2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350km. Earth and Planetary Science Letters , 263 (3-4) :180–191. DOI:10.1016/j.epsl.2007.08.010
[] Liu L, Wang C, Cao YT, Chen DL, Kang L, Yang WQ, Zhu XH. 2012b. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos , 136-139 :10–26. DOI:10.1016/j.lithos.2011.09.014
[] Liu L, Liao XY, Zhang CL, Chen DL, Gong XK, Kang L. 2013a. Multi-matemorphic timings of HP-UHP rocks in the North Qinling and their geological implications. Acta Petrologica Sinica , 29 (5) :1634–1656.
[] Liu L, Cao YT, Chen DL, Zhang CL, Yang WQ, Kang L, Liao XY. 2013b. New progresses on the HP-UHP metamorphism in the South Altyn Tagh and the North Qinling. Chinese Science Bulletin , 58 (22) :2113–2123.
[] Liu PH, Liu FL, Liu CH, Wang F, Liu JH, Yang H, Cai J, Shi JR. 2013. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research , 233 :237–258. DOI:10.1016/j.precamres.2013.05.003
[] Liu R, Zhou HW, Zhang L, Zhong ZQ, Zeng W, Xiang H, Jin S, Lu XQ, Li CZ. 2009b. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: Evidence from zircon trace elements, U-Pb and Lu-Hf isotopes. Chinese Science Bulletin , 54 (9) :1543–1554.
[] Liu SJ, Li JH, Santosh M. 2008. Ultrahigh temperature metamorphism of Tuguiwula khondalite belt, Inner Mongolia: Metamorphic reaction texture and P-T indication. Acta Petrologica Sinica , 24 (6) :1185–1192.
[] Liu SJ, Tsunogae T, Li WS, Shimizu H, Santosh M, Wan YS, Li JH. 2012a. Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos , 148 :54–70. DOI:10.1016/j.lithos.2012.05.024
[] Liu SW, Zhang JJ, Shu GM, Li QG. 2005b. Mineral chemistry, P-T-t paths and exhumation processes of mafic granulites in Dinggye, southern Tibet. Science in China (Series D) , 48 (11) :1870–1881. DOI:10.1360/04yd0161
[] Liu WJ, Zhai MG, Li YG. 1998. Metamorphism of the high-pressure basic granulites in Laixi, eastern Shandong, China. Acta Petrologica Sinica , 14 (4) :449–459.
[] Liu XS, Jin W, Li SX, Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology , 11 (4) :499–510. DOI:10.1111/jmg.1993.11.issue-4
[] Liu ZF, Wang JM, Lü JB, Zheng GS. 2006. Geological features and age of the Wenquan rapakivi granite, Chicheng County, Hebei. Geology in China , 33 (5) :1052–1058.
[] Long XP, Yuan C, Sun M, Xiao WJ, Zhao GC, Zhou KF, Wang YJ, Hu AQ. 2011. The discovery of the oldest rocks in the Kuluketage area and its geological implications. Science China (Earth Sciences) , 54 (3) :342–348. DOI:10.1007/s11430-010-4156-z
[] Lu JS, Wang GD, Wang H, Chen HX, Wu CM. 2013. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen. Precambrian Research , 238 :61–77. DOI:10.1016/j.precamres.2013.09.019
[] Lu JS, Wang GD, Wang H, Chen HX, Wu CM. 2014. Palaeoproterozoic metamorphic evolution and geochronology of the Wugang block, southeastern terminal of the Trans-North China Orogen. Precambrian Research , 251 :197–211. DOI:10.1016/j.precamres.2014.06.015
[] Lu LZ, Jin SQ, Xu XC, Liu FL.1992. The Petrogenesis and Orebearing Potential of Precambrian Khondalite Series in Southeast Inner Mongolia. Changchun: Jilin Science Technology Press : 1 -121.
[] Lu LZ, Xu XC, Liu FL.1996. The Early Precambrian Khondalite Series in the North China. Changchun: Changchun Publishing House : 1 -227.
[] Lu SN. 1992. The Proterozoic tectonic evolution of Quruqtagh, Xinjiang. In: Journal of Tianjin Geology Mineralogy Resource, 26-27. Beijing: Geological Publishing House, 279-292 (in Chinese)
[] Lu SN, Yu HF, Li HK, et al.2006. Research on Precambrian Major Problems in China: Group of Major Precambrian Geological Events in Western China and Its Global Structural Significance. Beijing: Geological Publishing House : 1 -206.
[] Lu SN, Li HK, Zhang CL, Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research , 160 (1-2) :94–107. DOI:10.1016/j.precamres.2007.04.025
[] Lu SN, Chen ZH, Xiang ZQ.2008. The World Geopark of Taishan: Geochronological Framework of Ancient Intrusives. Beijing: Geological Publishing House : 1 -90.
[] Lu ZL, Song HX, Du LL, Ren LD, Geng YS, Yang CH. 2014. Delineation of the ca. 2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance. Acta Petrologica Sinica , 30 (10) :2872–2884.
[] Ma L, Chen HJ, Gan KW, Xu KD, Xu XS, Wu GY, Ye Z, Liang X, Wu SH, Qiu YY, Zhang PL, Ge PP.2004. Tectonics and Marine Origin Petroleum Geology of South China. Beijing: Geological Publishing House : 1 -452.
[] Ma MZ, Xu ZY, Zhang LC, Dong CY, Dong XJ, Liu SJ, Liu DY, Wan YS. 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area, Wuchuan, Inner Mongolia. Acta Petrologica Sinica , 29 (2) :501–516.
[] O'Brien PJ, Walteb N, Li JH. 2005. The petrology of two distinct granulite types in the Hengshan Mts, China, and tectonic implications. Journal of Asian Earth Sciences , 24 (5) :615–627. DOI:10.1016/j.jseaes.2004.01.002
[] Peng M, Wu YB, Wang J, Jiao WF, Liu XC, Yang SH. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin , 54 (6) :1098–1104.
[] Peng M, Wu YB, Gao S, Zhang HF, Wang J, Liu XC, Gong HJ, Zhou L, Hu ZC, Liu YS, Yuan HL. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications. Gondwana Research , 22 (1) :140–151. DOI:10.1016/j.gr.2011.08.012
[] Qiu YM, Gao S, McNaughton NJ, Groves DI, Ling WL. 2000. First evidence of >3.2Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology , 28 (1) :11–14. DOI:10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
[] Qiu YX, Zhang YC, Ma WP.1999. Tectonic Characteristics and Evolution of the Xuefeng Mt., South China. Beijing: Geological Publishing House : 1 -555.
[] Rämö OT, Haapala I, Vaasjoki M, Yu JH, Fu HQ. 1995. 1700Ma Shachang complex, Northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology , 23 (9) :815–818. DOI:10.1130/0091-7613(1995)023<0815:MSCNCP>2.3.CO;2
[] Ren JS, Chen TY, Niu BG, Liu ZG, Liu FR.1990. Tectonic Evolution and Mineralization of East China Lithosphere. Beijing: Science Press : 1 -205.
[] Ren JS, Niu BG, Liu ZG. 1999. Soft collision superposition orogeny and polycyclic suturing. Earth Science Frontiers , 6 (3) :85–93.
[] Rogers JJW, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research , 5 (1) :5–22. DOI:10.1016/S1342-937X(05)70883-2
[] Rogers JJW, Santosh M. 2003. Supercontinents in Earth history. Gondwana Research , 6 (3) :357–368. DOI:10.1016/S1342-937X(05)70993-X
[] Santosh M, Sajeev K, Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. Gondwana Research , 10 (3-4) :256–266. DOI:10.1016/j.gr.2006.06.005
[] Santosh M, Tsunogaeb T, Li JH, Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research , 11 (3) :263–285. DOI:10.1016/j.gr.2006.10.009
[] Santosh M, Wilde SA, Li JH. 2007b. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research , 159 (3-4) :178–196. DOI:10.1016/j.precamres.2007.06.006
[] Santosh M, Sajeev K, Li JH, Liu SJ, Itaya T. 2009a. Counterclockwise exhumation of a hot orogen: The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos , 110 (1-4) :140–152. DOI:10.1016/j.lithos.2008.12.010
[] Santosh M, Wan YS, Liu DY, Dong CY, Li JH. 2009b. Anatomy of zircons from an ultrahot orogen: The amalgamation of the North China Craton within the supercontinent Columbia. The Journal of Geology , 117 (4) :429–443. DOI:10.1086/598949
[] Santosh M, Kusky T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: A ridge subduction and slab window model. Terra Nova , 22 (1) :35–42. DOI:10.1111/ter.2009.22.issue-1
[] Santosh M, Liu SJ, Tsunogae T, Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research , 222-223 :77–106. DOI:10.1016/j.precamres.2011.05.003
[] Santosh M, Liu DY, Shi YR, Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study. Precambrian Research , 227 :29–54. DOI:10.1016/j.precamres.2011.11.004
[] ŞengörAMC, NatalinBA, BurtmanVS.1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature , 364 (6435) :299–307.
[] Shen WZ, Zou HB, Chu XJ, Zhou XM, Yang JD, Wang YX. 1992. Nd, Sr and O isotopic study on Fuchuan ophiolites suite in Anhui Province. Scientia Geologica Sinica (4) :333–341.
[] Shi XM, Lan YQ. 1985. The metamorphic sequence of Hulan Group, Hongqiling, Jilin Province. Journal of Changchun University of Earth Science (4) :39–46.
[] Shu LS, Zhou GQ. 1988. The first discovery of the high-pressure minerals in the collage zone of Proterozoic terrains in North Jiangxi and its tectonic significance. Journal of Nanjing University (Natrual Sciences Edition) , 24 (3) :421–429.
[] Shu LS, Faure M, Yu JH, Jahn BM. 2011. Geochronological and geochemical features of the Cathaysia Block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambian Research , 187 (3-4) :263–276. DOI:10.1016/j.precamres.2011.03.003
[] Shu LS. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China , 31 (7) :1035–1053.
[] Smith DC. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature , 310 (5979) :641–644. DOI:10.1038/310641a0
[] Song B, Nutman AP, Liu DY, Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research , 78 (1-3) :79–94. DOI:10.1016/0301-9268(95)00070-4
[] Song SG, Yang JS, Liou JG, Wu CL, Shi RD, Xu ZQ. 2003. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM terrane, the North Qaidam, NW China. Lithos , 70 (3-4) :195–211. DOI:10.1016/S0024-4937(03)00099-9
[] Song SG, Zhang LF, Niu YL. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. American Mineralogist , 89 (8-9) :1330–1336. DOI:10.2138/am-2004-8-922
[] Song SG, Zhang LF, Niu YL, Su L, Jian P, Liu DY. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters , 234 (1-2) :99–118. DOI:10.1016/j.epsl.2005.02.036
[] Su SG, Gu DL, Zhu GX. 1997. The P-T trajectory and its tectonic significance of granulite facies metamorphism in the Yishui area, Shandong Province. Acta Petrologica Sinica , 13 (3) :331–345.
[] Sun DY, Liu ZH, Ling XC, Zheng CQ.1993. Precambrian and Tectonic Evolution in Eastern Part of Fushun, Liaoning Province. Beijing: Seismological Press : 1 -142.
[] Sun LX, Ren BF, Zhao FQ, Ji SP, Geng JZ. 2013. Late Paleoproterozoic magmatic records in the Eerguna massif: Evidences from the zircon U-Pb dating of granitic gneisses. Geological Bulletin of China , 32 (2-3) :341–352.
[] Tam PY, Zhao GC, Sun M, Li SZ, Iizuka Y, Ma GSK, Yin CQ, He YH, Wu ML. 2012a. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research , 220-221 :177–191. DOI:10.1016/j.precamres.2012.08.008
[] Tam PY, Zhao GC, Zhou XW, Sun M, Guo JH, Li SZ, Yin CQ, Wu ML, He YH. 2012b. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research , 22 (1) :104–117. DOI:10.1016/j.gr.2011.09.006
[] Tam PY, Zhao GC, Sun M, Li SZ, Wu ML, Yin CQ. 2012c. Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos , 155 :94–109. DOI:10.1016/j.lithos.2012.08.018
[] Tsunogae T, Liu SJ, Santosh M, Shimizu H, Li JH. 2011. Ultrahigh-temperature metamorphism in Daqingshan, Inner Mongolia suture zone, North China Craton. Gondwana Research , 20 (1) :36–47. DOI:10.1016/j.gr.2011.03.001
[] Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ, Geng YS. 2005. Geochemical and Nd isotopic compositionsof 3.8Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences , 24 (5) :563–575. DOI:10.1016/j.jseaes.2004.02.009
[] Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH, Diwu CR. 2011. ~2.7Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research , 186 (1-4) :169–180. DOI:10.1016/j.precamres.2011.01.015
[] Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY, Ma MZ. 2012. Multiple 3.8~3.1Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences , 54-55 :18–30. DOI:10.1016/j.jseaes.2012.03.007
[] Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY, Du LL. 2013. Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science , 313 (7) :683–711. DOI:10.2475/07.2013.03
[] Wang F, Liu FL, Liu PH, Liu JH. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sinica , 26 (7) :2057–2072.
[] Wang F, Li XP, Chu H, Zhao GC. 2011. Petrology and metamorphism of khondalites from the Jining complex, North China Craton. International Geology Review , 53 (2) :212–229. DOI:10.1080/00206810903028144
[] Wang GD, Wang H, Chen HX, Lu JS, Wu CM. 2014. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: Insights into the Palaeoproterozoic amalgamation of the North China Craton. Precambrian Research , 245 :100–114.
[] Wang HC, Kang JL, Ren YW, Chu H, Lu SN, Xiao ZB. 2015. Identification of ~2.7Ga BIF in North China Craton: Evidence from geochronology of iron-bearing formation in Laizhou-Changyi area, Jiaobei terrane. Acta Petrologica Sinica , 31 (10) :2991–3011.
[] Wang JG, Yu SQ, Hu YH, Zhao XD, Wu M, Gu MG. 2014. The discovery, petrology and geochronology of the retrograde eclogite in Jiangshan-Shaoxing suture zone. Geology in China , 41 (4) :1356–1363.
[] Wang LJ, Guo JH, Peng P, Liu F. 2011. Metamorphic and geochronological study of garnet-bearing basic granulites from Gushan, the eastern end of the Khondalite Belt in the North China Craton. Acta Petrologica Sinica , 27 (12) :3689–3700.
[] Wang XL, Zhou JC, Qiu JS, Zhang WL, Liu XM, Zhang GL. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Research , 145 (1-2) :111–130. DOI:10.1016/j.precamres.2005.11.014
[] Wang XL, Zhou JC, Griffin WL, Wang RC, Qiu JS, O'Reilly SY, Xu XS, Liu XM, Zhang GL. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research , 159 (1-2) :117–131. DOI:10.1016/j.precamres.2007.06.005
[] Wang XL, Zhao GC, Zhou JC, Liu YS, Hu J. 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research , 14 (3) :355–367. DOI:10.1016/j.gr.2008.03.001
[] Wang XS, Gao J, Klemd R, Jiang T, Zhai QG, Xiao XC, Liang XQ. 2015b. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite (South China). Lithos , 236-237 :90–105. DOI:10.1016/j.lithos.2015.08.007
[] Wang YJ, Wu CM, Zhang AM, Fan WM, Zhang YH, Zhang YZ, Peng TP, Yin CQ. 2012. Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites. Lithos , 150 :227–242. DOI:10.1016/j.lithos.2012.04.022
[] Wang YF, Li XH, Jin W, Zhang JH. 2015a. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Research , 263 :88–107. DOI:10.1016/j.precamres.2015.03.005
[] Wang YQ. 1996. Pre-Cambrian stratigraphy of northeastern China. Jilin Geology , 5 (3-4) :1–14.
[] Wang ZJ, Wang J, Du QD, Deng Q, Yang F, Wu H. 2013. Mature Archean continental crust in the Yangtze Craton: Evidence from petrology, geochronology and geochemistry. Chinese Science Bulletin , 58 (19) :2360–2369. DOI:10.1007/s11434-013-5668-7
[] Wei JQ, Wang JX. 2012. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling Complex. Geological Journal of China Universities , 18 (4) :589–600.
[] Wilde SA, Wu FY, Zhang XZ. 2003. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research , 122 (1-4) :311–327. DOI:10.1016/S0301-9268(02)00217-6
[] Windley BF.1995. The Evolving Continents.3rd Edition. New York: John Willy and Sons : 401 -460.
[] Wu FY, Zhao GC, Wilde SA, Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences , 24 (5) :523–545. DOI:10.1016/j.jseaes.2003.10.011
[] Wu HQ, Tang KD, Li CY. 2003. The assemblage chloritoid+carpholite+phengite in low-grade metamorphic rocks in Kaishantun area, Yanbian, Jilin Province: The evidence of blueschist facies metamorphism. Geological Bulletin of China , 22 (9) :651–654.
[] Wu YB, Gao S, Gong HJ, Xiang H, Jiao WF, Yang SH, Liu YS, Yuan HL. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology , 27 (6) :461–477. DOI:10.1111/jmg.2009.27.issue-6
[] Wu YB, Gao S, Zhang HF, Zheng JP, Liu XC, Wang H, Gong HJ, Zhou L, Yuan HL. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications. Precambrian Research , 200-203 :26–37. DOI:10.1016/j.precamres.2011.12.015
[] Wu YB, Zhou GY, Gao S, Liu XC, Qin ZW, Wang H, Yang JZ, Yang SH. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research , 254 :73–86. DOI:10.1016/j.precamres.2014.08.004
[] Xia Y, Xu XS, Zhu KY. 2012. Paleoproterozoic S-and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research , 216-219 :177–207. DOI:10.1016/j.precamres.2012.07.001
[] Xie CM, Li C, Su L, Dong YS, Wu YW, Xie YW. 2013. Geochronology of high-pressure granulite in the Amdo, Qinghai-Tibet Plateau. Acta Petrologica Sinica , 29 (3) :912–922.
[] Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Ren P, Liu DY. 2015. Petrogenesis of ca. 2.7Ga TTG rocks in the Jiaodong terrane, North China Craton and its geological implications. Acta Petrologica Sinica , 31 (10) :2974–2990.
[] Xin HT, Zhao FQ, Luo ZH, Liu YS, Wan YS, Wang SQ. 2011. Determination of the Paleoproterozoic geochronological framework in Aqtashtagh area in southeastern Tarim, China, and its geological significance. Acta Geologica Sinica , 85 (12) :1977–1993.
[] Xin HT, Liu YS, Luo ZH, Song SC, Wang SQ. 2013. The growth of Archean continental crust in Aqtashtagh area of Southeast Tarim, China: Constraints from petrochemistry and chronology about Milan Group and TTG-gneiss. Earth Science Frontiers , 20 (1) :240–259.
[] Xing GF, Wang XL, Wan YS, Chen ZH, Jiang Y, Kitajima K, Ushikubo T, Gopon P. 2014. Diversity in early crustal evolution: 4100Ma zircons in the Cathaysia Block of southern China. Scientific Reports , 4 :5143. DOI:10.1038/srep05143
[] Xing GF, Yang ZL, Chen ZH, Jiang Y, Hong WT, Jin GD, Yu MG, Zhao XL, Duan Z. 2015. The discovery of the Asian oldest zircons in Longquan, Cathaysia Block. Acta Geoscientica Sinica , 36 (4) :395–402.
[] Xiong Q, Zheng JP, Yu CM, Su YP, Tang HY, Zhang ZH. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin , 54 (3) :436–446.
[] Xu XC. 1991. Evolution of metamorphism and its dynamics in Wulashan region, Inner Mongolia. Journal of Changchun University of Earth Science , 21 (1) :25–32.
[] Xu YH, Wu XH, Lou FS. 2008. Division and correlation of the Middle Proterozoic strata in Jiangnan Old Land. Resources Survey & Environment , 29 (1) :1–11.
[] Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ, Geng YS. 2013. Delineation of the ca. 2.7Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications. Journal of Asian Earth Sciences , 72 :178–189. DOI:10.1016/j.jseaes.2012.09.031
[] Yang JH, Wu FY, Liu XM, Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica , 21 (6) :1633–1644.
[] Yang JH, Wu FY, Wilde SA, Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research , 167 (1-2) :125–149. DOI:10.1016/j.precamres.2008.07.004
[] Yang JS, Xu ZQ, Zhang JX, Song SG, Wu CL, Shi RD, Li HB, Brunel M. 2002. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan Plateau and a paired subduction model. Terra Nova , 14 (5) :397–404. DOI:10.1046/j.1365-3121.2002.00438.x
[] Yang JS, Xu ZQ, Ma CQ, Wu CL, Zhang JX, Wang ZQ, Wang GC, Zhang HF, Dong YP, Lai SC. 2010. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China. Geology in China , 37 (1) :1–11.
[] Ye Y, Lan X, Lan YQ. 1996. Metamorphic geological characters of Xingzi complex in North Jiangxi, China. Journal of Zhejiang University (Natural Science) , 30 (6) :600–609.
[] Yin CQ. 2010. Metamorphism of the Helanshan-Qianlishan Complex and its implications for tectonic evolution of the khondalite belt in the western block, North China Craton. Ph. D. Dissertation. Hong Kong: The University of Hong Kong, 1-233
[] Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW, Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos , 122 (1-2) :25–38. DOI:10.1016/j.lithos.2010.11.010
[] Yin CQ, Lin SF, Davis DW, Zhao GC, Xiao WJ, Li LM, He YH. 2013. 2.1~1.85Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos , 182-183 :200–210. DOI:10.1016/j.lithos.2013.10.012
[] Yu JH, Zhou XM, Zhao L, Chen XM. 2003. Discovery and implications of granulite facies metamorphic rocks in the eastern Nanling, China. Acta Petrologica Sinica , 19 (3) :461–467.
[] Yu JH, Wang LJ, Wei ZY, Sun T, Shu LS. 2007. Phanerozoic metamorphic episodes and characteristics of Cathaysia block. Geological Journal of China Universities , 13 (3) :474–483.
[] Yu JH, Wang LJ, O'Reilly SY, Griffin WL, Zhang M, Li CZ, Shu LS. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research , 174 (3-4) :347–363. DOI:10.1016/j.precamres.2009.08.009
[] Yu SY, Zhang JX, DelReal PG. 2011. Petrology and P-T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. Journal of Asian Earth Sciences , 42 (4) :641–660. DOI:10.1016/j.jseaes.2010.11.009
[] Zhai MG, Bian AG. 2000. Amalgamation of the supercontinental of the North China craton and its break up during Late-Middle Proterozoic. Science in China (Series D) , 43 (Suppl.) :219–232.
[] Zhai MG. 2011. Cratonization and the Ancient North China Continent: A summary and review. Science China (Earth Sciences) , 54 (8) :1110–1120. DOI:10.1007/s11430-011-4250-x
[] Zhai MG, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research , 20 (1) :6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhai MG. 2013. The main old lands in China and assembly of Chinese unified continent. Science China (Earth Sciences) , 56 (11) :1829–1852. DOI:10.1007/s11430-013-4665-7
[] Zhai QG, Li C, Wang J. 2009. Petrology, mineralogy and PTt path for the eclogite from central Qiangtang, northern Tibet, China. Geological Bulletin of China , 28 (9) :1207–1220.
[] Zhang CL, Li ZX, Li XH, Yu HF, Ye HM. 2007. An Early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: Age, geochemistry, and tectonic implications. Gondwana Research , 12 (1-2) :101–112. DOI:10.1016/j.gr.2006.10.006
[] Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Guo LL, Lin HB, Wei XS, Zhao J. 2015a. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research , 267 :121–136. DOI:10.1016/j.precamres.2015.06.001
[] Zhang CL, Zuo HB, Zhu QB, Chen XY. 2015c. Late Mesoproterozoic to early Neoproterozoic ridge subduction along southern margin of the Jiangnan Orogen: New evidence from the Northeastern Jiangxi Ophiolite (NJO), South China. Precambrian Research , 268 :1–15. DOI:10.1016/j.precamres.2015.07.005
[] Zhang GW, Guo AL, Wang YJ, Li SZ, Dong YP, Liu SF, He DF, Cheng YS, Lu RK, Yao AP. 2013c. Tectonics of South China continent and its implications. Science China (Earth Sciences) , 56 (11) :1804–1828. DOI:10.1007/s11430-013-4679-1
[] Zhang HX, Zhang BY, Sun DZ, Zhu BQ. 2003. The study on the metamorphism and metamorphic age from Xingzi Group, Lushan. Journal of Mineralogy and Petrology , 23 (2) :32–36.
[] Zhang JS, Dirks PHGM, Passchier CW. 1994. Extensional collapse and uplift in a polymetamorphic granulite terrain in the Archaean and Palaeoproterozoic of north China. Precambrian Research , 67 (1-2) :37–57. DOI:10.1016/0301-9268(94)90004-3
[] Zhang JX, Zhang ZM, Xu ZQ, Yang JS, Cui JW. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos , 56 (2-3) :187–206. DOI:10.1016/S0024-4937(00)00052-9
[] Zhang JX, Yang JS, Xu ZQ, Meng FC, Li HB, Shi RD. 2002a. Evidence for UHP metamorphism of eclogites from the Altun Mountains. Chinese Science Bulletin , 47 (9) :751–755. DOI:10.1360/02tb9170
[] Zhang JX, Mattinson CG, Meng FC, Wan YS. 2005a. An Early Palaeozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China: P-T history and U-Pb geochronology. Journal of Metamorphic Geology , 23 (7) :491–510. DOI:10.1111/j.1525-1314.2005.00585.x
[] Zhang JX, Yang JS, Mattinson CG, Xu ZQ, Meng FC, Shi RD. 2005b. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos , 84 (1-2) :51–76. DOI:10.1016/j.lithos.2005.02.002
[] Zhang JX, Meng FC. 2006. Lawsonite-bearing eclogites in the North Qilian and north Altyn Tagh: Evidence for cold subduction of oceanic crust. Chinese Science Bulletin , 51 (10) :1238–1244. DOI:10.1007/s11434-006-1238-6
[] Zhang JX, Meng FC, Mattinson CG. 2007. Progress, Controversies and Challenge of Studies on South Altyn Tagh-North Qaidam HP/UHP Metamorphic Belt. Geological Journal of China Universities , 13 (2) :526–545.
[] Zhang JX, Mattinson CC, Meng FC, Wan YS, Tung K. 2008. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, western China: Evidence from zircon U-Pb geochronology. The Geological Society of America Bulletin , 120 (5-6) :732–749. DOI:10.1130/B26093.1
[] Zhang JX, Mattinson CG, Meng FC, Yang HJ, Wan YS. 2009a. U-Pb geochronology of paragneisses and metabasite in the Xitieshan area, North Qaidam Mountains, western China: Constraints on the exhumation of HP/UHP metamorphic rocks. Journal of Asian Earth Sciences , 35 (3-4) :245–258. DOI:10.1016/j.jseaes.2008.08.008
[] Zhang JX, Meng FC, Li JP, Mattinson CG. 2009. Coesite in eclogite from the North Qaidam Mountains and its implications. Chinese Science Bulletin , 54 (6) :1105–1110.
[] Zhang JX, Mattinson CG, Yu SY, Li JP, Meng FC. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: Spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology , 28 (9) :955–978. DOI:10.1111/jmg.2010.28.issue-9
[] Zhang JX, Gong JH, Yu SY. 2012. ca. 1.85Ga HP granulite facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: Evidence from U-Pb zircon dating of mafic granulites. Journal of the Geological Society , 169 (5) :511–514. DOI:10.1144/0016-76492011-158
[] Zhang JX, Yu SY, Gong JH, Li HK, Hou KJ. 2013b. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim Craton, northwestern China: Evidence from zircon U-Pb dating and Hf isotopic analyses. Precambrian Research , 226 :21–42. DOI:10.1016/j.precamres.2012.11.014
[] Zhang LF. 2007. Extreme metamorphism: The frontier of metamorphic geology. Earth Science Frontiers , 14 (1) :33–42.
[] Zhang LJ, Ma CQ, Wang LX, Yu ZB, Wang SM. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance. Chinese Science Bulletin , 56 (3) :306–318. DOI:10.1007/s11434-010-4236-7
[] Zhang RY, Hirajima T, Banno S, Cong BL, Liou JG. 1995. Petrology of ultrahigh pressure rocks from the southern Su-Lu region, eastern China. Journal of Metamorphic Geology , 13 (6) :659–675. DOI:10.1111/jmg.1995.13.issue-6
[] Zhang RY, Liou JG, Shu JF. 2002b. Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. American Mineralogist , 87 (4) :445–453. DOI:10.2138/am-2002-0408
[] Zhang RY, Liou JG, Ernst WG. 2009b. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research , 16 (1) :1–26. DOI:10.1016/j.gr.2009.03.008
[] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY. 2006a. Zircon isotope evidence for ≥3.5Ga continental crust in the Yangtze Craton of China. Precambrian Research , 146 (1-2) :16–34. DOI:10.1016/j.precamres.2006.01.002
[] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY. 2006b. Zircon U-Pb age and Hf isotope evidence for 3.8Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters , 252 (1-2) :56–71. DOI:10.1016/j.epsl.2006.09.027
[] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY. 2006c. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research , 151 (3-4) :265–288. DOI:10.1016/j.precamres.2006.08.009
[] Zhang X, Xu XY, Song GS, Wang HL, Chen JL, Li T. 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, weatern Qinling, China. Geological Bulletin of China , 29 (4) :510–517.
[] Zhang XZ, Zhou JB, Chi XG, Wang CW, Hu DQ. 2008. Late Paleozoic tectonic-sedimentation and petroleum resources in northeastern China. Journal of Jilin University (Earth Science Edition) , 38 (5) :719–725.
[] Zhang XZ, Dong YS, Li C, Xie CM, Yang HT, Wang M. 2013. Delineation of Middle Neoproterozoic ophiolite mélange in the northern Lhasa terrane, South Tibet and its significance. Acta Petrologica Sinica , 29 (2) :698–722.
[] Zhang XZ, Dong YS, Li C, Xie CM, Wang M, Deng MR, Zhang L. 2014. A record of complex histories from oceanic lithosphere subduction to continental subduction and collision: Constraints on geochemistry of eclogite and blueschist in Central Qiangtang, Tibetan Plateau. Acta Petrologica Sinica , 30 (10) :2821–2834.
[] Zhang YZ, Wang YJ, Geng HY, Zhang YH, Fan WM, Zhong H. 2013a. Early Neoproterozoic (~850Ma) back-arc basin in the Central Jiangnan Orogen (eastern South China): Geochronological and petrogenetic constraints from meta-basalts. Precambrian Research , 231 :325–342. DOI:10.1016/j.precamres.2013.03.016
[] Zhang YZ, Wang YJ, Zhang YH, Zhang AM. 2015b. Neoproterozoic assembly of the Yangtze and Cathaysia blocks: Evidence from the Cangshuipu Group and associated rocks along the Central Jiangnan Orogen, South China. Precambrian Research , 269 :18–30. DOI:10.1016/j.precamres.2015.08.003
[] Zhang ZM, Zheng LL, Wang JL, Zhao XD, Shi C. 2007. Garnet pyroxenite in the Namjagbarwa Group-complex in the eastern Himalayan tectonic syntaxis, Tibet, China: Evidence for subduction of the Indian continent beneath the Eurasian plate at 80~100km depth. Geological Bulletin of China , 26 (1) :1–12.
[] Zhang ZM, Dong X, Geng GS, Wang W, Yu F, Liu F. 2010. Precambrian metamorphism of the Northern Lhasa Terrane, South Tibet and its tectonic implications. Acta Geologica Sinica , 84 (4) :449–456.
[] Zhang ZM, Dong X, Santosh M, Zhao GC. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Research , 25 (1) :170–189. DOI:10.1016/j.gr.2012.08.024
[] Zhao CJ, Peng YJ, Dang ZX. 1995. The Formation and Evolution of Crust in Eastern Jilin and Heilongjiang Provinces. Shenyang: Liaoning University Press :1–226.
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1998. Thermal evolution of the Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review , 40 (8) :706–721. DOI:10.1080/00206819809465233
[] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1999. Thermal evolution of two textural types of mafic granulites in the North China craton: Evidence for both mantle plume and collisional tectonics. Geological Magazine , 136 (3) :223–240. DOI:10.1017/S001675689900254X
[] Zhao GC, Cawood PA. 1999. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science , 299 (4) :309–339. DOI:10.2475/ajs.299.4.309
[] Zhao GC, Cawood PA, Wilde SA, Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews , 59 (1-4) :125–162. DOI:10.1016/S0012-8252(02)00073-9
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton. Gondwana Research , 6 (3) :417–434. DOI:10.1016/S1342-937X(05)70996-5
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research , 136 (2) :177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica , 25 (8) :1772–1792.
[] Zhao GC, Cawood PA. 2012. Precambrian geology of China. Precambrian Research , 222-223 :13–54. DOI:10.1016/j.precamres.2012.09.017
[] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research , 222-223 :55–76. DOI:10.1016/j.precamres.2012.09.016
[] Zhao GC. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Research , 27 (3) :1173–1180. DOI:10.1016/j.gr.2014.09.004
[] Zhao JH, Zhou MF, Yan DP, Zheng JP, Li JW. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology , 39 (4) :299–302. DOI:10.1130/G31701.1
[] Zhao JX, Li XH, McCulloch MT, Zhou GQ, Xing FM. 1995. Petrogenesis of ophiolites from south Anhui and northeast Jiangxi, and their tectonic implications: Chemical and Sm-Nd isotopic constraints. Geochimica , 24 (4) :311–326.
[] Zhao L, Zhou XW. 2012. The metamorphic evolution and PT path of pelitic granulite from the Badu Group in southwestern Zhejiang Province. Acta Petrologica et Mineralogica , 31 (1) :61–72.
[] Zhao L, Zhou XW, Zhai MG, Santosh M, Ma XD, Shan HX, Cui XH. 2014. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang. Lithos , 184-187 :259–280. DOI:10.1016/j.lithos.2013.11.005
[] Zhao L, Zhou XW, Zhai MG, Santosh M, Geng YS. 2015a. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research , 28 (1) :246–261. DOI:10.1016/j.gr.2014.03.019
[] Zhao L, Zhai MG, Zhou XW, Santosh M, Ma XD. 2015b. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting. Lithos , 236-237 :226–244. DOI:10.1016/j.lithos.2015.09.004
[] Zhao Y, Diwu CR, Sun Y, Zhu T, Wang HL. 2013. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province. Acta Petrologica Sinica , 29 (5) :1698–1712.
[] Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX, Wu FY. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos , 96 (1-2) :127–150. DOI:10.1016/j.lithos.2006.10.003
[] Zheng YF, Wu RX, Wu YB, Zhang SB, Yuan HL, Wu FY. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research , 163 (3-4) :351–383. DOI:10.1016/j.precamres.2008.01.004
[] Zhou GQ, Shu LS, Wu HL. 1989. The high temperature and pressure metamorphic rocks relatied to ophiolite in northeastern Jiangxi and a discussion on the superimposition metamorphism. Acta Petrologica et Mineralogica , 8 (3) :220–231.
[] Zhou GQ, Zhao JX. 1991. Sm-Nd isotopic systematics of the NE Jiangxi ophiolite (NEJXO), SE margin of the Yangtze Craton, South China. Chinese Science Bulletin , 36 (16) :1374–1379.
[] Zhou GQ. 1997. Jadeitic rocks within high pressure metamorphic zone from northeastern Jiangxi Province and their forming and surviving conditions. Science in China (Series B) , 40 (5) :477–484.
[] Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Zheng CQ, Wang H, Zeng WS. 2010a. Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: Further evidence regarding their affinity. Geological Magazine , 147 (5) :737–749. DOI:10.1017/S0016756810000063
[] Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Zheng CQ, Wang H. 2010b. New SHRIMP U-Pb zircon ages from the Heilongjiang High-Pressure Belt: Constraints on the Mesozoic evolution of NE China. American Journal of Science , 310 (9) :1024–1053. DOI:10.2475/09.2010.10
[] Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ. 2011a. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: Evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics , 499 (1-4) :105–117. DOI:10.1016/j.tecto.2010.12.009
[] Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Liu FL, Qiao DW, Ren SM, Liu JH. 2011b. A >1300km Late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications. Tectonophysics , 509 (3-4) :280–292. DOI:10.1016/j.tecto.2011.06.018
[] Zhou JB, Zhang XZ, Wilde SA, Zheng CQ. 2011. Confirming of the Heilongjiang: 500Ma Pan-African khondalite belt and its tectonic implications. Acta Petrologica Sinica , 27 (4) :1235–1245.
[] Zhou JB, Han J, Wilde SA, Guo XD, Zeng WS, Cao JL. 2013. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt: Evidence and tectonic implications. Acta Petrologica Sinica , 29 (2) :386–398.
[] Zhou JC, Wang XL, Qiu JS. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Research , 170 (1-2) :27–42. DOI:10.1016/j.precamres.2008.11.002
[] Zhou MF, Ma YX, Yan DP, Xia XP, Zhao JH, Sun M. 2006a. The Yanbian terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block. Precambrian Research , 144 (1-2) :19–38. DOI:10.1016/j.precamres.2005.11.002
[] Zhou MF, Yan DP, Wang CL, Qi L, Kennedy A. 2006b. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters , 248 (1-2) :286–300. DOI:10.1016/j.epsl.2006.05.032
[] Zhou XM, Zou HB, Yang JD anf Wang YX. 1990. Sm-Nd isochronous age of Fuchuan ophiolite suite in Shexian County, Anhui Province and its geological significance. Chinese Science Bulletin , 35 (3) :208–212.
[] Zhou XW, Wei CJ, Geng YS, Zhang LF. 2004. Discovery and implications of the high-pressure pelitic granulite from the Jiaobei massif. Chinese Science Bulletin , 49 (18) :1942–1948. DOI:10.1007/BF03184286
[] Zhou XW, Wei CJ, Geng YS. 2007. Phase equilibria and P-T path of high- and low-pressure pelitic granulites from the Jiaobei massif. Earth Science Frontiers , 14 (1) :135–143.
[] Zhou XW, Zhao GC, Geng YS. 2010. Helanshan high pressure pelitic granulite: Petrologic evidence for collision event in the western block of the North China Craton. Acta Petrologica Sinica , 26 (7) :2113–2121.
[] Zhu MX, Wang HJ. 2001. Very low-grade metamorphism of the Lengjiaxi and Banxi Groups around the area of Changsha-Liling-Liuyang, Hunan Province, China. Acta Petrologica Sinica , 17 (2) :291–300.
[] Zhu XY, Zhai MG, Chen FK, Lyu B, Wang W, Peng P, Hu B. 2013. ~2.7Ga crustal growth in the North China Craton: Evidence from zircon U-Pb ages and Hf isotopes of the Sushui Complex in the Zhongtiao terrane. The Journal of Geology , 121 (3) :239–254. DOI:10.1086/669977
[] 柏道远, 贾宝华, 刘伟, 陈必河, 刘耀荣, 张晓阳.2010. 湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束. 地质学报 , 84 (12) :1715–1726.
[] 白瑾, 黄学光, 王惠初, 郭进京, 颜耀阳, 修群业, 戴凤岩, 徐文蒸, 王官福. 1996. 中国前寒武纪地壳演化.第2版. 北京: 地质出版社 : 1 -259.
[] 蔡佳, 刘平华, 刘福来, 刘建辉, 王舫, 施建荣.2013. 大青山-乌拉山变质杂岩带石拐地区富铝片麻岩成因矿物学与变质演化. 岩石学报 , 29 (2) :437–461.
[] 蔡佳, 刘福来, 刘平华, 施建荣.2014. 内蒙古集宁三岔口夕线堇青石榴二长片麻岩变质作用及年代学研究. 岩石学报 , 30 (2) :472–490.
[] 陈斌, 庄育勋.1994. 粤西云炉紫苏花岗岩及其麻粒岩包体的主要特点和成因讨论. 岩石学报 , 10 (2) :139–150.
[] 陈多福, 李献华, 潘晶铭, 董维权, 陈光谦, 陈先沛.1998. 浙江景宁鹤溪群斜长角闪岩变质新生锆石特征、离子探针(SHRIMP) U-Pb年龄及地质意义. 矿物学报 , 18 (4) :396–400.
[] 陈能松, 王人镜, 单文琅, 钟增球.1994. 密云杂岩西段等压冷却P-T-t轨迹确定及地球动力学成因. 地质科学 , 29 (4) :355–365.
[] 陈志洪, 邢光福, 郭坤一, 董永观, 陈荣, 曾勇, 李龙明, 贺振宇, 赵玲.2009. 浙江平水群角斑岩的成因: 锆石U-Pb年龄和Hf同位素制约. 科学通报 , 54 (5) :610–617.
[] 程裕淇. 1994. 中国区域地质概论. 北京: 地质出版社 : 1 -517.
[] 第五春荣, 孙勇, 董增产, 王洪亮, 陈丹玲, 陈亮, 张红.2010. 北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展. 岩石学报 , 26 (4) :1171–1174.
[] 丁炳华, 史仁灯, 支霞臣, 郑磊, 陈雷.2008. 江南造山带存在新元古代(~850Ma)俯冲作用——来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志 , 27 (5) :375–388.
[] 董策, 周建波.2012. 中国东北地区西部~500Ma泛非期孔兹岩系地球化学特征及其地质意义. 岩石学报 , 28 (9) :2866–2878.
[] 董春艳, 万渝生, 张玉海, 杨之青, 刘敦一.2013. 鞍山地区东山杂岩3.3~3.1Ga岩浆作用:地球化学和锆石SHRIMP定年. 岩石学报 , 29 (2) :414–420.
[] 董晓杰, 徐仲元, 刘正宏, 沙茜.2012. 内蒙古大青山北麓2.7Ga花岗质片麻岩的发现及其地质意义. 地球科学 , 37 (增) :20–27.
[] 董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞.2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代: 岩石学与锆石U-Pb年代学. 岩石学报 , 25 (7) :1678–1694.
[] 董昕, 张泽明, 向华, 贺振宇.2013. 青藏高原南部拉萨地体的变质作用与动力学. 地球学报 , 34 (3) :257–262.
[] 杜利林, 庄育勋, 杨崇辉, 万渝生, 王新社, 王世进, 张连峰.2003. 山东新泰孟家屯岩组锆石特征及其年代学意义. 地质学报 , 77 (3) :359–366.
[] 杜利林, 杨崇辉, 庄育勋, 韦汝征, 万渝生, 任留东, 侯可军.2010. 鲁西新泰孟家屯2.7Ga变质沉积岩与黑云斜长片麻岩锆石Hf同位素特征. 地质学报 , 84 (7) :991–1001.
[] 甘晓春, 李惠民, 孙大中, 庄建民.1993. 闽北前寒武纪基底的地质年代学研究. 福建地质 , 12 (1) :17–32.
[] 甘晓春, 李惠民, 孙大中, 金文山, 赵凤清.1995. 浙西南早元古代花岗质岩石的年代. 岩石矿物学杂志 , 14 (1) :1–8.
[] 高俊.2001. 赣东北高压变质岩的岩石类型、矿物组成与变质过程. 岩石矿物学杂志 , 20 (2) :134–145.
[] 高林志, 杨明桂, 丁孝忠, 刘燕学, 刘训, 凌联海, 张传恒.2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约. 地质通报 , 27 (10) :1744–1751.
[] 高林志, 戴传固, 刘燕学, 王敏, 王雪华, 陈建书, 丁孝忠, 张传恒, 曹茜, 刘建辉.2010. 黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义. 地质通报 , 29 (9) :1259–1267.
[] 高林志, 丁孝忠, 庞维华, 刘燕学, 陆松年, 刘耀荣, 陈峻, 张玉海.2011a. 湘东北前寒武纪仓溪岩群变凝灰岩SHRIMP锆石U-Pb年龄. 地质通报 , 30 (10) :1479–1484.
[] 高林志, 陈峻, 丁孝忠, 刘耀荣, 张传恒, 张恒, 刘燕学, 庞维华, 张玉海.2011b. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约. 地质通报 , 30 (7) :1001–1008.
[] 高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪.2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报 , 27 (6) :793–798.
[] 葛文春, 孙德有, 吴福元, 林强.1994. 吉林桦甸地区太古宙麻粒岩变质作用的PTt轨迹. 岩石矿物学杂志 , 13 (4) :309–318.
[] 耿元生, 沈其韩, 任留东.2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报 , 26 (7) :1945–1966.
[] 辜平阳, 李荣社, 何世平, 查显锋, 于浦生, 时超, 潘术娟, 王轶.2012. 西藏那曲县北聂荣微地块聂荣岩群中斜长角闪岩——Rodinia超大陆裂解的地质纪录. 岩石矿物学杂志 , 31 (2) :145–154.
[] 广西壮族自治区地质矿产局. 1985. 广西壮族自治区区域地质志. 北京: 地质出版社 : 1 -853.
[] 郭召杰, 张志诚, 刘树文, 李惠民.2003. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据. 岩石学报 , 19 (3) :537–542.
[] 何大伦, 刘登忠, 邓明森, 周游.1995. 四川米仓山地区扬子地台结晶基底的时代归属. 四川地质学报 , 15 (3) :176–183.
[] 何世平, 李荣社, 于浦生, 辜平阳, 王超, 杨永成, 张维吉.2012. 青藏高原北羌塘他念他翁山吉塘岩群酉西岩组时代的确定. 地质学报 , 86 (6) :985–993.
[] 何世平, 李荣社, 王超, 辜平阳, 于浦生, 时超, 查显锋.2013. 昌都地块宁多岩群形成时代研究:北羌塘基底存在的证据. 地学前缘 , 20 (5) :15–24.
[] 和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕.2011. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄. 地质通报 , 30 (5) :798–802.
[] 黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社 : 1 -734.
[] 胡霭琴, 韦刚健.2006. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题. 地质学报 , 80 (1) :126–134.
[] 胡大千, 刘越, 洪艳, 解晓婷.2011. 东北地区上古生界泥质岩石共存黏土矿物. 吉林大学学报(地球科学版) , 41 (5) :1458–1465.
[] 湖南省地质矿产局. 1988. 湖南省区域地质志. 北京: 地质出版社 : 1 -718.
[] 胡雄健, 许金坤, 童朝旭, 陈程华. 1991. 浙西南前寒武纪地质. 北京: 地质出版社 : 1 -278.
[] 黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社 : 1 -187.
[] 季建清, 钟大赉, 宋彪, 朱美妃, 温大任.2004. 喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学. 岩石学报 , 20 (5) :1283–1300.
[] 姜继圣.1992. 麻山群孔兹岩系主期区域变质作用及演化. 岩石矿物学杂志 , 11 (2) :97–110.
[] 江西省地质矿产局. 1984. 江西省区域地质志. 北京: 地质出版社 : 1 -921.
[] 蒋宗胜, 王国栋, 肖玲玲, 第五春荣, 卢俊生, 吴春明.2011. 河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义. 岩石学报 , 27 (12) :3701–3717.
[] 解超明, 李才, 苏犁, 董永胜, 吴彦旺, 谢尧武.2013. 青藏高原安多高压麻粒岩同位素年代学研究. 岩石学报 , 29 (3) :912–922.
[] 金巍, 李树勋, 刘喜山.1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报 , 7 (4) :27–36.
[] 李才, 谢尧武, 董永胜, 强巴扎西, 蒋光武.2009. 藏东类乌齐一带吉塘岩群时代讨论及初步认识. 地质通报 , 28 (9) :1178–1180.
[] 李民, 章泽军.2006. 江南隆起带褶皱基底变质变形温压条件研究. 地球学报 , 27 (6) :543–550.
[] 李三忠, 郝德峰, 韩宗珠, 赵国春, 孙敏.2003. 胶辽地块古元古代构造-热演化与深部过程. 地质学报 , 77 (3) :328–340.
[] 李三忠, 戴黎明, 张臻, 郭玲莉, 赵淑娟, 赵国春, 张国伟.2015a. 前寒武纪地球动力学(Ⅳ):前板块体制. 地学前缘 , 22 (6) :46–64.
[] 李三忠, 李玺瑶, 戴黎明, 刘鑫, 张臻, 赵淑娟, 郭玲莉, 赵国春, 张国伟.2015b. 前寒武纪地球动力学(Ⅵ):华北克拉通形成. 地学前缘 , 22 (6) :77–96.
[] 李三忠, 赵国春, 孙敏.2016a. 华北克拉通早元古代拼合与Columbia超大陆形成研究进展. 科学通报 , 61 (9) :919–925.
[] 李三忠, 李玺瑶, 赵淑娟, 杨朝, 刘鑫, 郭玲莉, 王永明, 郝义, 张剑, 胡梦颖.2016b. 全球早古生代造山带(Ⅲ):华南陆内造山. 吉林大学学报(地球科学版) , 46 (4) :1005–1025.
[] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲.2016c. 全球早古生代造山带(II):俯冲-增生型造山. 吉林大学学报(地球科学版) , 46 (4) :968–1004.
[] 李伟民, 刘永江, TakasuA, 赵英利, 温泉波, 郭新传, 张丽.2014. 黑龙江依兰地区蓝片岩的变质演化P-T-t轨迹. 岩石学报 , 30 (10) :3085–3099.
[] 李英杰, 王金芳, 李红阳, 董培培, 刘玉翠, 刘德武, 白卉.2012. 内蒙古西乌珠穆沁旗迪彦庙蛇绿岩的识别. 岩石学报 , 28 (4) :1282–1290.
[] 李英杰, 王金芳, 李红阳, 董培培, 贺秋利, 张红晨, 宋鹏.2013. 内蒙西乌旗白音布拉格蛇绿岩地球化学特征. 岩石学报 , 29 (8) :2719–2730.
[] 刘敦一, 万渝生, 伍家善, WildeSA, 董春艳, 周红英, 殷小艳.2007. 华北克拉通太古宙地壳演化和最古老的岩石. 地质通报 , 26 (9) :1131–1138.
[] 刘福来. 1995. 怀安-大同一带麻粒岩相高级区变质矿物-流体演化动力学及其构造环境研究. 博士学位论文. 长春:长春科技大学
[] 刘福来.1997. 怀安-大同一带基性麻粒岩变质反应序列与水活度. 岩石学报 , 13 (1) :27–43.
[] 刘良, 廖小莹, 张成立, 陈丹玲, 宫相宽, 康磊.2013a. 北秦岭高压-超高压岩石的多期变质时代及其地质意义. 岩石学报 , 29 (5) :1634–1656.
[] 刘良, 曹玉亭, 陈丹玲, 张成立, 杨文强, 康磊, 廖小莹.2013b. 南阿尔金与北秦岭高压-超高压变质作用研究新进展. 科学通报 , 58 (22) :2113–2123.
[] 刘守偈, 李江海, SantoshM.2008. 内蒙古土贵乌拉孔兹岩带超高温变质作用:变质反应结构及P-T指示. 岩石学报 , 24 (6) :1185–1192.
[] 刘文军, 翟明国, 李永刚.1998. 胶东莱西地区高压基性麻粒岩的变质作用. 岩石学报 , 14 (4) :449–459.
[] 刘振锋, 王继明, 吕金波, 郑桂森.2006. 河北省赤城县温泉环斑花岗岩的地质特征及形成时代. 中国地质 , 33 (5) :1052–1058.
[] 卢良兆, 靳是琴, 徐学纯, 刘福来. 1992. 内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性. 长春: 吉林科学技术出版社 : 1 -121.
[] 卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社 : 1 -227.
[] 陆松年. 1992. 新疆库鲁克塔格元古宙地质演化. 见:天津地质矿产研究所所刊, 26-27. 北京: 地质出版社,279-292
[] 陆松年, 于海峰, 李怀坤, 等. 2006. 中国前寒武纪重大地质问题研究——中国西部前寒武纪重大地质事件群及其全球构造意义. 北京: 地质出版社 : 1 -206.
[] 陆松年, 陈志宏, 相振群. 2008. 泰山世界地质公园古老侵入岩系年代格架. 北京: 地质出版社 : 1 -90.
[] 路增龙, 宋会侠, 杜利林, 任留东, 耿元生, 杨崇辉.2014. 华北克拉通阜平杂岩中~2.7Ga TTG片麻岩的厘定及其地质意义. 岩石学报 , 30 (10) :2872–2884.
[] 马力, 陈焕疆, 甘克文, 徐克定, 许效松, 吴根耀, 葉舟, 梁兴, 吴少华, 邱蕴玉, 章平澜, 葛芃芃. 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社 : 1 -452.
[] 马铭株, 徐仲元, 张连昌, 董春艳, 董晓杰, 刘守偈, 刘敦一, 万渝生.2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成. 岩石学报 , 29 (2) :501–516.
[] 丘元禧, 张渝昌, 马文璞. 1999. 雪峰山的构造性质与演化. 北京: 地质出版社 : 1 -555.
[] 任纪舜, 陈廷愚, 牛宝贵, 刘志刚, 刘凤仁. 1990. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社 : 1 -205.
[] 任纪舜, 牛宝贵, 刘志刚.1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘 , 6 (3) :85–93.
[] 沈渭洲, 邹海波, 楚雪君, 周新民, 杨杰东, 王银喜.1992. 安徽伏川蛇绿岩套的Nd-Sr-O同位素研究. 地质科学 (4) :333–341.
[] 施性明, 兰玉琦.1985. 吉林省红旗岭呼兰群变质岩系的研究. 长春地质学院学报 (4) :39–46.
[] 舒良树, 周国庆.1988. 赣北元古代地体拼贴带中高压变质矿物的发现及其构造意义. 南京大学学报 , 24 (3) :421–429.
[] 舒良树.2012. 华南构造演化的基本特征. 地质通报 , 31 (7) :1035–1053.
[] 苏尚国, 顾德林, 朱更新.1997. 山东省沂水地区麻粒岩相变质作用演化及大地构造意义. 岩石学报 , 13 (3) :331–345.
[] 孙德育, 刘正宏, 凌贤长, 郑常青. 1993. 辽宁抚顺东部地区前寒武纪地质及构造演化. 北京: 地震出版社 : 1 -142.
[] 孙立新, 任邦方, 赵凤清, 冀世平, 耿建珍.2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报 , 32 (2-3) :341–352.
[] 王惠初, 康健丽, 任云伟, 初航, 陆松年, 肖志斌.2015. 华北克拉通~2.7Ga的BIF:来自莱州-昌邑地区含铁建造的年代学证据. 岩石学报 , 31 (10) :2991–3011.
[] 汪建国, 余盛强, 胡艳华, 赵旭东, 吴鸣, 顾明光.2014. 江山-绍兴结合带榴闪岩的发现及岩石学、年代学特征. 中国地质 , 41 (4) :1356–1363.
[] 王洛娟, 郭敬辉, 彭澎, 刘富.2011. 华北克拉通孔兹岩带东端孤山剖面石榴石基性麻粒岩的变质作用及年代学研究. 岩石学报 , 27 (12) :3689–3700.
[] 王友琴.1996. 中国东北区前寒武纪地层. 吉林地质 , 15 (3-4) :1–14.
[] 王舫, 刘福来, 刘平华, 刘建辉.2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报 , 26 (7) :2057–2072.
[] 魏君奇, 王建雄.2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成. 高校地质学报 , 18 (4) :589–600.
[] 吴汉泉, 唐克东, 李存有.2003. 吉林延边开山屯地区蓝片岩相变质作用——来自硬绿泥石+纤锰柱石+多硅白云母组合的证据. 地质通报 , 22 (9) :651–654.
[] 谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 任鹏, 刘敦一.2015. 华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义. 岩石学报 , 31 (10) :2974–2990.
[] 辛后田, 赵凤清, 罗照华, 刘永顺, 万渝生, 王树庆.2011. 塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义. 地质学报 , 85 (12) :1977–1993.
[] 辛后田, 刘永顺, 罗照华, 宋顺昌, 王树庆.2013. 塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生:米兰岩群和TTG片麻岩的地球化学及年代学约束. 地学前缘 , 20 (1) :240–259.
[] 邢光福, 杨祝良, 陈志洪, 姜杨, 洪文涛, 靳国栋, 余明刚, 赵希林, 段政.2015. 华夏地块龙泉地区发现亚洲最古老的锆石. 地球学报 , 36 (4) :395–402.
[] 徐学纯.1991. 内蒙古乌拉山地区变质作用演化及其动力学研究. 长春地质学院学报 , 21 (1) :25–32.
[] 徐有华, 吴新华, 楼法生.2008. 江南古陆中元古代地层的划分与对比. 资源调查与环境 , 29 (1) :1–11.
[] 杨进辉, 吴福元, 柳小明, 谢烈文.2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义. 岩石学报 , 21 (6) :1633–1644.
[] 杨经绥, 许志琴, 马昌前, 吴才来, 张建新, 王宗起, 王国灿, 张宏飞, 董云鹏, 赖绍聪.2010. 复合造山作用和中国中央造山带的科学问题. 中国地质 , 37 (1) :1–11.
[] 叶瑛, 兰翔, 兰玉琦.1996. 赣北星子群杂岩的变质地质特征. 浙江大学学报(自然科学版) , 30 (6) :600–609.
[] 于津海, 周新民, 赵蕾, 陈小明.2003. 南岭东段麻粒岩相变质岩的发现及其地质意义. 岩石学报 , 19 (3) :461–467.
[] 于津海, 王丽娟, 魏震洋, 孙涛, 舒良树.2007. 华夏地块显生宙的变质作用期次和特征. 高校地质学报 , 13 (3) :474–483.
[] 翟明国, 卞爱国.2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑) , 30 (增) :129–137.
[] 翟庆国, 李才, 王军.2009. 藏北羌塘中部戈木日榴辉岩的岩石学、矿物学及变质作用PTt轨迹. 地质通报 , 28 (9) :1207–1220.
[] 张海祥, 张伯友, 孙大中, 朱炳泉.2003. 庐山星子群变质岩的变质作用P-T条件研究. 矿物岩石 , 23 (2) :32–36.
[] 张建新, 孟凡聪, MattinsonCG.2007. 南阿尔金-柴北缘高压-超高压变质带研究进展、问题及挑战. 高校地质学报 , 13 (3) :526–545.
[] 张建新, 孟繁聪, 李金平, MattinsonCG.2009. 柴达木北缘榴辉岩中的柯石英及其意义. 科学通报 , 54 (5) :618–623.
[] 张立飞.2007. 极端条件下的变质作用——变质地质学研究的前沿. 地学前缘 , 14 (1) :33–42.
[] 张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷.2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义. 地质通报 , 29 (4) :510–517.
[] 张兴洲, 周建波, 迟效国, 王成文, 胡大千.2008. 东北地区晚古生代构造-沉积特征与油气资源. 吉林大学学报(地球科学版) , 38 (5) :719–725.
[] 张修政, 董永胜, 李才, 解超明, 杨韩涛, 王明.2013. 青藏高原拉萨地块北部新元古代中期蛇绿混杂岩带的厘定及其意义. 岩石学报 , 29 (2) :698–722.
[] 张修政, 董永胜, 李才, 解超明, 王明, 邓明荣, 张乐.2014. 从洋壳俯冲到陆壳俯冲和碰撞: 来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据. 岩石学报 , 30 (10) :2821–2834.
[] 张泽明, 郑来林, 王金丽, 赵旭东, 石超.2007. 东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩——印度大陆向欧亚板块之下俯冲至80~100km深度的证据. 地质通报 , 26 (1) :1–12.
[] 张泽明, 董昕, 耿官升, 王伟, 于飞, 刘峰.2010. 青藏高原拉萨地体北部的前寒武纪变质作用及构造意义. 地质学报 , 84 (4) :449–456.
[] 赵春荆, 彭玉鲸, 党增欣. 1995. 吉黑东部构造格架及地壳演化. 沈阳: 辽宁大学出版社 : 1 -226.
[] 赵国春.2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报 , 25 (8) :1772–1792.
[] 赵建新, 李献华, McCullochMT, 周国庆, 邢凤鸣.1995. 皖南和赣东北蛇绿岩成因及其构造意义: 元素和Sm-Nd同位素制约. 地球化学 , 24 (4) :311–326.
[] 赵磊, 周喜文.2012. 浙西南八都群泥质麻粒岩的变质演化与PT轨迹. 岩石矿物学杂志 , 31 (1) :61–72.
[] 赵燕, 第五春荣, 孙勇, 朱涛, 王洪亮.2013. 甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报 , 29 (5) :1698–1712.
[] 浙江省地质矿产局. 1989. 浙江省区域地质志. 北京: 地质出版社 : 1 -688.
[] 周国庆, 舒良树, 吴洪亮.1989. 与赣东北元古代蛇绿岩有关的高温、高压变质岩和重变质作用机制的讨论. 岩石矿物学杂志 , 8 (3) :220–231.
[] 周建波, 张兴洲, WildeSA, 郑常青.2011. 中国东北~500Ma泛非期孔兹岩带的确定及其意义. 岩石学报 , 27 (4) :1235–1245.
[] 周建波, 韩杰, WildeSA, 郭晓丹, 曾维顺, 曹嘉麟.2013. 吉林-黑龙江高压变质带的初步厘定: 证据和意义. 岩石学报 , 29 (2) :386–398.
[] 周喜文, 魏春景, 耿元生.2007. 胶北地块高压与低压泥质麻粒岩的相平衡关系与P-T演化轨迹. 地学前缘 , 14 (1) :135–143.
[] 周喜文, 赵国春, 耿元生.2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报 , 26 (7) :2113–2121.
[] 朱明新, 王河锦.2001. 长沙-澧陵-浏阳一带冷家溪群及板溪群的甚低级变质作用. 岩石学报 , 17 (2) :291–300.