岩石学报  2016, Vol. 32 Issue (8): 2555-2570   PDF    
锆石Hf和全岩Nd同位素填图研究进展:以三江特提斯造山带为例
杜斌, 王长明, 贺昕宇, 杨立飞, 陈晶源, 石康兴, 罗政, 夏锦胜     
中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083
摘要: 近年来,区域性的Nd-Hf同位素填图正成为探索岩石圈结构和演化,制约陆块边界位置和壳-幔相互作用以及它们与金属成矿作用耦合关系的重要研究方法。目前的研究主要集中于中国的拉萨地体以及澳大利亚太古宙尤冈克拉通,包括地体地壳性质与空间变化规律、成矿系统约束和区域找矿潜力等方面。本文以三江特提斯造山带为例,使用克里格插值法在MAPGIS平台完成同位素等值线图,基此解析三江地区岩石圈结构以及大规模成矿作用。Nd-Hf同位素填图支持昌宁-孟连缝合带为冈瓦纳和泛华夏古陆的分界。昌宁-孟连缝合带划分了两个εNdt)同位素明显不同的异常区,缝合带以西表现为古老地壳基地组成,而缝合带以东部表现为较年轻的地体。三江特提斯造山带中不同类型与岩浆岩有关的发矿床大多汇聚在同位素边界处,这些同位素边界可能代表着地体边界或缝合带、岩浆弧。沿金沙江-哀牢山缝合带分布的斑岩型或斑岩-矽卡岩型Cu-(Mo)矿床,具有高εHft)正值和较高εNdt)负值的特征,对应始新世钾质斑岩及有关的矿化。在腾冲-保山地块、义敦岛弧和临沧次地块,具有低εHft),低εNdt)值岩浆岩分布特征,主要形成与过铝质花岗岩型有关的锡-钨矿床。因此,我们认为区域尺度的同位素填图对研究岩石圈结构和演化、解剖壳-幔相互作用机理、解析深部动力学机制和成矿机制、总结区域成矿规律和指导区域成矿潜力具有重要意义。
关键词: Nd-Hf同位素填图     板块边界     金属矿床     三江特提斯造山带    
Advances in research of bulk-rock Nd and zircon Hf isotopic mappings: Case study of the Sanjiang Tethyan Orogen
DU Bin, WANG ChangMing, HE XinYu, YANG LiFei, CHEN JingYuan, SHI KangXing, LUO Zheng, XIA JinSheng     
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: Zircon Hf and bulk-rock Nd isotopic mapping has recently been regarded as a tool for studying the lithospheric architecture and evolution of crust. It could be used to define the boundaries of landmass and mechanism of crust-mantle interaction, and to analyze mineral system. Current researches are focused in Lasha Terrane in China and Yilgarn Craton in Australia. It included the crustal evolution using zircon U-Pb age constraints and Nd-Hf isotopic mapping, the crustal control of the mineral deposits, and regional exploration targeting. This artical is an example of the study of the Sanjiang Tethyan Orogen of the eastern Tethyan tectonic belt in China, it used the Kriging weighted interpolation method in MapGIS to contour the Nd and Hf dataset. This article proved that the Changning-Menglian suture zone is the boundary of Gondwana and Cathaysia. It can be divided into two distinct region domains by the Changning-Menglian Suture according to the εNd(t) anomaly with an old, reworked, crustal terrane to the western part of the suture, and a juvenile crustal terrane to the eastern part of the suture. Different types of deposits that related to magmatic rocks in the Sanjiang Tethyan orogenic belt are gathered in the isotopic boundary. The boundary of these isotopes may represent terrane boundaries or suture belt, magmatic arc. Along the Jinshajiang-Ailaoshan suture zone distribution of porphyry and porphyry-skarn rock type Cu-Mo deposit, has the characteristics of high positive εHf(t) value and higher negative εNd(t) value, corresponding to the Eocene-Oligocene intercontinental potassic intrusions and associated mineralization. They are characterized by the low-εHf and low-εNd domains in the Tengchong and Yidun arc terranes, and Changning- Menglian Suture, corresponding to the granite-related Sn-W mineralization. Therefore, it suggests that regional-scale isotopic mapping will benefit studies of lithospheric architecture and evolution, mechanism of crust-mantle interaction, deep dynamics and mineralization, and metallogeny and exploration targeting.
Key words: Nd-Hf-isotopic mapping     Block boundary     Ore deposits     Sanjiang Tethyan Orogen    
1 引言

大规模的地质过程,约束着矿床的时空分布(Kerrich et al.,20002005; Begg et al.,20092010),在增生造山系统中,地壳的增长伴随着广泛的壳幔互相作用以及能量的转换(Jahn et al.,2000; Jahn,2004; Kovalenko et al.,2004; Wang et al.,2009),这有利于形成各种类型的矿床。在碰撞造山系统中,形成大规模的矿床(陈衍景,2013)。碰撞造山形成的矿床被认为是与古老地壳的改造,新地壳的重融,地壳熔体和流体的迁移,碰撞诱导的岩石圈加厚,伸展,或拆沉有关。目前尚不清楚大陆岩石圈的演化和构造与碰撞造山有关矿床的产出位置关系,在岩石圈或大陆地壳内,壳幔混合作用控制富集成矿元素的岩浆岩以及来源关系等。

同位素地球化学对研究陆块离散、汇聚、拼贴和壳-幔相互作用过程具有重要意义(Milisenda et al.,1988; DePaolo et al.,1991; 张本仁等,1995; 朱炳泉等,1995; Dickin,1998; Dickin and McNutt,2003; Asahara et al.,2006; Herrell et al.,2006; Champion and Cassidy,2007; 范蔚茗等,2008; Wang et al.,2009; McCuaig et al.,2010; Dickin et al.,2014; Mole et al.,20142015)。Sm-Nd同位素体系和Lu-Hf同位素体系有较长的半衰期,而且Sm-Nd和Lu-Hf同位素体系在岩浆分异过程中的行为方式基本一致(Davis et al.,2005; Pollock et al.,2015),这更有助于研究整个地质年代过程中地幔化学分异过程以及大陆地壳的形成过程。近年来区域性的Nd-Hf同位素填图主要用于约束地体边界(Wang et al.,2016a)、讨论壳幔混合作用、岩石成因和地壳俯冲等地质作用过程(王京彬等,2006; Zhang et al.,2009; Zhou et al.,2008Su et al.,2012; Wang et al.,2015b)、确定物质来源(Magaritz et al.,1978; James,1981; Arndt et al.,1998; Zhao and Zhou,2007; Wang et al.,20092014d2015b2016b; Zhang et al.,2009; Su et al.,2012)。然而区域性Nd-Hf同位素填图对成矿约束的也具有重要意义(Mole et al.,20142015; Hou et al.,2015; Wang et al.,2016a)。

三江特提斯造山带位于冈瓦纳大陆和欧亚大陆的结合部位,属于全球特提斯-喜马拉雅构造域的东段(邓军等,2012; 李龚健,2014; Deng et al.,2014ab; Deng and Wang,2016)。该构造带记录了特提斯带从新元古代-早古生代晚期原特提斯洋,历经中泥盆纪-中三叠纪古特提斯洋、二叠纪早期的到中白垩世中特提斯洋和晚白垩世-新生代新特提斯洋的演化(Sengor,1987; Schwartz et al.,1995; Wu et al.,1995; Metcalfe,20022013; Dupont-Nivet et al.,2010)。前人研究主要针对“三江”重要的铜-钼,铅-锌-银,金和锡矿床,包括玉龙的斑岩型铜-钼矿床,呷村VMS型Pb-Zn-Ag矿床,老厂VMS型Pb-Zn矿床,镇沅造山型Au矿床,金顶MVT型的Pb-Zn矿床,来利山与花岗岩有关的锡矿床等(Wang et al.,2014bcd ; Deng et al.,2015ab)。Wang et al.(2016a)通过Hf同位素填图对岩浆岩对矿床分布以及地体边界的加以约束。Nd-Hf在一定程度上有一定的耦合性,本文在回顾前人对Nd同位素Hf同位素的基础上,以三江特提斯构造代为例,讨论Nd-Hf同位素对地质边界以及矿床的时空分布,探讨Nd-Hf同位素投图在三江地区的耦合性。通过本文研究将对三江特提斯构造带壳幔混合作用以及深部成矿机制研究有重要参考意义。

2 Nd-Hf同位素填图研究进展

目前国内外对Nd-Hf同位素填图的代表性研究主要集中于拉萨地体和澳大利亚太古宙尤冈克拉通等地区(范蔚茗等,2008Wang et al.,20092015b; Guo et al.,2010; Su et al.,2012; Mole et al.,201220142015; Moretton and Dickin,2013; 张立雪等,2013; Dickin et al.,2014; Champion and Huston,2016; Hou et al.,2015)。

太古代尤冈克拉通(Yilgarn Craton)位于澳大利亚的西南,主要由~70%的花岗片麻岩和~30%的绿岩带组成。Mole et al.(2015) 通过对尤冈克拉通Nd同位素填图进行研究,取得以下成果:(1) Eastern Goldfields克拉通由相同同位素来源的4个地体(Yamarn,Burtville,Kurnalpi和Kalgoorlie)组成,该地体代表了以年轻物质为主地壳物质结构,εNd值主要集中在-0.2~3.6。其中Yamarn地体具有均一性的εNd值(0.7~1.4),指示了一个相对均一的地壳岩浆源区。Burtville地体εNd值为-1.2~2.2,指示了其不均一性的地壳源区。Kurnalpi地体εNd值为-3.2~3.6(峰值1.6),表明该地体既有年轻地壳组分也存在古老地壳和重熔地壳的主分;Kalgoorlie地体εNd值为-4.2~3.6(峰值1.1),表明了该地体主要以年轻地壳为主并包含少量古老地壳重熔组分;West Yilgarn由三个地体(South West,Narryer,Youanmi)组成,该地体具有古老地壳和重融地壳的特征,εNd 值主要集中在-4.0到-1.0之间。其中South West地体εNd值(-5.5~2.6)主峰值为-1.6;Narryer 地体εNd值为-9.0~1.0,主峰值-6.8和-1.5; Youanmi 地体εNd值为-6.9~3.9,峰值-2.0。 Eastern Goldfields的地壳年轻于West Yilgarn地壳。(2) Nd同位素时空的变化证明了克拉通内部构造的演化,通过Nd同位素填图发现岩石圈不连续的地方是镍矿床、金矿床、铁矿床富集区域。赋存于科马提岩中的镍矿床产生于年轻与古老地体的转换部位,BIF型铁矿床分布于West Yilgarn古老或重熔地壳地体的中部及边缘,然而造山型金矿床分布于具有年轻地壳的地体的中部及边缘。(3) Nd同位素填图反映克拉通的岩石圈结构特征,并预测研究区具有大规模成矿的潜力。

Mole et al.(2014) 对尤冈克拉通进行Hf同位素填图,通过太古代科马提岩火山作用对古大陆演化过程进行约束,提出通过地壳Hf同位素组成成分的变化,研究科马提岩时空变化特征与太古代地体的演化的关系。主要认识:(1) 与科马提岩相关的Hf同位素组成指示Eastern Goldfields和West Yilgarn地体的形成过程。West Yilgarn地体中科马提岩主体为较负锆石εHf(t)值(-8~+1.8),显示较古老的地壳基底特征。Eastern Goldfields地体中科马提岩主体为较正的锆石εHf(t),表明了Eastern Goldfields地体以新生地壳为主。West Yilgarn形成比Eastern Goldfields地体早800~200Ma。(2) 约束2.9Ga和2.7Ga科马提岩形成有关的动力学背景。West Yilgarn地体和Eastern Goldfields地体克拉通化的过程,驱使着强烈而大量的科马提岩浆喷发形成于大陆地块边缘。2.9Ga的科马提岩的侵位对应着早期的West Yilgarn地体的(Marda地体、Hyden地体、Lake Johnston地体),2.7Ga科马提岩侵位意味着West Yilgarn地体和Eastern Goldfields地体最终形成。(3) 早期大陆的动力学演化直接影响了深部地幔物质以及新地壳的的形成,并控制岩浆岩及与其相关矿床的空间展布。

拉萨地体介于北部班公湖-怒江缝合带和南部雅鲁藏布缝合带之间,经历了中生代班公湖-怒江特提斯洋壳向南、雅鲁藏布特提斯洋壳向北俯冲和晚侏罗纪世-早白垩纪世的拉萨地块与-羌塘地块碰撞,以及新生代早期印度-欧亚陆陆碰撞等复杂地质过程。Hou et al.(2015) 对拉萨地体Hf同位素填图进行研究,取得如下主要认识和成果:(1) 地壳性质与空间变化规律。中拉萨次地块岩浆岩锆石主体为较负的εHf(t)值(-22~+5),对应古老的tDMc地壳模式年龄(2.4~1.4 Ga),表明中拉萨地体系古老地壳的特征。南拉萨次地块和北拉萨次地块岩浆岩主体显示较正的锆石εHf(t)值(-3~+20)和年轻的tDMc地壳模式年龄(1.0~0.2Ga),以新生地壳为特征。(2) εHf(t)分布特征和与花岗岩成因关联的矿床之间的耦合关系。斑岩型Cu矿床均分布在南拉萨次地块和北拉萨次地块新生地壳地区。矽卡岩型Fe-Cu矿床,矽卡岩型和热液脉型Pb-Zn矿床和斑岩型Mo矿床主要产于中拉萨次地体古老地壳内。(3) Hf同位素填图与区域找矿潜力。研究认为北部拉萨地体日土-盐湖地区岩浆岩锆石显示偏正的εHf值和年轻的tDMc地壳模式年龄,与南部拉萨地体日喀则-八一地区特征相似,表明日土-盐湖地区是北部拉萨地体有潜力的铜成矿带。

通过对澳大利亚太古代尤冈克拉通Nd、Hf同位素填图发现,二者具有一定的密切关系。Nd同位素填图和Hf同位素填图,均确定了West Yilgarn地体和Eastern Goldfields地体边界,揭示了地壳性质,揭示尤冈克拉通是由太古代为微地块地块的演化而来,同时还认为Nd同位素填图和Hf同位素填图对矿床的空间展布有一定的约束作用。拉萨地区的Hf同位素填图,解释了在碰撞造山背景下的,地壳性质与空间的变化规律以及εHf(t)分布特征和与花岗岩成因关联的矿床之间的耦合关系。

Nd、Hf同位素填图避免了单独元素研究引起的偶然性,二者结合可更好地识别岩石圈构造,成矿地质体或有利的成矿地质背景如大陆边缘特别是大陆增生背景下的大陆边缘以及地壳断裂或者缝合带约束矿化位置,亦可用于成矿系统研究,确定可能的造山带以及与造山有关的矿化。

3 三江特提斯造山带应用实例 3.1 区域地质背景

三江特提斯造山带地质格局分为北段与南段不同的构造域。北部从西向东包括拉萨地块、西羌塘地块、东羌塘地块和中咱地块,它们被龙木错-双湖、金沙江和甘孜-理塘缝合带分隔,毗邻缝合带的火山岩-岩浆弧包括拉萨东缘岩浆带、开心岭-竹卡岩浆带、江达-维西岩浆带,义敦岛弧岩浆带。南段从西向东包括腾冲-保山地块、思茅地块,东临扬子地块,依次由昌宁-孟连和哀牢山两条缝合带分隔,毗邻缝合带的火山岩-岩浆弧包括腾冲-保山岩浆带、云县景谷岩浆带、雅轩桥岩浆带。其中龙木错-双湖和昌宁-孟连缝合带,以及金沙江和哀牢山缝合带南北贯通为统一的缝合带。重要地体和缝合带前人已经做了大量研究,在此不再详细叙述(邓军等,2012; 李龚健,2014; Zhang et al.,2014; Wang et al.,2014bc; Deng et al.,2014ab; Deng and Wang,2016)。

3.2 数据分析和结果

对已发表 402个样品的全岩Nd同位素,以及来自Wang et al.(2016a)280余个样品的锆石Hf同位素数据,进行重新整理分析。这些样品包括古生代到新生代碱性长石花岗岩、黑云母二长花岗岩、白云母花岗岩、二云母二长花岗岩、二长花岗岩、花岗闪长岩、石英二长岩、石英闪长岩、正长岩和辉绿岩等。

等值线可以用克里格法和距离幂函数反比加权法等来完成(Mole et al.,2014Wang et al.,2016a)。克里格法考虑到区域变量的空间相关性,其插值精度比Wang et al.(2016a)使用的距离幂加权法插值精度高(曾怀恩和黄声享,2007),生成的等值线更加贴近事实,而且克里格法在成矿条件分析时生成图既美观又能反应异常变化特征(李晓春和徐广明,2015)。因此本文在Mapgis平台上采取了克里格法插值法生成等值线,完成Hf同位素等值线图和Nd同位素等值线图。

锆石Hf同位素等值线图显示出三江特提斯构造带古生代-新生代的新老地壳的空间分布以及与岩浆岩的关矿床分布(图 1)。Hf同位素等值线图分别有三个高εHf(t)值异常区和三个低εHf(t)异常区。高εHf(t)值异常区大致沿着金沙江-哀牢山缝合带及两侧展布,主要分布在该缝合带北东侧东羌塘地块(εHf(t)=+3.9),缝合带中部(εHf(t)=+10.5)以及南部(εHf(t)=+10.6),表明了该区的岩浆岩来源于亏损的地幔。三个低εHf(t)值异常区大致分布在腾冲-保山地块(εHf(t)=-6.6),临沧次地块(εHf(t)=-11.4),中咱-义敦岛弧地区(εHf(t)=-6.5),表明岩浆来源于古老的地壳或重熔的地壳。

图 1 三江特提斯造山带Hf 同位素等值线图(据Wang et al.,2016a数据重新处理及修编) Hf同位素数据来源:Reid et al.,2007; 赵永久,2007; Chen et al.,2007; Xu et al.,2008; Liu et al.,2009; 曹殿华等,2009; Shellnutt et al.,2009; 王召林,2009; 蔡宏明,2010; 李再会等,20102012; 王彦斌等,2010; Wang et al.,2010; 戚学祥等,2011; 王保弟等,2011; Yang et al.,2011; 张万平等,2011; Hiêu等,2012; 孔会磊等,2012; Leng et al.,2012; 李钢柱等,2012; Xu et al.,2012; 王冬兵等,2012; 董美玲等,2013; Guo et al.,2013; He et al.,2013; 李龚健等,2013; 李化启等,2013; 李炜恺等,2013; 林进展,2013; 刘汇川等,2013; 刘学龙,2013; 汤庆艳,2013; Wang et al.,2013; 谢锦程等,2013; 步小飞,2014; Cai et al.,2014; Cao et al.,2014; 高永娟等,2014 ;和文言,2014; Hu et al.,2014; 李艳军等,2014; Liu et al.,2014; Ma et al.,2014; 潘发斌,2014; Pang et al.,2014; Tang et al.,2015; Wang et al.,2014d; 吴涛等,2014; Yang et al.,2014; Zhao et al.,2014; Chen et al.,2015; Ding et al.,2016; 董昕和张泽明,2015; 姜丽莉等,2015; Li et al.,2015; 李琳琳等,2015; 梁明娟等,2015; Liu et al.,2015; Nie et al.,2015; Qi et al.,2015; Usuki et al.,2015; Wang et al.,2015ac; Cao et al.,2016; Pan et al.,2016 Fig. 1 Hf isotopic contour maps showing the spatial variation of zircon εHf value in the Sanjiang Tethyan Orogen(modified after Wang et al.,2016a)

Nd同位素等值线图(图 2)展现出三个高εNd(t)值异常区和四个低的εNd(t)值异常区。高εNd(t)值异常区。高εNd(t)值异常区大致沿金沙江-哀牢山缝合带及两侧地块展布,主要分布在该缝合带北部(εNd(t)=+2),中咱-义敦岛弧(εNd(t)=+0.81~+1.9)和思茅地块两侧(εNd(t)=+1.25~+5.5),表明岩浆源区来源于亏损的地幔。低εNd(t)值异常区主要分布于腾冲-保山地块(εNd(t)=-12.6),中咱-义敦岛弧(εNd(t)=-12),华南板块(εNd=-11)以及昌宁-孟连缝合带(εNd(t)=-7),表明岩浆源区来源于古老的地壳或者地壳的混染。

图 2 三江特提斯造山带Nd同位素等值线图 Nd 同位素来源:丁朝建等,1990; 张玉泉等,1998; 邓万明等,1998; Zhong et al.,2000; 曾普胜等,2002; Qu et al.,2002; 胡健民等,2005; 管涛,2005; Jiang et al.,2006; 陈福坤等,2006; 彭头平,2006Zhong et al.,2009; 杨启军等,2006Chen et al.,2007; 徐受民,2007; 赵永久,2007; 董方浏等,2007; Xiao et al.,2008; Peng et al.,20082013;李汉光,2009杨启军等,2009; Liu et al.,2009; 黄行凯,2009王召林,2009; Cai et al.,2009; Hennig et al.,2009; 高睿等,2010; Tran et al.,20102015; 蔡宏明,2010; Fan,2010; 黄静宁等,2011; 任涛等,2011; 袁静等,2011; 任江波等,2011; 朱维光等,2011; 胥磊落,2011; Kou et al.,2012; Leng et al.,2012; Lin et al.,2012; 李钢柱等,2012; 陈永清等,2013;汤庆艳,2013; Guo et al.,2013; Wang et al.,2014e; 王舫等,2013; He et al.,2013; Bernd et al.,2013; Peng et al.,2013; Zi et al.,2013; Lu et al.,2015; 贾丽琼等,2013; 吴涛等,20132014汪新哲,2013; 董毅,2013; Liu et al.,2012; Zhu et al.,2011; Liu et al.,20142015; Zhao et al.,2014; Cai et al.,2014;和文言等,2014; 蒋成竹,2014;和文言,2014; 祝向平,2010; Wang et al.,2014a; 于峻川等,2014; 孟健寅,2014; 刘彬,2014Ma et al.,2014Chen et al.,2014.,2015; 李宏博等,2015; Wang et al.,2015b; 吴涛,2015; Zhao et al.,2016 Fig. 2 Nd isotopic contour maps showing the spatial variation of zircon εNd value in the Sanjiang Tethyan Orogen

整体来看Nd同位素填图与Hf同位素填图具有一定的对应性。高εHf(t)、高εNd(t)基本沿金沙江-哀牢山缝合带展布,代表岩浆来源于古老的地壳或者重融的地壳。低εHf(t)、低εNd(t)基本分布在腾冲-保山地块和中咱地块代表岩浆源区来源于亏损地幔。局部地区,思茅地块西缘Hf-Nd同位素有一定的差异,由于晚石炭或早二叠昌宁-孟连洋东向俯冲形成的基性-超基性岩体导致高εNd(t)异常。

3.3 重要地质边界的约束

同位素填图可以约束岩石圈边界断层位置或地体的缝合带位置(Wooden et al.,1998; Guo et al.,2010; Champion and Huston,2016)。不同的构造单元间存在同位素差异,三江特提斯构造带西部地区的腾冲-保山地块以及昌宁-孟连缝合带具有低εHf(t)、低εNd(t)的特征,东羌塘地块以及哀牢山缝合带南部具有高εHf(t)、高εNd(t)的特征(图 1图 2)。而地壳增生造山主要发生在缝合带或岩石圈垂直增生部位,发生增生地方也就是εNd(t)值偏正值的地方(Guo et al.,2010)。Nd同位素体系可以区分岩浆来源于地幔或地壳,也可指示构造环境;同时不同地体Nd同位素也可以划分地体之间的分界线,这些分界线往往是主要的地壳断裂带或地体缝合带(Mole et al.,2015)。通过对三江地区εNd(t)值同位素填图我们认为昌宁-孟连以西的腾冲-保山地块具有低εNd(t)、低εHf(t)的特征,代表了老的地壳和重融的地壳特征;昌宁-孟连以东的思茅地块表现出高εNd(t)、高εHf(t)特征代表年轻地壳的特征(图 2)。暗示了昌宁-孟连可能是新老地壳的分界线。前人认为昌宁-孟连原特提斯洋和古特提斯洋叠合于此,该带出露的蛇绿岩杂岩岩浆来源可分为MORB型和晚SSZ型地幔(Deng et al.,2014a)。Feng and Ye(1996) 测得的深海硅质岩年龄在早泥盆纪到三叠纪之间。另外昌宁-孟连带以西的腾冲-保山地块与缝合带以东的思茅地块具有差异性,腾冲-保山地块上石炭统发育与冈瓦纳古陆有亲缘关系的一套冰啧岩、冷水沉积地层,并伴有冈瓦纳区系的冷水动物群,然而思茅地块目前研究发现缺失石炭-二叠冷水动物群,且出现了与华夏地块有一定关系的暖水动物群(Wu et al.,1995; Wopfner,1996; Wang and Wang,2001; Shi et al.,2008; Wang et al.,2014b2016a)。古地磁的研究认为腾冲-保山地块从石炭系以后从冈瓦纳古陆分离向北继续飘移,古特斯西南域部分不断收缩,并向思茅地块下方俯冲,而思茅地块的古地磁研究发现思茅地块的古纬度与早志留纪华夏古陆基本一致(Li et al.,2004)。腾冲-保山地块寒武纪-奥陶纪的花岗岩,代表了冈瓦纳陆缘原特提斯洋的演化产物,这也为冈瓦那超大陆早古生代花岗岩的侵位位置提供了主要依据(Chen et al.,2007; Liu et al.,2009; Wang et al.,2015a; Li et al.,2016),而在思茅地块中缺失寒武-奥陶纪的花岗岩,综合以上证据并结合本文所做的εNd(t)填图我们认为昌宁-孟连缝合带为腾冲-保山地块与思茅地块的地体分界线,古地壳与新地壳的分界,同时也是冈瓦纳大陆和华夏地块的分界。进一步证明了Wang et al.(2016a)εHf(t)填图得出昌宁-孟连缝合带为冈瓦那和泛华夏古地块的分界线观点,从而也说明了εNd(t)与εHf(t)填图有一定的耦合关系。

3.4 重要成矿事件的约束

Nd-Hf同位素等值线图控制了与岩浆岩有关的矿床位置(图 1图 2)。斑岩-矽卡岩型Cu-Mo-Au矿床,按空间分布位置来看可分为北段、中段和南段,基本沿金沙江-哀牢山缝合带分布,具有高εHf正值和较高εNd(t)负值的特征。北段斑岩型Cu-Mo矿床的辉钼矿Re-Os等时线年龄为40~36Ma与LA-ICP-MS法测得的岩体成岩年龄41~37Ma相一致(曾普胜等,2006; Liang et al.,20072008; 梁华英等,2009; 伍静等,2011)。中段斑岩型铜-金矿床成矿年龄为37~34Ma,同时代的斑岩侵入年龄38~34Ma相一致(曾普胜等,2006郭晓东等,20092011和文言等,2011Lu et al.,2012和文言,2014蒋成竹,2014Deng et al.,2015b)。南段的斑岩型铜-金矿床的矿化年龄为36~34Ma(王登红等,2004Liang et al.,2007薛步高,2008)。从矿床的年龄来看,矿床形成于始新世对应三江特提斯构造演化的拆沉伸展期,先存富集岩石圈地幔的拆沉作用,诱发软流圈上涌,由此带来的热量诱发了富集岩石圈地幔和下地壳的部分人熔融,从而形成钾质斑岩和有关的斑岩矿床的形成(Lu et al.,2012Deng et al.,2014b李龚健,2014)。

通过Nd地质填图认为,在腾冲-保山地块中间地带Nd同位素特征与其两侧εNd(t)值有明显差异,其腾冲-保山地块东西两侧较的低εNd(t)负值(-8~-10),中间地带较高的εNd(t)负值(-4~-6)并且三江地区矽卡岩-热液脉型Sn-W多金属矿床主要发育于腾冲-保山地块之间,该地带具有低εHf(t)(-11.6~-3.9),低εNd(t)值(-14.7~-8.3)的特征,成矿年龄主要分布在早白垩纪-古近纪之间,与腾冲地块、保山地块第二次碰撞时间吻合,表明三江地区矽卡岩-热液脉型Sn-W多金属矿床的形成可能是在俯冲和后碰撞的构造背景下形成的。

通过对Nd-Hf同位素填图认为三江特提斯造山带中与岩浆岩有关的不同类型矿床大多汇聚在同位素异常转换边界部位,可能代表着地体边界或缝合带、岩浆弧。Nd-Hf同位素约束的矿床地质边界,通过约束地质体的边界以及岩浆来源间接的约束矿床的分布位置。

4 结论与展望

通过对Nd-Hf同位素填图综合分析,得出如下主要认识:

(1) Nd-Hf同位素填图约束地体边界,讨论壳幔作用,确定物质来源,约束成矿位置有一定的地质意义。

(2) Nd-Hf同位素填图联合对地体和矿床位置的约束具有较好的效果。

(3) 三江地区Nd同位素填图进一步证实了昌宁-孟连缝合带为冈瓦那和泛华夏古地块的分界线。

(4) Nd同位素填图结果显示三江特提斯造山带中与岩浆岩有关的不同类型矿床大多汇聚在同位素异常边界处。

在对Nd-Hf同位素填图回顾基础上,提出以下几方面设想与展望:

(1) Hf同位素填图与Rb-Sr-Pb同位素填图相结合,研究岩石圈结构和演化,进一步解析研究陆块离散、汇聚、拼贴、增生和壳-幔相互作用机理。

(2) Hf同位素填图与地球物理场有机结合,研究深部动力学机制,进一步解析深部成矿机制。

(3) Hf同位素填图与成矿系统有机结合,研究区域成矿规律,进一步指导区域成矿潜力。

致谢 感谢审稿人提出的宝贵意见。
参考文献
[1] Arndt N, Chauvel C, Czamanske G, Fedorenko V. 1998. Two mantle sources, two plumbing systems:Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contributions to Mineralogy and Petrology , 133 (3) :297–313.
[2] Asahara Y, Ishiguro H, Tanaka T, Yamamoto K, Mimura K, Minami M, Yoshida H. 2006. Application of Sr isotopes to geochemical mapping and provenance analysis:The case of Aichi Prefecture, central Japan. Applied Geochemistry , 21 (3) :419–436.
[3] Begg GC, Griffin WL, Natapov LM, O'Reilly SY, Grand SP, O'Neil CJ, Hronsky JMA, Djomani YP, Swain CJ, Deen T, Bowden P. 2009. The lithospheric architecture of Africa:Seismic tomography, mantle petrology, and tectonic evolution. Geosphere , 5 (1) :23–50.
[4] Begg GC, Hronsky JAM, Arndt NT, Griffin WL, O'Reilly SY, Hayward N. 2010. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Economic Geology , 105 (6) :1057–1070.
[5] Bu XF.2014. Geochemistry, geochronology and space-time evolvement of granites in Nujiang area of northwestern Yunnan. Master Degree Thesis. Beijing: China University of Geosciences : 1 -61.
[6] Bernd L, Zhao XF, Zhou MF, Du AD, Mao JW, Zeng PS, Friedhelm HK, Heppe K. 2013. Mid-Silurian back-arc spreading at the northeastern margin of Gondwana:The Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China. Gondwana Research , 24 :648–663.
[7] Cai HM, Zhang HF, Xu WC. 2009. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze fold belt:Petrogenesis and implication for tectonic evolution. Journal of Earth Science , 20 (4) :681–698.
[8] Cai HM. 2010. Petrogenesis of Indosinian granitoids and volcanic rocks in Songpan-Garze fold belt:Constrains for deep geologic processes. Ph. D. Dissertation. Wuhan:China University of Geosciences, 1-95 (in Chinese with English summary)
[9] Cai YF, Wang YJ, Cawood PA, Fan WM, Liu HC, Xing XW, Zhang YZ. 2014. Neoproterozoic subduction along the Ailaoshan zone, South China:Geochronological and geochemical evidence from amphibolite. Precambrian Research , 245 :13–28.
[10] Cao DH, Wang AJ, Huang YF, Zhang W, Hou KJ, Li RP, Li YK. 2009. SHRIMP geochronology and Hf isotope composition of zircons from Xuejiping porphyry copper deposit, Yunnan Province. Acta Geologica Sinica , 83 (10) :1430–1435.
[11] Cao HW, Zhang ST, Lin JZ, Zheng L, Wu JD, Li D. 2014. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China):Regional tectonic implications. Journal of Asian Earth Sciences , 81 :142–152.
[12] Cao K, Xu JF, Chen JL, Huang XX, Ren JB, Zhao XD, Liu ZX. 2016. Double-layer structure of the crust beneath the Zhongdian arc, SW China:U-Pb geochronology and Hf isotope evidence. Journal of Asian Earth Sciences , 115 :455–467.
[13] Champion DC, Cassidy KF.2007. An overview of the Yilgarn Craton and its crustal evolution. In:Bierlein FP and Knox-Robinson CM (eds.). Proceedings of Geoconferences (WA) Inc. Kalgoorlie '07 Conference. Kalgoorlie, Western Australia: Geoscience Australia Record : 8 -13.
[14] Champion DC, Huston DL. 2016. Radiogenic isotopes, ore deposits and metallogenic terranes:Novel approaches based on regional isotopic maps and the mineral systems concept. Ore Geology Reviews , 76 :229–256.
[15] Chen FK, Li QL, Wang XL, Li XH. 2006. Zirocn age and Sr-Nd-Hf isotopic composition of migmatite in the eastern Tengchong block, western Yunnan. Acta Petrologica Sinica , 22 (2) :439–448.
[16] Chen FK, Li XH, Wang XL, Li QL, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences , 96 (6) :1179–1194.
[17] Chen JL, Xu JF, Ren JB, Huang XX, Wang BD. 2014. Geochronology and geochemical characteristics of Late Triassic porphyritic rocks from the Zhongdian arc, eastern Tibet, and their tectonic and metallogenic implications. Gondwana Research , 26 (2) :492–504.
[18] Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH, Zhu JJ. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China:Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos :212–215.
[19] Chen YJ. 2013. The development of continental collision metallogeny and its application. Acta Petrologica Sinica , 29 (1) :1–17.
[20] Chen YQ, Lu YX, Zhao HJ, Cheng ZZ, Jiang CX, Liu ZS. 2013. Zircon SHRIMP U-Pb geochronology, geochemistry of the Xiaochang monzonitic granite with Mo mineralization and implications for tectonic setting in Tengchong Block, western Yunnan Terrain, southwestern China. Earth Science Frontiers , 20 (5) :1–14.
[21] Davis DW, Amelin Y, Nowell GM, Parrish RR. 2005. Hf isotopes in zircon from the western Superior province, Canada:Implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Research , 140 (3-4) :132–156.
[22] Deng J, Wang CM, Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica , 28 (5) :1349–1361.
[23] Deng J, Wang QF, Li GJ, Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews , 138 :268–299.
[24] Deng J, Wang QF, Li GJ, Li CS, Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research , 26 (2) :419–437.
[25] Deng J, Wang QF, Li GJ, Hou ZQ, Jiang CZ, Danyushevsky L. 2015a. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China. Ore Geology Reviews , 70 :457–485.
[26] Deng J, Wang QF, Li GJ, Zhao Y. 2015b. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geology Reviews , 65 :42–54.
[27] Deng J, Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research , 36 :219–274.
[28] Deng WM, Hang X, Zhong DL. 1998. Alkali-rich porphyry and its relation with intraplate deformation of north part of Jinsha River belt in western Yunnan, China. Science in China (Series D) , 41 (3) :297–305.
[29] DePaolo DJ, Linn AM, Schubert G. 1991. The continental crustal age distribution:Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. Journal of Geophysical Research:Solid Earth , 96 (B2) :2071–2088.
[30] Dickin A, Herrell M, Moore E, Cooper D, Pearson S. 2014. Nd isotope mapping of allochthonous Grenvillian klippen:Evidence for widespread ‘ramp-flat’ thrust geometry in the SW Grenville Province. Precambrian Research , 246 :268–280.
[31] Dickin AP. 1998. Nd isotope mapping of a cryptic continental suture, Grenville Province of Ontario. Precambrian Research , 91 (3-4) :433–444.
[32] Dickin AP, McNutt RH. 2003. An application of Nd isotope mapping in structural geology:Delineating an allochthonous Grenvillian terrane at North Bay, Ontario. Geological Magazine , 140 (5) :539–548.
[33] Ding CJ, Wang Z, Shentu BY. 1990. A Nd-Sr study of major mineralizing rockbodies in Yulong Peorphyry Cu (Mo) Belt, eastern Xizang (Tibet). Contribution to the Geology of the Qianghai-Xizang (Tibet) Plateau (20) :160–167.
[34] Ding HX, Hou QY, Zhang ZM. 2016. Petrogenesis and tectonic significance of the Eocene adakite-like rocks in western Yunnan, southeastern Tibetan Plateau. Lithos , 245 :161–173.
[35] Dong FL, Mo XX, Yu XH, Hou ZQ, Wang Y. 2007. Trace elements geochemical and Nd-Sr-Pb isotopes characteristics of the Zhuopan alkaline complex in Yongping, Yunnan Province and its geological significance. Acta Petrologica Sinica , 23 (5) :986–994.
[36] Dong ML, Dong GC, Mo XX, Zhu DC, Nie F, Yu JC, Wang P, Luo W. 2013. The Mesozoic-Cenozoic magmatism in Baoshan Block, western Yunnan and its tectonic significance. Acta Petrologica Sinica , 29 (11) :3901–3913.
[37] Dong X, Zhang ZM. 2015. Cambrian granitoids from the southeastern Tibetan Plateau:Research on petrology and zircon Hf isotope. Acta Petrologica Sinica , 31 (5) :1183–1199.
[38] Dong Y.2013. Geochronology and geochemistry of A're porphyry in Shangri-La, Northwest Yunnan:Petrogenesis and implications. Master Degree Thesis. Chengdu: Chengdu University of Technology : 1 -77.
[39] Dupont-Nivet G, Lippert PC, Van Hinsbergen DJJ, Meijers MJM, Kapp P. 2010. Palaeolatitude and age of the Indo-Asia collision:Palaeomagnetic constraints. Geophysical Journal International , 182 (3) :1189–1198.
[40] Fan WM, Guo F, Gao XF, Li CW. 2008. Sr-Nd isotope mapping of Mesozoic igneous rocks in NE China:Constraints on tectonic framework and crustal growth. Geochimica , 37 (4) :361–372.
[41] Fan WM. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos , 119 (3-4) :553–568.
[42] Feng Q, Ye M.1996. Radiolarian stratigraphy of Devonian through Middle Triassic in southwestern Yunnan. In:Long X (ed.). Devonian to Triassic Tethys in Western Yunnan, China. Wuhan: China University of Geosciences Press : 15 -22.
[43] Gao R, Xiao L, He Q, Yuan J, Ni PZ, Du JX. 2010. Geochronology, geochemistry and petrogenesis of granites in Weixi-Deqin, West Yunnan. Earth Science , 35 (2) :186–200.
[44] Gao YJ, Lin SL, Cong F, Zou GF, Xie T, Tang FW, Li ZH, Liang T. 2014. Zircon U-Pb geochronology, zircon Hf isotope and bulk geochemistry of Paleogene granite in the Tengchong-Lianghe area, western Yunnan. Acta Geologica Sinica , 88 (1) :63–71.
[45] Guan T. 2005. Geochemistry of lamprophyres in the Baimazhai nickel deposit, Yunnan Province, China:Implications for their origin. Ph. D. Dissertation. Guiyang:Institute of Geochemistry, Chinese Academy of Sciences, 1-118 (in Chinese with English summary)
[46] Guo F, Fan WM, Gao XF, Li CW, Miao LC, Zhao L, Li HX. 2010. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China:Constraints on tectonic framework and Phanerozoic crustal growth. Lithos , 120 (3-4) :563–578.
[47] Guo L, Zhang HF, Harris N, Pan FB, Xu WC. 2013. Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane:Implication for the Neo-Tethys ocean ridge subduction. Tectonophysics , 608 :112–126.
[48] Guo XD, Wang ZH, Chen X, Wang X, Wang SX. 2009. Machangqing porphyry-type Cu-Mo-Au deposit, Yunnan Province:Geological characteristics and its genesis. Acta Geologica Sinica , 83 (12) :1901–1914.
[49] Guo XD, Wang ZH, Wang L, Yang YX, Chen XW. 2011. LA-ICP-MS zircon U-Pb ages of porphyritic granite in Machangqing complex of Yunnan Province and their geological significance. Geology in China , 38 (3) :610–622.
[50] He DF, Zhu WG, Zhong H, Ren T, Bai ZJ, Fan HP. 2013. Zircon U-Pb geochronology and elemental and Sr-Nd-Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun arc, SW China. Journal of Asian Earth Sciences , 67 :67–68.
[51] He WY, Mo XX, Yu XH, Li Y, Huang XK, He ZH. 2011. Geochronological study of magmatic intrusions and mineralization of Machangqing porphyry Cu-Mo-Au deposit, western Yunnan Province. Earth Science Frontiers , 18 (1) :207–215.
[52] He WY. 2014. The Beiya giant gold-polymetallic deposit:Magmatism and metallogenic model. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-154 (in Chinese with English summary)
[53] He WY, Mo XX, Yu XH, Dong GC, He ZH, Huang XF, Li XW, Jiang LL. 2014. Genesis and geodynamic settings of lamprophyres from Beiya, western Yunnan:Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes. Acta Petrologica Sinica , 30 (11) :3287–3300.
[54] Hennig D, Lemann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF, Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys:U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos , 113 (3-4) :408–422.
[55] Herrell MK, Dickin AP, Morris WA. 2006. A test of detailed Nd isotope mapping in the Grenville Province:Delineating a duplex thrust sheet in the Kipawa-Mattawa region. Canadian Journal of Earth Sciences , 43 (4) :421–432.
[56] Hiêu PT, Wang T, Tong Y. 2012. Zircon U-Pb Geochronology, Hf isotope, geochemistry and petrogenesis of the Cenozoic adakitic intrusive rocks in the Phan Si Pan region, northwestern Vietnam. Acta Petrologica Sinica , 28 (9) :3031–3041.
[57] Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD, McCuaig TC. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology , 110 (6) :1541–1575.
[58] Hu JM, Meng QR, Shi YR, Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica , 21 (3) :867–880.
[59] Hu PY, Li C, Li J, Wang M, Xie CM, Wu YW. 2014. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China:Record of the closure of the Paleo-Tethys Ocean. Tectonophysics , 623 :83–99.
[60] Huang JN, Chen YQ, Zhai XM, Lu YX, Xie YF, Cheng ZZ. 2011. Zircon SHRIMP U-Pb geochronology, geochemistry and petrogenesis of the Upper Eocene Shuangmaidi peraluminous granite in Baoshan Block, western Yunnan Terrain, southwestern China. Science China (Earth Sciences) , 54 (7) :982–997.
[61] Huang XK.2009. Petrologic and geochemical characteristics and the function in gold mineralization of alkali-rich porphyries of the Beiya area in western Yunnan Province. Master Degree Thesis. Beijing: China University of Geosciences : 1 -69.
[62] Jahn BM, Wu FY, Chen B. 2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes , 23 (2) :82–92.
[63] Jahn BM. 2004. The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic. In:Fitton JG, Mahoney JJ, Wallace PJ and Saunders AD (eds.). Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publications , 226 :73–100.
[64] James DE. 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annual Review of Earth and Planetary Sciences , 9 :311–344.
[65] Jia LQ, Mo XX, Dong GC, Xu WY, Wang L, Guo XD, Wang ZH, Wei SG. 2013. Genesis of lamprophyres from Machangqing, western Yunnan:Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes. Acta Petrologica Sinica , 29 (4) :1247–1260.
[66] Jiang CZ. 2014. Potassic magmatism and ore-forming processes of the Beiya gold deposit in western Yunnan. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-158 (in Chinese with English summary)
[67] Jiang LL, Xue CD, Hou ZQ, Xiang K. 2015. Petrogenesis of the Bengge syenites, northwestern Yunnan:Geochemistry, geochronology and Hf isotopes evidence. Acta Petrologica Sinica , 31 (11) :3234–3246.
[68] Jiang YH, Jiang SY, Ling HF, Dai BZ. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, East Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters , 241 (3-4) :617–633.
[69] Kerrich R, Goldfarb R, Groves D, Garwin S, Jia YF. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China (Series D) , 43 (1) :1–68.
[70] Kerrich R, Goldfarb RJ, Richards JP. 2005. Metallogenic provinces in an evolving geodynamic framework. Economic Geology , 100 :1097–1136.
[71] Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R, Wang QL. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province:Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Acta Petrologica Sinica , 28 (5) :1438–1452.
[72] Kou CH, Zhang ZC, Santosh M, Huang H, Hou T, Liao BL, Li HB. 2012. Picritic porphyrites generated in a slab-window setting:Implications for the transition from Paleo-Tethyan to Neo-Tethyan tectonics. Lithos , 155 :375–391.
[73] Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB, Larin AM. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:Geological and isotopic evidence. Journal of Asian Earth Sciences , 23 (5) :605–627.
[74] Leng CB, Zhang XC, Hu RZ, Wang SX, Zhong H, Wang WQ, Bi XW. 2012. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences , 60 :31–48.
[75] Li DP, Chen YL, Hou KJ, Lu Z, Cui D. 2015. Detrital zircon record of Paleozoic and Mesozoic meta-sedimentary strata in the eastern part of the Baoshan block:Implications of their provenance and the tectonic evolution of the southeastern margin of the Tibetan Plateau. Lithos , 227 :194–204.
[76] Li GJ, Wang QF, Yu L, Hu ZC, Ma N, Huang YH. 2013. Closure time of the Ailaoshan Paleo-Tethys Ocean:Constraints from the zircon U-Pb dating and geochemistry of the Late Permian granitoids. Acta Petrologica Sinica , 29 (11) :3883–3900.
[77] Li GJ. 2014. Tethys tectonic evolution and metallogenesis of important mineral deposits in the Sanjiang region, SW China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-179 (in Chinese with English summary)
[78] Li GJ, Wang QF, Huang YH, Gao L, Yu L. 2016. Petrogenesis of Middle Ordovician peraluminous granites in the Baoshan block:Implications for the Early Paleozoic tectonic evolution along East Gondwana. Lithos , 245 :76–92.
[79] Li GZ, Su SG, Duan XD. 2012. Precise ID-TIMS zircon U-Pb age, whole-rock geochemistry and plate tectonic setting of the Banpo Complex in the southern Lancangjiang arc terrane, Sanjiang area, SW China. Earth Science Frontiers , 19 (4) :96–109.
[80] Li HB, Zhang ZC, Li YS. 2015. Geochronology and geochemistry of the Late Permian intermediary-mafic Intrusions in Fumin, Yunnan Province:Implications for the magmatism of Emeishan Large Igneous Province. Acta Geologica Sinica , 89 (1) :18–36.
[81] Li HG. 2009. Space-time framework of structure-magma-mineralization of alkali-rich porphyry Mo-Cu-Au polymetallic deposit in Boxingchang, Yunnan Province. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-171 (in Chinese with English summary)
[82] Li HQ, Xu ZQ, Wang RR, Dong HW, Sun ZB, Huang XM. 2013. Petrogenesis and tectonic significance of the Late Jurassic granite discovered in the Bomi-Chayu region, eastern Tibet. Acta Petrologica Sinica , 29 (6) :2024–2032.
[83] Li LL, Wang SB, Liu JH, Shi YR. 2015. Age and origin of mid-Pleistocene volcanic rocks from Qushi in Tengchong area, western Yunnan Province:SHRIMP zircon U-Pb dating and constraint from Hf-in-zircon isotopes. Acta Petrologica Sinica , 31 (9) :2609–2619.
[84] Li PW, Rui G, Cui JW, Ye G. 2004. Paleomagnetic analysis of eastern Tibet:Implications for the collisional and amalgamation history of the Three Rivers Region, SW China. Journal of Asian Earth Sciences , 24 (3) :291–310.
[85] Li XC, Xu GM. 2015. Contrast of triangular grid subdivision method and kriging method geochemical data. Inner Mongolia Coal Economy (10) :212–213.
[86] Li WK, Xie JC, Dong GC, Mo XX, Zhao ZD, Wang TC. 2013. The geochronology and geochemistry of Bomi granitoids in eastern Tibet and its significance. Acta Petrologica Sinica , 29 (11) :3745–3754.
[87] Li YJ, Wei JH, Chen HY, Li H, Chen C, Hou BJ. 2014. Petrogenesis of the Xiasai Early Cretaceous A-type granite from the Yidun island arc belt, SW China:Constraints from zircon U-Pb age, geochemistry and Hf isotope. Geotectonica et Metallogenia , 38 (4) :939–953.
[88] Li ZH, Lin SL, Cong F, Zou GF, Xie T. 2010. Indosinian orogenesis of the Tengchong-Lianghe block, western Yunnan:Evidence from zircon U-Pb dating and petrogenesis of granitoids. Acta Petrologica et Mineralogica , 29 (3) :298–312.
[89] Li ZH, Lin SL, Cong F, Zou GF, Xie T. 2012. U-Pb dating and Hf isotopic compositions of quartz diorite and monzonitic granite from the Tengchong-Lianghe block, western Yunnan, and its geological implications. Acta Geologica Sinica , 86 (7) :1047–1062.
[90] Liang HY, Campbell IH, Allen CM, Sun WD, Yu HX, Xie YW, Zhang YQ. 2007. The age of the potassic alkaline igneous rocks along the Ailao Shan-Red River shear zone:Implications for the onset age of left-lateral shearing. The Journal of Geology , 115 (2) :231–242.
[91] Liang HY, Campbell IH, Allen CM, Sun WD, Xie YW, Zhang YQ. 2008. The Age of the potassic alkaline igneous rocks along the Ailao Shan-Red River shear zone:Implications for the onset age of left-lateral shearing:A reply. The Journal of Geology , 116 (2) :205–207.
[92] Liang HY, Mo JH, Sun WD, Zhang YQ, Zeng T, Hu GQ, Allen CM. 2009. Study on geochemical composition and isotope ages of the Malasongduo porphyry associated with Cu-Mo mineralization. Acta Petrologica Sinica , 25 (2) :385–392.
[93] Liang MJ, Yang TN, Shi PL, Xue CD, Xiang K, Liao C. 2015. U-Pb geochronology, Hf isotopes of zircons from the volcanic rocks along the eastern margin of Lanping basin, Sanjiang orogenic belt. Acta Petrologica Sinica , 31 (11) :3247–3268.
[94] Lin IJ, Chung SL, Chu CH, Lee CH, Gallet S, Wu G, Ji JQ, Zhang YQ. 2012. Geochemical and Sr-Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences , 53 :131–150.
[95] Lin JZ. 2013. Geological and geochemical characteristics of Lailishan granites in Tengchong tin belt, western Yunnan, and their relation to mineralization. Master Degree Thesis. Beijing:China University of Geosciences, 1-79 (in Chinese with English summary)
[96] Liu B. 2014. Petrogenesis and geodynamic setting of Permian to Triassic mafic rocks in the Yushu area, Central Qinghai-Tibetan Plateau. Ph. D. Dissertation. Wuhan:China University of Geosciences, 1-163 (in Chinese with English summary)
[97] Liu HC, Wang YJ, Cai YF, Ma LY, Xing XW, Fan WM. 2013. Zircon U-Pb geochronology and Hf isotopic composition of the Xin'anzhai granite along the Ailaoshan tectonic zone in West Yunnan Province. Geotectonica et Metallogenia , 37 (1) :87–98.
[98] Liu HC, Wang YJ, Fan WM, Zi JW, Cai YF, Yang GL. 2014. Petrogenesis and tectonic implications of Late-Triassic high εNd(t)-εHf(t) granites in the Ailaoshan tectonic zone (SW China). Science China (Earth Sciences) , 57 (9) :2181–2194.
[99] Liu HC, Wang YJ, Cawood PA, Fan WM, Cai YF, Xing XW. 2015. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China). Gondwana Research , 27 (3) :1292–1306.
[100] Liu JL, Tran MD, Tang Y, Nguyen QL, Tran TH, Wu WB, Chen JF, Zhang ZC, Zhao ZD. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam:Geochronology, geochemistry and tectonic implications. Gondwana Research , 22 (2) :628–644.
[101] Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson IM, Feng GY, Wang T, Qi YQ. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China. Journal of Asian Earth Sciences , 36 (2-3) :168–182.
[102] Liu XL. 2013. The research on porphyry copper metallogenic system and post-ore modification & preservation since the Indosinian in Geza arc, Yunnan, SW China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-176 (in Chinese with English summary)
[103] Lu YJ, Kerrich R, Cawood PA, McCuaig TC, Hart CJR, Li ZX, Hou ZQ, Bagas L. 2012. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China:Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Research , 22 (2) :737–747.
[104] Lu YJ, McCuaig TC, Li ZX, Jourdan F, Hart CJR, Hou ZQ, Tang SH. 2015. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton:Mantle source and tectonic implications. Lithos , 233 :139–161.
[105] Ma LY, Wang YJ, Fan WM, Geng HY, Cai YF, Zhong H, Liu HC, Xing XW. 2014. Petrogenesis of the Early Eocene I-type granites in West Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research , 25 (1) :401–419.
[106] Magaritz M, Whitford DJ, James DE. 1978. Oxygen isotopes and the origin of high-87Sr/86Sr andesites. Earth and Planetary Science Letters , 40 (2) :220–230.
[107] McCuaig TC, Beresford S, Hronsky J. 2010. Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews , 38 (3) :128–138.
[108] Meng JY. 2014. The porphyry copper-polymetallic deposit in Zhongdian, West Yunnan:magmatism and mineralization. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-189 (in Chinese with English summary)
[109] Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences , 20 (6) :551–566.
[110] Metcalfe I. 2013. Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences , 76 :195–213.
[111] Milisenda CC, Liew TC, Hofmann AW, Kröner A. 1988. Isotopic mapping of age provinces in Precambrian high-grade terranes:Sri Lanka. The Journal of Geology , 96 (5) :608–615.
[112] Mole DR, Fiorentini ML, Thebaud N, McCuaig TC, Cassidy KF, Kirkland CL, Wingate MTD, Romano SS, Doublier MP, Belousova EA. 2012. Spatio-temporal constraints on lithospheric development in the southwest-central Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences , 59 (5) :625–656.
[113] Mole DR, Fiorentini ML, Thebaud N, Cassidy KF, McCuaig TC, Kirkland CL, Romano SS, Doublier MP, Belousova EA, Barnes SJ, Miller J. 2014. Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Science of the United States of America , 111 (28) :10083–10088.
[114] Mole DR, Fiorentini ML, Cassidy KF, Kirkland CL, Thebaud N, McCuaig TC, Doublier MP, Duuring P, Romano SS, Maas R, Belousova EA, Barnes SJ, Miller J. 2015. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean Craton. In:Jenkin GRT and Lusty PAJ (eds.). Ore Deposits in an Evolving Earth. Geological Society, London, Special Publications , 393 (1) :23–80.
[115] Moretton K, Dickin AP. 2013. Nd isotope mapping of the Dysart gneiss complex:Evidence for a rifted block within the Central Metasedimentary Belt of the Grenville Province. Precambrian Research , 228 :223–232.
[116] Nie XM, Feng QL, Qian X, Wang YJ. 2015. Magmatic record of Prototethyan evolution in SW Yunnan, China:Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone. Gondwana Research , 28 (2) :757–768.
[117] Pan FB. 2014. The tectono-magma events in the eastern margin of the Himalayan Syntaxis and their geodynamic implications. Ph. D. Dissertation. Wuhan:China University of Geosciences, 1-143 (in Chinese with English summary)
[118] Pan FB, Zhang HF, Xu WC, Guo L, Luo BJ, Wang S. 2016. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of mafic intrusive rocks in the Motuo, SE Tibet constrain on their petrogenesis and tectonic implication. Lithos , 245 :133–146.
[119] Pang ZS, Du YS, Cao Y, Gao FP, Wang GW, Dong Q. 2014. Geochemistry and zircon U-Pb geochronology of the Pulang complex, Yunnan Province, China. Journal of Earth System Science , 123 (4) :875–885.
[120] Peng TP. 2006. The Triassic post-collisional magmatism for the Southern Lancangjiang tectonic zone, southwestern China:Petrogenesis and its tectonic implications. Ph. D. Dissertation. Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1-117 (in Chinese with English summary)
[121] Peng TP, Wang YJ, Zhao GC, Fan WM, Peng BX. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone, SW China:Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos , 102 (1-2) :358–373.
[122] Peng TP, Wilde SA, Wang YJ, Fan WM, Peng BX. 2013. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China:Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos :168-169–15-32.
[123] Pollock JC, Sylvester PJ, Barr SM. 2015. Lu-Hf zircon and Sm-Nd whole-rock isotope constraints on the extent of juvenile arc crust in Avalonia:Examples from Newfoundland and Nova Scotia, Canada. Canadian Journal of Earth Sciences , 52 (3) :161–181.
[124] Qi XX, Zhu LH, Hu ZC, Li ZQ. 2011. Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica , 27 (11) :3409–3421.
[125] Qi XX, Zhu LH, Grimmer JC, Hu ZC. 2015. Tracing the transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu-Hf isotopic and geochemical data:Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. Journal of Asian Earth Sciences , 110 :170–188.
[126] Qu XM, Hou ZQ, Zhou SG. 2002. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China. Resource Geology , 52 (2) :163–172.
[127] Reid A, Wilson CJL, Shun L, Pearson N, Belousova E. 2007. Mesozoic plutons of the Yidun Arc, SW China:U/Pb geochronology and Hf isotopic signature. Ore Geology Reviews , 31 (1-4) :88–106.
[128] Ren JB, Xu JF, Chen JL, Zhang SQ, Liang HY. 2011. Geochemistry and petrogenesis of Pulang porphyries in Sanjiang region. Acta Petrologica et Mineralogica , 30 (4) :581–592.
[129] Ren T, Zhong H, Chen JF, Zhu WG, Zhang XC. 2011. Geochemical characteristics of the Langdu high-K intermediate-acid intrusive rocks in the Zhongdian area, Northwest Yunnan Province, P. R. China. Acta Mineralogica Sinica , 31 (1) :43–54.
[130] Schwartz MO, Rajah SS, Askury AK, Putthapiban P, Djaswadi S. 1995. The Southeast Asian tin belt. Earth-Science Reviews , 38 (2-4) :95–293.
[131] Sengor AMC. 1987. Tectonics of the Tethysides:Orogenic collage development in a collisional setting. Annual Review of Earth and Planetary Sciences , 15 (1) :213–244.
[132] Shellnutt JG, Wang CY, Zhou MF, Yang YH. 2009. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China):Constraints on the mantle source. Journal of Asian Earth Sciences , 35 (1) :45–55.
[133] Shi YK, Jin XC, Huang H, Yang XN. 2008. Permian fusulinids from the Tengchong block, western Yunnan, China. Journal of Paleontology , 82 (1) :118–127.
[134] Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP, Xiao QH. 2012. Subduction-induced mantle heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos :134-135–41-51.
[135] Tang QY. 2013. Comparison of ore-forming systems of Cu-Ni-PGE sulfide deposits associated with the Emeishan and Siberian mantle plumes, and Jinchuan Cu-Ni-PGE sulfide deposit. Ph. D. Dissertation. Lanzhou:Lanzhou University, 1-165 (in Chinese with English summary)
[136] Tang QY, Li CS, Zhang MJ, Lin Y. 2015. U-Pb age and Hf isotopes of zircon from basaltic andesite and geochemical fingerprinting of the associated picrites in the Emeishan large igneous province, SW China. Mineralogy and Petrology , 109 (1) :103–114.
[137] Tran MD, Liu JL, Ngeyen QL, Chen Y, Ji M, Tang Y. 2010. Zircon U-Pb ages and Hf isotopic composition of the Pu Sam Cap high-potassic alkaline rocks in northwestern Vietnam and regional tectonic implication. Acta Petrologica Sinica , 26 (6) :1902–1914.
[138] Tran TH, Lan CY, Usuki T, Shellnutt JG, Pham TD, Tran TA, Pham NC, Ngo TH, Izokh AE, Borisenko AS. 2015. Petrogenesis of Late Permian silicic rocks of Tu Le basin and Phan Si Pan uplift (NW Vietnam) and their association with the Emeishan large igneous province. Journal of Asian Earth Sciences , 109 :1–19.
[139] Usuki T, Lan CY, Tran TH, Pham TD, Wang KL, Shellnutt GJ, Chung SL. 2015. Zircon U-Pb ages and Hf isotopic compositions of alkaline silicic magmatic rocks in the Phan Si Pan-Tu Le region, northern Vietnam:Identification of a displaced western extension of the Emeishan Large Igneous Province. Journal of Asian Earth Sciences , 97 :102–124.
[140] Wang BD, Wang LQ, Qiangba ZX, Zeng QG, Zhang WP, Wang DB, Cheng WH. 2011. Early Triassic collision of northern Lancangjiang suture:Geochronological, geochemical and Hf isotope evidences from the granitic gneiss in Leiwuqi area, East Tibet. Acta Petrologica Sinica , 27 (9) :2752–2762.
[141] Wang BD, Wang LQ, Pan GT, Yin FG, Wang DB, Tang Y. 2013. U-Pb zircon dating of Early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication. Chinese Science Bulletin , 58 (8) :920–930.
[142] Wang BD, Wang LQ, Chen JL, Yin FG, Wang DB, Zhang WP, Chen LK, Liu H. 2014a. Triassic three-stage collision in the Paleo-Tethys:Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China. Gondwana Research , 26 (2) :475–491.
[143] Wang CM, Deng J, Carranza EJM, Santosh M. 2014b. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research , 26 (2) :576–593.
[144] Wang CM, Deng J, Carranza EJM, Lai XR. 2014c. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews , 56 :327–351.
[145] Wang CM, Zhang D, Wu GG, Santosh M, Zhang J, Xu YG, Zhang YY. 2014d. Geological and isotopic evidence for a magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng district, east-central China. Mineralium Deposita , 49 (6) :733–749.
[146] Wang CM, Deng J, Santosh M, Lu YJ, McCuaig TC, Carranza EJM, Wang QF. 2015a. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Sciences , 113 :656–676.
[147] Wang CM, Bagas L, Lu YJ, Santosh M, Du B, McCuaing TC. 2016a. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews , 156 :39–65.
[148] Wang CM, Lu YJ, He XY, Wang QH, Zhang J. 2016b. The Paleoproterozoic diorite dykes in the southern margin of the North China Craton:Insight into rift-related magmatism. Precambrian Research , 277 :26–46.
[149] Wang DB, Wang LQ, Yin FG, Sun ZM, Wang BD, Zhang WP. 2012. Timing and nature of the Jinshajiang Paleo-Tethys:Constraints from zircon U-Pb age and Hf isotope of the Dongzhulin layered gabbro from Jinshajiang ophiolite belt, northwestern Yunnan. Acta Petrologica Sinica , 28 (5) :1542–1550.
[150] Wang DH, Qu WJ, Li ZW, Ying HL, Chen YC. 2004. Mineralization episode of porphyry copper deposits in the Jinshajiang-Red River mineralization belt:Re-Os dating. Science in China (Series D) , 48 (2) :192–198.
[151] Wang F, Liu FL, Liu PH. 2013. Multiple granitic magma events in Sanjiang complex belt, Yunnan Province:Implications for tectonic evolution. Acta Petrologica Sinica , 29 (6) :2141–2160.
[152] Wang GZ, Wang CS. 2001. Disintegration and age of basement metamorphic rocks in Qiangtang, Tibet, China. Science in China (Series D) , 44 (Suppl.1) :86–93.
[153] Wang JB, Wang YW, He ZJ. 2006. Ore deposits as a guide to the tectonic evolution in the East Tianshan Mountains, NW China. Geology in China , 33 (3) :461–469.
[154] Wang T, Jahn BM, Kovach VP, Tong Y, Hong DW, Han BF. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos , 110 (1-4) :359–372.
[155] Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ, Chen YW. 2014e. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos , 208 :208-209–202-219.
[156] Wang XX, Wang T, Ke CH, Yang Y, Li JB, Li YH, Qi QJ, Lv XQ. 2015b. Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China:Constraint on the basements of terranes and distribution of Mo mineralization. Journal of Asian Earth Sciences , 103 :169–183.
[157] Wang XZ. 2013. The geochemical study on the mafic-ultramafic subvolcanic in Heqing, western Yunnan. Master Degree Thesis. Beijing:China University of Geosciences, 1-61 (in Chinese with English summary)
[158] Wang YB, Han J, Zeng PS, Wang DH, Hou KJ, Yin GH, Li WC. 2010. U-Pb dating and Hf isotopic characteristics of zircons from granodiorite in Yangla copper deposit, Deqin County, Yunnan, Southwest China. Acta Petrologica Sinica , 26 (6) :1833–1844.
[159] Wang YJ, Zhang AM, Fan WM, Peng TP, Zhang FF, Zhang YH, Bi XW. 2010. Petrogenesis of late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, Southwest China, andtectonic implications for the evolution of the eastern Paleotethys:Geochronological and geochemical constraints. Lithos , 120 (3-4) :529–546.
[160] Wang YJ, Li SB, Ma LY, Fan WM, Cai YF, Zhang YH, Zhang FF. 2015c. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction. Gondwana Research , 27 (4) :1474–1486.
[161] Wang ZL. 2009. Study of multiple orogeny and metallogenesis in Yushu area, northern segment of Sanjiang. Ph. D. Dissertation. Beijing:Chinese Academy of Geological Sciences, 1-114 (in Chinese with English summary)
[162] Wooden BJL, Kistler RW and Tosdaln RM. 1998. Pb isotopic mapping of crustal structure in the northern Great Basin and relationships to Au deposit trends. Crustal Structure, 20-33
[163] Wopfner H. 1996. Gondwana origin of the Baoshan and Tengchong terranes of West Yunnan. In:Hall R and Blundell D (eds.).Tectonic Evolution of Southeast Asia. Geological Society, London, Special Publications, 106(1):539-547
[164] Wu HR, Boulter CA, Ke BJ, Stow DAV, Wang ZC. 1995. The Changning-Menglian suture zone:A segment of the major Cathaysian-Gondwana divide in Southeast Asia. Tectonophysics , 242 (3-4) :267–280.
[165] Wu J, Liang HY, Mo JH, Zhang YQ, Hu GQ. 2011. Petrochemistry and zircon LA-ICP-MS U-Pb age of the Mangzong porphyry associated with Cu-Mo mineralization in the Yulong ore belt. Geotectonica et Metallogenia , 35 (2) :300–306.
[166] Wu T, Xiao L, Ma CQ, Huang W. 2013. The geochronological, geochemical and Sr-Nd isotopic characteristics of Tongpu intrusive complex and its implications. Acta Petrologica Sinica , 29 (10) :3567–3580.
[167] Wu T, Xiao L, Gao R, Yang HJ, Yang G. 2014. Petrogenesis and tectonic setting of the Queershan composite granitic pluton, eastern Tibetan Plateau:Constraints from geochronology, geochemistry and Hf isotope data. Science China (Earth Sciences) , 57 (11) :2712–2725.
[168] Wu T. 2015. Early Mesozoic magmatism and tectonic evolution of Yidun arc belt, eastern Tibet Plateau. Ph. D. Dissertation. Wuhan:China University of Geosciences, 1-168 (in Chinese with English summary)
[169] Xiao L, He Q, Pirajno F, Ni PZ, Du JX, Wei QR. 2008. Possible correlation between a mantle plume and the evolution of Paleo-Tethys Jinshajiang Ocean:Evidence from a volcanic rifted margin in the Xiaru-Tuoding area, Yunnan, SW China. Lithos , 100 (1-4) :112–126.
[170] Xie JC, Li WK, Dong GC, Mo XX, Zhao ZD, Yu JC, Wang TC. 2013. Petrology, geochemistry and tectonic significance of the granites from Basu area, Tibet. Acta Petrologica Sinica , 29 (11) :3779–3791.
[171] Xu LL, Bi XW, Su WC, Qi YQ, Li L, Chen YW, Dong SH, Tang YY. 2011. Geochemical characteristics and petrogenesis of the quartz syenite porphyry from Tongchang porphyry Cu (Mo-Au) deposit in Jinping County, Yunan Province. Acta Petrologica Sinica , 27 (10) :3109–3122.
[172] Xu SM. 2007. Metallogenic modeling of the Beiya gold deposit in western Yunnan and its relation to the Cenozoic alkali-rich porphyries. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-125(in Chinese with English summary)
[173] Xu YG, Luo ZY, Huang XL, He B, Xiao L, Xie LW, Shi YR. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta , 72 (13) :3084–3104.
[174] Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR, Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences , 53 :151–175.
[175] Xue BG. 2008. On the division of Au metallogenetic zone and metallogenetic rule in Yunnan. Yunnan Geology , 27 (3) :261–277.
[176] Yang QJ, Xu YG, Huang XL, Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan:Tectonic implications. Acta Petrologica Sinica , 22 (4) :817–834.
[177] Yang QJ, Xu YG, Huang XL, Luo ZY, Shi YR. 2009. Geochronology and geochemistry of granites in the Tengliang area, western Yunnan:Tectonic implication. Acta Petrologica Sinica , 25 (5) :1092–1104.
[178] Yang TN, Zhang HR, Liu YX, Wang ZL, Song YC, Yang ZS, Tian SH, Xie HQ, Hou KJ. 2011. Permo-Triassic arc magmatism in central Tibet:Evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chemical Geology , 284 (3-4) :270–282.
[179] Yang TN, Ding Y, Zhang HR, Fan JW, Liang MJ, Wang XH. 2014. Two-phase subduction and subsequent collision defines the Paleotethyan tectonics of the southeastern Tibetan Plateau:Evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, Southwest China. Geological Society of America Bulletin , 126 (11-12) :1654–1682.
[180] Yu JC, Mo XX, Yu XH, Zhu DC, Li YC, Huang XF. 2014. Petrogenesis and geological implications of the Late Triassic potassic-ultrapotassic rocks in Changdu Block, northern segment of the Sanjiang area. Acta Petrologica Sinica , 30 (11) :3334–3344.
[181] Yuan J, Xiao L, Wan CH, Gao R. 2011. Petrogenesis of Fangmaping-Sanyanlong granites in southern Songpan-Garze fold belt and its tectonic implication. Acta Geologica Sinica , 85 (2) :195–206.
[182] Zeng HE, Huang SX. 2007. Research on spatial data interpolation based on Kriging interpolation. Engineering of Surveying and Mapping , 16 (5) :5–8.
[183] Zeng PS, Mo XX, Yu XH. 2002. Nd, Sr and Pb isotopic characteristics of the alkaline-rich porphyries in western Yunnan and its compression strike-slip setting. Acta Petrologica et Mineralogica , 21 (3) :231–241.
[184] Zeng PS, Li WC, Wang HP, Li H. 2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China:Petrology and chronology. Acta Petrologica Sinica , 22 (4) :989–1000.
[185] Zhang BR, Zhang HF, Xu JF, Ling WL, Ouyang JP, Han YW. 1995. Application of isotopic mapping and chemical geodynamics to studying the East Qinling orogenic belt. Earth Science , 20 (5) :551–555.
[186] Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L, Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research , 26 (2) :557–575.
[187] Zhang LX, Wang Q, Zhu DC, Jia LL, Wu XY, Liu SA, Hu ZC, Zhao TP. 2013. Mapping the Lhasa Terrane through zircon Hf isotopes:Constraints on the nature of the crust and metallogenic potential. Acta Petrologica Sinica , 29 (11) :3681–3688.
[188] Zhang WP, Wang LQ, Wang BD, Wang DB, Dai J, Liu W. 2011. Chronology, geochemistry and petrogenesis of Deqin granodiorite body in the middle section of Jiangda-Weixi arc. Acta Petrologica Sinica , 27 (9) :2577–2590.
[189] Zhang YQ, Xie YW, Qiu HN, Li XH, Zhong SL. 1998. Shoshonitic series:Sr, Nd, and Pb isotopic compositions of ore-bearing porphyry for Yulong copper ore belt in the eastern Xizang (Tibet). Scientia Geologica Sinica , 33 (3) :359–366.
[190] Zhang ZC, Mao JW, Chai FM, Yan SH, Chen BL, Pirajno F. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, northwest China:implications for the genesis of magmatic Ni-Cu sulfide deposits. Economic Geology , 104 (2) :185–203.
[191] Zhao JH, Zhou MF. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle. Precambrian Research , 152 (1-2) :27–47.
[192] Zhao SW, Lai SC, Qin JF, Zhu RZ. 2014. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopic compositions of the Pinghe pluton, Southwest China:Implications for the evolution of the early Palaeozoic Proto-Tethys in Southeast Asia. International Geology Review , 56 (7) :885–904.
[193] Zhao SW, Lai SC, Qin JF, Zhu RZ. 2016. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan Plateau:Constraints from granitic gneisses and granitoid intrusions. Gondwana Research , 35 :238–256.
[194] Zhao YJ. 2007. Mesozoic granitoids in eastern Songpan-Garze:Geochemistry, petrogenesis and tectonic implications. Ph. D. Dissertation. Guangzhou:Institute of Geochemistry, Chinese Academy of Sciences, 1-111 (in Chinese with English summary)
[195] Zhong H, Hu RZ, Ye ZJ, Tu GZ. 2000. Isotope geochronology of Dapingzhang spilite-keratophyre formation in Yunnan Province and its geological significance. Science in China (Series D) , 43 (2) :200–207.
[196] Zhong H, Zhu WG, Hu RZ, Xie LW, He DF, Liu F, Chu ZY. 2009. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, Southwest China and implications for growth of juvenile crust. Lithos , 110 (1-4) :109–128.
[197] Zhou TF, Yuan F, Fan Y, Zhang DY, Cooke D, Zhao GC. 2008. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China:Geochronological and geochemical characteristics and their geodynamic significance. Lithos , 106 (3-4) :191–206.
[198] Zhu BQ, Chang XY, Wang HF. 1995. The geochemical boundary of South China-Yangtze controls on the formation of super large deposits. Science in China (Series B) , 25 (9) :1004–1008.
[199] Zhu JJ, Hu RZ, Bi XW, Zhong H, Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos , 126 (3-4) :248–264.
[200] Zhu WG, Zhong H, Wang LQ, He DF, Ren T, Fan HP, Bai ZJ. 2011. Petrogenesis of the basalts and rhyolite porphyries of the Minle copper deposit, Yunnan:Geochronological and geochemical constraints. Acta Petrologica Sinica , 27 (9) :2694–2708.
[201] Zhu XP. 2010. Geological characteristics and metallogenesis in Habo porphyry Cu-Mo-Au deposit, Yunnan, China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-150 (in Chinese with English summary)
[202] Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ, McCuaig TC, Peng TP. 2013. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys. American Journal of Science , 313 (2) :81–112.
[203] 步小飞. 2014. 滇西北怒江地区花岗岩类地球化学、年代学与时空演化. 硕士学位论文. 北京:中国地质大学, 1-61
[204] 蔡宏明. 2010. 松潘-甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用. 博士学位论文. 武汉:中国地质大学, 1-95
[205] 曹殿华, 王安建, 黄玉凤, 张维, 侯可军, 李瑞萍, 李以科.2009. 中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成. 地质学报 , 83 (10) :1430–1435.
[206] 陈福坤, 李秋立, 王秀丽, 李向辉.2006. 滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成. 岩石学报 , 22 (2) :439–448.
[207] 陈衍景.2013. 大陆碰撞成矿理论的创建及应用. 岩石学报 , 29 (1) :1–17.
[208] 陈永清, 卢映祥, 赵红娟, 程志中, 蒋成兴, 刘正尚.2013. 滇西腾冲地块小场钼矿化花岗岩的锆石SHRIMP U-Pb定年、地球化学及其构造意义. 地学前缘 , 20 (5) :1–14.
[209] 邓军, 王长明, 李龚健.2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报 , 28 (5) :1349–1361.
[210] 邓万明, 黄萱, 钟大赉.1998. 滇西金沙江带北段的富碱斑岩及其与板内变形的关系. 中国科学(D辑) , 28 (2) :111–117.
[211] 丁朝建, 王增, 申屠保涌.1990. 藏东玉龙斑岩铜(钼)矿带主要成矿岩体Nd-Sr同位素特征. 青藏高原地质文集 (20) :160–167.
[212] 董方浏, 莫宣学, 喻学惠, 侯增谦, 王勇.2007. 云南永平卓潘新生代碱性杂岩体的元素地球化学和Nd-Sr-Pb同位素特征及地质意义. 岩石学报 , 23 (5) :986–994.
[213] 董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 于峻川, 王鹏, 罗微.2013. 滇西保山地块中-新生代岩浆作用及其构造意义. 岩石学报 , 29 (11) :3901–3913.
[214] 董昕, 张泽明.2015. 青藏高原东南部寒武纪花岗岩类:岩石学和锆石Hf同位素研究. 岩石学报 , 31 (5) :1183–1199.
[215] 董毅. 2013. 云南香格里拉阿热岩体年代学与地球化学. 硕士学位论文. 成都:成都理工大学, 1-77 http://cdmd.cnki.com.cn/article/cdmd-10616-1013288834.htm
[216] 范蔚茗, 郭锋, 高晓峰, 李超文.2008. 东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义. 地球化学 , 37 (4) :361–372.
[217] 高睿, 肖龙, 何琦, 袁静, 倪平泽, 杜景霞.2010. 滇西维西-德钦-带花岗岩年代学、地球化学和岩石成因. 地球科学 , 35 (2) :186–200.
[218] 高永娟, 林仕良, 丛峰, 邹光富, 谢韬, 唐发伟, 李再会, 梁婷.2014. 滇西腾冲-梁河古近纪花岗岩锆石U-Pb定年、Hf同位素及地球化学. 地质学报 , 88 (1) :63–71.
[219] 管涛. 2005. 云南白马寨镍矿区煌斑岩地球化学及其成因. 博士学位论文. 贵阳:中国科学院地球化学研究所, 1-118
[220] 郭晓东, 王治华, 陈祥, 王欣, 王淑贤.2009. 云南马厂箐斑岩型铜钼(金)矿床地质特征与矿床成因. 地质学报 , 83 (12) :1901–1914.
[221] 郭晓东, 王治华, 王梁, 杨玉霞, 陈晓吾.2011. 云南马厂箐岩体(似)斑状花岗岩锆石LA-ICP-MS U-Pb年龄及地质意义. 中国地质 , 38 (3) :610–622.
[222] 和文言, 莫宣学, 喻学惠, 李勇, 黄行凯, 和中华.2011. 滇西马厂箐斑岩型铜钼(金)矿床成岩成矿时代研究. 地学前缘 , 18 (1) :207–215.
[223] 和文言. 2014. 滇西北衙超大型金多金属矿床岩浆作用与成矿模式. 博士学位论文. 北京:中国地质大学, 1-154
[224] 和文言, 莫宣学, 喻学惠, 董国臣, 和中华, 黄雄飞, 李小伟, 姜丽莉.2014. 滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf 同位素约束. 岩石学报 , 30 (11) :3287–3300.
[225] HiêuPT, 王涛, 童英.2012. 越南西北部Phan Si Pan地区新生代埃达克质侵入岩时代、成因及构造意义——U-Pb锆石年龄、元素地球化学和Hf同位素证据. 岩石学报 , 28 (9) :3031–3041.
[226] 胡健民, 孟庆任, 石玉若, 渠洪杰.2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报 , 21 (3) :867–880.
[227] 黄静宁, 陈永清, ZhaiXM, 卢映祥, 谢永富, 程志中.2011. 滇西保山地块双脉地晚始新世过铝质花岗岩:锆石SHRIMP U-Pb定年、地球化学和成因. 中国科学(地球科学) , 41 (4) :452–467.
[228] 黄行凯. 2009. 滇西北衙地区新生代富碱斑岩的岩石学及地球化学特征及与金成矿的关系. 硕士学位论文. 北京:中国地质大学, 1-69
[229] 贾丽琼, 莫宣学, 董国臣, 徐文艺, 王梁, 郭晓东, 王治华, 韦少港.2013. 滇西马厂箐煌斑岩成因:地球化学、年代学及Sr-Nd-Pb-Hf同位素约束. 岩石学报 , 29 (4) :1247–1260.
[230] 蒋成竹. 2014. 滇西北衙金多金属矿床钾质岩浆活动与成矿作用. 博士学位论文. 北京:中国地质大学, 1-158 http://cdmd.cnki.com.cn/article/cdmd-11415-1014234009.htm
[231] 姜丽莉, 薛传东, 侯增谦, 向坤.2015. 滇西北甭哥正长岩体成因:锆石U-Pb年龄、Hf同位素和地球化学证据. 岩石学报 , 31 (11) :3234–3246.
[232] 孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林.2012. 滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报 , 28 (5) :1438–1452.
[233] 李钢柱, 苏尚国, 段向东.2012. 三江地区澜沧江带南段半坡杂岩体锆石U-Pb年龄、岩石地球化学特征及板块构造环境. 地学前缘 , 19 (4) :96–109.
[234] 李龚健, 王庆飞, 禹丽, 胡兆初, 马楠, 黄钰涵.2013. 哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约. 岩石学报 , 29 (11) :3883–3900.
[235] 李龚健. 2014. 三江特提斯复合造山带构造演化与典型矿床成矿过程研究. 博士学位论文. 北京:中国地质大学, 1-179
[236] 李宏博, 张招崇, 李永生.2015. 云南富民晚二叠世中-基性岩年代学、地球化学特征:对峨眉山大火成岩省岩浆作用过程的指示意义. 地质学报 , 89 (1) :18–36.
[237] 李汉光. 2009. 云南宝兴厂富碱斑岩型铜钼金多金属矿床构造-岩浆-成矿时空结构. 博士学位论文. 北京:中国地质大学, 1-171
[238] 李化启, 许志琴, 王瑞瑞, 董汉文, 孙载波, 黄学猛.2013. 藏东波密-察隅地区晚侏罗世花岗岩的成因及构造意义. 岩石学报 , 29 (6) :2024–2032.
[239] 李琳琳, 王书兵, 刘建辉, 石玉若.2015. 滇西腾冲曲石地区中更新世火山岩年龄及成因:SHRIMP锆石U-Pb定年和Hf同位素约束. 岩石学报 , 31 (9) :2609–2619.
[240] 李晓春, 徐广明.2015. 三角剖分法与克里格法网格化化探数据对比. 内蒙古煤炭经济 (10) :212–213.
[241] 李炜恺, 谢锦程, 董国臣, 莫宣学, 赵志丹, 王天赐.2013. 西藏波密花岗岩体的年代学、地球化学特征及其意义. 岩石学报 , 29 (11) :3745–3754.
[242] 李艳军, 魏俊浩, 陈华勇, 李欢, 陈冲, 侯本俊.2014. 义敦岛弧带夏塞早白垩世A型花岗岩成因:锆石U-Pb年代学、地球化学及Hf同位素制约. 大地构造与成矿学 , 38 (4) :939–953.
[243] 李再会, 林仕良, 丛峰, 邹光富, 谢韬.2010. 滇西腾-梁地块印支造山事件——花岗岩的锆石U-Pb年代学和岩石学证据. 岩石矿物学杂志 , 29 (3) :298–312.
[244] 李再会, 林仕良, 丛峰, 邹光富, 谢韬.2012. 滇西腾冲-梁河地块石英闪长岩-二长花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地质学报 , 86 (7) :1047–1062.
[245] 梁华英, 莫济海, 孙卫东, 张玉泉, 曾提, 胡光黔, AllenCM.2009. 玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析. 岩石学报 , 25 (2) :385–392.
[246] 梁明娟, 杨天南, 史鹏亮, 薛传东, 向坤, 廖程.2015. 三江造山带兰坪盆地东缘火山岩锆石U-Pb年代学、Hf同位素组成. 岩石学报 , 31 (11) :3247–3268.
[247] 林进展. 2013. 滇西腾冲锡矿带来利山花岗岩地质地球化学特征与成矿关系分析. 硕士学位论文. 北京:中国地质大学, 1-79 http://cdmd.cnki.com.cn/article/cdmd-11415-1013270164.htm
[248] 刘彬. 2014. 青藏高原中部玉树二叠纪-三叠纪镁铁质岩石的成因及其地球动力学背景. 博士学位论文. 武汉:中国地质大学, 1-163
[249] 刘汇川, 王岳军, 蔡永丰, 马莉燕, 邢晓婉, 范蔚茗.2013. 哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学 , 37 (1) :87–98.
[250] 刘学龙. 2013. 云南格咱岛弧印支期斑岩型铜矿成矿系统与矿床变化保存研究. 博士学位论文. 北京:中国地质大学, 1-176 http://cdmd.cnki.com.cn/article/cdmd-11415-1013299776.htm
[251] 孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统. 博士学位论文. 北京:中国地质大学, 1-189
[252] 潘发斌. 2014. 东喜马拉雅构造结东缘构造-岩浆事件及其地球动力学意义. 博士学位论文. 武汉:中国地质大学, 1-143
[253] 彭头平. 2006. 澜沧江南带三叠纪碰撞后岩浆作用、岩石成因及其构造意义. 博士学位论文. 广州:中国科学院广州地球化学研究所, 1-117 http://cdmd.cnki.com.cn/article/cdmd-80165-2006106432.htm
[254] 戚学祥, 朱路华, 胡兆初, 李志群.2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMP U-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报 , 27 (11) :3409–3421.
[255] 任江波, 许继峰, 陈建林, 张世权, 梁华英.2011. "三江"地区中甸弧普朗成矿斑岩地球化学特征及其成因. 岩石矿物学杂志 , 30 (4) :581–592.
[256] 任涛, 钟宏, 陈金法, 朱维光, 张兴春.2011. 云南中甸地区浪都高钾中酸性侵入岩的地球化学特征. 矿物学报 , 31 (1) :43–54.
[257] 汤庆艳. 2013. 峨眉山二叠纪地幔柱岩浆铜镍铂族硫化物矿床成矿体系——西伯利亚地幔柱和金川矿床对比. 博士学位论文. 兰州:兰州大学, 1-165 http://cdmd.cnki.com.cn/article/cdmd-10730-1014135031.htm
[258] TranMD, 刘俊来, NguyenQL, 陈越, 纪沫, 唐渊.2010. 越南西北部Pu Sam Cap高钾碱性岩LA-ICPMS锆石U-Pb年龄与Hf同位素组成及其区域构造意义. 岩石学报 , 26 (6) :1902–1914.
[259] 王保弟, 王立全, 强巴扎西, 曾庆高, 张万平, 王冬兵, 程万华.2011. 早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据. 岩石学报 , 27 (9) :2752–2762.
[260] 王冬兵, 王立全, 尹福光, 孙志明, 王保弟, 张万平.2012. 滇西北金沙江古特提斯洋早期演化时限及其性质:东竹林层状辉长岩锆石U-Pb年龄及Hf同位素约束. 岩石学报 , 28 (5) :1542–1550.
[261] 王登红, 屈文俊, 李志伟, 应汉龙, 陈毓川.2004. 金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年. 中国科学(D辑) , 34 (4) :345–349.
[262] 王舫, 刘福来, 刘平华.2013. 云南"三江"变质杂岩带多期花岗质岩浆事件及其构造意义. 岩石学报 , 29 (6) :2141–2160.
[263] 王京彬, 王玉往, 何志军.2006. 东天山大地构造演化的成矿示踪. 中国地质 , 33 (3) :461–469.
[264] 汪新哲. 2013. 滇西鹤庆地区基性-超基性次火山岩的地球化学研究. 硕士学位论文. 北京:中国地质大学, 1-61 http://cdmd.cnki.com.cn/article/cdmd-11415-1013270151.htm
[265] 王彦斌, 韩娟, 曾普胜, 王登红, 侯可军, 尹光侯, 李文昌.2010. 云南德钦羊拉大型铜矿区花岗闪长岩的锆石U-Pb年龄、Hf同位素特征及其地质意义. 岩石学报 , 26 (6) :1833–1844.
[266] 王召林. 2009. 三江北段玉树地区复合造山与成矿作用研究. 博士学位论文. 北京:中国地质科学院, 1-114
[267] 伍静, 梁华英, 莫济海, 张玉泉, 胡光黔.2011. 玉龙斑岩铜矿带莽总含矿斑岩体岩石学特征及锆石U-Pb年龄研究. 大地构造与成矿学 , 35 (2) :300–306.
[268] 吴涛, 肖龙, 马昌前, 黄婉.2013. 藏东同普杂岩体年代学、地球化学、Sr-Nd同位素特征及大地构造意义. 岩石学报 , 29 (10) :3567–3580.
[269] 吴涛, 肖龙, 高睿, 杨海军, 杨钢.2014. 藏东雀儿山复式花岗岩体成因及构造背景:年代学、地球化学与锆石Lu-Hf同位素制约. 中国科学(地球科学) , 44 (8) :1791–1806.
[270] 吴涛. 2015. 藏东义敦岛弧带早中生代岩浆活动与构造演化过程. 博士学位论文. 武汉:中国地质大学, 1-168
[271] 谢锦程, 李炜恺, 董国臣, 莫宣学, 赵志丹, 于峻川, 王天赐.2013. 西藏八宿花岗岩岩石学、地球化学特征及其构造意义. 岩石学报 , 29 (11) :3779–3791.
[272] 胥磊落, 毕献武, 苏文超, 齐有强, 李亮, 陈佑纬, 董少花, 唐永永.2011. 云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨. 岩石学报 , 27 (10) :3109–3122.
[273] 徐受民. 2007. 滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系. 博士学位论文. 北京:中国地质大学, 1-125 http://cdmd.cnki.com.cn/article/cdmd-82501-2007066857.htm
[274] 薛步高.2008. 云南金矿带划分及成矿规律. 云南地质 , 27 (3) :261–277.
[275] 杨启军, 徐义刚, 黄小龙, 罗震宇.2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义. 岩石学报 , 22 (4) :817–834.
[276] 杨启军, 徐义刚, 黄小龙, 罗震宇, 石玉若.2009. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义. 岩石学报 , 25 (5) :1092–1104.
[277] 于峻川, 莫宣学, 喻学惠, 朱弟成, 李逸川, 黄雄飞.2014. "三江"北段昌都陆块晚三叠世钾质-超钾质火山岩成因及地质意义. 岩石学报 , 30 (11) :3334–3344.
[278] 袁静, 肖龙, 万传辉, 高睿.2011. 松潘-甘孜南部放马坪-三岩龙花岗岩的成因及其构造意义. 地质学报 , 85 (2) :195–206.
[279] 曾怀恩, 黄声享.2007. 基于Kriging方法的空间数据插值研究. 测绘工程 , 16 (5) :5–8.
[280] 曾普胜, 莫宣学, 喻学惠.2002. 滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景. 岩石矿物学杂志 , 21 (3) :231–241.
[281] 曾普胜, 李文昌, 王海平, 李红.2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报 , 22 (4) :989–1000.
[282] 张本仁, 张宏飞, 许继锋, 凌文黎, 欧阳建平, 韩吟文.1995. 同位素地球化学填图与化学地球动力学在东秦岭造山带研究中的应用. 地球科学 , 20 (5) :551–555.
[283] 张立雪, 王青, 朱弟成, 贾黎黎, 吴兴源, 刘盛遨, 胡兆初, 赵天培.2013. 拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束. 岩石学报 , 29 (11) :3681–3688.
[284] 张万平, 王立全, 王保弟, 王冬兵, 戴婕, 刘伟.2011. 江达-维西火山岩浆弧中段德钦岩体年代学、地球化学及岩石成因. 岩石学报 , 27 (9) :2577–2590.
[285] 张玉泉, 谢应雯, 邱华宁, 李献华, 钟孙霖.1998. 钾玄岩系列:藏东玉龙铜矿带含矿斑岩Sr、Nd、Pb同位素组成. 地质科学 , 33 (3) :359–366.
[286] 赵永久. 2007. 松潘-甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义. 博士学位论文. 广州:中国科学院广州地球化学研究所, 1-111
[287] 朱炳泉, 常向阳, 王慧芬.1995. 华南-扬子地球化学边界及其对超大型矿床形成的控制. 中国科学(B辑) , 25 (9) :1004–1008.
[288] 朱维光, 钟宏, 王立全, 何德锋, 任涛, 范宏鹏, 柏中杰.2011. 云南民乐铜矿床中玄武岩和流纹斑岩的成因:年代学和地球化学制约. 岩石学报 , 27 (9) :2694–2708.
[289] 祝向平. 2010. 云南哈播斑岩型铜(-钼-金)矿床地质特征与成矿作用研究. 博士学位论文. 北京:中国地质大学, 1-150