岩石学报  2016, Vol. 32 Issue (8): 2465-2476   PDF    
胶东三山岛金矿床构造-热历史:40Ar/39Ar和裂变径迹年代学制约
张良1,2, 李广伟3, 郑小礼4, 安平1, 陈兵宇5     
1. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083 ;
2. 蒙纳什大学地球科学、大气与环境学院, 维多利亚 3800 ;
3. 墨尔本大学地球科学学院, 维多利亚 3010 ;
4. 山东黄金矿业股份有限公司, 莱州 261400 ;
5. 山东黄金矿业股份有限公司三山岛金矿, 莱州 261442
摘要: 胶东金成矿省目前已探明黄金资源储量超过4000t,是世界上最大的花岗岩容矿的单金成矿省之一。三山岛金矿床位于该金成矿省西北部,是产于早白垩世郭家岭型花岗中的世界级金矿床。锆石U-Pb数据表明该矿床内赋矿围岩郭家岭花岗岩侵位于~128Ma,其后郭家岭花岗岩快速冷却并普遍经历了亚固态韧性变形。已有绢云母Rb-Sr数据表明,该矿床大规模金成矿作用和脆性变形发生于约117Ma。本次获取的1件~99Ma白云母40Ar/39Ar年龄揭示了主期成矿后一期微弱的构造-流体活动。4件锆石裂变径迹年龄中相对较老的单颗粒锆石年龄组分90±10Ma说明,该矿床大致于该时间段冷却至锆石裂变径迹封闭温度240±50℃。13件磷灰石裂变径迹年龄分布于69.8±7.2Ma~46.1±4.8Ma之间;8件磷灰石裂变径迹长度集中于13.1±0.2~12.3±0.2μm,并且呈单峰型略带负偏态的分布,说明该矿床大致于70~50Ma单调缓慢冷却通过磷灰石裂变径迹部分退火带125~60℃。最终,该矿床缓慢冷却剥露至现今近地表温度。相对缓慢的成矿后冷却和剥蚀以及新近深部钻探成果说明,三山岛及其周缘金矿床主断裂下盘脆性变形和热液蚀变作用叠加部位成矿潜力巨大,为有利的找矿靶区。
关键词: 氩-氩定年     裂变径迹     构造-热历史     三山岛金矿床     胶东    
40Ar/39Ar and fission-track dating constraints on the tectonothermal history of the world-class Sanshandao gold deposit, Jiaodong Peninsula, eastern China
ZHANG Liang1,2, LI GuangWei3, ZHENG XiaoLi4, AN Ping1, CHEN BingYu5     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China ;
2. School of Earth, Atmosphere and Environment, Monash University, Victoria 3800, Australia ;
3. School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia ;
4. Shandong Gold Mining Stock Co., Ltd., Laizhou 261400, China ;
5. Sanshandao Gold Company, Shandong Gold Mining Stock Co., Ltd., Laizhou 261442, China
Abstract: The well-known Jiaodong gold province, with proven resources of more than 4000t, is one of the largest granitoid-hosted "gold-only" deposit-type provinces in the world. The world-class Sanshandao gold deposit is located in the northwestern part of the giant gold province. A previous zircon U-Pb age of~128Ma constrains the emplacement of the Guojialing intrusion. Following its intrusion, the granitoid underwent subsolidus ductile deformation. A new muscovite 40Ar/39Ar age of 99.4±0.8Ma indicates a late weak hydrothermal event and related tectonic activity after the main gold deposition at~117Ma defined by a previous sericite Rb-Sr age. The relative old single zircon fission-track grain ages of 90±10Ma generally represent the timing of the deposit cooling through the closure temperature of zircon fission-track method (240±50℃). Thirteen samples yield apatite fission-track (AFT) ages ranging from 69.8±7.2Ma to 46.1±4.8Ma and mean fission-track lengths of 13.1±0.2~12.3±0.2μm. The unimodal distributions of the AFT lengths with slightly negative skewness indicate relative slow continuous cooling through the apatite partial annealing zone (125~60℃) at 70~50Ma, followed by the latest relatively slow cooling and exhumation. Together with the recent exploration, it is most likely that the Sanshandao Fault Zone provides high-quality targets for additional large-tonnage gold ores in the vicinity of Sanshandao gold deposit.
Key words: Argon-argon dating     Fission-track dating     Tectonothermal history     Sanshandao gold deposit     Jiaodong Peninsula    
1 引言

对温度敏感的放射性定年技术可以帮助揭示包括成矿作用过程和成矿后事件在内的诸多矿床成因问题(Wilkinson and Kesler,2007; Márton et al.,2010),为厘定矿床成因机制与区域勘查预测等研究提供了新的视野(Chakurian et al.,2003; McInnes et al.,2005; Márton et al.,2010; Betsi et al.,2012; Yang et al.,2015)。

胶东是我国最重要的金成矿省,目前已探明黄金资源储量超过4000t(杨立强等,2014),同时胶东也是世界上最大的花岗岩容矿的单金成矿省代表之一(Goldfarb and Santosh,2014; Phillips and Powell,2015)。近年来关于胶东金成矿省的文献进一步提高了我们关于这一独特金成矿系统的认识(Goldfarb and Santosh,2014; Deng and Wang,2016; Groves and Santosh,2016),特别是在矿化与控矿构造样式、蚀变特征(Deng et al.,2011; Song et al.,2015; 杨立强等,2014)、成矿流体与其地球化学特征(Deng et al.,2015a; Yang et al.,20092016a; Wang et al.,2015; 郭林楠等,2014; 郭林楠,2016)以及赋矿围岩和矿石的同位素地球化学特征(Mills et al.,2015ab; Yang et al.,2016bc; 王中亮等,2014; 张潮等,2014; 张良等,2014)。同位素地质年代学和热年代学方面,目前已有大量的研究来约束赋矿岩浆岩侵位时间(Wang et al.,2014; 刘跃等,2014)、金成矿作用时限(Li et al.,2003; Zhang et al.,2003; Yang et al.,20142016d; 张良,2016)与多阶段构造活动(Charles et al.,2013; Deng et al.,2015b)。

三山岛金矿床是典型的蚀变岩型金矿,并伴有少量的含金石英脉型矿化。目前该矿床已探明黄金资源储量200余吨,是早白垩世郭家岭型花岗岩容矿的世界级金矿床,也是胶东巨型金成矿省最大的金矿床之一(邓军等,2010)。128±2Ma的锆石U-Pb年龄限定了赋矿郭家岭花岗岩的结晶年龄(Wang et al.,1998),蚀变岩中绢云母Rb-Sr等时线年龄表明金矿化发生于约117.6±3Ma(Hu et al.,2013)。然而,截至目前该矿床演化缺乏系统的热年代学数据约束,尤其是成矿后热历史和变化保存过程缺乏有效制约。本研究结合了野外工作、前人数据和白云母40Ar/39Ar定年、锆石和磷灰石裂变径迹定年,以期对该矿床的冷却与剥露历史进行约束。

2 区域地质

胶东半岛地处华北克拉通东南缘(图 1; Deng et al.,2003),以郯庐断裂为界与鲁西相隔。胶东又可分为胶北地体和苏鲁地体两个构造单元,两者界线为五莲-青岛-烟台断裂(图 1)。其中,胶北地体由北部胶北隆起和南部胶莱盆地组成。胶北隆起汇聚了胶东金成矿省85%以上的黄金资源储量(王中亮,2012)。胶北隆起主要地质体包括新太古代胶东群TTG片麻岩,古元古代粉子山群和荆山群变质沉积序列和中生代花岗岩。NE向展布的玲珑型黑云母花岗岩于约163~155Ma(锆石U-Pb年龄; Yang et al.,2012; Ma et al.,2013)侵位于太古代和古元古代变质基底岩石中;大量锆石U-Pb年龄将NEE向展布的郭家岭型花岗岩和艾山型花岗岩侵位时间分别限定在约132~123Ma(Wang et al.,2014; 刘跃等,2014)和约120~113Ma(Goss et al.,2010; Li et al.,2012)。

图 1 胶东矿集区地质简图(据杨立强等,2014; Yang et al.,2016a修编) Fig. 1 Geological sketch map of the Jiaodong Peninsula(modified after Yang et al.,20142016a)

Charles et al.(2013)于该区识别出了非对称的玲珑变质核杂岩,其东界为玲珑拆离断层,拆离断层主要由糜棱岩和超糜棱岩带组成,并往往被后期脆性变形叠加(图 2)。变质核杂岩西缘发育焦家和三山岛主控矿断裂及其次级断裂构造,例如侯家断裂、河西断裂和望儿山断裂。上述断裂往往沿前寒武纪变质基底岩石和中生代花岗岩或不同时代花岗岩接触界面发育,控制了该区众多金矿床的产出(图 2; Deng et al.,20062008; Yang et al.,2016e; 邓军等,2010; 宋明春等,20102015)。

图 2 胶北隆起地质简图(a,据Yang et al.,2016d; Charles et al.,2013)及NW-SE向横切玲珑变质核杂岩剖面图(b,据Charles et al.,2011修编) Fig. 2 Geological sketch map of the Jiaobei Uplift(a,modified after Yang et al.,2016d; Charles et al.,2013)and schematic NW-SE section across the Linglong metamorphic core complex(b,modified after Charles et al.,2011)
3 矿床地质

三山岛金矿床位于胶北隆起的西北部,莱州市以北约25km处(图 2),其探明金资源储量大于200t。其中,目前已采52t,年产量约8t(数据来自山东黄金集团有限公司)。矿床内,以三山岛断裂为界,上盘为玲珑花岗岩和胶东群变质岩,下盘主要是郭家岭花岗岩伴有少量玲珑花岗岩(图 3a,b)。郭家岭花岗岩侵位到玲珑花岗岩中,然而二者之间具体的空间关系尚未查明。玲珑花岗岩主要为中粒花岗岩,组成矿物包括黑云母、钾长石、斜长石和石英,及少量的磁铁矿和磷灰石;而郭家岭花岗岩为似斑状结构,组成矿物与玲珑花岗岩类似,但角闪石较为发育。绝大部分的玲珑和郭家岭花岗岩均经历了成矿前亚固态韧性变形,动态重结晶石英发育(图 4a)。

图 3 三山岛金矿床地质简图(a)与剖面图(b)(据Hu et al.,2013修编) Fig. 3 Simplified geological map(a)and geological cross-section(b)of the Sanshandao gold deposit(modified after Hu et al.,2013)
图 4 三山岛金矿床样品镜下照片 (a)绢英岩中残留的动态重结晶的石英;已经被完全蚀变为细粒绢云母和石英的长石假晶;(b)白云母化蚀变;(c)充填细粒绢云母的显微断裂错断动态重结晶的石英;(d)含金黄铁矿-绢云母-石英脉切割钾长石斑晶和晚期方解石脉的叠加;(e)含金黄铁矿与绢云母和白云母共生;(f)第三阶段方铅矿充填黄铁矿裂隙中;(g)第三阶段生成的方铅矿包裹早期黄铁矿和闪锌矿-黄铜矿固溶体;(h)第四阶段形成的晚期方解石脉,包裹早期形成的绢云母颗粒,穿插早期的大面积绢云母化蚀变和原岩中残留的拉长的动态重结晶石英.矿物代码:Cal-方解石;Ccp-黄铜矿;Gn-方铅矿;Kfs-钾长石;Mus-白云母;Qtz-石英;Py-黄铁矿;Ser-绢云母;Sp-闪锌矿 Fig. 4 Photomicrographs of typical samples showing features of intermediate to proximal alteration zones

三山岛金矿床内的矿体位于三山岛断裂下盘。与金矿化有关的蚀变和透镜状矿体严格受该断裂及其分支断裂控制。主矿体占探明储量的91.6%,平均品位与厚度分别为4g/t和11m,其沿走向40°延伸达1040m,倾角约40°,延深约800~900m。近年来矿区内大量深部钻探揭露了矿区深部-1170~-3555m范围内的蚀变与矿化(图 3b)。如果加上矿区北部海底新探明的金资源量,矿体总资源储量高达600t(宋明春等,2015),一跃成为中国最大金矿床之一。

该矿床主要蚀变类型包含钾化、绢云母化、白云母化、硅化、黄铁矿化、碳酸盐化和少量绿泥石化,主矿体发育有强烈的绢云母化、白云母化、硅化和黄铁矿化。少量含金石英脉型矿体明显受次级断裂控制。主断裂发育有明显的断层泥,主断裂下盘蚀变分带现象明显。远离主断裂依次为强(黄铁)绢英岩带、弱(黄铁矿)黄铁绢英岩化带、钾化绢英岩化带和未蚀变花岗岩(图 3)。矿石矿物主要包括黄铁矿、黄铜矿、方铅矿、闪锌矿和毒砂。岩相学和矿相学研究表明热液蚀变和矿化可分为四个阶段(图 5)。第一阶段为原岩中暗色矿物分解为绿泥石,最终蚀变为细粒绢云母和石英,也有少量粗粒白云母形成(图 4a-d),此阶段同时伴有少量斜长石被钾长石所交代和少量黄铁矿的形成。第二阶段,长石被分解为细粒的绢云母、粗粒的白云母和石英。此阶段有大量黄铁矿、少量石英和金矿物形成(图 4e)。第三阶段,紧随黄铁矿的沉淀,贱金属硫化物如黄铜矿、方铅矿、闪锌矿和毒砂开始形成,这些贱金属硫化物(图 4f,g)与金一起填充在黄铁矿裂隙中或黄铁矿颗粒之间段。在前三个阶段里,石英和绢云母持续生成,只是其强度略有变化。第四阶段,矿化终止,主要为(石英)-碳酸盐化蚀变(图 4h),如(石英)-方解石/菱铁矿脉的形成。

图 5 三山岛金矿床热液蚀变矿物生成图解 矿物相对丰度通过实线宽度表示 Fig. 5 Paragenetic sequence of hydrothermal minerals at the Sanshandao gold deposit
4 热年代学 4.1 样品采集

研究中于三山岛断裂带下盘5~-435m高程采集了13件样品用于热年代学测试(表 1)。具体来讲,13件样品包括:2件未蚀变的玲珑花岗岩、1件新鲜的似斑状郭家岭花岗岩、8件弱-中等蚀变的(黄铁矿)-绢云母/白云母-石英蚀变岩或强蚀变的绢云母/白云母-石英蚀变岩和2件黄铁绢英岩型矿石。

表 1 三山岛金矿床样品信息汇总 Table 1 Samples from the Sanshandao gold deposit
4.2 测试方法 4.2.1 40Ar/39Ar测试

取自三山岛金矿床-330m中段的蚀变岩样品SSD710被用于40Ar/39Ar测试。该样品中,绝大多数的钾长石和斜长石已经发生了不同程度的白云母/绢云母化和硅化(图 4b,c)。此外,该样品还发育少量与白云母和绢云母共生的含金黄铁矿(图 4e)。样品中绢云母粒度较细,而白云母的粒度较粗,约为0.05~0.2mm,为40Ar/39Ar测试的理想对象。

样品SSD710经粉碎、重液分离和磁选之后,在双目镜下纯化以达到99%的纯度,并挑选粒度为250~118μm颗粒作为定年对象。在用蒸馏水和丙酮洗净之后,在50℃条件下烘干。之后随标样美国鱼谷凝灰岩透长石和国内标样黑云母ZBH-25(ZBH-25的40Ar/39Ar年龄为132.7±1.3Ma,K含量为7.6%; 富云莲等,1987)一起送到中国原子能机构进行辐照,具体步骤参见Yang et al.(2014)40Ar/39Ar分析在中国地质大学(北京)完成,测试仪器为MM5400质谱仪,实验及数据处理方法详见Yang et al.(2014)

4.2.2 裂变径迹测试

锆石和磷灰石裂变径迹测试流程同Yang et al.(2016d);年龄计算同样采用Zeta常数法(Hurford and Green,1983),用于磷灰石分析CN5标准玻璃Zeta常数值为389.4±19.2,用于锆石分析的CN2标准玻璃Zeta值为85.4±4.0。雷达图绘制和年龄1σ误差采用RadialPlotter软件(Vermeesch,2009)完成。单颗粒年龄组分是否为同一组通过卡方检验值P(χ2)(Galbraith,1981)来厘定,通常当P(χ2)>5%,认为所测所有单颗粒年龄值为同组年龄。

4.3 测试结果 4.3.1 40Ar/39Ar测试

蚀变岩样品SSD710白云母40Ar/39Ar定年结果列于表 2。其中99.7%释放的39Ar构成了较好的40Ar/39Ar坪年龄99.4±0.8Ma(2σ)(图 6a)。坪年龄与等时线年龄99.6±0.5Ma(图 6b)在误差范围内一致。平坦连续的坪谱表明样品没有明显的过剩Ar,也没有经历明显的Ar丢失。

表 2 三山岛金矿床样品SSD710白云母40Ar/39Ar定年结果 Table 2 40Ar/39Ar step-heating geochronology data for muscovite from sample SSD710 at the Sanshandao deposit
图 6 三山岛金矿床白云母40Ar/39Ar坪年龄(a)与等时线年龄(b) Fig. 6 40Ar/39Ar plateau(a)and isochron(b)ages(2σ)for muscovite from the ore zone
4.3.2 锆石裂变径迹年龄

4件样品获得了71.5±2.8Ma~61.4±2.4Ma(1σ)较为一致的锆石裂变径迹年龄(表 3图 7)。其中,3件没有通过P(χ2)测试。这些样品的单颗粒锆石年龄值随U含量的增加而降低(图 7)。4件样品的年龄和U含量之间明显的负相关关系表明锆石颗粒可能经历了一定程度的辐射损伤。辐射损伤可能会导致锆石颗粒扛退火的能力下降。已有研究表明,经历明显辐射损伤的锆石颗粒可以在180~200℃(Garver et al.,2005)和150~200℃(Riley,2002; Bernet and Garver,2005)条件下发生退火,即上述样品锆石裂变径迹封闭温度区间小于正常值~240±50℃(Bernet,2009; Hurford,1986; Zaun and Wagner,1985)。这些锆石裂变径迹年龄比胶东金成省其它地区的ZFT年龄更加年轻(Yang et al.,2016d),可能也反应了较低的退火温度。另一方面,用于测试的样品锆石单矿物U含量相对较低(表 3),造成辐射损伤的程度或许有限。但由于目前缺失对锆石辐射损伤程度的定量评估,本矿床中受辐射损伤的锆石的退火温度无法评估。因此,71.5±2.8Ma~61.4±2.4Ma(1σ)的锆石裂变径迹年龄并无明确意义。相比之下,低U含量锆石相对较老的裂变径迹年龄90±10Ma可能大致代表了样品冷却通过锆石封闭温度的时间。

表 3 三山岛金矿床锆石裂变径迹定年结果 Table 3 Zircon fission-track data for samples from the Sanshandao deposit
图 7 锆石裂变径迹年龄雷达图 单颗粒年龄为过原点、颗粒点的直线相交于右侧弧线上的数值;X轴上σ/t和t/σ分别为数据相对误差和精度;Y轴为测量的标准误差;图中较粗的黑色实线为样品中值年龄(表 3);单颗粒年龄点的颜色代表锆石U含量,对应雷达图下方颜色比例尺 Fig. 7 Radial plots of zircon samples
4.3.3 磷灰石裂变径迹数据

13个用于磷灰石裂变径迹测试的样品取自-70~-435m中段,包括矿石、蚀变和未蚀变岩石,其磷灰石裂变径迹年龄在69.8±7.2Ma到46.1±4.8Ma之间变化(表 4图 8)。所有样品均通过了P(χ2)检验,表明每个样品中的单颗粒年龄均属于同一个年龄组。整体上磷灰石裂变径迹年龄相对于锆石裂变径迹年龄更加年轻,在相近标高,少量磷灰石裂变径迹年龄与锆石裂变径迹年龄部分重叠,这可能与快速冷却有关,但结合锆石单颗粒年龄与U含量之间的关系,最可能的解释为经历了辐射损伤的锆石封闭温度比磷灰石裂变径迹封闭温度稍高一点,甚至部分重叠。单峰型略带负偏态的磷灰石径迹长度分布特征(图 9)表明样品单调缓慢地冷却至磷灰石部分退火带(125~60℃,Gleadow and Duddy,1981)。由于缺乏动力学参数Dpar值或F/Cl含量,这些数据并未用于热历史模拟。

表 4 三山岛金矿床磷灰石裂变径迹定年结果 Table 4 Apatite fission-track data for samples from the Sanshandao deposit
图 8 磷灰石裂变径迹年龄雷达图 单颗粒年龄为过原点、颗粒点的直线相交于右侧弧线上的数值;X轴上σ/t和t/σ分别为数据相对误差和精度;Y轴为测量的标准误差;图中较粗的黑色实线为样品中值年龄(表 4);单颗粒年龄点的颜色代表锆石U含量,对应雷达图下方颜色比例尺;本图中缺省样品SSD39008 Fig. 8 Radial plots of apatite samples
图 9 磷灰石裂变径迹长度分布直方图 Fig. 9 Histograms of the apatite fission-track length distributions
5 讨论 5.1 晚白垩世早期构造-热事件

三山岛金矿床内蚀变矿物绢云母Rb-Sr等时线定年结果为117.6±3Ma(Hu et al.,2013),而本次新获得的蚀变矿物白云母40Ar/39Ar年龄为99.4±0.8Ma(图 6图 10)。年轻40Ar/39Ar年龄的出现存在四种可能的解释:(a)继早期~117Ma成矿事件之后,~99Ma还存在另一期明显的热液蚀变作用;(b)热液蚀变和金成矿作用发生于~117Ma,随后矿床伴随地体的缓慢冷却至~99Ma达到白云母40Ar/39Ar定年封闭温度;(c)与金矿化有关长时限的热液蚀变,自~117Ma开始一直持续到~99Ma;(d)热重置和氩丢失导致年轻40Ar/39Ar年龄的出现。就可能性(a)而言,野外和室内都没有三山岛金矿床存在两期成矿事件的记录(Li et al.,2012; Hu et al.,2013);但该矿床仍可能存在局部小规模的热液蚀变作用,可能对应与区域晚期银矿化相关的一期热液蚀变作用,例如大尹格庄金矿床晚期银矿化叠加(Yang et al.,2014)和十里堡银矿床热液蚀变作用(李洪奎等,2013)。Rb-Sr年龄和锆石裂变径迹年龄较老组分(90±10Ma)的年龄差揭示了中等的冷却速率,此种情况下白云母40Ar/39Ar的封闭温度为约360~350℃(Hames and Bowring,1994; McDougall and Harrison,1999; Harrison et al.,2009)。三山岛金矿床早阶段和主阶段流体包裹体的均一温度分别为416~216℃和321~180℃(Hu et al.,2013),样品SSD710蚀变矿物组合说明热液蚀变作用发生于约350~200℃,表明在矿化过程中热液白云母和绢云母氩同位素体系已经封闭。因此,~117Ma的绢云母Rb-Sr年龄和~99Ma的白云母40Ar/39Ar年龄可能揭示了两期独立的热液蚀变作用(解释a),而并非连续的热液蚀变作用,即解释(b)和(c)均不成立。此外,根据前人对热液矿床的研究,无论该地区(Li et al.,20032006)还是世界范围内(Stein and Cathles,1997及其中文献)同类金矿床,选项(c)中提出的如此长时间的蚀变矿化过程可能性微乎其微。再有,晚期的热事件可能导致了40Ar/39Ar年龄的重置(解释(d)),并于~99Ma再次迅速冷却到了白云母40Ar/39Ar封闭温度360~350℃。这可能为局部的热异常所致,比如成矿后的岩脉侵入和构造流体活动等(邓军等,2010)。当然如此好的坪年龄单纯用晚期热事件重置来解释并不十分合理。实际上,解释(a)和(d)可能为同一次构造-热事件的不同方面,即晚期构造活动伴随着脉岩侵入和小规模热液蚀变作用;该期构造-热事件在胶东地区也有相应记录(Deng et al.,2015b; Yang et al.,2014; 李洪奎等,2013)。

图 10 三山岛金矿床热演化历史 除本文数据外,锆石U-Pb数据引自Wang et al.(1998)Li et al.(2012)Yang et al.(2012)Ma et al.(2013);Rb-Sr等时线数据引自Hu et al.(2013). 花岗岩结晶温度:Zhang et al.(2010);成矿温度:Hu et al.(2013);锆石裂变径迹封闭温度:Zaun and Wager(1985)Hurford(1986)Bernet(2009);磷灰石裂变径迹部分退火带:Gleadow and Duddy(1981) Fig. 10 Temperature-time evolution of the Sanshandao gold deposit
5.2 三山岛金矿床成矿后热历史

当成矿温度高于磷灰石和锆石裂变径迹的封闭温度区间且成矿后快速冷却;以及成矿前围岩温度高于裂变径迹封闭温度且成矿温度与裂变径迹封闭温度较为接近时,矿石裂变径迹年龄可能可以用来约束热液活动的时限(Chakurian et al.,2003; Yuan et al.,2009; Deng et al.,2014; Yang et al.,2016d)。然而,三山岛金矿床有辐射损伤的锆石裂变径迹封闭温度可能仅仅高于磷灰石裂变径迹封闭温度,甚至与磷灰石裂变径迹封闭温度重合。考虑到成矿温度下限(416~180℃; Hu et al.,2013)相比该矿床锆石裂变径迹封闭温度较高,成矿后冷却相对缓慢,本次获取的较为年轻的锆石裂变径迹年龄(71.5±2.8Ma~61.4±2.4Ma; 图 7图 10),不能限定该矿床成矿时限。但单颗粒锆石裂变径迹年龄中较老组分90±10Ma可能大致代表了该矿床冷却通过锆石裂变径迹封闭温度(240±50℃; Zaun and Wager,1985; Hurford,1986; Bernet,2009)的时间。

磷灰石裂变径迹数据显示,该矿床大致于70~50Ma冷却至其部分退火带(125~60℃,Gleadow and Duddy,1981),并逐步冷却至现今近地表温度。

目前已有数据对成矿后隆升、剥蚀和冷却限定不足,尚不能开展矿床(体)隆升和剥蚀的定量化计算。但锆石和磷灰石裂变径迹数据,整体显示成矿后缓慢冷却,对应剥蚀速率也应相对较小,结合深部钻探成果分析,深部找矿潜力巨大。

6 结论

三山岛金矿床内,赋矿围岩郭家岭花岗岩于~128Ma侵入,并迅速冷却,伴随着快速冷却,郭家岭花岗岩经历了亚固态韧性变形。其后,脆性变形和相应的大规模热液蚀变和金成矿作用于约~117Ma叠加于早期韧性变形之上。~99Ma白云母40Ar/39Ar年龄揭示了晚期相对较弱的构造-流体活动。随后,该矿床大致于90±10Ma和60±10Ma分别缓慢冷却至290~190℃和125~60℃,并最终缓慢冷却剥露到现今近地表温度。成矿后相对缓慢的冷却和剥蚀以及新近深部钻探成果说明,三山岛及其周缘金矿床主断裂下盘脆性变形和热液蚀变作用叠加部位成矿潜力巨大,为有利的找矿靶区。

致谢 研究工作得到了中国地质大学(北京)邓军教授、杨立强教授和王中亮讲师、澳大利亚蒙纳什大学Roberto Weinberg教授、西澳大学David Groves教授、墨尔本大学David Philips教授和Barry Kohn教授的指导和帮助;野外工作得到了三山岛金矿床相关工作人员的帮助和支持;样品测试获得了中国地质大学(北京)科学研究院袁万明教授和王瑜教授的帮助;两位匿名审稿人为本文提供了宝贵的修改意见;在此一并致以诚挚的感谢!
参考文献
[1] Bernet M, Garver JI. 2005. Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry , 58 (1) :205–237. DOI:10.2138/rmg.2005.58.8
[2] Bernet M. 2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology , 259 (3-4) :181–189. DOI:10.1016/j.chemgeo.2008.10.043
[3] Betsi BT, Lentz D, McInnes B, Evans NJ. 2012. Emplacement ages and exhumation rates for intrusion-hosted Cu-Mo-Sb-Au mineral systems at Freegold Mountain (Yukon, Canada):Assessment from U-Pb, Ar-Ar, and (U-Th)/He geochronometers. Canadian Journal of Earth Sciences , 49 (5) :653–670. DOI:10.1139/e2012-009
[4] Chakurian AM, Arehart GB, Donelick RA, Zhang X, Reiners PW. 2003. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission-track, 40Ar/39Ar, and apatite (U-Th)/He methods. Economic Geology , 98 (6) :1159–1171. DOI:10.2113/gsecongeo.98.6.1159
[5] Charles N, Gumiaux C, Augier R, Chen Y, Zhu RX, Lin W. 2011. Metamorphic Core Complexes vs , 40 (1) :261–278.
[6] Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M, Zhu RX. 2013. Timing, duration and role of magmatism in wide rift systems:Insights from the Jiaodong Peninsula (China, East Asia). Gondwana Research , 24 (1) :412–428. DOI:10.1016/j.gr.2012.10.011
[7] Deng J, Yang LQ, Sun ZS, Wang JP, Wang QF, Xin HB, Li XJ. 2003. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt. Acta Geologica Sinica , 77 (4) :537–546.
[8] Deng J, Yang LQ, Ge LS, Wang QF, Zhang J, Gao BF, Zhou YH, Jiang SQ. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong Ore Cluster Area. Progress in Natural Science , 16 (8) :777–784. DOI:10.1080/10020070612330069
[9] Deng J, Wang QF, Yang LQ, Zhou L, Gong QJ, Yuan WM, Xu H, Guo CY, Liu XW, Zhu XL. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China. Acta Geologica Sinica , 82 (4) :769–780.
[10] Deng J, Chen YM, Liu Q, et al.2010. The Gold Metallogenic System and Mineral Resources Exploration of Sanshandao Fault Zone, Shandong Province. Beijing: Geological Publishing House : 1 -371.
[11] Deng J, Wang QF, Wan L, Liu H, Yang LQ, Zhang J. 2011. A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China. Ore Geology Reviews , 40 (1) :54–64. DOI:10.1016/j.oregeorev.2011.05.001
[12] Deng J, Yuan WM, Carranza EJM, Yang LQ, Wang CM, Yang LY, Hao NN. 2014. Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China:New evidence for multiple episodes of mineralization. Journal of Asian Earth Sciences , 89 :10–27. DOI:10.1016/j.jseaes.2014.03.013
[13] Deng J, Liu XF, Wang QF, Pan RG. 2015a. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China:Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews , 65 :674–686. DOI:10.1016/j.oregeorev.2014.04.018
[14] Deng J, Wang CM, Bagas L, Carranza EJM, Lu YJ. 2015b. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China:Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry. Mineralium Deposita , 50 (8) :987–1006. DOI:10.1007/s00126-015-0584-1
[15] Deng J, Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research , 36 :219–274. DOI:10.1016/j.gr.2015.10.003
[16] Fu YL, Lu XQ, Zhang SH, Wang LT. 1987. 40Ar/39Ar dating techniques and age determination of some geological samples. Chinese Academy of Geological Sciences , 17 :85–107.
[17] Galbraith RF. 1981. On statistical models for fission track counts. Journal of the International Association for Mathematical Geology , 13 (6) :471–478. DOI:10.1007/BF01034498
[18] Garver JI, Reiners PW, Walker LJ, Ramage JM, Perry SE. 2005. Implications for timing of Andean uplift from thermal resetting of radiation-damaged zircon in the Cordillera Huayhuash, Northern Peru. The Journal of Geology , 113 (2) :117–138. DOI:10.1086/427664
[19] Gleadow AJW, Duddy IR. 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks , 5 (1-2) :169–174. DOI:10.1016/0191-278X(81)90039-1
[20] Goldfarb RJ, Santosh M. 2014. The dilemma of the Jiaodong gold deposits:Are they unique?. Geoscience Frontiers , 5 (2) :139–153. DOI:10.1016/j.gsf.2013.11.001
[21] Goss SC, Wilde SA, Wu FY, Yang JH. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos , 120 (3-4) :309–326. DOI:10.1016/j.lithos.2010.08.019
[22] Groves DI, Santosh M. 2016. The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?. Geoscience Frontiers , 7 (3) :409–417. DOI:10.1016/j.gsf.2015.08.002
[23] Guo LN, Zhang C, Song YZ, Chen BH, Zhou Z, Zhang BL, Xu XL, Wang YW. 2014. Hydrogen and oxygen isotopes geochemistry of the Wang'ershan gold deposit, Jiaodong. Acta Petrologica Sinica , 30 (9) :2481–2494.
[24] Guo LN. 2016. Metallogenic mechanism of the Jiaodong-type gold deposit, Shandong Province, China. Ph. D Dissertation. Beijing:China University of Geosciences (in Chinese with English summary)
[25] Hames WE, Bowring SA. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters , 124 (1-4) :161–169. DOI:10.1016/0012-821X(94)00079-4
[26] Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta , 73 (4) :1039–1051. DOI:10.1016/j.gca.2008.09.038
[27] Hu FF, Fan HR, Jiang XH, Li XC, Yang KF, Mernagh T. 2013. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids , 13 (4) :528–541. DOI:10.1111/gfl.12065
[28] Hurford AJ, Green PF. 1983. The zeta age calibration of fission-track dating. Chemical Geology , 41 :285–317. DOI:10.1016/S0009-2541(83)80026-6
[29] Hurford AJ. 1986. Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology , 92 (4) :413–427. DOI:10.1007/BF00374424
[30] Li HK, Shi WG, Li YF, Li LY, Han DC, Cao LL, Liu JM. 2013. Study on gold mineralization ages in Jiaodong area, Shandong Province. Gold Science and Technology , 21 (3) :1–9.
[31] Li JW, Vasconcelos PM, Zhang J, Zhou MF, Zhang XJ, Yang FH. 2003. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. The Journal of Geology , 111 (6) :741–751. DOI:10.1086/378486
[32] Li JW, Vasconcelos P, Zhou MF, Zhao XF, Ma CQ. 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China:Implications for regional mineralization and geodynamic setting. Economic Geology , 101 (5) :1023–1038. DOI:10.2113/gsecongeo.101.5.1023
[33] Li XC, Fan HR, Santosh M, Hu FF, Yang KF, Lan TG, Liu YS, Yang YH. 2012. An evolving magma chamber within extending lithosphere:An integrated geochemical, isotopic and zircon U-Pb geochronological study of the Gushan granite, eastern North China Craton. Journal of Asian Earth Sciences , 50 :27–43. DOI:10.1016/j.jseaes.2012.01.016
[34] Liu Y, Deng J, Wang ZL, Zhang L, Zhang C, Liu XD, Zheng XL, Wang XD. 2014. Zircon U-Pb age, Lu-Hf isotopes and petrogeochemistry of the monzogranites from Xincheng gold deposit, northwestern Jiaodong Peninsula, China. Acta Petrologica Sinica , 30 (9) :2559–2573.
[35] Ma L, Jiang SY, Dai BZ, Jiang YH, Hou ML, Pu W, Xu B. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China:Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence. Lithos , 162 .
[36] Márton I, Moritz R, Spikings R. 2010. Application of low-temperature thermochronology to hydrothermal ore deposits:Formation, preservation and exhumation of epithermal gold systems from the eastern Rhodopes, Bulgaria. Tectonophysics , 483 (3-4) :240–254. DOI:10.1016/j.tecto.2009.10.020
[37]
[38] McInnes BIA, Evans NJ, Fu FQ, Garwin S. 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry , 58 (1) :467–498. DOI:10.2138/rmg.2005.58.18
[39] Mills SE, Tomkins AG, Weinberg RF, Fan HR. 2015a. Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, Northeast China. Ore Geology Reviews , 71 :150–168. DOI:10.1016/j.oregeorev.2015.04.022
[40] Mills SE, Tomkins AG, Weinberg RF, Fan HR. 2015b. Anomalously silver-rich vein-hosted mineralisation in disseminated-style gold deposits, Jiaodong gold district, China. Ore Geology Reviews , 68 :127–141. DOI:10.1016/j.oregeorev.2014.12.014
[41] Phillips GN, Powell R. 2015. A practical classification of gold deposits, with a theoretical basis. Ore Geology Reviews , 65 :568–573. DOI:10.1016/j.oregeorev.2014.04.006
[42] Riley BCD. 2002. Preferential thermal resetting of fission tracks in radiation-damaged detrital zircon grains:Case study from the Laramide of Arizona. In:2002 Denver Annual Meeting. Denver, CO:Geological Society of America, 212-12
[43] Song MC, Cui SX, Zhou ML, Jiang HL, Yuan WH, Wei XF, Lü GX. 2010. The deep oversize gold deposit in the Jiaojia Field, Shandong Province and its enlightenment for the Jiaojia-type gold deposits. Acta Geologica Sinica , 84 (9) :1349–1358.
[44] Song MC, Li SZ, Santosh M, Zhao SJ, Yu S, Yi PH, Cui SX, Lü GX, Xu JX, Song YX, Zhou ML. 2015. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, eastern North China Craton. Ore Geology Reviews , 65 :612–625. DOI:10.1016/j.oregeorev.2014.06.019
[45] Song MC, Zhang JJ, Zhang PJ, Yang LQ, Liu DH, Ding ZJ, Song YX. 2015. Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao, Shandong Peninsula, China. Acta Geologica Sinica , 89 (2) :365–383.
[46] Stein HJ, Cathles LM. 1997. A special issue on the timing and duration of hydrothermal events:Preface. Economic Geology , 92 (7-8) :763–765. DOI:10.2113/gsecongeo.92.7-8.763
[47] Vermeesch P. 2009. RadialPlotter:A Java application for fission track, luminescence and other radial plots. Radiation Measurements , 44 (4) :409–410. DOI:10.1016/j.radmeas.2009.05.003
[48] Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC, Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews , 13 (1-5) :275–291. DOI:10.1016/S0169-1368(97)00022-X
[49] Wang ZL. 2012. Meallogenic system of Jiaojia gold field, Shandong Province, China. Ph. D. Dissertation. Beijing:China University of Geosciences (in Chinese with English summary)
[50] Wang ZL, Yang LQ, Deng J, Santosh M, Zhang HF, Liu Y, Li RH, Huang T, Zheng XL, Zhao H. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China:Petrogenesis and tectonic setting. Journal of Asian Earth Sciences , 95 :274–299. DOI:10.1016/j.jseaes.2014.03.001
[51] Wang ZL, Zhao RX, Zhang Q, Lu HW, Li JL, Cheng W. 2014. Magma mixing for the high Ba-Sr Guojialing-type granitoids in Northwest Jiaodong Peninsula:Constraints from petrogeochemistry and Sr-Nd isotopes. Acta Petrologica Sinica , 30 (9) :2595–2608.
[52] Wang ZL, Yang LQ, Guo LN, Marsh E, Wang JP, Liu Y, Zhang C, Li RH, Zhang L, Zheng XL, Zhao RX. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China:A fluid inclusion study. Ore Geology Reviews , 65 :701–717. DOI:10.1016/j.oregeorev.2014.06.006
[53] Wilkinson BH, Kesler SE. 2007. Tectonism and exhumation in convergent margin orogens:Insights from ore deposits. The Journal of Geology , 115 (6) :611–627. DOI:10.1086/521606
[54] Yang KF, Fan HR, Santosh M, Hu FF, Wilde SA, Lan TG, Lu LN, Liu YS. 2012. Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos , 146-147 :112–127. DOI:10.1016/j.lithos.2012.04.035
[55] Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ, Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold Province, China. Resource Geology , 59 (2) :181–193. DOI:10.1111/rge.2009.59.issue-2
[56] Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF, Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research , 25 (4) :1469–1483. DOI:10.1016/j.gr.2013.07.001
[57] Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC, Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica , 30 (9) :2447–2467.
[58] Yang LQ, Deng J, Dilek Y, Qiu KF, Ji XZ, Li N, Taylor RD, Yu JY. 2015. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue Suture Zone, Qinling Orogen, China. The Geological Society of America Bulletin , 127 :1831–1854. DOI:10.1130/B31249.1
[59] Yang LQ, Deng J, Guo LN, Wang ZL, Li XZ, Li JL. 2016a. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews , 72 :585–602. DOI:10.1016/j.oregeorev.2015.08.021
[60] Yang LQ, Deng J, Guo RP, Guo LN, Wang ZL, Chen BH, Wang XD. 2016b. World-class Xincheng gold deposit:An example from the giant Jiaodong gold province. Geoscience Frontiers , 7 (3) :419–430. DOI:10.1016/j.gsf.2015.08.006
[61] Yang LQ, Deng J, Wang ZL, Guo LN, Li RH, Groves DI, Danyushevsky L, Zhang C, Zheng XL, Zhao H. 2016c. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China:Implications for gold source and deposition in a brittle epizonal environment. Economic Geology , 111 (1) :105–126. DOI:10.2113/econgeo.111.1.105
[62] Yang LQ, Deng J, Wang ZL, Zhang L, Goldfarb RJ, Yuan WM, Weinberg RF, Zhang RZ. 2016d. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization:A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews , 72 :165–178. DOI:10.1016/j.oregeorev.2015.07.006
[63] Yang LQ, Guo LN, Wang ZL, Zhao RX, Song MC, and Zheng XL. 2016e. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews, doi:10.1016/j.oregeorev.2016.06.027
[64] Yuan WM, Zheng QG, Bao ZK, Dong JQ, Carter A, An YC, Deng J. 2009. Zircon fission track thermochronology constraints on mineralization epochs in Altai Mountains, northern Xinjiang, China. Radiation Measurements , 44 (9-10) :950–954. DOI:10.1016/j.radmeas.2009.10.094
[65] Zaun PE, Wagner GA. 1985. Fission-track stability in zircons under geological conditions. Nuclear Tracks and Radiation Measurements (1982) , 10 (3) :303–307. DOI:10.1016/0735-245X(85)90119-X
[66] Zhang C, Liu Y, Liu XD, Feng JQ, Huang T, Zhang Q, Wang XD. 2014. Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit, Northwest Jiaodong, China. Acta Petrologica Sinica , 30 (9) :2495–2506.
[67] Zhang J, Zhao ZF, Zheng YF, Dai MN. 2010. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos , 119 (3-4) :512–536. DOI:10.1016/j.lithos.2010.08.005
[68] Zhang L, Liu Y, Li RH, Huang T, Zhang RZ, Chen BH, Li JK. 2014. Lead isotope geochemistry of Dayingezhuang gold deposit, Jiaodong Peninsula, China. Acta Petrologica Sinica , 30 (9) :2468–2480.
[69] Zhang L. 2016. Application of thermochronology to hydrothermal gold deposits, Northwestern Jiaodong Peninsula, China. Ph. D. Dissertation. Beijing:China University of Geosciences (in Chinese with English summary)
[70] Zhang XO, Cawood PA, Wilde SA, Liu RQ, Song HL, Li W, Snee LW. 2003. Geology and timing of mineralization at the Cangshang gold deposit, northwestern Jiaodong Peninsula, China. Mineralium Deposita , 38 (2) :141–153.
[71] 邓军, 陈玉民, 刘钦, 等. 2010. 胶东三山岛断裂带金成矿系统与资源勘查. 北京: 地质出版社 : 1 -371.
[72] 富云莲, 罗修泉, 张思红, 王路通.1987. 40Ar/39Ar定年法的实验技术与一些地质样品年龄的测定. 中国地质科学院地质研究所所刊 (17) :85–107.
[73] 郭林楠, 张潮, 宋宇宙, 陈炳翰, 周铸, 张炳林, 徐晓磊, 王彦玮.2014. 胶东望儿山金矿床氢-氧同位素地球化学. 岩石学报 , 30 (9) :2481–2494.
[74] 郭林楠. 2016. 胶东型金矿床成矿机理. 博士学位论文. 北京:中国地质大学 http://cdmd.cnki.com.cn/Area/CDMDUnitArticle-11415.htm
[75] 李洪奎, 时文革, 李逸凡, 李璐邑, 韩代成, 曹丽丽, 刘继梅.2013. 山东胶东地区金矿成矿时代研究. 黄金科学技术 , 21 (3) :1–9.
[76] 刘跃, 邓军, 王中亮, 张良, 张潮, 刘向东, 郑小礼, 王旭东.2014. 胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb年龄及Lu-Hf同位素组成. 岩石学报 , 30 (9) :2559–2573.
[77] 宋明春, 崔书学, 周明岭, 姜洪利, 袁文花, 魏绪峰, 吕古贤.2010. 山东省焦家矿区深部超大型金矿床及其对"焦家式"金矿的启示. 地质学报 , 84 (9) :1349–1358.
[78] 宋明春, 张军进, 张丕建, 杨立强, 刘殿浩, 丁正江, 宋英昕.2015. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景. 地质学报 , 89 (2) :365–383.
[79] 王中亮. 2012. 焦家金矿田成矿系统. 博士学位论文. 北京:中国地质大学 http://cdmd.cnki.com.cn/article/cdmd-11415-1012364390.htm
[80] 王中亮, 赵荣新, 张庆, 鲁辉武, 李京濂, 程蔚.2014. 胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因:岩石地球化学与Sr-Nd同位素约束. 岩石学报 , 30 (9) :2595–2608.
[81] 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼.2014. 胶东中生代金成矿系统. 岩石学报 , 30 (9) :2447–2467.
[82] 张潮, 刘育, 刘向东, 冯建秋, 黄涛, 张庆, 王旭东.2014. 胶西北新城金矿床硫同位素地球化学. 岩石学报 , 30 (9) :2495–2506.
[83] 张良, 刘跃, 李瑞红, 黄涛, 张瑞忠, 陈炳翰, 李金奎.2014. 胶东大尹格庄金矿床铅同位素地球化学. 岩石学报 , 30 (9) :2468–2480.
[84] 张良. 2016. 胶西北金成矿系统热年代学. 博士学位论文. 北京:中国地质大学