铜(Cu)在自然界中有65Cu(30.826%)和63Cu(69.174%)两种同位素(Shields et al.,1965)。二十世纪中叶,Walker et al.(1958)、Shields et al.(1965)、Lyon and Fell(1990)利用热离子质谱对自然样品的铜同位素组成进行研究,但因分析精度有限,未能测出地球样品铜同位素组成变化情况。近年来,随着技术进步(Maréchal et al.,1999;Zhu et al.,2000),尤其多接收电感耦合等离子体质谱仪使铜同位素测试精度大大提高(Halliday et al.,1995;Jiang et al.,2002;王泽洲等,2015)。近年来铜同位素在矿床学领域的应用越来越广泛,并取得了一系列研究进展,为铜同位素作为直接示踪元素,研究成矿物质来源、运移及沉淀机制提供了重要理论依据(李振清等,2009;王跃和朱祥坤,2010;聂龙敏和李振清,2012)。
与此同时,随着研究的深入,铜同位素分馏规律在一定程度得以显现,例如Cu2+富集铜的重同位素,Cu+富集铜的轻同位素;热液流体淋滤围岩或硫化物时,铜的重同位素优先进入液相,沉积过程中,铜的轻同位素优先进入硫化物(Zhu et al.,2000;Rouxel et al.,2004;Fernandez and Borrok,2009;Kimball et al.,2009;Mathur et al.,2009);岩浆脱气过程中铜的轻同位素优先进入气相(Graham et al.,2004;Mathur et al.,2005;李振清等,2009;王跃和朱祥坤,2010;聂龙敏和李振清,2012)。在分馏过程中主要影响因素包括氧化还原反应(Zhu et al.,2002;Larson et al.,2003;Ehrlich et al.,2004;Mathur et al.,2005;Markl et al.,2006;Asael et al.,2007;Haest et al.,2009;Li et al.,2010;Pękala et al.,2011;Asadi et al.,2015)、化学键位(Graham et al.,2004)和不同相分离过程。同时,铜同位素分馏机制等难点,仍存在诸多问题需要解决。
兰坪盆地是一个典型中-新生代陆内盆地,也是三江地区重要成矿带之一(阙梅英等,1998;Deng et al.,2014b)。金满矿床为盆地内发育的典型脉状铜矿床。因其地处特殊构造位置,并且在产状、控矿因素、矿物组成等方面明显与一般陆相砂页岩型铜矿床不同(颜文和李朝阳,1992;黄震,2005;刘家军等,2000;Wang et al.,2014a),对其成矿物质来源和成矿过程进行详细研究显得尤为重要。部分学者通过主成矿阶段石英40Ar-39Ar、方解石Sm-Nd等方法测得金满铜矿床主成矿作用发生于58~56Ma(Liu et al.,2002;刘家军等,2003;徐晓春等,2004;Zhang et al.,2013),毕先梅和莫宣学(2004)通过对金满极低级变质矿物伊利石进行K-Ar测得年龄为46.7Ma,也有部分学者认为,金满矿床与连城矿床属同一流体及构造下的产物,并利用辉钼矿Re-Os法测得成矿年龄为50~48Ma(毕先梅和莫宣学,2004;Zhang et al.,2013)。在成矿年代方面仍存在争议,但可以确定的是,金满矿床主成矿作用发生在印度-欧亚板块陆陆侧向碰撞的挤压褶皱期(>45Ma)(Deng et al.,2014b;李龚健,2014)。前人在一些方面取得共识,比如主要成矿作用发生在喜马拉雅造山运动早期(李小明,2001;刘家军等,2003;徐晓春等,2004;黄震,2005)、矿体与断裂、裂隙密切相关并呈脉状产出、成矿温度主要集中在中-低温范围内(颜文和李朝阳,1992;李小明,2001;黄震,2005)。然而也存在诸多争议,比如就成矿物质来源问题主要观点包括沉积岩来源(李峰等,1992,1993;肖荣阁等,1994;颜文和李朝阳,1997;张乾等,2002;徐启东和李建威,2003;徐启东和周炼,2004;宋玉财等,2011)、深部岩浆或地幔来源(Ji and Li,1998;Chi and Xue,2011;赵海滨,2006)、沉积岩层与深部多源混合(李峰等,1993;肖荣阁等,1994;刘家军等,2000;吴南平等,2003;黄震,2005;Zhang et al.,2013)等。绝大多数学者仅在同位素整体分布基础上对其来源进行讨论,未对矿区成矿阶段进行划分讨论,尚未得到一致意见。并且大多数学者利用Pb、S同位素间接对成矿物质来源进行示踪,具有一定不确定性。Jiang et al.(2002)曾对金满铜同位素组成进行研究,鉴于当时分析研究刚刚起步,数据分析有限,一些问题尚需继续研究。目前,金满矿床成矿物质来源存在分歧,成矿沉积机制需进一步深入讨论。
本文利用铜和硫同位素对成矿物质来源进行分析,其中铜作为直接成矿金属元素,与传统Pb同位素相比,在Cu成矿过程物源示踪上更加直观、可靠。本文先对金满矿床矿石进行矿石学、矿相学研究,并划分了成矿阶段,进而结合铜、硫同位素组成分析各阶段成矿物质来源情况及其在成矿过程中变化情况,避免对实验数据进行整体单一分析而忽略成矿过程的多变性。最后,结合成矿地质背景对金属沉淀机制等问题进行探讨。本文预期通过铜和硫同位素联合约束金满铜矿床成矿过程,并为其他同类型矿床研究提供参考。
1 区域地质 1.1 盆地演化兰坪盆地地处三江特提斯造山带中部。从早奥陶世到晚渐新世,随着三江地区多旋回复杂构造演化历史,其经历多期构造变迁(陈炳蔚等,1991;Mo et al.,1994;Metcalfe,2000,2002;邓军等,2012;Deng et al.,2014a;李龚健,2014)。兰坪盆地的构造演化,总体可以概括为如下几个阶段:
(1) 盆地裂解与增生。从早奥陶世,昌宁-孟连和金沙江-哀牢山古特提斯洋开启,思茅地块从华夏古陆分离出来(Metcalfe,1996,2002;邓军等,2011,2012;Deng et al.,2014a;Wang et al.,2016)。在中二叠世-中三叠世期间,华夏古陆向东迁移,保山地块向西移动,两者发生碰撞并最终拼合(魏君奇等,2008;Hennig et al.,2009;Jian et al.,2009;Deng et al.,2014a;Wang et al.,2014a)。部分残留的前寒武纪结晶基底存在于思茅地块中,主要由片麻岩、角闪岩、黑云-斜长角闪岩、绢云片岩以及沿盆地边缘的大理石组成,这些残留部分主要被古生代-新生代巨厚地层覆盖(Zhang et al.,2014;Wang et al.,2015a,b,2016)。
(2) 前陆盆地阶段。早-中三叠世,在兰坪-思茅盆地两侧继续碰撞挤压背景下隆升,从而使得兰坪盆地普遍缺失下三叠统(谭富文等,2001)。昌宁-孟连洋、哀牢山洋先后闭合,弧-陆、弧-弧碰撞,使兰坪-思茅盆地由弧后盆地进入前陆盆地阶段(潘桂棠等,2001,2003;江彪,2014;Wang et al.,2014b,2015a; Deng and Wang,2016)。
(3) 陆内裂谷盆地。中三叠世,在经过澜沧运动后,兰坪盆地两侧挤压状态有所释放,局部引张,初期盆地边缘发育滨浅海相碎屑岩建造。随着陆壳进一步拉张,深部物质沿两侧断裂上涌,出现酸性火山岩巨厚层堆积(朱创业等,1997;薛春纪等,2002;Deng et al.,2015a,b)。到晚三叠世初,在盆地两侧边缘发育海陆交互相碎屑岩-浅海相碳酸盐岩海进序列沉积,盆地边缘沿深大断裂发育中基性山岩,火山岩为钾质粗面玄武岩-高钾流纹岩“双峰”式岩浆岩序列(Peng et al.,2006;孔会磊等,2012;聂飞等,2012;Dong et al.,2013;Wang et al.,2015a)。
(4) 陆内坳陷盆地。中侏罗世,盆地沉积范围受到东西两侧早期造山带控制。盆地东西两侧形成西深东浅的坳陷构造格局,盆地内发育海陆交互相沉积(牟传龙等,1999;付修根,2005)。
(5) 前陆盆地。古近世末-始新世,喜马拉雅期地壳运动开始活跃,印度板块和欧亚板块碰撞的同时,扬子陆块向西挤压,使得东西两侧发生对冲推覆作用,形成逆冲推覆构造带,强烈的挤压作用使盆地巨厚的中、新生代地层强烈褶皱,并将两侧中生代岩石推覆到新生代的地层之上,盆地分化、进一步缩小,形成盆岭相间的构造格局(陶晓风等,2002;侯增谦等,2006;He et al.,2009;邓军等,2012;Deng et al.,2014a;Wang et al.,2016)。
(6) 走滑拉分盆地。晚渐新世以来,印度板块继续发生NNE向推挤,同时太平洋俯冲使扬子陆块向西推进,双向推挤,蜂腰地段收缩,形成了三江地区所有中生代盆地呈串珠状、块体向北、南移动或被挤离,形成了大规模NNW向断裂走滑,盆地分化为多个小型盆地,多呈菱形并具走滑拉分盆地特征(潘桂棠等,2001,2003;薛春纪等,2002;陶晓风等,2002;侯增谦等,2006;Wang et al.,2016)。
1.2 区域地层兰坪盆地地层主体为晚古生代-中生代-新生代盆地沉积。主要由石炭系到中新统以来的沉积岩层构成。在局部地区可见火山岩零星分布。盆地边缘缝合带可见变质岩。研究区内地层从早到晚,总体显示一套海相-陆相沉积演化:石炭系-侏罗系表现为海相沉积-火山岩沉积,白垩系-古近系、新近系则主要为陆相沉积(江彪,2014)。
第三系为红色碎屑岩、膏岩及煤系。白垩系为一套典型河湖相砂页岩、砾岩,且盆地明显从东、西两侧向中心收缩,且在盆地内沉积厚度不同。侏罗系为一套浅海相潮坪环境砂页岩夹灰岩,中侏罗世海域扩大,向东、西两侧出现海侵超覆。三叠系分上三叠统,平行不整合沉积一套碎屑岩和泥灰岩,底部为砾岩、含火山岩屑细砾岩和巨砾岩;中三叠统在盆地东、西两侧火山弧带外及盆地内部景谷-思茅之间的小墨江一带有分布,在思茅云仙下坡头村和震东乡坝塘村老公寨一带分别角度不整合于上石炭统和上二叠统之上。反映二叠纪后盆地基底受到构造变形和剥蚀作用;下三叠统缺失(潘桂棠等,2003)。
1.3 区域岩浆岩受三江构造演化影响,从古生代至新生代,兰坪盆地内都有以火山岩为主的岩浆岩发育,岩浆岩分布大多受深大断裂长期活动影响(江彪,2014)。
古生代岩浆岩主要沿盆地西缘澜沧江断裂带分布,南段发育晚泥盆世钠质火山岩,北段发育石炭纪以中性火山岩为主夹少量基性、酸性火山岩。该套火山岩属活动陆缘岛弧火山岩(谭富文等,1999;李玫,2004)。
中生代岩浆岩活动以发育中酸性岩浆岩为主,在盆地东、西缘均有发育。其中,西缘澜沧江带与研究区关系密切。三叠纪早中期,西澜沧江断裂带发育一套以中酸性火山岩为主夹部分火山碎屑岩,晚三叠世发育中基性火山岩,主要为玄武岩与安山岩。燕山期西缘以发育石英闪长岩、花岗闪长岩为主(范蔚茗,1992;阙梅英等,1998;何明勤等,2004;曾荣,2007)。
新生代岩浆岩活动在盆地内部尤为强烈,在盆地南缘永平-巍山一带出露有富碱斑岩和碱性杂岩体,主要形成于喜马拉雅运动早期(张玉泉和谢应雯,1997;Chung et al.,1998;阙梅英等,1998;董方浏等,2005;曾普胜等,2012)。另外,通过研究重磁、卫星数字图像等资料,在兰坪盆地内具有不连续隐伏断裂,并发现兰坪盆地深部隐伏岩体,这些隐伏岩浆活动很可能为附近成矿提供物质、能量(葛良胜等,1999)。
2 矿床地质 2.1 矿区地质概况金满铜矿床位于兰坪盆地西缘、澜沧江断裂带附近,澜沧江东侧(图 1)。矿区地层主要沿澜沧江两岸出露,主要有侏罗系、第四系地层(张锦让和温汉捷,2012)。其中,侏罗系以中侏罗统花开左组(J2h)为主,花开左组分上下两段,其中,上段(J2h2)分为上下两个亚段:下亚段(J2h2-1)为灰绿色、灰色、紫红色板岩与砂岩互层,灰绿色钙质板岩夹深灰色泥灰岩,上亚段(J2h2-2)为紫灰色、灰色中厚-厚层泥质砂岩、长石石英砂岩与灰黑色、灰色板岩互层。上段(J2h2)主要为紫红色片岩、灰色片岩、灰绿色片岩、灰白色泥岩及灰黑色泥灰岩,下段(J2h1)主要为灰色砂岩、紫红色泥质片岩、灰色硅质砂岩等。局部地区可见上侏罗统坝注路组(J3b),主要为紫红色板岩与砂岩互层(赵海滨,2006;王光辉,2010;Chi and Xue,2011)。第四系(Q)则主要由冲洪积砾岩、砂岩及粘土质砂岩。矿区内地层具浅程度变质,以板岩居多。
兰坪盆地分别展布有西部南北向强烈褶皱带、中部复式向斜带、东部复式背斜带。其中,金满矿床位于西部强烈褶皱带中。西以澜沧江深大断裂为界,东以大山箐-白莽山断裂为界,大致沿澜沧江两岸呈近南北向展布。在褶皱带内发育多个向斜和背斜,一部分褶皱发生倒转。另外,褶皱带内常见断裂,在一定程度上破坏褶皱。褶皱带内特别是澜沧江两岸,地层普遍发生轻度变质。褶皱带内,又具体分为澜沧江断裂带、麻地箐断裂、大山箐-白蟒山断裂、小格拉-恩棋复式背斜等(何龙清等,2004)。金满矿区位于恩琪复式背斜东翼次级倒转背斜内,矿体多数赋存于倒转翼中(图 2)。
矿区内主要褶皱为金满倒转背斜及其次级背斜、向斜。其中,金满背斜核部为中侏罗统花开左组下段,向东西两翼依次为花开左组上段下亚段(J2h2-1)、上亚段(J2h2-2)、坝注路组(J3b),轴向NNE,倾向NW,近直立,西翼倾向NW,倾角与轴面近似相同,为正常翼,东翼倾向NW,为倒转翼。在东翼发育一条本矿区最主要断层F1,走向与褶皱轴向近似平行,一直延伸到西翼(Chi and Xue,2011)。矿区内还存在一系列EW向断裂,将褶皱整体向东错移。矿区内发育劈理构造,主要是浅变质板岩地层(黄震,2005;赵海滨,2006)。在各类劈理中常见矿脉填充,成为容矿构造。矿区内未见岩浆岩分布,澜沧江断裂带西侧有碧罗雪山岩体,以花岗岩类岩石为主。
2.2 矿体与矿石 2.2.1 矿体空间展布矿体主要分布在金满褶皱东翼近核部,在花开左组上段下亚段(J2h2-1)与上亚段(J2h2-2)砂岩与碳质板岩之间发育一条显著断层F2,主要矿体沿此断裂展布(图 3)。另外,花开左组上段内常可见矿化沿劈理或节理发育。赋矿层位比较比较单一,多为花开左组上段(J2h2),其中以灰黑色砂岩、含碳质砂岩、板岩居多,局部地段可见矿化出现在花开左组上段(J2h2)灰黑色硅质砂岩、灰绿色板岩、碎裂岩以及灰黑色泥岩中。围岩蚀变以碳酸盐化和硅化为主。
矿石以脉状、网脉状为主,局部可见星点状。结构以充填结构、交代结构、包含结构等为主。主要金属铜矿物有黄铜矿、砷黝铜矿、斑铜矿、蓝辉铜矿等,局部可见少量辉砷钴矿。脉石矿物多为石英、铁白云石、方解石等,石英分为成矿前(图 4a)、成矿期(图 4b)和成矿后(图 4e)三种类型。基于野外观察及前人研究,金满矿床成矿主要分为两个阶段,从早至晚分别为石英-硫化物阶段(阶段1)和石英-碳酸盐-硫化物阶段(阶段2)。其中,石英-硫化物阶段多产于灰色硅质砂岩中,具一定破碎(图 4b),少数产于碳质板岩中(图 4c),金属矿物以黄铜矿为主,局部见砷黝铜矿、斑铜矿等硫化物(图 5a-d),脉石矿物以石英为主,在部分灰色板岩中可见石英-硫化物阶段含沥青等有机质(图 4d、图 5e,f),此类型矿石中石英等脉石矿物明显减少,金属矿物主要为黄铜矿、斑铜矿及砷黝铜矿(图 5e,f);石英-碳酸盐-硫化物阶段多产于灰色板岩中(图 4e-h),常见晶洞,金属矿物以砷黝铜矿为主,同时可见少量黄铜矿、斑铜矿(图 5g,h),脉石矿物以石英、铁白云石为主。
通过镜下观察,早期黄铜矿被砷黝铜矿不同程度交代构成交代结构(图 5d-f)、砷黝铜矿又包含早期形成的斑铜矿,构成包含结构(图 5h),同时斑铜矿又包含早期黄铜矿(图 5h)。另外,可见斑铜矿呈脉状穿插于早期形成的黄铜矿(图 5b)。在结合手标本特征,可知金满矿床硫化物形成顺序从早至晚依次为黄铜矿、斑铜矿和砷黝铜矿,脉石矿物石英则贯穿整个成矿作用过程及其前后,碳酸盐矿物主要出现在石英-碳酸盐-硫化物阶段(图 6)。
本次研究共采集了金满矿床9个新鲜矿石样品。在岩石学、岩相学、矿物学研究基础上,经过破碎、淘洗电磁分离、双目镜挑选等步骤,得到黄铜矿、斑铜矿、砷黝铜矿等13个单矿物样品,单矿物纯度达到99%以上。每件样品均进行硫同位素和铜同位素两项分析。
3.1 硫同位素硫同位素分析在中国科学院地质与地球物理研究所稳定同位素分析实验室完成。所取样品为主成矿阶段黄铜矿、斑铜矿、砷黝铜矿等硫化物,用玛瑙研钵磨至100目。每个样品称取至少5mg,将其与V2O5以18的比例混合,放入反应炉中在真空状态下加热到940℃,持续30min左右,将产生的SO2气体导入Finnigan Delta S型质谱仪中进行硫同位素的测量。硫同位素组成(δ34S)为相对于国际标准Canyon Diablo Troilite(CDT)的对比值,分析测试误差在0.2‰之内。最后结果以δ值表示,δ34SCDT=[(34S/32S)样/(34S/32S)CDT-1] ×1000(Li et al.,2013)。
3.2 铜同位素本次测试是在中国地质大学(北京)的同位素地球化学国家重点实验室完成。选取至少2μg 磨至100目硫化物单矿物。采用多接收电感耦合等离子体质谱仪(MC-ICP-MS)技术进行测试。首先,向样品加入体积比为11的HF、HNO3混合酸,并在电热板上加热至160℃,蒸干样品以去除样品中F元素。然后加入体积13的HNO3和HCL,加热至80℃进一步溶解残渣,80℃蒸干后,再向残渣中加入浓HNO3加热样品,使样品完全溶解,130℃加热蒸干后准备上机测试。测试前利用大孔径强碱性阴离子交换树脂AGMP-1M对样品纯化,加入1mL 8mol/L HCL和0.001% H2O2混合溶液进行淋洗。最后,经过在MC-ICP-MS上进行测试,利用δ65Cu(‰)=[(65Cu/63Cu)样品/(65Cu/63Cu)标样-1] ×1000,目前国际通用铜同位素标准为美国标准局(NIST)的标样SRM976(65Cu/63Cu=0.4456±0.0004)计算出δ65Cu值,具体实验步骤参考(Liu et al.,2014)。
4 结果 4.1 硫同位素结果通过本次测试,根据各阶段硫同位素组成,综合考虑地质背景及物理化学条件来对成矿物质硫同位素来源进行探讨。详细数据见表 1,并绘制成直方图(图 7a),整体显示绝大部分δ34SCDT值在-11.6‰~+3.4‰之间,平均值为-3.7‰,极差为15.0‰,范围较广。其峰值在-2.0‰~-4.0‰之间,大致呈塔式分布。在各阶段中,石英-硫化物阶段硫同位素组成范围最广,多数集中在-5.0‰~+1.0‰之间,个别硫化物富集硫的轻同位素,δ34S值分布在-10.1‰~-11.6‰之间;石英-碳酸盐-硫化物阶段硫同位素则主要集中在+2.3‰~+3.4‰之间。
一般用δ65Cu表示铜同位素组成,δ65Cu(‰)=[(65Cu/63Cu)样品/(65Cu/63Cu)标样-1]×1000,△δ65Cu(A-B)=δ65CuA-δ65CuB。目前国际通用铜同位素标准为美国标准局(NIST)的标样SRM976(65Cu/63Cu=0.4456±0.0004)(MaréMaréchal et al.,1999),目前新的标准物质(如ERM-AE633、ERM-AE647等)逐渐在应用(Moeller et al.,2012;王泽洲等,2015)。
为确保数据准确性,本次实验每个样品重复测试三次,最后取其平均值,具体数据见表 2,并绘制直方图(图 7b)。从直方图可见,金满铜同位素δ65Cu多数分布在-0.35‰~+0.21‰之间,个别样品达到-1.02‰、-1.10‰,极差为1.31‰,平均值为-0.17‰。其中,石英-硫化物阶段硫化物的铜同位素δ65Cu值均在零附近;石英-碳酸盐-硫化物阶段中硫化物铜同位素则明显富集铜的轻同位素,δ65Cu值分别为-1.02‰和-1.10‰。
硫同位素常常作为研究成矿过程中成矿物质来源的重要示踪元素。不同来源的硫参与成矿,流体通常会显示不同的硫同位素特征,因而根据矿床中硫化物硫同位素特征分析成矿硫来源成为矿床物源研究中一种重要方法(Ohmoto,1972;郑永飞和陈江峰,2000)。
金满矿床可见硫化物与石英、方解石、白云石等伴生以及有大量沥青、有机碳等产出,并未发现有硫酸盐。同时,前人研究表明,金满矿床流体中有CO2以及CH4、CO等还原性气体(颜文和李朝阳,1997;王江海等,1998;Chi and Xue,2011),兰坪盆地西缘流体pH值平均为6.0(赵海滨,2006),表明流体处于相对弱还原、酸性环境。另外,金满成矿温度多在150~300℃范围内,属中低温矿床。在此条件下,低氧逸度、低pH值,温度低于350℃,金属硫化物与热液流体中硫同位素δ34S值相近(Ohmoto,1972;Ohmoto and Rye,1979;Hoefs,2009)。由此,本次试验中测得硫化物硫同位素组成可代表成矿流体中硫同位素特征。在此条件下,我们直接可以结合地质环境,流体性质及硫同位素特点对各阶段进行讨论。
石英-硫化物阶段(阶段1)硫同位素δ34S值分布较广,从-11.6‰~+1.0‰均有分布,多数集中在零值附近,个别富集硫的轻同位素,δ34S值达到-10.1‰、-11.6‰、-11.4‰。部分学者解释为硫来自深部幔源(王江海等,1998;Liu et al.,2001;李永森,2002;赵海滨,2006),根据硫同位素特征我们不排除有这种可能性。同时,在研究区内部分矿段可见干沥青等有机质,Liu et al.(2001)在研究中发现矿石中有典型木质结构。前人对金满流体包裹体研究表明,流体中富含CO2、CH4等气体,Liu et al.(2001)、黄震(2005)等通过研究CH4的碳同位素,表明31C值与矿石中有机物碳同位素特征十分相似,有机质受热分解CH4,可见在金满成矿过程中,有机质起到了重要作用。 Ohmoto and Goldhaber(1997)研究表明,细菌作用可以使得海相来源硫δ34S值降低20‰~60‰。由此,研究区硫来源还存在另一种可能性,即石英-硫化物阶段硫可能由不同来源硫的混合而得,即部分硫来自兰坪盆地膏岩层硫酸盐,富集硫的重同位素(δ34S值正高),以SO42-形式经含矿热液携带至浅部,被有机质受热分解产生的CH4还原,与少量生物成因硫混合、叠加,从而将原本正高δ34S值的硫变为δ34S值接近零甚至为负值的硫同位素特征。因此,在金满矿床成矿过程中硫主要来源于盆地内膏岩层硫酸盐,同时伴有少量生物成因硫及深部来源硫。
石英-碳酸盐-硫化物阶段(阶段2),本次研究针对本阶段仅对两个样品进行测试,但数据比较集中,δ34S值分别为+2.3‰、+3.4‰,较阶段1更富集硫的重同位素,硫来源更有可能为深部来源,也不排除随着成矿作用进行,有机质作用减弱,生物成因硫数量减少,海相沉积岩来源硫与生物成因硫混合使得δ34S值仅仅降到接近于零的正值。
整体上,金满矿床硫同位素比较稳定,主要来源于盆地内海相沉积岩,成矿流体流经地层淋滤,随流体运移至浅部参与成矿。在热液提供热量作用下有机质热分解产生大量强还原性物质如CH4等还原SO42-,外加部分来自富含有机质地层中生物成因硫,构成金满矿床成矿物质硫。同时,也不排除部分来自深部地壳、幔源硫参与成矿。随着成矿作用进行,成矿物质来源也在逐渐变化,反应在硫上则表现为有机质、生物在成矿中的作用越来越小,来自地层海相沉积岩硫相对增多。
5.2 成矿物质铜来源铜同位素分馏机制十分复杂,受氧化还原反应、铜在气液相之间分配、流体中络合形式、沉淀的物理化学条件(Eh、pH、温度)、有机质等多方面影响(Seo et al.,2007;Asael et al.,2009;Mathur et al.,2009;Maher et al.,2011;Sherman,2013;王泽洲等,2015)。因此在分析铜同位素在成矿过程中分馏情况,需要综合考虑以上影响因素。
就目前研究情况,已初步确定各储库同位素组成(Maréchal and Albarède,2002;Luck et al.,2003;Albarède,2004;Moynier et al.,2007;Vance et al.,2008;王跃和朱祥坤,2010)。其中,地幔及源于地幔物质铜同位素(δ65Cu值)相对稳定,-0.20‰~+0.14‰(Rouxel et al.,2004;Othman et al.,2006;Herzog et al.,2009;Li et al.,2009)。不同矿床类型铜同位素组成也有较大差别:岩浆矿床(-0.62‰~+0.40‰)(Maréchal et al.,1999;Zhu et al.,2000;Larson et al.,2003)、VMS型矿床(-0.62‰~+0.34‰)(Mason et al.,2005;Housh TB and Çiftçi E,2008)变化范围较小,而矽卡岩、斑岩(-1.29‰~+2.98‰)(Graham et al.,2004;钱鹏等,2006;Maher and Larson,2007;Mathur et al.,2009;李振清等,2009;王跃等,2014)、热液脉型矿床(-3.70‰~+2.41‰)(Jiang et al.,2002;Markl et al.,2006)、沉积矿床(-2.54‰~-0.66‰)(Asael et al.,2007)中铜同位素组成变化范围较大。
本次研究获得铜同位素数据相对比较集中。石英-硫化物阶段硫化物的铜同位素整体比石英-碳酸盐-硫化物阶段要富集铜的重同位素。虽然铜同位素组成相对集中,但仍有规律可循,在同一成矿阶段,黄铜矿相比于斑铜矿,富集铜的重同位素(65Cu黄铜矿-65Cu斑铜矿=0.19‰~0.56‰),可见铜同位素在共生矿物之间分馏过程中符合重同位素优先进入矿物晶格和结合键比较强的配位的规律(Graham et al.,2004)。
石英-硫化物阶段硫化物的铜同位素δ65Cu值多分布在零附近。这与前人总结的岩浆、地幔来源铜的组成十分相近。结合兰坪盆地演化历史,很可能是在新生代初期,随着盆地西缘挤压有所释放,局部变为拉张环境,隐伏岩浆等深部物质随澜沧江深大断裂上涌,成矿流体携带来自深部成矿物质运移至有利部位沉积成矿。前人在对金满流体包裹体研究中,发现流体包裹体中富含CO2、H2O等气体,并认为部分成矿流体来自深部岩浆或地幔(肖荣阁等,1994;Ji and Li,1996;王光辉,2010;Chi and Xue,2011),并且在岩浆脱气以及热液运移过程中,铜同位素主要以气相运移至浅部沉积成矿(Halter et al.,2005;包志伟,2007;杨志明和侯增谦,2009;Rempel et al.,2012)。
石英-碳酸盐-硫化物阶段硫化物的铜同位素相比于前一阶段,富集铜的轻同位素。究其原因,认为与成矿物质铜源区差异有关。此阶段铜同位素特征与海相沉积物、页岩铜同位素组成十分相近(Archer and Vance,2004),因此很可能是成矿流体在流经盆地地层时淋滤其中的铜,与膏岩层来源硫以硫酸盐形式运移至浅部有利位置沉积成矿,同时也可能因为成矿晚期温度较低,更多热卤水参与进来,氧逸度发生变化(黄震,2005;王光辉,2010;Chi and Xue,2011),导致此阶段铜同位素富集铜的轻同位素。
综上,金满矿床成矿物质铜元素主要来自下地壳或上地幔和盆地内成矿流体流经的地层。其中,早阶段成矿物质铜主要来自下地壳或上地幔,晚阶段铜则由成矿流体淋滤盆地内地层。在经过岩浆去气、出溶等过程中,铜元素进入气相。深部来源成矿流体及热卤水携带铜元素沿盆地西缘形成的主、次级深大断裂上涌,在有利位置沉淀成硫化物,因成矿作用的多阶段性和持续性,最终先形成的铜硫化物富集铜的重同位素,后形成的硫化物富集铜的轻同位素。
5.3 矿床形成机制对于金满矿床沉淀机制,以下几种观点比较流行:一种认为两种不同成分的流体混合导致热液物理、化学性质骤变,引起不平衡而引发金属以硫化物形式沉淀,比如含氧化性金属硫酸盐流体与含具还原性质H2S的流体混合,发生氧化还原作用,使金属以硫化物形式沉淀(Beales,1975;Anderson and Cermignani,1991);第二种观点认为金属以硫氢配合物形式存在,并且与具还原性质的硫共存,当外界条件发生变化时因环境不平衡而沉淀金属硫化物(Anderson,1975;Ohmoto and Rye,1979)。
分析成矿物质沉淀机制,需要结合含矿流体所处物理、化学、生物条件及运移过程中可能发生的变化,同时还应该考虑成矿物质来源及赋存状态等因素(王光辉,2010)。
对金满矿床成矿流体,前人已做过大量工作。金满矿床成矿过程中温度集中在130~280℃、90~210℃范围内(颜文和李朝阳,1992;王光辉,2010),因此温度变化可能不是成矿物质沉淀的控制因素。金满成矿阶段中流体包裹体富含CO2、CH4等气体,其中CH4的碳同位素特征表明CH4来源于有机质的热分解,在金满矿床可见典型木质结构(Liu et al.,2001),并且在本次研究中发现矿石中存在大量沥青等有机质,并且与金属硫化物密切相关。另外,研究区内成矿流体来源多样,一种是盆地热卤水体系,另一种则是来自深部下地壳、上地幔流体(李峰等,1993;黄震,2005;王光辉,2010;Chi and Xue,2011)。其中,盆地热卤水主要淋滤地层中硫、铜以及还原性质的硫及气体CH4等成矿物质;来自深部的隐伏岩浆流体则主要携带深部来源硫、铜,同时可能淋滤部分地层中的硫。结合本次研究硫、铜元素的来源以及成矿流体性质,认为金满矿床主要为不同性质流体混合发生氧化还原导致沉积成矿。具体表现为,来自深源成矿流体携带地层中氧化性质的硫元素与铜,以硫酸盐形式沿深大断裂上涌,运移至浅部与含还原成分的热卤水混合,受热分解的还原性CH4与SO42-发生氧化还原反应生成还原硫(CH4+SO42-→S2-+CO2+2H2O),进而与金属阳离子反应生成大量硫化物沉积成矿。
另外,金属元素与部分硫在深源成矿流体中以硫氢配合物形式存在,当流体沿着断裂上涌时,因压力快速减小,发生沸腾作用,从而导致热液中的CO2、H2O、等气体逸出,金属元素及硫浓度增加,原化学平衡被打破,金属元素与还原硫以金属硫化物形式沉积析出。
6 结论(1) 金满铜矿床硫主要来自兰坪盆地沉积地层硫酸盐,同时有少量深部来源硫及生物成因硫,由热卤水及深部热液流经过地层时淋滤获取,并带至有利位置。
(2) 铜主要来自下地壳或上地幔,少量来自盆地地层,在岩浆出溶和去气过程中进入液相、气相运移至有利位置沉淀成矿。
(3) 不同性质流体混合发生氧化还原作用促使金属硫化物沉淀是金满矿床主要形成机制,流体外界条件突变,压力下降,气体逸出等过程对硫化物沉淀起到一定作用。
致谢 论文的完成得益于邓军教授、袁万明教授、杨立强教授、王庆飞教授、龚庆杰教授、张静教授、孙祥副教授、刘学飞副教授及李龚健博士后的指导;野外工作得到云南省地质矿产勘查开发局、云南省有色金属地质矿产局、云南省地质调查局、云南黄金矿业集团股份有限公司、云南铜业股份有限公司和各矿山工作人员的大力支持和帮助;实验过程中得到了刘胜遨、刘伟等老师的悉心指导;研究生刘欢、肖昌浩、江彪、马楠、蒋成竹、王乔等参与了部分研究工作;同时,对审稿人的悉心审阅,提出许多宝贵意见;在此一并表示感谢。[1] | Albarède F. 2004. The stable isotope geochemistry of copper and zinc. Reviews in Mineralogy and Geochemistry , 55 (1) :409–427. DOI:10.2138/gsrmg.55.1.409 |
[2] | Anderson GM. 1975. Precipitation of mississippi valley-type ores. Economic Geology , 70 (5) :937–942. DOI:10.2113/gsecongeo.70.5.937 |
[3] | Anderson GM, Cermignani C. 1991. Mineralogical thermodynamic constraints on the metasomatic origin of the York River nepheline, Bancroft, Ontario. Canadian Mineralogist , 29 :965–980. |
[4] | Archer C, Vance D. 2004. Mass discrimination correction in multiple-collector plasma source mass spectrometry:An example using Cu and Zn isotopes. Journal of Analytical Atomic Spectrometry , 19 (5) :656–665. DOI:10.1039/b315853e |
[5] | Asadi S, Mathur R, Moore F, Zarasvandi A. 2015. Copper isotope fractionation in the Meiduk porphyry copper deposit, Northwest of Kerman Cenozoic magmatic arc, Iran. Terra Nova , 27 (1) :36–41. DOI:10.1111/ter.12128 |
[6] | Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L. 2007. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chemical Geology , 243 (3-4) :238–254. DOI:10.1016/j.chemgeo.2007.06.007 |
[7] | Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L. 2009. Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chemical Geology , 262 (3-4) :147–158. DOI:10.1016/j.chemgeo.2009.01.015 |
[8] | Bao ZW. 2007. Vapor-transport of ore metals:A review. Geotectonica et Metallogenia , 31 (1) :83–91. |
[9] | Beales FW. 1975. Precipitation mechanisms for Mississippi Valley-type ore deposits. Economic Geology , 70 (5) :943–948. DOI:10.2113/gsecongeo.70.5.943 |
[10] | Bi XM, Mo XX. 2004. Transition from diagenesis to low-grade metamorphism and related minerals and energy resources. Earth Science Frontiers , 11 (1) :287–294. |
[11] | Chen BW, Li YS, Qu JC, Wang KY, Ai CX, Zhu ZZ. 1991. On the Main Geotectonic Problems in the Sanjiang Region (Nujiang-Langcangjiang-Jinshajiang Region) and Their Relations to Metallization :1–112. |
[12] | Chi GX, Xue CJ. 2011. Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman, Yunnan, China:Implications for mineralization environment and classification of the deposit. Mineralium Deposita , 46 (4) :365–380. DOI:10.1007/s00126-011-0337-8 |
[13] | Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL, WangPL. 1998. Diachronous uplift of the Tibetan Plateau starting 40Myr ago. Nature , 349 (6695) :769–773. |
[14] | Deng J, Yang LQ, Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica , 27 (9) :2501–2509. |
[15] | Deng J, Wang CM, Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica , 28 (5) :1349–1361. |
[16] | Deng J, Wang QF, Li GJ, Li CS, Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research , 26 (2) :419–437. DOI:10.1016/j.gr.2013.08.002 |
[17] | Deng J, Wang QF, Li GJ, Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews , 138 :268–299. DOI:10.1016/j.earscirev.2014.05.015 |
[18] | Deng J, Wang QF, Li GJ, Zhao Y. 2015a. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geology Reviews , 65 :42–54. DOI:10.1016/j.oregeorev.2014.08.002 |
[19] | Deng J, Wang QF, Li GJ, Hou ZQ, Jiang CZ, Danyushevsky L. 2015b. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China. Ore Geology Reviews , 70 :457–485. DOI:10.1016/j.oregeorev.2015.02.015 |
[20] | Deng J, Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research , 36 :219–274. DOI:10.1016/j.gr.2015.10.003 |
[21] | Dong FL, Mo XX, Hou ZQ, Wang Y, Bi XM, Zhou S. 2005. 40Ar/39Ar ages of Himalayan alkaline rocks in Lanping basin, Yunnan Province, and their geological implications. Acta Petrologica et Mineralogica , 24 (2) :103–109. |
[22] | Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL, Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China:Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences , 62 :282–294. DOI:10.1016/j.jseaes.2012.10.003 |
[23] | Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A. 2004. Experimental study of the copper isotope fractionation between aqueous Cu(Ⅱ) and covellite, CuS. Chemical Geology , 209 (3-4) :259–269. DOI:10.1016/j.chemgeo.2004.06.010 |
[24] | Fan WM. 1992. On Lanpin-Siman diwa basin and magmati rocks in its neigbouring regions, western Yunnan. Geotectonica et Metallogenia , 16 (1) :83–84. |
[25] | Fernandez A, Borrok DM. 2009. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chemical Geology , 264 (1-4) :1–12. DOI:10.1016/j.chemgeo.2009.01.024 |
[26] | Fu XG. 2005. Evolution of Lanping Basin and formation of relevant metal deposits. Journal of Earth Sciences and Environment , 27 (2) :26–32. |
[27] | Ge LS, Yang JH, Guo XD, Zou YL, Chen SX, Zhang XH. 1999. The hidden EW-structure existing in north-western Yunnan and the evidence. Yunnan Geology , 18 (2) :155–167. |
[28] | Graham S, Pearson N, Jackson S, Griffin W, O'Reilly SY. 2004. Tracing Cu and Fe from source to porphyry:in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chemical Geology , 207 (3-4) :147–169. DOI:10.1016/j.chemgeo.2004.02.009 |
[29] | Haest M, Muchez P, Petit JCJ, Vanhaecke F. 2009. Cu Isotope ratio variations in the Dikulushi Cu-Ag deposit, DRC:of primary origin or induced by supergene reworking. Economic Geology , 104 (7) :1055–1064. DOI:10.2113/gsecongeo.104.7.1055 |
[30] | Halliday AN, Lee D-C, Christensen JN, Walder AJ, Freedman PA, Jones CE, Hall CM, Yi W, Teagle D. 1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes , 146-147 (21) :33. |
[31] | Halter WE, Heinrich CA, Pettke T. 2005. Magma evolution and the formation of porphyry Cu-Au ore fluids:Evidence from silicate and sulfide melt inclusions. Mineralium Deposita , 39 (8) :845–863. DOI:10.1007/s00126-004-0457-5 |
[32] | He LQ, Chen KX, Yu FM, Wei JQ, Yang AP, Li H. 2004. Nappe tectonics and their ore-controlling of Langping basin in Yunnan Province. Geology and Prospecting , 40 (4) :7–12. |
[33] | He LQ, Song YC, Chen KX, Hou ZQ, Yu FM, Yang ZS, Wei JQ, Li Z, Liu YC. 2009. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews , 36 (1-3) :106–132. DOI:10.1016/j.oregeorev.2008.11.001 |
[34] | He MQ, Liu JJ, Li CY, Li ZM, Liu YP. 2004. The Study of Fluid Metallogenic Mechanism in Large Scale Pb-Zn-Cu Deposits Concentrating Area of Lanping Basin:Taking Baiyangping Cu-Co Polymetallic Deposit as Example :1–117. |
[35] | Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF, Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys:U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos , 113 (3-4) :408–422. DOI:10.1016/j.lithos.2009.04.031 |
[36] | Herzog GF, Moynier F, Albarède F, Berezhnoy AA. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta , 73 (19) :5884–5904. DOI:10.1016/j.gca.2009.05.067 |
[37] | Hoefs J. 2009. Stable Isotope Geochemistry. 6th Edition. Berlin Heidelberg:Springer-Verlag Berlin Heidelberg :1–285. |
[38] | Hou ZQ, Pan GT, Wang AJ, Mo XX, Tian SH, Sun XM, Ding L, Wang EQ, Gao YF, Xie YL, Zeng PS, Qin KZ, Xu JF, Qu XM, Yang ZM, Yang ZS, Fei HC, Meng XJ, Li ZQ. 2006. Metallogenesis in Tibetan collisional orogenic belt:Ⅱ. Mineralization in late-collisional transformation setting,. Mineral Deposits , 25 (5) :521–543. |
[39] | Housh TB and Çiftçi E. 2008. Cu isotope geochemistry of volcanogenic massive sulphide deposits of the eastern Pontides, Turkey. IOP Conference Series:Earth and Environmental Science , 2 (1) :01202512–25. |
[40] | Huang Z. 2005. Geological and geochemical studies on the regional magmatism and mineralization of Lancangjiang volcanic and intrusive rock belt of Yunnan Province. Ph. D. Dissertation. Hefei:Hefei University of Technology, 1-120 (in Chinese with English summary) |
[41] | Ji HB, Li CY. 1996. Geochemistry of the Jinman vein-type copper deposit, western Yunnan Province, China I. element geochemical characteristics. Chinese Journal of Geochemistry , 15 (2) :172–184. |
[42] | Ji HB, Li CY. 1998. Geochemistry of Jinman copper vein deposit, West Yunnan Province, China Ⅱ. Fluid inclusion and stable isotope geochemical characteristics. Chinese Journal of Geochemistry , 17 (1) :81–90. |
[43] | Jian P, Liu DY, Kr ner A, Zhang Q, Wang YZ, Sun XM, Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos , 113 (3-4) :767–784. DOI:10.1016/j.lithos.2009.04.006 |
[44] | Jiang B. 2014. Mineralization of sedimentary-rock-hosted lead-zinc deposits of the Lanping-Simao basin in southern part of Sanjiang area. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-185 (in Chinese with English summary) |
[45] | Jiang SY, Woodhead J, Yu JM, Pan JY, Liao QL, Wu NP. 2002. A reconnaissance of Cu isotopic compositions of hydrothermal vein-type copper deposit Jinman, Yunnan, China. Chinese Science Bulletin , 47 (3) :247–250. DOI:10.1360/02tb9059 |
[46] | Kimball BE, Mathur R, Dohnalkova AC, Wall AJ, Runkel RL, Brantley SL. 2009. Copper isotope fractionation in acid mine drainage. Geochimica et Cosmochimica Acta , 73 (5) :1247–1263. DOI:10.1016/j.gca.2008.11.035 |
[47] | Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R, Wang QL. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province:Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Acta Petrologica Sinica , 28 (5) :1438–1452. |
[48] | Larson PB, Maher K, Ramos FC, Chang ZS, Gaspar M, Meinert LD. 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology , 201 (3-4) :337–350. DOI:10.1016/j.chemgeo.2003.08.006 |
[49] | Li F, Fu WM, Ran CY. 1992. Research on the source of ore-forming materials of Jinman copper deposit, Lanping County. Journal of Kunming Institute of Technology , 17 (4) :8–15. |
[50] | Li F, Fu WM, Ran CY, Zhou ZM, Zhao ZB, Lu WJ. 1993. Geological and geochemical characteristics of Jinman copper deposit in Lanping County, Yunnan Province. Mineral Resources and Geology , 7 (3) :176–182. |
[51] | Li GJ, Wang QF, Wang JQ, Fang QL. 2013. Geological and geochemical characteristics of the Huangshilao stratabound gold deposit in the Tongguanshan orefield, Tongling, East-Central China. Resource Geology , 63 (2) :141–154. DOI:10.1111/rge.12001 |
[52] | Li GJ. 2014. Tethys tectonic evolution and metallogenesis of important mineral deposits in the Sanjiang Region, SW China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-179 (in Chinese with English summary) |
[53] | Li M. 2004. Petrological characteristic of volcanic rocks in the Shiden-Tu'e area, Lanping County, Yunnan. Geology in China , 31 (1) :64–69. |
[54] | Li WQ, Jackson SE, Pearson NJ, Alard O, Chappell BW. 2009. The Cu isotopic signature of granites from the Lachlan fold belt, SE Australia. Chemical Geology , 258 (1-2) :38–49. DOI:10.1016/j.chemgeo.2008.06.047 |
[55] | Li WQ, Jackson SE, Pearson NJ, Graham S. 2010. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochimica et Cosmochimica Acta , 74 (14) :4078–4096. DOI:10.1016/j.gca.2010.04.003 |
[56] | Li XM. 2001. Metallogenic age of Jinman copper deposit in western Yunnan Province, China. Geoscience , 15 (4) :405–408. |
[57] | Li YS. 2002. The geochemical studies on copper polymetallic deposits of middle-southern part of Lancangjiang, Yunnan Province, China. Master Degree Thesis. Hefei:Hefei University of Technology :1–96. |
[58] | Li ZQ, Yang ZM, Zhu XK, Hou ZQ, Li SZ, Li ZH, Wang Y. 2009. Cu isotope composition of Qulong porphyry cu deposit, Tibet. Acta Geologica Sinica , 83 (12) :1985–1996. |
[59] | Liu JJ, Li CY, Pan JY, Liu XF, Zhang Q, Liu YP. 2000. Ore-forming material sources of the copper deposits from sandstone and shale in Lanping-Simao Basin, western Yunnan and their genetic implications. Geology and Prospecting , 36 (4) :16–19. |
[60] | Liu JJ, Li CY, Zhang Q, Pan JY, Liu YP, Liu XF, Liu SR, Yang WG. 2001. Wood textures in Jinman copper deposit in western Yunnan and their genetic implications. Science in China (Series D) , 44 (6) :545–554. DOI:10.1007/BF02876214 |
[61] | Liu JJ, Li ZM, Zhang Q, Liu YP, Li CY, He M, Sang HQ, Yang WG, Yang AP. 2002. 40Ar/39Ar fast neutron activation ages of quartz from the Jinman vein copper deposit in western Yunnan and their significance. Chinese Journal of Geochemistry , 21 (3) :227–233. DOI:10.1007/BF02831087 |
[62] | Liu JJ, Li ZM, Liu YP, Li CY, Zhang Q, He MQ, Yang WG, Yang AP, Sang HQ. 2003. The metallogenic age of Jinman vein copper deposit, western Yunnan. Geoscience , 17 (1) :34–39. |
[63] | Liu SA, Li DD, Li SG, Teng FZ, Ke S, He YS, Lu YH. 2014. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry , 29 (1) :122–133. DOI:10.1039/C3JA50232E |
[64] | Luck JM, Othman DB, Barrat JA, Albarède F. 2003. Coupled 63Cu and 16O excesses in chondrites. Geochimica et Cosmochimica Acta , 67 (1) :143–151. DOI:10.1016/S0016-7037(02)01038-4 |
[65] | Lyon TDB, Fell GS. 1990. Isotopic composition of copper in serum by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry , 5 (2) :135–137. DOI:10.1039/ja9900500135 |
[66] | Maher KC, Larson PB. 2007. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Perú. Economic Geology , 102 (2) :225–237. DOI:10.2113/gsecongeo.102.2.225 |
[67] | Maher KC, Jackson S, Mountain B. 2011. Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250℃ and 300℃. Chemical Geology , 286 (3-4) :229–239. |
[68] | Maréchal CN, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology , 156 (1-4) :251–273. DOI:10.1016/S0009-2541(98)00191-0 |
[69] | Maréchal C, Albarède F. 2002. Ion-exchange fractionation of copper and zinc isotopes. Geochimica et Cosmochimica Acta , 66 (9) :1499–1509. DOI:10.1016/S0016-7037(01)00815-8 |
[70] | Markl G, Lahaye Y, Schwinn G. 2006. Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochimica et Cosmochimica Acta , 70 (16) :4215–4228. DOI:10.1016/j.gca.2006.06.1369 |
[71] | Mason TFD, Weiss DJ, Chapman JB, Wilkinson JJ, Tessalina SG, Spiro B, Horstwood MSA, Spratt J, Coles BJ. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology , 221 (3-4) :170–187. DOI:10.1016/j.chemgeo.2005.04.011 |
[72] | Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S. 2005. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochimica et Cosmochimica Acta , 69 (22) :5233–5246. DOI:10.1016/j.gca.2005.06.022 |
[73] | Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G. 2009. Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration , 102 (1) :1–6. DOI:10.1016/j.gexplo.2008.09.004 |
[74] | Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences , 43 (6) :605–623. DOI:10.1080/08120099608728282 |
[75] | Metcalfe I. 2000. The bentong-raub suture zone. Journal of Asian Earth Sciences , 18 (6) :691–712. DOI:10.1016/S1367-9120(00)00043-2 |
[76] | Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences , 20 (6) :551–566. DOI:10.1016/S1367-9120(02)00022-6 |
[77] | Mo XX, Deng JF, Lu FX. 1994. Volcanism and the evolution of Tethys in Sanjiang area, southwestern China. Journal of Southeast Asian Earth Sciences , 9 (4) :325–333. DOI:10.1016/0743-9547(94)90043-4 |
[78] | Moeller K, Schoenberg R, Pedersen RB, Weiss D, Dong SF. 2012. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research , 36 (2) :177–199. DOI:10.1111/ggr.2012.36.issue-2 |
[79] | Mou CL, Wang J, Yu Q, Zhang LS. 1999. The evolution of the sedimentary basin in Lanping area during Mesozoic-Cenozoic. Journal of Mineralogy and Petrology , 19 (3) :30–36. |
[80] | Moynier F, Blichert-Toft J, Telouk P, Luck JM, Albarède F. 2007. Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochimica et Cosmochimica Acta , 71 (17) :4365–4379. DOI:10.1016/j.gca.2007.06.049 |
[81] | Nie F, Dong GC, Mo XX, Zhu DC, Dong ML, Wang X. 2012. Geochemistry, zircon U-Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications. Acta Petrologica Sinica , 28 (5) :1465–1476. |
[82] | Nie LM, Li ZQ. 2012. Copper isotope and its applications of mineral deposits. Journal of East China Institute of Technology (Natural Science Edition) , 35 (1) :75–80. |
[83] | Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology , 67 (5) :551–578. DOI:10.2113/gsecongeo.67.5.551 |
[84] | Ohmoto H, Rye R. 1979. Isotopes of sulfur and carbon. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley :509–576. |
[85] | Ohmoto H, Goldhaber MB. 1997. Sulfur and carbon isotopes. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York:Wile :517–611. |
[86] | Othman BD, Luck JM, Bodinier JL, Arndt NT, Albarède F. 2006. Cu-Zn isotopic variations in the Earth's mantle. Geochimica et Cosmochimica Acta , 70 (18) :A46. |
[87] | Pan GT. Wang LQ, Li XZ, Wang JM, Xu Q. 2001. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology , 21 (3) :1–26. |
[88] | Pan GT, Xu Q, Hou ZQ, Wang LQ, Du DX, Mo XX, Li DM, Wang MJ, Li XZ, Jiang XS, Hu YZ. 2003. Archipelagic Orogenesis, Metallogenic Systems and Assessment of the Mineral Resources along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing:Geological Publishing House :1–420. |
[89] | Pękala M, Asael D, Butler IB, Matthews A, Rickard D. 2011. Experimental study of Cu isotope fractionation during the reaction of aqueous Cu(Ⅱ) with Fe(Ⅱ) sulphides at temperatures between 40 and 200℃. Chemical Geology , 289 (1-2) :31–38. DOI:10.1016/j.chemgeo.2011.07.004 |
[90] | Peng TP, Wang YJ, Fan WM, Liu DY, Shi YR, Miao LC. 2006. SHRIMP ziron U-Pb geochronology of Early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Science in China (Series D) , 49 (10) :1032–1042. DOI:10.1007/s11430-006-1032-y |
[91] | Qian P, Lu JJ, Liu FX. 2006. Isotopic tracing of ore-forming source materials in the porphyry copper deposit of Dexing, Jiangxi Province. Global Geology , 25 (2) :135–140. |
[92] | Que MY, Chen DM, Zhang LS, Xia WJ, Zhu CY. 1998. Copper Deposits in Lanping and Simao Basin :1–109. |
[93] | Rempel KU, Liebscher A, Meixner A, Romer RL, Heinrich W. 2012. An experimental study of the elemental and isotopic fractionation of copper between aqueous vapour and liquid to 450℃ and 400 bar in the CuCl-NaCl-H2O and CuCl-NaHS-NaCl-H2O systems. Geochimica et Cosmochimica Acta , 94 :199–216. DOI:10.1016/j.gca.2012.06.028 |
[94] | Rouxel O, Fouquet Y, Ludden JN. 2004. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge. Economic Geology , 99 (3) :585–600. DOI:10.2113/gsecongeo.99.3.585 |
[95] | Seo JH, Lee SK, Lee I. 2007. Quantum chemical calculations of equilibrium Copper (I) isotope fractionations in ore-forming fluids. Chemical Geology , 243 (3-4) :225–237. DOI:10.1016/j.chemgeo.2007.05.025 |
[96] | Sherman DM. 2013. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes:Predictions from hybrid density functional theory. Geochimica et Cosmochimica Acta , 118 :85–97. DOI:10.1016/j.gca.2013.04.030 |
[97] | Shields WR, Goldich SS, Garner EL, Murphy TJ. 1965. Natural variations in the abundance ratio and the atomic weight of copper. Journal of Geophysical Research , 70 (2) :479–491. DOI:10.1029/JZ070i002p00479 |
[98] | Song YC, Hou ZQ, Yang TN, Zhang HR, Yang ZS, Tian SH, Liu YC, Wang XH, Liu YX, Xue CD, Wang GH, Li Z. 2011. Sediment-hosted Himalayan base metal deposits in Sanjiang region:Characteristics and genetic types. Acta Petrologica et Mineralogica , 30 (3) :355–380. |
[99] | Tan FW, Xu XS, Yin FG, Li XZ. 1999. Upper Carboniferous sediments in the Simao region, Yunnan and their tectonic settings. Sedimentary Facies and Palaeogeography , 19 (4) :26–34. |
[100] | Tan FW, Pan GT, Wang J. 2001. Devonian-Triassic basin-range transformation and the tectonic evolution of Paleo-Tethys in western Yunnan, China. Journal of Mineralogy and Petrology , 21 (3) :179–185. |
[101] | Tao XF, Zhu LD, Liu DZ, Wang GZ, Li YG. 2002. The Formation and evolution of the Lanping basin in western Yunnan. Journal of Chengdu University of Technology , 29 (5) :521–525. |
[102] | Vance D, Archer C, Bermin J, Perkins J, Statham PJ, Lohan MC, Ellwood MJ, Mills RA. 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters , 274 (1-2) :204–213. DOI:10.1016/j.epsl.2008.07.026 |
[103] | Walker EC, Cuttitta F, Senftle FE. 1958. Some natural variations in the relative abundance of copper isotopes. Geochimica et Cosmochimica Acta , 15 (3) :183–194. DOI:10.1016/0016-7037(58)90056-5 |
[104] | Wang CM, Deng J, Carranza EJM, Lai XR. 2014a. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews , 56 :327–351. DOI:10.1016/j.oregeorev.2013.06.004 |
[105] | Wang CM, Deng J, Carranza EJM, Santosh M. 2014b. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research , 26 (2) :576–593. DOI:10.1016/j.gr.2013.05.005 |
[106] | Wang CM, Deng J, Santosh M, Lu YJ, McCuaig TC, Carranza EJM, Wang QF. 2015a. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Sciences , 113 (Part2) :656–676. |
[107] | Wang CM, Deng J, Lu YJ, Bagas L, Kemp AIS, McCuaig TC. 2015b. Age, nature, and origin of ordovician zhibenshan granite from the baoshan terrane in the sanjiang region and its significance for understanding Proto-Tethys evolution. International Geology Review , 57 (15) :1922–1939. DOI:10.1080/00206814.2015.1043358 |
[108] | Wang CM, Bagas L, Lu YJ, Santosh M, Du B, McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews , 156 :39–65. DOI:10.1016/j.earscirev.2016.02.008 |
[109] | Wang GH. 2010. The study of genesis of Jinman-Liancheng vein deposits in Lanping basin, western Yunnan. Master Degree Thesis. Kunming:Kunming University of Science and Technology :1–77. |
[110] | Wang JH, Yan W, Chang XY. 1998. The Study of Continental Hot Water Sedimentation:Taking Yunnan as Example. Beijing:Geological Publishing House :1–134. |
[111] | Wang Y, Zhu XK. 2010. Applications of Cu isotopes on studies of mineral deposits:A status report. Journal of Jilin University (Earth Science Edition) , 40 (4) :739–751. |
[112] | Wang Y, Zhu XK, Mao JW, Cheng YB, Li ZH. 2014. Preliminary study on Cu isotopic geochemistry behavior of dongguashan porphyry-skarn deposit, Tongling district. Acta Geologica Sinica , 88 (12) :2413–2422. |
[113] | Wang ZZ, Liu SA, Li DD, Lv YW, Wu S, Zhao Y. 2015. A review of progress in copper stable isotope geochemistry. Earth Science Frontiers , 22 (5) :72–83. |
[114] | Wei JQ, Wang XD, Zhuang X, Liu YH. 2008. Zircon SHRIMP U-Pb dating of diorite among Jicha serpentine and Eza grabbro from Lancangjiang belt, Yunnan Province and its geological significance. Acta Petrologica Sinica , 24 (6) :1297–1301. |
[115] | Wu NP, Jiang SY, Liao QL, Pan JY, Dai BZ. 2003. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin, Yunnan Province. Acta Petrologica Sinica , 19 (4) :799–807. |
[116] | Xiao RG, Chen HQ, Shuai KY, Yang ZF. 1994. Mineralization of Jinman copper deposit in mesozoic sedimentary rocks in Lanping, Yunnan Province. Geoscience , 8 (4) :490–496. |
[117] | Xu QD, Li JW. 2003. Migration of ore-forming fluids and its relation to zoning of mineralization in northern Lanping Cu-polymetallic metallogenic area, Yunnan province:Evidence from fluid inclusions and stable isotopes. Mineral Deposits , 22 (4) :365–376. |
[118] | Xu QD, Zhou L. 2004. Ore-forming fluid migration in relation to mineralization zoning in Cu-polymetallic mineralization district of northern Lanping, Yunnan:Evidence from lead isotope and mineral chemistry of ores. Mineral Deposits , 23 (4) :452–463. |
[119] | Xu XC, Huang Z, Xie QQ, Yue SC, Liu Y. 2004. Ar-Ar isotopic ages of Jinman and Shuixie copper polymetallic deposits in Yunnan Province, and their geological implications. Geological Journal of China Universities , 10 (2) :157–164. |
[120] | Xue CJ, Chen YC, Yang JM, Wang DH, Yang WG, Yang QB. 2002. Analysis of ore-forming background and tectonic system of Lanping Basin, western Yunnan Province. Mineral Deposits , 21 (1) :36–44. |
[121] | Yan W, Li CY. 1992. A new type of copper deposit-primary investigation of vein copper deposit in Simao, Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry , 11 (4) :201–203. |
[122] | Yan W, Li CY. 1997. Geochemical characteristics and their hydrothermal sedimentary genesis of A New type of copper deposit. Geochimica , 26 (1) :54–63. |
[123] | Yang ZM, Hou ZQ. 2009. Genesis of giant porphyry Cu deposit at Qulong, Tibet:Constraints from fluid inclusions and H-O isotopes. Acta Geologica Sinica , 83 (12) :1838–1859. |
[124] | Zeng PS, Hou ZQ, Gao YF, Du AD. 2012. The himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone:Constraints from Re-Os dating of molybdenite. Geological Review , 52 (1) :72–84. |
[125] | Zeng R. 2007. The Large-scale fluid ore-forming process in the Lanping Basin:Taking the finding and Baiyangping deposits as the examples. Ph. D. Dissertation. Xi'an:Chang'an University, 1-109 (in Chinese with English summary) |
[126] | Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L, Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research , 26 (2) :557–575. DOI:10.1016/j.gr.2013.11.003 |
[127] | Zhang JR, Wen HJ. 2012. Sulfur and lead isotope compositions and tracing of copper deposits on the western border of the Lanping Basin, Yunnan Province. Geochimica , 41 (2) :166–180. |
[128] | Zhang JR, Wen HJ, Qiu YZ, Zhang YX, Li C. 2013. Ages of sediment-hosted Himalayan Pb-Zn-Cu-Ag polymetallic deposits in the Lanping basin, China:Re-Os geochronology of molybdenite and Sm-Nd dating of calcite. Journal of Asian Earth Sciences , 73 :284–295. DOI:10.1016/j.jseaes.2013.04.041 |
[129] | Zhang Q, Shao SX, Liu JJ, Liu ZH. 2002. Lead isotopic composition and lead source of polymetallic deposits in the large ore-assembly district in the Lanping Basin. Acta Mineralogica Sinica , 22 (2) :147–154. |
[130] | Zhang YQ, Xie YW. 1997. Geochronology of Ailaoshan-Jinshajiang alkalirich intrusive rocks and their Sr and Nd isotopic characteristics. Science in China (Series D) , 40 (5) :524–529. DOI:10.1007/BF02877619 |
[131] | Zhao HB. 2006. Study on the characteristics and metallogenic conditions of copper-polymetallic deposits in middle-northern Lanping Basin, western Yunnan. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-123 (in Chinese with English summary) |
[132] | Zheng YF and Chen JF. 2000. Stable Isotope Geochemistry. Beijing:Geological Publishing House, 1-316 (in Chinese) |
[133] | Zhu CY, Xia EJ, Yi HS, Wei YJ. 1997. The tectonic nature and evolution of Mesozoic Lanping Simao basin. Journal of Chengdu University of Technology , 24 (4) :23–30. |
[134] | Zhu XK, O'Nions RK, Guo Y, Belshaw NS, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:Implications for use as geochemical tracers. Chemical Geology , 163 (1-4) :139–149. DOI:10.1016/S0009-2541(99)00076-5 |
[135] | Zhu XK, Guo Y, Williams RJP, O'nions RK, Matthews A, Belshaw NS, Canters GW, de Waal EC, Weser U, Burgess BK, Salvato B. 2002. Mass fractionation processes of transition metal isotopes. Earth and Planetary Science Letters , 200 (1-2) :47–62. DOI:10.1016/S0012-821X(02)00615-5 |
[136] | 包志伟.2007. 成矿金属元素的气相运移研究进展. 大地构造与成矿学 , 31 (1) :83–91. |
[137] | 毕先梅, 莫宣学.2004. 成岩-极低级变质-低级变质作用及有关矿产. 地学前缘 , 11 (1) :287–294. |
[138] | 陈炳蔚, 李永森, 曲景川, 王铠元, 艾长兴, 朱志直.1991. 三江地区主要大地构造问题及其与成矿的关系 :1–112. |
[139] | 邓军, 杨立强, 王长明.2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报 , 27 (9) :2501–2509. |
[140] | 邓军, 王长明, 李龚健.2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报 , 28 (5) :1349–1361. |
[141] | 董方浏, 莫宣学, 侯增谦, 王勇, 毕先梅, 周肃.2005. 云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义. 岩石矿物学杂志 , 24 (2) :103–109. |
[142] | 范蔚茗.1992. 滇西兰坪-思茅地洼盆地及其邻区岩浆岩. 大地构造与成矿学 , 16 (1) :83–84. |
[143] | 付修根.2005. 兰坪陆相盆地演化与金属矿床的形成. 地球科学与环境学报 , 27 (2) :26–32. |
[144] | 葛良胜, 杨嘉禾, 郭晓东, 邹依林, 陈树新, 张晓辉.1999. 滇西北地区(近)东西向隐伏构造带的存在及证据. 云南地质 , 18 (2) :155–167. |
[145] | 何龙清, 陈开旭, 余凤鸣, 魏君奇, 杨爱平, 李航.2004. 云南兰坪盆地推覆构造及其控矿作用. 地质与勘探 , 40 (4) :7–12. |
[146] | 何明勤, 刘家军, 李朝阳, 李志明, 刘玉平.2004. 兰坪盆地铅锌铜大型矿集区的流体成矿作用机制——以白秧坪铜钴多金属地区为例 :1–117. |
[147] | 侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 丁林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清.2006. 青藏高原碰撞造山带:Ⅱ. 晚碰撞转换成矿作用. 矿床地质 , 25 (5) :521–543. |
[148] | 黄震. 2005. 云南澜沧江火山-侵入岩带的区域成岩成矿地质地球化学. 博士学位论文. 合肥:合肥工业大学, 1-120 |
[149] | 江彪. 2014. 三江南段兰坪-思茅盆地沉积岩容矿型铅锌成矿作用. 博士学位论文. 北京:中国地质大学, 1-185 |
[150] | 孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林.2012. 滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报 , 28 (5) :1438–1452. |
[151] | 李峰, 甫为民, 冉崇英.1992. 兰坪金满铜矿床成矿物质来源研究. 昆明工学院学报 , 17 (4) :8–15. |
[152] | 李峰, 甫为民, 冉崇英, 周宗孟, 赵正彪, 鲁文举.1993. 兰坪金满铜矿床地质地球化学特征. 矿产与地质 , 7 (3) :176–182. |
[153] | 李龚健. 2014. 三江特提斯复合造山带构造演化与典型矿床成矿过程研究. 博士学位论文. 北京:中国地质大学, 1-179 |
[154] | 李玫.2004. 云南省兰坪县石登-兔峨地区火山岩岩石学特征. 中国地质 , 31 (1) :64–69. |
[155] | 李小明.2001. 滇西金满铜矿床成矿年龄测定. 现代地质 , 15 (4) :405–408. |
[156] | 李永森. 2002. 云南澜沧江中南段铜(多金属)矿床地球化学研究. 硕士学位论文. 合肥:合肥工业大学, 1-96 |
[157] | 李振清, 杨志明, 朱祥坤, 侯增谦, 李世珍, 李志红, 王跃.2009. 西藏驱龙斑岩铜矿铜同位素研究. 地质学报 , 83 (12) :1985–1996. |
[158] | 刘家军, 李朝阳, 潘家永, 刘显凡, 张乾, 刘玉平.2000. 兰坪-思茅盆地砂页岩中铜矿床成矿物质来源研究. 地质与勘探 , 36 (4) :16–19. |
[159] | 刘家军, 李志明, 刘玉平, 李朝阳, 张乾, 何明勤, 杨伟光, 杨爱平, 桑海清.2003. 滇西金满脉状铜矿床成矿年龄讨论. 现代地质 , 17 (1) :34–39. |
[160] | 牟传龙, 王剑, 余谦, 张立生.1999. 兰坪中新生代沉积盆地演化. 矿物岩石 , 19 (3) :30–36. |
[161] | 聂飞, 董国臣, 莫宣学, 朱弟成, 董美玲, 王霞.2012. 滇西昌宁-孟连带三叠纪花岗岩地球化学、年代学及其意义. 岩石学报 , 28 (5) :1465–1476. |
[162] | 聂龙敏, 李振清.2012. 铜同位素及其在矿床研究中的应用. 东华理工大学学报(自然科学版) , 35 (1) :75–80. |
[163] | 潘桂棠, 王立全, 李兴振, 王洁民, 徐强.2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置. 沉积与特提斯地质 , 21 (3) :1–26. |
[164] | 潘桂棠, 徐强, 侯增谦, 王立全, 杜德勋, 莫宣学, 李定谋, 汪名杰, 李兴振, 江新胜, 胡云中.2003. 西南"三江"多岛弧造山过程成矿系统与资源评价 :1–420. |
[165] | 钱鹏, 陆建军, 刘风香.2006. 江西德兴斑岩铜矿成矿物质来源同位素示踪. 世界地质 , 25 (2) :135–140. |
[166] | 阙梅英, 程敦模, 张立生, 夏文杰, 朱创业.1998. 兰坪-思茅盆地铜矿床 :1–109. |
[167] | 宋玉财, 侯增谦, 杨天南, 张洪瑞, 杨竹森, 田世洪, 刘英超, 王晓虎, 刘燕学, 薛传东, 王光辉, 李政.2011. "三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型. 岩石矿物学杂志 , 30 (3) :355–380. |
[168] | 谭富文, 许效松, 尹福光, 李兴振.1999. 云南思茅地区上石炭统沉积特征及其构造背景. 岩相古地理 , 19 (4) :26–34. |
[169] | 谭富文, 潘桂棠, 王剑.2001. 滇西泥盆纪-三叠纪盆-山转换过程与特提斯构造演化. 矿物岩石 , 21 (3) :179–185. |
[170] | 陶晓风, 朱利东, 刘登忠, 王国芝, 李佑国.2002. 滇西兰坪盆地的形成及演化. 成都理工学院学报 , 29 (5) :521–525. |
[171] | 王光辉. 2010. 滇西兰坪盆地金满-连城脉状铜矿床成因研究. 硕士学位论文. 昆明:昆明理工大学, 1-77 |
[172] | 王江海, 颜文, 常向阳.1998. 陆相热水沉积作用——以云南地区为例 :1–132. |
[173] | 王跃, 朱祥坤.2010. 铜同位素在矿床学中的应用:认识与进展. 吉林大学学报(地球科学版) , 40 (4) :739–751. |
[174] | 王跃, 朱祥坤, 毛景文, 程彦博, 李志红.2014. 铜陵矿集区冬瓜山矿床斑岩-矽卡岩型矿床成矿作用过程中的Cu同位素地球化学行为初步研究. 地质学报 , 88 (12) :2413–2422. |
[175] | 王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云.2015. 铜同位素地球化学及研究新进展. 地学前缘 , 22 (5) :72–83. |