岩石学报  2016, Vol. 32 Issue (8): 2347-2366   PDF    
滇西高黎贡变质岩带南段淡色花岗岩脉年代学特征及构造意义
唐渊1,2, 王冬兵2, 廖世勇3, 王保弟2, 尹福光2, 王立全2     
1. 中国地质科学院地质研究所, 北京 100037 ;
2. 中国地质调查局成都地质调查中心, 成都 610081 ;
3. 中国科学院紫金山天文台, 南京 210008
摘要: 高黎贡构造带作为藏东三江地区大地构造上的一条重要构造带,在印度-欧亚板块碰撞过程中起着重要的调节作用,并被认为是该地区发生“大陆逃逸”与地块旋转的西边界。本文以高黎贡构造带中的深变质岩为研究对象,通过对高黎贡变质岩带南段进行详细地构造解析,发现其内部广泛发育一系列或顺岩石面理、或切割面理分布的淡色花岗岩脉;并选取了5个淡色花岗岩脉样品进行锆石U-Pb测年,这5个样品的锆石206Pb/238U年龄值主要分布于二个区间:68~40Ma和24~21Ma,并在45Ma左右形成一个巨大的峰值。基于锆石的晶形、晶内结构和微量元素组成特征等方面进行锆石成因学分析,认为本文所测试的5个淡色花岗岩脉样品的锆石为深熔作用过程中形成的锆石;从而推测高黎贡变质岩带南段发生深熔作用并形成淡色花岗岩脉的时代主要集中于68~40Ma和24~21Ma。
关键词: 高黎贡变质岩带     构造特征     淡色花岗岩脉     U-Pb定年    
Geochronological characterization and regional tectonic implication of the leucogranites in the southern segment of Gaoligong metamorphic zone, western Yunnan
TANG Yuan1,2, WANG DongBing2, LIAO ShiYong3, WANG BaoDi2, YIN FuGuang2, WANG LiQuan2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ;
2. Chengdu Center, China Geological Survey, Chengdu 610081, China ;
3. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
Abstract: As one of the significant tectonic belts in the southeastern Tibet and Three River-Indochina area, the Gaoligong belt plays important roles in accommodating the Indian-Eurasian plate collision and the subsequent post-collisional evolution, and is regarded as the western boundary of the southeastward extruded and rotated block in the "extrusion model". Based on detailed macro- and micro-structural observations in the high-grade metamorphic rocks of Gaoligong belt, it can be found that leucogranites are widely distributed within the metamorphic rocks and are parallel to, or cross-cut foliations in the host rocks at different scales. In this paper, five samples of leucogranites were chosen for LA-ICP-MS zircon U-Pb dating, giving two ranges of 206Pb/238U ages:68~40Ma and 24~21Ma respectively, and forming a peak at about 45Ma. According to analyses of shape, internal structure and in-situ trace element compositions of zircons, we interpret those zircons of leucogranites are anatectic in origin and grew during partial melting of the Gaoligong metamorphic rocks. Therefore, it can be inferred that the formation of the leucogranites related to anatexis mainly occurred during 68~40Ma and 24~21Ma.
Key words: Gaoligong metamorphic zone     Structural characterization     Leucogranite     U-Pb dating    
1 引言

新生代印度-欧亚板块的陆陆碰撞作用与其后的持续汇聚过程,对青藏高原隆升、高原及周缘造山带(如三江新生代造山带)形成和构造演化产生了重要的制约和影响(Molnar and Tapponnier,1975; England and Molnar,1990; Harrison et al.,1992; Turner et al.,1993; Coleman and Hodges,1995; 季建清等,2000bc; Maluski et al.,2001; Morley,2002; Burchfiel and Wang,2003; Deng et al.,2014)。东喜马拉雅构造结(南迦巴瓦地区)东南部的三江与印支半岛地区和西喜马拉雅构造结(Nanga Parbat地区)以西巴基斯坦地区,在遭受了早期的正向碰撞之后又经历了后期演化阶段的侧向碰撞与斜向俯冲过程(Khan et al.,2000; Bertrand and Rangin,2003; 刘俊来等,2006),并发生了藏东三江-印支地区表层地壳物质大规模南东向的逃逸与地块旋转(Tapponnier et al.,19861990; Lee and Lawver,1994; Chen et al.,1995; Sato et al.,19992001)。在此过程中,高黎贡构造带被认为是该地区发生“大陆逃逸”与地块旋转的西边界,从而一直是前人研究的热点,许多学者对其进行了大量的研究并获得诸多构造年代学、高黎贡变质岩的变质作用、岩浆作用等方面的数据和成果(季建清等,2000bc; Wang et al.,20062008; Lin et al.,2009; Song et al.,2010; Zhang et al.,2012; Liu et al.,2015)。但仍然存在许多争议,如:高黎贡构造带韧性剪切作用的性质及时代、高黎贡构造带深变质岩的变质时代及温压条件、高黎贡变质岩群变质作用与韧性剪切变形作用的关系、高黎贡构造带在藏东三江-印支地区新生代发生侧向碰撞与斜向俯冲过程中所起的作用等。

本文以高黎贡构造带中的变质岩群为研究对象,通过对呈北东-南西走向的高黎贡变质岩带南段详细地野外露头构造解析、室内显微构造分析,揭示高黎贡变质岩带南段的构造特征;通过对变质岩带中发育的淡色花岗岩脉进行锆石U-Pb测年及锆石成因学分析,从而讨论高黎贡变质岩带南段的变质作用发生的时代及其构造意义。

2 地质背景 2.1 区域地质背景

高黎贡山变质岩群也称“高黎贡山群”,其名首见于1975年编制的《云南省区域地层表》上,原指分布于怒江以西、主体沿高黎贡山山脉出露的一套以片麻岩、变粒岩、角闪质岩石为主的中深变质岩系(云南地质调查局,2008)。该变质岩群北起于贡山县独龙江一带,呈南北向展布,向南延伸至龙陵附近改为呈北东-南西向展布(图 1a,b),再向南西延至缅甸境内,称摩谷系(Mogok)。

图 1 高黎贡变质岩带南段地质简图(a)及印度-欧亚碰撞带构造格架(b) Fig. 1 Geological map of the southern part of Gaoligong metamorphic zone(a)and tectonic framework of the Indian-Eurasian collision belt(b)

高黎贡山变质岩群与相邻地层呈断层接触关系。东侧以怒江断裂(又称泸水-龙陵-瑞丽断裂)为界出露一套归属于保山地块的古生代-中生代沉积地层及奥陶纪花岗岩体(480Ma左右,Chen et al.,2007; Liu et al.,2009; 刘琦胜等,2012; 董美玲等,2012; 图 1a),古生代地层主要为一系列粉砂质板岩、砂质板岩、泥质板岩、千枚岩及少量变质火山岩和硅质岩等组成的浅变质岩,中生界表现为碎屑岩、碳酸盐岩及玄武岩组成的沉积盖层(陈福坤等,2006);岩石局部发育褶皱、膝折、碎裂等变形现象(季建清等,2000b)。龙陵-瑞丽断裂以西,为腾冲地块主体部分;在该地块内部,除了沿高黎贡山山脉出露了高黎贡山变质岩群外,在西部如古永以南、盈江以东、那邦附近的广大区域内(图 1a),也发育有以片麻岩为主的中深变质岩系,仍将其称为高黎贡山变质岩群,总体上沿一系列北东-南西向平行且狭长的韧性剪切(断裂)带展布(季建清等,2000bc)。此外,腾冲地块出露一套原岩为陆源碎屑岩为主的中-浅变质程度古生界地层,以及大面积分布的晚白垩世-古近纪的花岗岩(图 1aWang et al.,2015)。腾冲地块晚古生代的沉积环境和生物特征与保山地块相似,接近于拉萨地块和喜马拉雅地块,均被普遍地认为来自冈瓦纳古大陆北缘微陆块(钟大赉,1998; Sone and Metcalfe,2008)。

①云南地质调查局. 2008. 1 25万腾冲县、潞西市幅区域地质报告

2.2 高黎贡变质岩带南段岩石组合、构造特征

本文重点以高黎贡变质岩带南段为研究对象,野外观测选择了位于潞江以西老保腾公路剖面,即大蒿坪剖面(剖面位置如图 1a A-A’所示),并绘制了野外信手剖面图(图 2)。可见出露的高黎贡变质岩群岩石类型主要为花岗质片麻岩、黑云斜长片麻岩、条带状混合岩化片麻岩、眼球状片麻岩夹二云片岩、二云石英片岩等,本剖面内部未见碳酸盐岩;部分岩石遭受剪切作用变形为糜棱岩。经原岩恢复认为:花岗质片麻岩主要为不同时代的花岗质岩石经变质作用而形成的正片麻岩,主要包括寒武纪黑云母二长花岗岩(520~510Ma,作者未发表数据; 502~518Ma,蔡志慧等,2013)、早白垩世似斑状二长花岗岩(126~110Ma,杨启军等,2006; Xu et al.,2012);副片麻岩如黑云斜长片麻岩等多为碎屑岩变质而成,其余副变质岩如二云片岩、二云石英片岩等原岩主要为一套碎屑岩-粘土岩。

图 2 高黎贡变质岩带南段大蒿坪剖面图及面理线理产状投影图(黄色圆点为面理法线投影、红色圆点为线理投影) Fig. 2 Cross-section of the Dahaoping in southern part of Gaoligong metamorphic zone and the stereogram of the foliation(yellow dot)and mineral stretching lineation(red dot)for observing sites along the cross-section

由于高黎贡山变质岩群的原岩经历了复杂的变质变形作用强烈改造,从野外观测中,可见岩石总体面理发育,但均为新生片麻理、片理或糜棱面理,原生的沉积层理已经被置换,各岩层之间无法识别出正常的叠置关系。面理总体上倾向东,倾角较大(约40°~60°,图 2图 3a),但岩石总体并非完全是单斜岩层,在内部发育一系列宽缓的褶皱构造,从而导致构造面理局部发生变化(图 2);可见岩石中云母、长石、石英等矿物的定向排列形成线理(图 3b-d),线理的倾伏向近N-S向,倾伏角近水平(图 2右下赤平投影图)。部分长石呈残斑状,其拖尾特征具有顺时针剪切的指示意义(图 4a)。显微镜下,花岗质片麻岩中长石残斑拖尾及白云母形成的矿物鱼均具有顺时针剪切的指示意义(图 4b,c);云母石英片岩中可见S-C’组构发育,也显示顺时针方向剪切的特征(图 4d)。

图 3 高黎贡变质岩带南段露头尺度构造特征 Fig. 3 Outcrop structural characteristics of the southern part of Gaoligong metamorphic zone
图 4 高黎贡变质岩带南段剪切标志 Fs-长石;Qz-石英;Ms-白云母;Bt-黑云母 Fs-feldspar; Qz-quartz; Ms-muscovite; Bt-biotite Fig. 4 Shear sense indicators in the rocks of southern part of Gaoligong metamorphic zone
3 淡色花岗岩脉的构造特征

在对高黎贡变质岩带南段大蒿坪剖面进行系统观察中,发现其内部发育有一系列特征的(含电气石)淡色花岗岩脉(图 5图 6)。其主要沿高黎贡变质岩的面理发育,出露宽度不一,窄者约10cm左右(图 5a,b),宽者可达2m左右(图 6a);有的随构造面理一起呈规则的脉体延深较远(图 6a),有的延伸不远即尖灭;其与周围的岩石无侵入关系,未见烘烤边或冷凝边(图 5a,b图 6d,e),局部还可见到其将围岩包裹于内部(图 6c)。在矿物组成上,主要含长石和石英,及少量白云母,暗色矿物多为电气石,长轴定向,横轴被拉断;此外,有的脉体可见颗粒状零星分布的石榴子石(图 6f)。

图 5 高黎贡变质岩带南段淡色花岗岩脉(含电气石花岗岩脉)露头构造特征 Fig. 5 Outcrop structural characteristics of leucogranitic dykes(tourmaline-bearing granitic dykes)in the southern part of Gaoligong metamorphic zone
图 6 点11GZPM20淡色花岗岩脉(含电气石花岗岩脉)露头构造特征 Fig. 6 Outcrop structural characteristics of leucogranitic dykes(tourmaline-bearing granitic dykes)in site 11GZPM20

显微镜下,可见由长石及少量电气石和白云母构成的碎斑和由长英质等物质组成的碎基(图 7)。碎斑长轴定向排列,局部还可见长石残斑的拖尾和蠕英结构(图 7a)。长英质细小颗粒(d≤0.06mm),以基质的形式分布于碎斑之间(图 7b,d)。此外,部分石英呈丝带状或条带状集合体,围绕长石残斑或者沿碎斑长轴定向的方向展布(图 7a,c),表现为亚颗粒旋转重结晶,表明为中温条件(400~500℃)下的塑性变形。电气石呈半自形-自形柱状(图 7b,c),正中突起,多色性显著,长轴定向,局部可见其横轴被拉断。

图 7 高黎贡变质岩带南段淡色花岗岩脉(含电气石花岗岩脉)显微构造特征 Tur-电气石; Myr-蠕英结构 Tur-tourmaline; Myr-myrmekite Fig. 7 Microstructural characteristics of leucogranitic dykes(tourmaline-bearing granitic dykes)in the southern part of Gaoligong metamorphic zone
4 淡色花岗岩脉的锆石年代学及微量元素特征 4.1 分析测试方法

本文从高黎贡变质岩带南段大蒿坪剖面发育的含电气石淡色花岗岩脉中,选取5个样品(11GZPM01-5、11GZPM03-4、11GZPM04-1、11GZPM13-2和11GZPM20-1,相对采样位置如图 2所示)进行锆石LA-ICPMS方法U-Pb测年。锆石分选在河北区域地质矿产调查研究所实验室完成,原岩样品经人工粉碎后,经人工淘洗后去除轻矿物部分,将得到的重砂部分经电磁选后得到含有少量杂质的锆石样品,最后在双目镜下挑选出锆石晶体。选择晶型较好,无裂隙的锆石颗粒粘贴在环氧树脂表面制成锆石样品靶,打磨样品靶,使锆石的中心部位暴露出来,然后进行抛光。对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,最后根据反射光、透射光及锆石CL图像选择代表性的锆石颗粒和区域进行U-Pb测年。

锆石微量元素含量和U-Pb同位素定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)利用LA-ICP-MS同时分析完成。激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。在等离子体中心气流(Ar+He)中加入了少量氮气,以提高仪器灵敏度、降低检出限和改善分析精密度(Hu et al.,2008)。另外,激光剥蚀系统配置了一个信号平滑装置,即使激光脉冲频率低达1Hz,采用该装置后也能获得光滑的分析信号(Hu et al.,2012)。每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCa(Liu et al.,20082010a)完成。详细的仪器操作条件和数据处理方法同Liu et al.(20082010ab)。

锆石微量元素含量利用USGS参考玻璃Nist 610作为外标、Si作内标的方法进行定量计算。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正,每分析5个样品点,分析2次91500。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行了校正(Liu et al.,2010a)。锆石标准91500的U-Th-Pb同位素比值推荐值据Wiedenbeck et al.(1995)。锆石样品的U-Pb年龄谐和图绘制、年龄权重平均计算及年龄分布直方图均采用Isoplot/Ex_ver3(Ludwig,2003)完成。

4.2 锆石U-Pb年龄结果

本文所测试的淡色花岗岩锆石颗粒以无色为主,油脂-玻璃光泽,透明度好,大多数自形程度较高,为长柱状或短柱状。阴极发光(CL)图像(图 8)中晶体整体发光性不强,多数晶体没有残留锆石核,而是整体呈面状分带,或表现出同心振荡环带结构;少数晶体内部呈泡沫状,边部发育振荡环带;或扇形分带(如图 8b,点3、12)。此外,样品11GZPM20-1中的大部分晶体内部表现为云雾状或海绵状特征,但仍然能见到锆石边部的振荡环带结构(图 8e)。样品打点位置选择在锆石边部无裂缝、无明显包体处(图 8)。

图 8 淡色花岗岩脉(含电气石花岗岩脉)锆石阴极发光图像 Fig. 8 CL images of zircons from leucogranitic dykes(tourmaline-bearing granitic dykes)

样品11GZPM01-5中23个锆石分析点的Th和U含量分别为36.2×10-6~229×10-6和3462×10-6~10775×10-6,Th/U比值多数为0.01,少数几个为0.02(表 1)。样品的23个分析点多位于U-Pb谐和线上及其附近(图 9a),样品的206Pb/238U年龄分布于39.2~59.1Ma之间,由于206Pb/238U年龄分布范围较宽广,其加权平均年龄值并没有实际的科学意义;但仍能从年龄分布直方图中可以看到,在46Ma和40Ma形成二个较大的峰值(图 9b)。

表 1 高黎贡变质岩带淡色花岗岩脉(含电气石花岗岩脉)锆石LA-ICP-MS-Pb年龄 Table 1 LA-ICP-MS zircon U-Pb data of of leucogranitic dykes (tourmaline-bearing granitic dykes)
图 9 样品11GZPM01-5、11GZPM03-4和11GZPM04-1锆石U-Pb年龄协和图(左)及其年龄分布直方图(右) Fig. 9 concordant diagrams(left)and cumulative Gaussian plus histogram plots(right)of zircons from Sample 11GZPM01-5,11GZPM03-4 and 11GZPM04-1

样品11GZPM03-4中20个锆石分析点的Th和U含量分别为13.7×10-6~730×10-6和1281×10-6~10171×10-6,Th/U比值多数为0.01~0.04,极个别为0.27(表 1,点11)。样品的20个分析点多位于U-Pb谐和线上及其附近(图 9c),样品的206Pb/238U年龄分布于20.2~23.7Ma之间,获得20个分析点的206Pb/238U加权平均年龄值为21.3±0.4Ma(MSWD=6.1,图 9c,d)。

样品11GZPM04-1中17个测年分析点数据质量相对较差,其中有13个分析点位于U-Pb谐和线上及其附近(图 9e),其Th和U含量分别介于75.4×10-6~1000×10-6和201×10-6~1677×10-6,Th/U比值介于0.23~0.7(表 1)。尽管数据质量不理想,但可以获得13个样品分析点的206Pb/238U年龄分布于45~62Ma之间且集中在45~49Ma的参考信息(图 9f)。

样品11GZPM13-2中15个锆石分析点的Th和U含量分别介于349×10-6~1689×10-6和711×10-6~3812×10-6,Th/U比值介于0.3~0.5(表 1)。样品的15个分析点多位于U-Pb谐和线上及其附近(图 10a),样品的206Pb/238U年龄分布于40.1~48.7Ma之间,获得15个分析点的206Pb/238U加权平均年龄值为45.3±1.4Ma(MSWD=13,图 10a,b)。

图 10 样品11GZPM13-2和11GZPM20-1锆石U-Pb年龄协和图(左)及其年龄分布直方图(右) Fig. 10 U-Pb concordant diagrams(left)and cumulative Gaussian plus histogram plots(right)of zircons from Sample 11GZPM13-2 and 11GZPM20-1

样品11GZPM20-1的17个锆石分析点的Th和U含量分别介于11.7×10-6~1760×10-6和3312×10-6~66259×10-6,Th/U比值极低,介于0.003~0.027之间(表 1)。样品的17个分析点多位于U-Pb谐和线上及其附近(图 10c),样品的206Pb/238U年龄分布于43.4~68.1Ma之间,由于206Pb/238U年龄分布范围较宽广,其加权平均年龄值并没有实际的科学意义;但仍能从年龄分布直方图中可以看到,206Pb/238U年龄集中分布于56~65Ma之间(图 10d)。

4.3 锆石微量元素特征

为了更准确地判断锆石成因,本文对淡色花岗岩脉的锆石原位微量元素特征进行了详细分析。此外,还选取了其中1个淡色花岗岩脉(样品11GZPM01-5)的围岩进行对比研究(样品11GZPM01-4)。二者在野外露头特征如图 5b所示,样品11GZPM01-4采自深灰色花岗质片麻岩,面理发育,长石长轴定向不连续排列构成片麻理;对其进行锆石U-Pb测年得到511.5±7.9Ma的206Pb/238U年龄(未发表),该年龄为正片麻岩的原岩即花岗岩的锆石结晶年龄。样品11GZPM01-5则采自于顺花岗质片麻岩的面理发育的淡色花岗岩脉。部分锆石微量元素结果列于表 2

表 2 高黎贡变质岩带淡色花岗岩脉及其寄主岩石的锆石稀土元素含量(×10-6) Table 2 REE analytical data in situ single zircon of leucogranitic dykes and host rocks in the southern part of Gaoligong metamorphic zone(×10-6)

根据锆石微量元素测试结果,作出对应的球粒陨石标准化稀土元素配分曲线(图 11a-d)。从图中可以看出,无论是淡色花岗岩脉,还是其围岩(图 11a),总体均表现为左倾的REE配分曲线,且Eu表现为明显的负异常,Ce则表现为弱的正异常(图 11a-c表 2)或无异常(图 11d表 2)。淡色花岗岩脉的锆石Th含量相对较低,U含量很高(表 1),Th/U比值相对较低(图 12b),多数小于0.1,部分集中在0.3~0.7(样品11GZPM04-1、11GZPM13-2)。值得注意的是,用以对比研究的两个样品,即淡色花岗岩脉11GZPM01-5及其围岩11GZPM01-4(图 11a,b),二者的REE配分曲线基本特征一致,主要区别表现在Th/U比值上,前者具有极低的Th/U比值(0.01~0.02),后者具有相对较高的Th/U比值(0.41~0.73)。

图 11 锆石稀土元素球粒陨石标准化图 Fig. 11 Chondrite-normalized REE patterns for in situ single zircon
5 讨论 5.1 淡色花岗岩脉锆石U-Pb年龄的地质意义

一般而言,可以根据锆石的晶形、晶内结构和微量元素组成等特征来判断锆石的成因,进而更科学地解释其锆石U-Pb年龄所代表的地质意义(Wu and Zheng,2004)。本文所测试的5个样品的锆石自形程度均很好,阴极发光图像中锆石晶体的发光性整体不太强烈(图 8),其原因或许与其贫Th且富U有关(Keay et al.,2001; Rubatto,2002; Wu and Zheng,2004)。锆石内部结构特征方面,部分锆石表现为无核-边结构,即整体呈面状分带或者弱的同心振荡环带;部分锆石具有核-边结构,但核部多表现为泡沫状或海绵状,边部则具有明显的振荡环带。微量元素特征方面,锆石的REE配分曲线具有与围岩锆石相似的稀土元素特征,即均表现为左倾的REE配分曲线、且具有明显的Eu负异常和弱-无的Ce正异常(图 11);而淡色花岗岩脉的锆石Th/U比值普遍非常低(<0.1,部分甚至<0.01,图 12b),相对而言,围岩(正片麻岩)的锆石Th/U比值相对较高。上述锆石特征与前人对于高级变质岩区、混合岩化区深熔作用形成的淡色脉体中的锆石特征描述基本一致(Watt et al.,1996; Villaseca et al.,2001; 简平等,2001; Rubatto,2002; Wu and Zheng,2004; Wu et al.,2007; 刘兵等,2008; Zeh et al.,2010; 董汉文等,2014),因此本文所测试的5个淡色花岗岩脉样品的锆石为深熔作用过程中形成的锆石。该5个样品的锆石206Pb/238U年龄值主要分布于二个区间:68~40Ma和24~21Ma,并在45Ma左右形成一个巨大的峰值(图 12a)。综上所述,高黎贡变质岩带南段发生深熔作用并形成淡色花岗岩脉的时代主要集中于68~40Ma和24~21Ma。

图 12 淡色花岗岩脉锆石年龄分布直方图(a)和测年锆石Th、U含量和Th/U比值(b) Fig. 12 Cumulative Gaussian plus histogram plots of zircons from the five dated samples(a)and Th and U contents and Th/U ratios of zircon in the five dated samples(b)
5.2 高黎贡变质岩群的变质时代

对于高黎贡构造带中变质岩群的变质作用时代及温压条件问题,前人已经作了大量的研究。高黎贡变质岩群长期以来被认为是该地区的前寒武结晶基底,并在新生代期间再次活化从而沿其东部边界形成了高黎贡韧性剪切带(云南省地质矿产局,1990; 钟大赉,1998; Wang et al.,2006; Zhang et al.,2012)。季建清等(2000a)对那邦地区高黎贡山群(Mogok群)内发育的变质基性岩开展了变质时代及温压条件研究,结果显示其经历了两期变质作用的改造,即早期(约74~76Ma)麻粒岩相变质作用和晚期(约23~24Ma)角闪岩相变质作用;并认为该变质岩带为晚中生代-新生代以来的变质变形带,对前人所述的前寒武结晶基底的说法提出了质疑。Song et al.(2010)对高黎贡构造带北段贡山地块中的高黎贡变质岩群进行了岩相学研究及温压计算,表明其经历了早期角闪岩相(650~660℃,7.1~8.3kbar;685~750℃,6.5~8.4kbar)和晚期绿片岩相两期变质作用;并采取该区域石榴夕线片麻岩和变质泥岩样品进行锆石U-Pb定年,其变质锆石增生边部的206Pb/238U比值为22Ma左右;而淡色花岗岩脉的锆石U-Pb年龄则分为两期,即:54~45Ma和23Ma左右。Zhao et al.(2016)选取高黎贡变质岩带南段的花岗质片麻岩进行锆石U-Pb定年,也在变质锆石增生边中得到54~40Ma的年龄信息。Liu et al.(2015)对那邦和潞西地区高黎贡变质岩群中发育的淡色花岗岩进行了岩相学、锆石微量元素特征及锆石U-Pb测试等系统研究,也得到40~38Ma和27Ma两期年龄,并将前者归因于高黎贡变质岩群早期(M1)角闪岩相-麻粒岩相变质作用(720~780℃,8.0~9.0 kbar),而将后者归因于晚期(M2)与韧性剪切作用相关的退变质作用。本文对高黎贡变质岩带南段的淡色花岗岩脉进行系统定年,同样也获取了两期年龄数据,早期68~40Ma比前人研究所获得的年龄数据区间范围更大且更老,晚期24~21Ma与Song et al.(2010)所测得数据相当。综上所述,可以认为高黎贡变质岩群的变质作用主要发生于68~40Ma和27~23Ma两个时期;晚期的变质作用与前人研究得到的高黎贡韧性剪切作用的时代大体一致(Wang et al.,2006; Lin et al.,2009; Zhang et al.,2012; Liu et al.,2015),因此推测该期变质作用的发生与韧性剪切作用相关。

5.3 区域构造意义

高黎贡构造带作为藏东三江地区大地构造上的一条重要构造带,在印度-欧亚板块碰撞过程中起着重要的调节作用;该构造带在遭受了早期的正向碰撞之后又经历了后期演化阶段的侧向碰撞与斜向俯冲过程(Khan et al.,2000; Bertrand and Rangin,2003; 刘俊来等,2006; 许志琴等,20112016)。在碰撞作用的早期,强烈的构造变形和地壳缩短作用应伴随有深部地壳的变质甚至深熔作用。因此厘定出深部地壳物质的变质作用及相应的深熔作用发生的时限,可以为认识该构造带发生碰撞作用的时代提供有效的地质依据。印度-欧亚板块碰撞的起始时间是国际地学界争论的一个热点,至今尚无一致的认识。归纳起来,大致有两类观点,一类观点认为印度-亚洲大陆碰撞的起始时间晚于55Ma(Garzanti et al.,1987; Searle et al.,1987; Dewey et al.,1989; Rowley,1998; Aitchison et al.,2007);另一类观点则认为早于55Ma(Jaeger et al.,1989; Burtman,1994; Liu and Einsele,1994; Rage et al.,1995; Yin and Harrison,2000; Wan et al.,2002; Mo et al.,2002; 莫宣学等,2007; Ding et al.,2003)。在后一种观点中,Wan et al.(2002)Mo et al.(2002)莫宣学等(2007)Ding et al.(2003)认为开始于65Ma左右(或白垩纪与古近纪的界限前后),完成碰撞的时间在40/45Ma左右,此后青藏高原进入后碰撞期。本文所获得的高黎贡变质岩群早期的变质作用及相应的深熔作用发生的时限为68~40Ma,与上述第二种观点中印度-欧亚板块发生主碰撞作用的时期大体一致。由此可以推测,高黎贡变质岩群发生早期的变质及深熔作用与印度-欧亚板块碰撞作用所导致的藏东三江地区强烈的构造变形和地壳缩短作用有关,从而为印度-欧亚板块碰撞的起始时间在65Ma左右的观点提供了一定的地质依据。

6 结论

(1) 通过对高黎贡变质岩带南段进行详细地构造解析,选取了5个淡色花岗岩脉样品进行锆石U-Pb测年,这5个样品的锆石206Pb/238U年龄值主要分布于二个区间:68~40Ma和24~21Ma,并在45Ma左右形成一个巨大的峰值。基于锆石的晶形、晶内结构和微量元素组成特征等方面进行锆石成因学分析,认为本文所测试的5个淡色花岗岩脉样品的锆石为深熔作用过程中形成的锆石;从而推测高黎贡变质岩带南段发生深熔作用并形成淡色花岗岩脉的时代主要集中于68~40Ma和24~21Ma。

(2) 结合前人的研究成果,认为高黎贡变质岩群的变质作用主要发生于68~40Ma和27~23Ma两个时期。早期的变质及深熔作用与印度-欧亚板块碰撞作用所导致的藏东三江地区强烈的构造变形和地壳缩短作用有关,晚期变质作用的发生与高黎贡韧性剪切作用相关。

参考文献
[1] Aitchison JC, Ali JR, Davis AM. 2007. When and where did India and Asia collide?. Journal of Geophysics Research , 112 (B5) :B05423. DOI:10.1029/2006JB004706
[2] Bertrand G, Rangin C. 2003. Tectonics of the western margin of the Shan plateau (central Myanmar):Implication for the India-Indochina oblique convergence since the Oligocene. Journal of Asian Earth Sciences , 21 (10) :1139–1157. DOI:10.1016/S1367-9120(02)00183-9
[3] Bureau of Geology. 1990. Regional Geology of Yunnan Province .
[4] Burchfiel BC, Wang E. 2003. Northwest-trending, Middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance. Journal of Structural Geology , 25 (5) :781–792. DOI:10.1016/S0191-8141(02)00065-2
[5] Burtman VS. 1994. Meso-Tethyan oceanic sutures and their deformation. Tectonophysics , 234 (4) :305–327. DOI:10.1016/0040-1951(94)90230-5
[6] Cai ZH, Xu ZQ, Duan XD, Li HQ, Cao H, Huang XM. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau. Acta Petrologica Sinica , 29 (6) :2123–2140.
[7] Chen FK, Li QL, Wang XL, Li XH. 2006. Zircon age and Sr-Nd-Hf isotopic composition of migmatite in the eastern Tengchong block, western Yunnan. Acta Petrologica Sinica , 22 (2) :439–448.
[8] Chen FK, Li XH, Wang XL, Li QL, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences , 96 (6) :1179–1194. DOI:10.1007/s00531-006-0146-y
[9] Chen HH, Dobson J, Heller F, Hao J. 1995. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous:A consequence of India-Asia collision. Earth and Planetary Science Letters , 134 (1-2) :203–217. DOI:10.1016/0012-821X(95)00118-V
[10] Coleman M, Hodges K. 1995. Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension. Nature , 374 (6517) :49–52. DOI:10.1038/374049a0
[11] Deng J, Wang QF, Li GJ, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews , 138 :268–299. DOI:10.1016/j.earscirev.2014.05.015
[12] Dewey JF, Cande S, Pitman WC. 1989. Tectonic evolution of the India/Eurasia collision zone. Eclogae Geologicae Helvetiae , 82 (3) :717–734.
[13] Ding L, Kapp P, Zhong DL, Ding WM. 2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology , 44 (10) :1833–1865. DOI:10.1093/petrology/egg061
[14] Dong HW, Xu ZQ, Li Y, Liu Z. 2014. Zircon LA-ICP-MS U-Pb dating of the Triassic anatexis at Mutuo, the Eastern Himalayan Syntaxis. Geotectonica et Metallogenia , 38 (2) :398–407.
[15] Dong ML, Dong GC, Mo XX, Zhu DC, Nie F, Xie XF, Wang X, Hu ZC. 2012. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications. Acta Petrologica Sinica , 28 (5) :1453–1464.
[16] England P, Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature , 344 (6262) :140–142. DOI:10.1038/344140a0
[17] Garzanti E, Baud A, Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta , 1 (4-5) :297–312. DOI:10.1080/09853111.1987.11105147
[18] Harrison TM, Chen WJ, Leloup PH, Ryerson FJ, Tapponnier P. 1992. An Early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics. Journal of Geophysical Research , 97 (B5) :7159–7182. DOI:10.1029/92JB00109
[19] Hu ZC, Gao S, Liu YS, et al. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry , 23 (8) :1093–1101. DOI:10.1039/b804760j
[20] Hu ZC, Liu YS, Gao S, et al. 2012. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B:Atomic Spectroscopy , 78 :50–57. DOI:10.1016/j.sab.2012.09.007
[21] Jaeger JJ, Courtillot V, Tapponnier P. 1989. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology , 17 (4) :316–319. DOI:10.1130/0091-7613(1989)017<0316:PVOTAO>2.3.CO;2
[22] Ji JQ, Zhong DL, Sang HQ, Qiu J, Hu SL. 2000a. Dating of two metamorphic events on the basalt granulite from the Nabang area on the border of China and Burma. Acta Petrologica Sinica , 16 (2) :227–232.
[23] Ji JQ, Zhong DL, Sang HQ, Zhang LS. 2000b. The western boundary of extrusion blocks in the southeastern Tibetan Plateau. Chinese Science Bulletin , 45 (10) :876–881. DOI:10.1007/BF02886191
[24] Ji JQ, Zhong DL, Zhang LS. 2000c. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, West Yunnan:Implications for the block movement in the southeastern Tibet Plateau. Scientia Geologica Sinica , 35 (3) :336–349.
[25] Jian P, Cheng YQ, Liu DY. 2001. Petrographical study of metamorphic zircon:Basic roles in interpretation of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers , 8 (3) :183–191.
[26] Keay S, Lister G, Buick I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics , 342 (3-4) :275–312. DOI:10.1016/S0040-1951(01)00168-8
[27] Khan MA, Treloar PJ, Searle MP, Jan MQ. 2000. Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. London:Geological Society Special Publication , 170 :485.
[28] Lee TY, Lawver LA. 1994. Cenozoic plate reconstruction of the South China Sea region. Tectonophysics , 235 (1-2) :149–180. DOI:10.1016/0040-1951(94)90022-1
[29] Lin TH, Lo CH, Chung SL, Hsu FJ, Yeh MW, Lee TY, Ji JQ, Wang YZ, Liu DY. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones:Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences , 34 (5) :674–685. DOI:10.1016/j.jseaes.2008.10.009
[30] Liu B, Ba J, Zhang L, Chen NS, Li XY, Zhang ZJ, Chen HH, Yuan YM. 2008. Zircon LA-ICP-MS U-Pb dating of metamorphism and anatexis of the Guandi complex, Zhoukoudian area, Beijing. Geological Science and Technology Information , 27 (6) :37–42.
[31] Liu FL, Wang F, Liu PH, Yang H, Meng E. 2015. Multiple partial melting events in the Ailao Shan-Red River and Gaoligong Shan complex belts, SE Tibetan Plateau:Zircon U-Pb dating of granitic leucosomes within migmatites. Journal of Asian Earth Sciences , 110 :151–169. DOI:10.1016/j.jseaes.2014.06.025
[32] Liu GH, Einsele G. 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geologische Rundschau , 83 (1) :32–61. DOI:10.1007/BF00211893
[33] Liu JL, Song ZJ, Cao SY, Zhai YF, Wang AJ, Gao L, Xiu QY, Cao DH. 2006. The dynamic setting and processes of tectonic and magmatic evolution of the oblique collision zone between Indian and Eurasian plates:Exemplified by the tectonic evolution of the Three River region, eastern Tibet. Acta Petrologica Sinica , 22 (4) :775–786.
[34] Liu QS, Ye PS, Wu ZH. 2012. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province. Geological Bulletin of China , 31 (2) :250–257.
[35] Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson IM, Feng GY, Wang T, Qi YQ. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China. Journal of Asian Earth Sciences , 36 (2-3) :168–182. DOI:10.1016/j.jseaes.2009.05.004
[36] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology , 257 (1-2) :34–43. DOI:10.1016/j.chemgeo.2008.08.004
[37] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology , 51 (1-2) :537–571. DOI:10.1093/petrology/egp082
[38] Liu YS, Hu ZC, Zo ng, K Q, Gao CG, Gao S, Xu J, Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin , 55 (15) :1535–1546. DOI:10.1007/s11434-010-3052-4
[39] Ludwig KR. 2003. ISOPLOT 3.00:A Geochronnlogical Toolkit for Microsoft Excel. Berkeley, California:Berkeley Geochronology Center
[40] Maluski H, Lepvrier C, Jolivet L, Carter A, Roques D, Beyssac O, Tang TT, Thang ND, Avigad D. 2001. Ar-Ar and fission-track ages in the Song Chay Massif:Early Triassic and Cenozoic tectonics in northern Vietnam. Journal of Asian Earth Sciences , 19 (1-2) :233–248. DOI:10.1016/S1367-9120(00)00038-9
[41] Mo XX, Zhao ZD, Zhou S et al. 2002. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet. In:Fall Meeting Abstract, S62B-1201. San Francisco:American Geophysical Union.
[42] Mo XX, Zhao ZD, Zhou S, Dong GC, Liao ZL. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China , 26 (10) :1240–1244.
[43] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision. Science , 189 (4201) :419–426. DOI:10.1126/science.189.4201.419
[44] Morley CK. 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics , 347 (4) :189–215. DOI:10.1016/S0040-1951(02)00061-6
[45] Rage JC, Cappetta H, Hartenberger JL, et al. 1995. Collision age. Nature , 375 (6529) :286.
[46] Rowley DB. 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology , 106 (2) :220–235. DOI:10.1086/516018
[47] Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology , 184 (1-2) :123–138. DOI:10.1016/S0009-2541(01)00355-2
[48] Sato K, Liu YY, Zhu ZC, Yang ZY, Otofuji YI. 1999. Paleomagnetic study of Middle Cretaceous rocks from Yunlong, western Yunnan, China:Evidence of southward displacement of Indochina. Earth and Planetary Science Letters , 165 (1) :1–15. DOI:10.1016/S0012-821X(98)00257-X
[49] Sato K, Liu YY, Zhu ZC, Yang ZY, Otofuji YI. 2001. Tertiary paleomagnetic data from northwestern Yunnan, China:Further evidence for large clockwise rotation of the Indochina block and its tectonic implications. Earth and Planetary Science Letters , 185 (1-2) :185–198. DOI:10.1016/S0012-821X(00)00377-0
[50] Searle MP, Windley BF, CoWard MP, et al. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin , 98 (6) :678–701. DOI:10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2
[51] Sone M, Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia:New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience , 340 (2-3) :166–179. DOI:10.1016/j.crte.2007.09.008
[52] Song SG, Niu YL, Wei CJ, Ji JQ, Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent:An eastern extension of the Lhasa Block. Lithos , 120 (3-4) :327–346. DOI:10.1016/j.lithos.2010.08.021
[53] Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. In:Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society of London Special Publication , 19 (1) :113–157. DOI:10.1144/GSL.SP.1986.019.01.07
[54] Tapponnier P, Lacassin R, Leloup PH, Schärer U, Zhong DL, Wu HW, Liu XH, Ji SC, Zhang LS, Zhong JY. 1990. The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and South China. Nature , 343 (6257) :431–437. DOI:10.1038/343431a0
[55] Turner S, Hawkesworth C, Liu JQ, et al. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature , 364 (6432) :50–54. DOI:10.1038/364050a0
[56] Villaseca C, Romera CM, Barbero L. 2001. Melts and residua geochemistry in a low-to-mid crustal section (Central Spain). Physics and Chemistry of Earth, Part A:Solid Earth and Geodesy , 26 (4-5) :273–280. DOI:10.1016/S1464-1895(01)00056-4
[57] Wan XQ, Jansa LF, Sarti M. 2002. Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia collision. Lethaia , 35 (2) :131–146. DOI:10.1080/002411602320183999
[58] Wang G, Wan JL, Wang E, Zheng DW, Li F. 2008. Late Cenozoic to recent transtensional deformation across the Southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan Plateau and its tectonic origin. Tectonophysics , 460 (1-4) :1–20. DOI:10.1016/j.tecto.2008.04.007
[59] Wang YJ, Fan WM, Zhang YH, Peng TP, Chen XY, Xu YG. 2006. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China:Implications for Early Oligocene tectonic extrusion of SE Asia. Tectonophysics , 418 (3-4) :235–254. DOI:10.1016/j.tecto.2006.02.005
[60] Wang YJ, Li SB, Ma LY, Fan WM, Cai YF, Zhang YH, Zhang FF. 2015. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction. Gondwana Research , 27 (4) :1474–1486. DOI:10.1016/j.gr.2014.01.007
[61] Watt GR, Burns IM, Graham GA. 1996. Chemical characteristics of migmatites:Accessory phase distribution and evidence for fast melt segregation rates. Contributions to Mineralogy and Petrology , 125 (1) :100–111. DOI:10.1007/s004100050209
[62] Wiedenbeck M, Allé P, Corfu F, et al. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research , 19 (1) :1–23. DOI:10.1111/ggr.1995.19.issue-1
[63] Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin , 49 (15) :1554–1569. DOI:10.1007/BF03184122
[64] Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY, Liu XM. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China:Constraints on partial melting. Journal of Metamorphic Geology , 25 (9) :991–1009. DOI:10.1111/j.1525-1314.2007.00738.x
[65] Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR, Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences , 53 :151–175. DOI:10.1016/j.jseaes.2011.06.018
[66] Xu ZQ, Yang JS, Li HB, Ji SC, Zhang ZM, Liu Y. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica , 85 (1) :1–33. DOI:10.1111/acgs.2011.85.issue-1
[67] Xu ZQ, Yang JS, Hou ZQ, Zhang ZM, Zeng LS, Li HB, Zhang JX, Li ZH, Ma XX. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China , 43 (1) :1–42.
[68] Yang QJ, Xu YG, Huang XL, Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan:Tectonic implications. Acta Petrologica Sinica , 22 (4) :817–834.
[69] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences , 28 (1) :211–280. DOI:10.1146/annurev.earth.28.1.211
[70] Zeh A, Gerdes A, Barton Jr J, Klemd R. 2010. U-Th-Pb and Lu-Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa):Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambrian Research , 179 (1-4) :50–68. DOI:10.1016/j.precamres.2010.02.012
[71] Zhang B, Zhang JJ, Zhong DL, Yang LK, Yue YH and Yan SY. 2012. Polystage deformation of the Gaoligong metamorphic zone:Structures, 40Ar/39Ar mica ages, and tectonic implications. Journal of Structural Geology , 37 :1–18. DOI:10.1016/j.jsg.2012.02.007
[72] Zhao SW, Lai SC, Qin JF, Zhu RZ. 2016. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan Plateau:Constraints from granitic gneisses and granitoid intrusions. Gondwana Research , 35 :238–256. DOI:10.1016/j.gr.2015.05.007
[73] Zhong DL. 1998. The Tethyan Orogenic Belt in Western Yunnan :1–231.
[74] 蔡志慧, 许志琴, 段向东, 李化启, 曹汇, 黄学猛.2013. 青藏高原东南缘滇西早古生代早期造山事件. 岩石学报 , 29 (6) :2123–2140.
[75] 陈福坤, 李秋立, 王秀丽, 李向辉.2006. 滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成. 岩石学报 , 22 (2) :439–448.
[76] 董汉文, 许志琴, 李源, 刘钊.2014. 东喜马拉雅构造结墨脱地区晚三叠世深熔作用的锆石U-Pb年代限定. 大地构造与成矿学 , 38 (2) :398–407.
[77] 董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 谢许峰, 王霞, 胡兆初.2012. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义. 岩石学报 , 28 (5) :1453–1464.
[78] 季建清, 钟大赉, 桑海清, 裘冀, 胡世玲.2000a. 滇西南那邦变质基性岩两期变质作用的40Ar/39Ar年代学研究. 岩石学报 , 16 (2) :227–232.
[79] 季建清, 钟大赉, 张连生.2000b. 青藏高原东南部新生代挤出块体西边界. 科学通报 , 45 (2) :128–134.
[80] 季建清, 钟大赉, 张连生.2000c. 滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义. 地质科学 , 35 (3) :336–349.
[81] 简平, 程裕淇, 刘敦一.2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据. 地学前缘 , 8 (3) :183–191.
[82] 刘兵, 巴金, 张璐, 陈能松, 李晓彦, 章泽军, 陈海红, 袁晏明.2008. 北京周口店官地杂岩变质-深熔作用的锆石LA-ICP-MS U-Pb定年. 地质科技情报 , 27 (6) :37–42.
[83] 刘俊来, 宋志杰, 曹淑云, 翟云峰, 王安建, 高兰, 修群业, 曹殿华.2006. 印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例. 岩石学报 , 22 (4) :775–786.
[84] 刘琦胜, 叶培盛, 吴中海.2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征. 地质通报 , 31 (2) :250–257.
[85] 莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼.2007. 印度-亚洲大陆碰撞的时限. 地质通报 , 26 (10) :1240–1244.
[86] 许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰.2011. 印度-亚洲碰撞大地构造. 地质学报 , 85 (1) :1–33.
[87] 许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣.2016. 青藏高原大陆动力学研究若干进展. 中国地质 , 43 (1) :1–42.
[88] 杨启军, 徐义刚, 黄小龙, 罗震宇.2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义. 岩石学报 , 22 (4) :817–834.
[89] 云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社 .
[90] 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社 : 1 -231.