岩石学报  2016, Vol. 32 Issue (7): 2181-2195   PDF    
朝鲜平南盆地祥原超群的沉积时代与拉伸纪早期碳同位素负漂移
朴贤旭1, 翟明国2, 杨正赫1, 彭澎2 , 金正男1, 张艳斌2, 金明哲1, 朴雄1, 冯连君2    
1. 朝鲜国家科学院地质学研究所, 平壤 3812100;
2. 中国科学院地质与地球物理研究所, 北京 100029
摘要:朝鲜平南盆地与东华北克拉通(中朝克拉通)中新元古代盆地的对比存在争议,准确厘定相关沉积建造的沉积时限是解决这些争议的关键。朝鲜平南盆地的地层主体为祥原超群,从下往上依次为直岘群、祠堂隅群、默川群、灭恶山群和燕滩群。直岘群是祥原超群的最下部层位,大部分由陆源碎屑岩组成。从平南盆地“北部型”和“南部型”直岘群碎屑岩中分选锆石,测得LA-ICP-MS U-Pb年龄,限定祥原超群沉积时代晚于1100Ma,并且得出所谓的“北部型”和“南部型”地层没有时代和物源差异。鉴于默川群的基性岩床时代为~900Ma,祥原超群的沉积时代为新元古代早期(1000~900Ma),燕滩群的时代可能稍晚。这说明平南盆地与华北徐淮盆地和旅大盆地等同时。祥原超群碳酸盐岩样品的δ13C值数据表明,默川群时期碳同位素发生了负漂移(δ13C值为-6‰~-5‰)。鉴于侵入到默川群的基性岩床的时代为~900Ma,我们认为该碳同位素(δ13C值)负漂移略早于~900Ma,可能与同一时期的岩浆活动有关。
关键词朝鲜     平南盆地     祥原超群     碎屑锆石年龄     碳同位素     沉积时代    
Deposition age of the Sangwon Supergroup in the Pyongnam basin (Korea) and the Early Tonian negative carbon isotope interval
PARK HyonUk1, ZHAI MingGuo2, YANG JongHyok1, PENG Peng2 , KIM JongNam1, ZHANG YanBin2, KIM MyongChol1, PARK Ung1, FENG LianJun2    
1. Institute of Geology, State Academy of Sciences, Pyongyang 3812100, DPRK;
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: The relationship of the Pyongnam basin with other basins in the Eastern North China Craton (Sino-Korean Craton) is in debating; and the deposition age is one key to solve this. The strata in the Pyongnam basin are mainly composed of the Sangwon Supergroup, which comprises the Jikhyon Group, the Sadangu Group, the Muckchon Group, the Myoransan Group and the Yontan Group from bottom to up. The Jikhyon Group is the lowermost formation and comprises of mainly terrestrial clastic sediments. Detrital zircons were separated from the clastic rocks of the Jikhyon Group of both the ‘north-type’ and ‘south-type’ strata of the Pyongnam basin, and their LA-ICP-MS U-Pb ages constrain the maximum deposition age to be 1100Ma. It further suggests that there are no differences either in deposition age or provenance between the so-called ‘north-type’ and ‘south-type’ strata. As the mafic sills in the Muckchon Group were intruded at ~900Ma, we suggest that the majority of the Sangwon Supergroup was deposited at 1000~900Ma, with the Yontan Group to be slightly younger. This indicates that the Pyongnam basin is contemporary with those in the Xu-Huai and Lv-Da basins. The variation of δ13C values of the carbonate samples from the Sangwon Supergroup shows a distinct negative drifting(δ13C value as low as -6‰~-5‰) in the Mukchon Group. As the mafic sills in the Mukchon Group were emplaced at ~900Ma, we suggest that this negative drifting of δ13C values happened slightly older than ~900Ma, and is possibly related to a coeval magmatic event.
Key words: Korea     Pyongnam basin     Sangwon Supergroup     Detrital zircon age     Carbon isotope     Deposition age    
1 引言

朝鲜平南盆地(或称平南坳陷)位于朝鲜半岛的中部,是朝鲜主要构造单元之一,盆地北与狼林地块,南与临津江构造带相邻。平南盆地占朝鲜半岛总面积的将近1/10,是朝鲜半岛中、新元古界和古生界盖层发育且最广阔、最完整的沉积盆地(Paek and Jon, 1996)。祥原超群发育于甑山群、义州群和黄海群变质岩系之上,是平南盆地最为重要的碳酸盐岩-碎屑岩沉积建造,对其沉积时代一直未有定论(Paek and Jon, 1996)。近年来,研究者根据微化石生物地层学把祥原超群最上部层位燕滩群棱里组的年代确定为新元古代晚期(Jang and Pak, 2000; Jang and Pae, 2004; Jang,2001; Ri and Park, 2005; Park and So, 20022010)。但大部分学者还是认为祥原超群主体形成于中元古代(Park et al., 20022006)。Peng et al.(2011a)报道了朝鲜中部沙里院附近侵入到默川群的基性岩床~899Ma的斜锆石年龄,限定祥原超群第三个群——默川群的沉积时代不小于899Ma,从而提出祥原超群可能形成于新元古代早期。不过,祥原超群第五个群——燕滩群里找不到类似基性岩床(Paek and Jon, 1996),说明部分地层可能年轻于岩床的侵位,或者基本同时。Hu et al.(2012)根据朝鲜平南盆地中部沙里院附近的祥原超群直岘群变砂岩碎屑锆石U-Pb年龄测试结果提出祥原超群沉积不早于~1000Ma。不过,祥原超群分布广,岩性多样,还存在南北差异,需要进一步工作来确定盆地内地层单元的关系和沉积时代。

祥原超群岩石组成中碎屑岩大约占一半,其他一半是碳酸盐岩,尤其是祠堂隅群与灭恶山群几乎全部是碳酸盐岩,此外直岘群中部层位五峰组和默川群中部组玉岘组也有碳酸盐岩(Paek and Jon, 1996)。地质时代海水碳同位素组成演化主要反映了全球海相碳酸盐岩对有机碳的沉积埋藏速率的变化(Broecker,1970; Hayes et al., 1983),高的碳酸盐岩的δ13C值代表相对高的有机碳埋藏速率。沉积的碳酸盐岩的δ13C值基本代表海水的碳同位素组成。虽然新元古代不同盆地中碳酸盐岩δ13C存在一定的地区性变化,幅度在1‰~2‰,但δ13C变化的总的趋势和幅度基本一致,因而即使海水中碳同位素组分存在地理性差异,但其时空变化,尤其是幅度变化,可能反映了当时全球性海水的变化(Kaufman et al., 1996)。相对中元古代的“平静”时期,新元古代沉积的海相碳酸盐岩具有地质历史上最大幅度的碳同位素负漂移和摆动(Kaufman and Knoll, 1995; Hoffman et al., 1998; Hill et al., 2000; 华洪和曹瑞骥,2003; 刘燕学等,2005; Chu et al., 2007; Halverson et al., 2007ab2010; 张雷雷等,2010)。

本文拟通过对祥原超群碳酸盐岩碳同位素研究探讨祥原超群沉积的碳酸盐岩的碳同位素负漂移和可能的时代烙印,包括与祥原超群中的碎屑锆石U-Pb定年的对照和与全球同时期地层的对比。

2 地质概况

朝鲜平南盆地的地层主体为祥原超群,从下往上依次为直岘群、祠堂隅群、默川群、灭恶山群和燕滩群。传统上,大部分研究者根据在中和-安边一线以北的祥原超群比以南的相似地层厚度薄而且相对简单而将其分成“北部型”和“南部型”,认为“南部型”略早于“北部型”(Paek et al., 1987; Riu et al., 1990)。平城北部属于“北部型”,其中的直岘群从下往上为遂安组、新城组、物金山组、桧仓组(分别对应“南部型”直岘群的长峰组、五峰组、长寿山组、安心岭组)。整合于其上的祠堂隅群由内洞组、五峰山组、半天组组成(分别对应“南部型”祠堂隅群的云积山组、德在山组、青石头组)。其上默川群由新河组、马田组和燕山组组成(分别对应“南部型”默川群的雪花山组、玉岘组和临山组)(Park,2012)(图 1)。现在多认为两者形成时期相同(Ri et al., 1988; Paek and Jon, 1996; Park,2006; Han and Park, 2011)。

图 1 朝鲜祥原超群地质简图与采样位置图(据Paek and Jon, 1996;金炳成,2012修改) Fig. 1 Simplified geological map showing the sampling localities of the Sangwon Supergroup in Korea(after Paek and Jon, 1996; Jin,2012)

平城地区“北部型”直岘群在岩石组合上与平南盆地南部的直岘群差不多,但地层厚度不到南部的一半,底部为砂岩,粉砂岩,泥岩等陆源碎屑岩,中部泥质-碳酸质页岩,上部砂岩,砂质页岩,最上部碳酸质页岩组成。这与“南部型”直岘群基本一致,只是“南部型”直岘群最底部还可见底砾岩。总体上“北部型”与“南部型”的祠堂隅群都是碳酸盐岩为主:北部下段为石灰岩,中-上段为白云岩,南部中段为白云岩,上段为石灰岩。默川群在岩石组合上北部与南部没有差别,但厚度上,南部稍厚。灭恶山群和燕滩群地层南北部基本相似。

3 样品描述

碎屑锆石样品与碳同位素样品采自平南盆地北部平城市以北(样品12-Ck4)和平南盆地南部凤山郡(样品12-Ob3、12-Zn4和12-Zn5)(图 1)。

样品12-Ck4为浅变质细粒长石石英砂岩,采自“北部型”直岘群物金山组,为薄层状灰白色细粒长石石英砂岩,地层真厚度50m左右。样品12-OB3为浅变质泥质砂岩样品,采自“南部型”直岘群五峰组,五峰组厚100m。样品12-Zn4和12-Zn5为灰白色长石石英砂岩,采自“南部型”直岘群长寿山组,长寿山组厚300m。

碳酸盐岩样品采自平城以及南部凤山郡与银波郡(图 1)。平城地区碳酸盐岩样品(16件)离样品12-Ck4约1.5km,主要来自“北部型”直岘群最上部桧仓组、祠堂隅群的内洞组、五峰山组和半天组和默川群马田组。本区桧仓组岩性主要由石英绢云母片岩,石灰质绿泥石片岩,中厚层状变砂岩组成,中间夹有灰白色石灰岩;内洞组由灰色-暗灰色层状泥质石灰岩,灰色细晶质石灰岩,石灰质片岩组成;五峰山组由淡灰色层状白云岩,暗灰色层状白云岩,灰色-暗灰色块状白云岩组成;半天组由暗灰色灰岩夹白云岩组成;马田组由肉红色细晶质石灰岩,灰白色细晶质石灰岩,石英绢云母片岩组成。

凤山郡碳酸盐样品(13件)靠近样品12-OB3,样品采自“南部型”直岘群安心岭组与祠堂隅群。本区安心岭组由暗灰色薄层状石灰岩、暗灰色粘土质石灰岩组成,祠堂隅群云积山组由灰色层状石灰岩,泥质石灰岩组成,与下部安心岭组和上部德在山组都以断层接触。德在山组由厚层状白云岩,块状白云岩,不一致石灰岩组成。岩石结晶程度很低,无穿插细脉。

银波郡碳酸盐样品(87件)来自“南部型”直岘群五峰组、祠堂隅群云积山组、德在山组、青石头组与默川群玉岘 组。直岘群五峰组由薄层状-中后层状灰白色石灰岩组成,祠堂隅群云积山组由下部的泥质石灰岩,块状石灰岩,中部的层状石灰岩,泥质石灰岩,块状石灰岩,白云质石灰岩,块状白云岩,上部的石灰岩与灰白色白云岩互层,白云质石灰岩组成。德在山组由块状白云岩,石灰质白云岩,白云质石灰岩组成。青石头组由暗灰色石灰岩,白云岩,泥质石灰岩组成。默川群玉岘组由薄层状肉红色-灰白色石灰岩组成。碳酸盐岩结晶程度低,无细脉穿插。

4 分析方法 4.1 锆石U-Pb同位素分析方法

将样品粉碎至60目以下,在双目镜下挑出锆石颗粒。将锆石颗粒粘在双面胶上,固定于透明的环氧树脂中,打磨抛光,分别照透射光、反射光和阴极发光照片,观察锆石的内部结构特征。用带有Geolas 200M激光剥蚀系统的Agilent 7500a ICP-MS同时原位测定锆石U-Pb同位素和元素含量。U-Pb同位素的外标为哈佛大学的标准锆石91500作计算,其参考值加权平均206Pb/238U参考年龄为1065.4±0.6Ma(Wiedenbeck et al., 1995);元素含量的计算外标为硅酸盐玻璃NIST SRM 610,内标为29Si。年龄测试激光束斑直径为40μm,剥蚀深度为20~40μm。U-Pb同位素和元素含量原始数据使用GLITTER 4.0软件进行处理。以上实验完成于在中国科学院地质与地球物理研究所。锆石的U-Pb年龄结果使用Isoplot 3.0软件(Ludwig,2003)处理。年龄数据见表 1

表 1 祥原超群直岘群碎屑锆石U-Pb同位素分析结果 Table 1 U-Pb isotope analyses of detrital zircons from the Jikhyon Group of the Sangwon Supergroup
4.2 碳、氧同位素分析方法

所采的碳酸盐岩样品可能受到了后期蚀变作用影响。为了获取原始沉积的碳、氧同位素信息,在采样过程中尽量选择结晶度很低,无岩脉侵入,无后期方解石与石英细脉的样品。根据显微镜下观察选择比较新鲜的样品进行分析。碳酸盐岩样品绝大多数为石灰岩,有少量白云岩或者白云质灰岩夹层样品。所有样品研磨至200目以下,采用无水正磷酸法,制备供质谱分析的CO2气体。白云岩和灰岩的反应温度为25℃,反应时间分别为24h和72h。CO2的C、O同位素分析是在中国科学院地质与地球物理研究所稳定同位素实验室MAT-253质谱仪上完成的。C、O同位素组成分别以δ13C和δ18O表示,并且均相对于VPDB(Vienna PeeDee Belemnite)国际标准。δ13C和δ18O的标准偏差分别优于0.15‰和0.20‰。相关数据见表 2

表 2 祥原超群碳酸盐岩碳、氧同位素值 Table 2 Carbon and oxygen isotope compositions of carbonates from the Sangwon Supergroup
5 分析结果 5.1 锆石U-Pb年龄

4件样品的锆石粒度为50~100μm。锆石外形呈次圆状和次棱角状,指示磨圆较差和源区较近。锆石的CL图像揭示大部分锆石具有震荡环带,Th/U>0.4,属于岩浆锆石(图 2)。4件样品测试点的年龄分布于3025~1091Ma,主要年龄峰值特征基本一致,4件样品都显示了~1600Ma和~1200Ma两个最主要的年龄峰值,此外还有其他较小的年龄峰值,如ca.1800~1900Ma峰值等,也记录了少数>2500Ma的碎屑锆石年龄,但这些年龄非常少(图 3)。样品12-Zn4(灰白色长石石英砂岩,直岘群长寿山组)似乎不同于另外3件样品:该样品有~1900Ma的年龄峰值,其他样品没有。4件样品中年龄最小的4个谐和年龄的平均值为1100Ma(图 3)。

图 2 代表性样品碎屑锆石阴极发光(CL)照片 Fig. 2 Cathodoluminescence(CL)images of selected detrital zircons

图 3 祥原超群直岘群碎屑锆石207Pb/206Pb年龄分布柱状图
(a)样品12-Ck4(浅变质细粒长石石英砂岩,直岘群物金山组);(b)样品12-Ob3(浅变质泥质砂岩,直岘群五峰组);(c)样品12-Zn4(灰白色长石石英砂岩,直岘群长寿山组);(d)样品12-Zn5(灰白色长石石英砂岩,直岘群长寿山组);(e)全部样品
Fig. 3 207Pb/206Pb age histograms of the detrital zircons from the Jikhyon Group of the Sangwon Supergroup
5.2 碳、氧同位素

祥原超群两件碳酸盐岩样品同时出现了极负的δ13C(~-10‰)和δ18O值(~-18‰),其他碳酸盐岩样品的碳同位素δ13C值变化范围为-6‰到+6‰(表 2图 4):从底部往上从直岘群安心岭组0.6‰经过祠堂隅群2.5‰变到默川群-5.4‰。氧同位素δ18O值变化范围为-18‰到-6‰,整体上与δ13C值的相关性不明显(表 2图 4)。

图 4 祥原超群碳酸盐岩样品δ18O与δ13C相关图 Fig. 4 Correlation diagram of δ18O and δ13C of carbonates in the Sangwon Supergroup

每个地区碳同位素δ13C值变化趋势如下:平城地区(“北部型”)δ13C值从最底部直岘群桧仓租1.4‰经过五峰山组2.7‰到默川群马田组急剧变小到-5.0‰;凤山郡北部(“南部型”)最底部直岘群安心岭组-0.8‰开始逐渐变大到1.8‰,经过云积山组中有0.3‰~3.6‰的浮动性变化,到德在山组3.3‰~3.5‰的比较高值;银波郡地区(“南部型”)碳同位素值从最底部直岘群五峰组-0.2‰经过云积山组3.7‰开始逐渐变化到0.5‰,德在山组从2.7‰开始逐渐变小到1.3‰,青石头组从2.3‰逐渐变大到3.3‰之后急剧变小到0.6‰,玉岘组从-5.1‰开始经过-5.6‰变化到-5.3‰(表 2)。

6 讨论 6.1 祥原超群的沉积时限与物源分析

4件样品中,样品12-Zn4(灰白色长石石英砂岩,直岘群长寿山组)似乎不同于另外3件样品:该样品有~1900Ma的年龄峰值,其他样品没有。不过,该样品与12-Zn5均属于直岘群长寿山组,为上下接触关系,因此,峰值的不同可能反映了物源区的不同。4个样品中年龄最小的4个谐和年龄的平均值为1100Ma,这些年龄最小的碎屑锆石表明直岘群形成晚于1100Ma(图 3)。这一结果与Hu et al.(2012)得到的沙里院附近直岘群碎屑锆石最大沉积年龄(~1000Ma)结果基本一致。年龄结果同时表明,平南盆地“北部型”与“南部型”直岘群碎屑锆石年龄峰值不存在明显差异,“北部型”与“南部型”直岘群基本一致。“北部型”与“南部型”祥原超群碳同位素变化趋势一致(图 5),这也表明平南盆地“北部型”与“南部型”地层在时代和物源方面不存在明显差异。

图 5 祥原超群值碳酸盐岩δ13C值变化图 Fig. 5 The variation of the δ13C values of the carbonate samples from the Sangwon Supergroup

Peng et al.(2011a)在朝鲜中部沙里院附近侵入到灭恶山群的基性岩床中测得899Ma斜锆石年龄,说明祥原超群直岘群-默川群,以及部分灭恶山群的地层沉积早于这一年龄。不过,祥原超群第五个群——燕滩群里找不到类似基性岩床(Paek and Jon, 1996),说明部分地层可能年轻于岩床的侵位,或者基本同时。因此,我们认为,祥原超群的沉积时代应该归属拉伸纪早期(1000~900Ma),部分地层可能稍晚,与徐淮盆地和辽宁-吉林新元古代盆地(如旅大盆地)基本同期,支持Peng et al.(2011b)提出的这些盆地属于同一个裂谷系的观点。

碎屑锆石的年龄峰值~1200Ma很接近Wu et al.(2007)报道的朝鲜中部瓮津花岗岩侵入年龄。峰值~1600Ma是最强的年龄值,Hu et al.(2012)同样报道了这一峰值,胡波等(2013)对华北克拉通北京西山地区寒武系和侏罗系碎屑锆石年龄测试中,也识别了~1600Ma的峰值。但目前属于这个年龄段的地质体在朝鲜还没有找到,相似的年龄仅见于燕辽裂谷系的火山岩和基性岩墙中(Lu et al., 2008; Peng,2015)。1800~1900Ma前后的年龄峰值与华北克拉通基底的年龄对应(胡波等,2013)。另外,直岘群长寿山组灰白色长石石英砂岩(样品12-Zn4)与其他样品年龄峰值略有差异,如,该样品没有>2500Ma的碎屑锆石年龄,但有~1900Ma的年龄峰值,这些特征可能体现了物源的差异。

6.2 祥原超群碳同位素组成与全球早新元古代碳同位素负漂移 碳酸盐岩的氧同位素组成对蚀变作用灵敏,因为成岩后循环的大气降水、热液等流体与碳酸盐岩相互作用时最容易发生氧同位素的交换,使碳酸盐岩的δ18O值明显降低(Kaufman and Knoll, 1995)。Bathurst(1975)认为,成岩作用可能造成样品的δ18O值与δ13C值之间有明显的正相关关系。但Veizer et al.(1999)后来的研究表明,尽管成岩作用的确有可能导致δ18O值与δ13C值的正相关,但并不意味着δ18O值与δ13C值正相关就一定证明了岩石受到成岩作用的影响。虽然如此,祠堂隅群的大部分样品碳同位素δ13C和氧同位素δ18O值没有呈现正相关关系(图 4),表明没有受到后期强烈蚀变作用影响。除个别δ13C值~10‰左右的样品,其δ18O值最负,表明可能受到后期影响(表 2),其他碳同位素δ13C值最负的样品(~5‰),其δ18O值并不是最负的(图 4),这也表明这些样品可能记录了原始同位素组成。

图 5将碳同位素数据与祥原超群的地层柱结合,可以得出祥原超群碳同位素组成随时间变化的趋势。可以看出从安心岭组碳同位素值的0‰开始逐渐变大,到了祠堂隅群达到5‰附近,从那以后逐渐变小,默川群玉岘组出现负值,达到-5‰以下。默川群主体上略早于~900Ma(Peng et al., 2011a),这一负漂移和摆动应略早于~900Ma,或为950~900Ma(图 6)。

图 6 祥原超群碳同位素δ13C值随时间变化趋势图
底图碳同位素数据引自Macdonald et al.(2010);淮北群(Huaibei Group)碳同位素数据引自Xiao et al.(2014);图中数据点为祥原超群碳同位素值
Fig. 6 The variation of the δ13C values of carbonate samples from the Sangwon Supergroup

实际上,国外不少新元古代盆地沉积岩系中都记录了碳同位素负漂移(Kaufman et al., 1995; Hoffman et al., 1998; Hill et al., 2000; Halverson et al., 2007ab2010; Macdonald et al., 2010)。Fairchild and Spiro(1987)报道了西非毛里塔利亚Atar群中出现的负漂移。Hoffman et al.(1998)总结Namibia地台碳同位素变化趋势时提出存在新元古代负漂移。Hill et al.(2000)在澳洲Amadeus 盆地Bitter Springs组的Gillen段岩石中,也发现了碳同位素负偏移。Halverson et al.(2007ab2010)认为这是全球性的碳同位素负偏移,与全球性海水位的变化有关,不是冰川事件的影响。不过,这一负偏移发生于新元古代~800Ma前后(Kaufman and Knoll, 1995; Hoffman et al., 1998; Kah et al., 1999; Hill et al., 2000; Halverson et al., 2007ab2010; Macdonald et al., 2010)。这一年龄略微年轻于侵入到碳同位素出现负漂移的默川群的~900Ma的基性岩床年龄(Peng et al., 2011a)。Xiao et al.(2014)对华北克拉通东部的徐淮盆地中的淮北群碳酸盐岩碳同位素进行了分析,结合地层的年龄数据,提出沟后组的负漂移(δ13C值接近-5‰)对应于全球Bitter Springs阶段的碳同位素负漂移(<820Ma),而史家组的碳同位素负漂移(δ13C值接近-3‰)对应Halverson et al.(2010)总结的920~800Ma碳同位素负漂移。鉴于默川群玉岘组和淮北群史家组都有~900Ma基性岩床侵入,并可进行对比(Peng et al., 2011a),我们认为玉岘组和史家组的碳同位素负漂移发生应早于900Ma,或可与平南盆地950~900Ma的默川群负漂移对应,可能是新元古代第一次碳同位素负漂移(图 6)。长期以来,很多学者(华洪和曹瑞骥,2003; 刘燕学等,2005; 杨树杰,2009张雷雷等,2010)认为华北旅大盆地和徐淮盆地(中)新元古代地层可以对比。Peng et al.(2011ab)的研究表明,徐淮盆地、旅大盆地以及朝鲜平南盆地等可能属于同一个裂谷系。

研究认为Bitter Springs组碳同位素负漂移与Rodinia超大陆裂解过程中的火山活动有关(Hill et al., 2000; Halverson et al., 2007ab2010)。实际上,岩浆活动促使沉积物中赋存的甲烷被释放,而这些与细菌作用有关的甲烷通常富集12C,释放到大气中的甲烷被氧化后溶解在水体中,降低水体中δ13C值(Retallack and Jahren, 2008)。鉴于平南盆地默川群和徐淮盆地淮北群等的碳同位素负向漂移发生前,地层中都有基性岩床侵位,而且,同一时期华北发育大型基性岩墙群(~925Ma; Peng et al., 2011ab),我们认为,这一负漂移有可能与岩浆活动相关。

7 结论

(1) 综合碎屑锆石年龄以及碳同位素组成分析,我们认为朝鲜平南盆地祥原超群“北部型”和“南部型”地层不存在明显差异。

(2) 祥原超群碎屑锆石年龄表明祥原超群沉积不早于1100Ma,碎屑锆石年龄峰值与华北同时期其他盆地碎屑岩碎屑锆石年龄峰值一致。综合祥原超群碎屑锆石年龄和侵入其中的基性岩床斜锆石年龄、相关地层碳同位素变化以及前人的研究成果,推测祥原超群沉积于1000~800Ma,与华北吉辽及徐淮地区新元古代地层可以进行对比。

(3) 祥原超群碳酸盐岩碳同位素值δ13C变化趋势从底部接近于0‰,变化到+3‰和+4‰之间,到顶部-6‰~-5‰。根据侵入到负向漂移地层(默川群)的基性岩床的时代,我们认为该碳同位素负漂移发生可能略早于900Ma,早于~800Ma的Bitter Springs负漂移,是新元古代第一次碳同位素负漂移。这次δ13C负漂移的出现可能和~925Ma前后的岩浆活动有关。

致谢 感谢储雪蕾研究员的修改意见。

参考文献
[1] Bathurst RG. 1975. Carbonate Sediments and Their Diagenesis. Amsterdam: Elsevier, 1-660
[2] Broecker WS. 1970. A boundary condition on the evolution of atmospheric oxygen. Journal of Geophysical Research, 75(18): 3553-3557
[3] Chu XL, Zhang TG, Zhang QR and Lyons TW. 2007. Sulfur and carbon isotope records from 1700 to 800Ma carbonates of the Jixian section, northern China: Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692
[4] Fairchild IJ and Spiro B. 1987. Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen. Sedimentology, 34(6): 973-989
[5] Halverson GP, Dudás FÖ, Maloof AC and Bowring SA. 2007a. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 103-129
[6] Halverson GP, Maloof AC, Schrag DP, Dudás FÖ and Hurtgen M. 2007b. Stratigraphy and geochemistry of a ca. 800Ma negative carbon isotope interval in northeastern Svalbard. Chemical Geology, 237(1-2): 5-27
[7] Halverson GP, Wade BP, Hurtgen MT and Barovich KM. 2010. Neoproterozoic chemostratigraphy. Precambrian Research, 182(4): 337-350
[8] Han RY and Park HU. 2011. Geology of Korea. Pyeongyang: Science and Encyclopedia Publishing House, 519-529 (in Korean)
[9] Hayes JM, Kaplan IR and Wedeking KW. 1983. Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed.). Earth's Earliest Biosphere: Its Origin and Evolution. Princeton, New Jersey: Princeton University Press, 93-134
[10] Hill AC, Arouri K, Gorjan P and Walter MR. 2000. Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate/evaporite: The Bitter Springs Formation, central Australia. In: Grotzinger JP and James NP (eds.). Carbonate Sedimentation and Diagenesis in an Evolving Precambrian World. Tulsa: SEPM Special Publication, 67: 327-344
[11] Hoffman PF, Kaufman AJ and Halverson GP. 1998. Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia. GSA Today, 8(5): 1-9
[12] Hu B, Zhai MG, Li TS, Li Z, Peng P, Guo JH and Kusky TM. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22(3-4): 828-842
[13] Hu B, Zhai MG, Peng P, Liu F, Diwu CR, Wang HZ and Zhang HD. 2013. Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton: Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing. Acta Petrologica Sinica, 29(7): 2508-2536 (in Chinese with English abstract)
[14] Hua H and Cao RJ. 2003. Neoproterozoic Stromatolite assemblages from the Shisanlitai stage and its significance in the regional and continental correlation. Journal of Stratigraphy, 27(1): 19-25 (in Chinese with English abstract)
[15] Jang TS and Pak YC. 2000. Vendian (V) fossil of animal and plant found from Hwangju and Yonthan regions. Bulletin of Kim Il Sung University, 46(6): 100-103 (in Korean with English abstract)
[16] Jang TS. 2001. On some new fossil animals discovered at the Kuhyon series and their geological significance. Geological Science, 4: 8-10 (in Korean with English abstract)
[17] Jang TS and Pae PH. 2004. Studies on the new paleontological fossils of Kuhyon system of Rungri Formation and biostratigraphy. Bulletin of Kim Il Sung University, 4: 173-176 (in Korean with English abstract)
[18] Kah LC, Sherman AG, Narbonne GM, Knoll AH and Kaufman AJ. 1999. δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for regional lithostratigraphic correlations. Can. J. Earth Sci., 36(3): 313-332
[19] Kaufman AJ, Jacobsen SB and Knoll AH. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planet. Sci. Lett., 120(3-4): 409-430
[20] Kaufman AJ and Knoll AH. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27-49
[21] Kaufman AJ, Knoll AH, Semikhatov MA, Grotzinger JP, Jacobsen SB and Adams W. 1996. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia. Geological Magazine, 133(5): 509-533
[22] Kim BS. 2012. Characteristics of Paleozoic sedimentary from East China-Korean Peninsula and its tectonic evolution. Ph. D. Dissertation. Changchun: Jilin University, 65-66 (in Chinese with English summary)
[23] Liu YX, Kuang HW, Meng XH, Ge M and Cai GY. 2005. The Neoproterozoic stratigraphic correlation framework in the Jilin-Liaoning-Xuzhou-Huaiyang area. Journal of Stratigraphy, 29(4): 387-404 (in Chinese with English abstract)
[24] Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China craton: A review. Precambrian Research, 160(1-2): 77-93
[25] Ludwig KR. 2003. User's Manual for Isoplot/EX Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 1-71
[26] Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT and Schrag DP. 2010. Calibrating the Cryogenian. Science, 327(5970): 1241-1243
[27] Paek RJ et al. 1987. Geology of Korea. Science and Encyclopedia Publishing House, 5-17 (in Korean)
[28] Paek RJ and Jon GP. 1996. Geology of Korea. DPR of Korea, Institute of Geology, State Academy of Sciences (ed.). Pyeongyang: Foreign Language Book Publishing House, 31-51
[29] Park MH, Ri SB, Kim CJ and O CS. 2002. Litho-paleogeography during deposition of Sadangu Series in Middle Proterozoic era. Bulletin of Kim Il Sung University, 5: 137-140 (in Korean with English abstract)
[30] Park MH, Ri SB and Kim CG. 2006. Litho-paleogeography in the period of deposition of Solhwasan System of Mukchon Series in Upper Proterozoic era. Bulletin of Kim Il Sung University, 9: 160-162 (in Korean with English abstract)
[31] Park YC and So KS. 2002. New species of microfossil (Algae) found in the Rungri Formation, Upper Proterozoic, distributed on Kuhyon Pass of the Hukgyori, Hwangju County. Geological Science, 4: 14-16 (in Korean with English abstract)
[32] Park YC and So KS. 2010. Some species of microplant fossils from the upper part of Upper Proterozoic strata. Bulletin of Academy of Sciences, 1: 44-45 (in Korean with English abstract)
[33] Park MH. 2006. Principle of stratum division and stratigraphic chart of Korea. Bulletin of geological society of Korea, 1: 2-9 (in Korean)
[34] Park MH. 2012. Geological Series of Korea. Pyongyang: Industrial Publishing House, 309-363 (in Korean)
[35] Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS and Zhang YB. 2011a. Neoproterozoic (-900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the southeastern margin of the North China Craton. Gondwana Research, 20(1): 243-254
[36] Peng P, Bleeker W, Ernst RE, Söderlund U and McNicoll V. 2011b. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221
[37] Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Science), 58(5): 649-675
[38] Retallack GJ and Jahren AH. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology, 116: 1-20
[39] Ri SD and Pak YC. 2005. The organic microfossils from the Mukchon bed of SoHung-lake area and their geologic age. Bulletin of Kim Il Sung University, 2: 159-161 (in Korean with English abstract)
[40] Ri SR, O JK and Jong SK. 1988. Some hiatus surfaces classified in Sangwon System and stratigraphical position. Geology and Geography, 4: 2-5 (in Korean with English abstract)
[41] Riu JR, Paek YS and Ham BS. 1990. Geological Composition of Korea. Pyongyang: Industry Press, 174-195 (in Korean)
[42] Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG and Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1-3): 59-88
[43] Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Speigel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23
[44] Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG and Park SC. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238(3-4): 232-248
[45] Xiao SH, Shen B, Tang Q, Kaufman AJ, Yuan XL, Li JH and Qian MP. 2014. Biostratigraphic and chemostratigraphic constraints on the age of Early Neoproterozoic carbonate successions in North China. Precambrian Research, 246: 208-225
[46] Yang SJ. 2009. Study of the Neoproterozoic character of stratum development of south Liaodong peninsula. Master Degree Thesis. Shandong University of Science and Technology, 1-64 (in Chinese with English summary)
[47] Zhang LL, Zhang LP and Hu YL. 2010. Constrast and study on forming stage of Neoproterozoic and stratigraphic division in Jilin Province, Liaoning Province and Xuzhou-Huaihe River region. Shandong Land and Resources, 26(7): 8-12 (in Chinese with English abstract)
[48] 胡波, 翟明国, 彭澎, 刘富, 第五春荣, 王浩铮, 张海东. 2013. 华北克拉通古元古代末-新元古代地质事件——来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据. 岩石学报 29(7): 2508-2536
[49] 华洪, 曹瑞骥. 2003. 新元古代十三里台期叠层石组合的地层对比意义. 地层学杂志, 27(1): 19-25
[50] 金炳成. 2012. 中国东部-朝鲜半岛古生代沉积特征及构造演化. 博士学位论文. 长春: 吉林大学, 65-66
[51] 刘燕学, 旷红伟, 孟祥化, 葛铭, 蔡国印. 2005. 吉辽徐淮地区新元古代地层对比格架. 地层学杂志, 29(4): 387-404
[52] 杨树杰. 2009. 辽东半岛南部新元古代地层发育特征研究. 硕士学位论文. 青岛:山东科技大学, 1-64
[53] 张雷雷, 张丽萍, 胡玉玲. 2010. 吉辽徐淮地区新元古代形成时代及地层划分对比研究. 山东国土资源, 26(7): 8-12