岩石学报  2016, Vol. 32 Issue (7): 2086-2098   PDF    
含铜镍岩浆起源及硫饱和机制:以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例
赵云, 杨永强, 柯君君     
地质过程与矿产资源国家重点实验室, 中国地质大学地球科学与资源学院, 北京 100083
摘要:新疆黄山-镜儿泉一带是天山东段重要岩浆铜镍硫化物成矿带,但对其中含铜镍岩浆起源和硫饱和机制尚存较大争议。黄山南岩体是近年来在该成矿带中发现的另一个含矿性较好的重要岩体。岩体可分为超镁铁质岩相和镁铁质岩相,超镁铁质岩相为主要含铜镍矿岩相,而镁铁质岩相并未发生明显的矿化。超镁铁质岩相岩石类型包括二辉橄榄岩、斜辉橄榄岩、橄榄二辉岩、二辉岩、角闪二辉岩及少量粗粒辉长岩,其中二辉橄榄岩和二辉岩是主要含矿岩石类型。镁铁质岩相由苏长岩、辉长岩、角闪辉长岩、闪长岩及石英闪长岩组成。黄山南岩体的(87Sr/86Sr)i (0.7036~0.7057)、εNdt) (-1.2~+7.4)、(206Pb/204Pb)i (17.152~18.088)、(207Pb/204Pb)i (15.385~15.571)和(208Pb/204Pb)i (37.127~38.252)变化范围均较大,显示了母岩浆遭受了较明显的壳源物质混染。岩浆源区在板片俯冲过程中壳源物质加入明显,而原始岩浆上升过程中壳源物质的混染有限。Sr-Nd-Pb同位素组成指示黄山南含矿岩体的形成与塔里木大火成岩省并无直接联系。虽然黄山南岩浆铜镍硫化物矿石δ34S值介于-1.54‰~2.03‰之间,落在幔源硫的范围内,但是Se(×106)/S比值表明壳源硫的加入对成矿母岩浆硫饱和起到重要作用。
关键词含铜镍岩浆起源     硫饱和机制     黄山南岩体     新疆    
Origin of Cu- and Ni-bearing magma and sulfide saturation mechanism: A case study of Sr-Nd-Pb-S isotopic composition and element geochemistry on the Huangshannan magmatic Ni-Cu sulfide deposit, Xinjiang
ZHAO Yun, YANG YongQiang, KE JunJun     
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Huangshan-Jingerquan zone is an important Cu-Ni mineralization belt in the eastern part of the Tianshan orogenic belt. However, the origin of the Cu-Ni-bearing magma and sulfide saturation mechanism are still debatable. The Huangshannan mineralized intrusion is a new important discovery from geological prospecting in recent years. This intrusion can be divided into ultramafic and mafic lithofaces, in which ultramafic lithoface contains a large amount of sulfide ores whereas mafic lithoface is without obvious mineralization. The ultramafic unit is composed of lherzolite, olivine websterite, websterite and hornblende websterite and Ni-Cu sulfide orebodies occur mainly within websterite and lherzolite. The mafic unit is composed of norite, gabbro, hornblende gabbro, diorite and quartz diorite. The Huangshannan intrusion is characterized by variable (87Sr/86Sr)i (0.7036~0.7057), εNd(t) (-1.2~7.4), (206Pb/204Pb)i (17.152~18.088), (207Pb/204Pb)i (15.385~15.571) and (208Pb/204Pb)i (37.127~38.252) values, indicating significant crustal contamination of the parental magma. We propose that the modification by the subducted slab in mantle source show more important influence on the Huangshannan intrusion than crustal contamination during parental magma ascending up to the shallow magma chamber. The Sr-Nd-Pb isotopic compositions imply that the mineralized Huangshannan intrusion cannot result from the Tarim large igneous province. The δ34S values of the Huangshannan deposit are from -1.54‰ to 2.03‰ within the range of mantle values. However, the Se(×106)/S ratios show that the addition of crustal sulfur is an important factor for causing the sulfur saturation in the parental magma.
Key words: Cu-and Ni-bearing magma origin     Sulfide saturation mechanism     Huangshannan     Xinjiang    
1 引言

新疆北部岩浆铜镍硫化物矿床不仅经济意义大,而且形成背景和成岩成矿作用问题颇受关注(韩宝福等,2004; Zhou et al., 2004; Su et al., 20122013; Gao and Zhou, 2013; Gao et al., 2013)。近年北疆岩浆铜镍硫化物找矿取得显著进展的黄山-镜儿泉一带发现黄山西、黄山南、香山、黄山东、葫芦和图拉尔根等一系列中到大型铜镍矿床,发展成为世界级铜镍成矿带(图 1c邓宇峰等,2011)。前人针对黄山-镜儿泉铜镍成矿带中的不同含矿岩体已经开展了较多岩石学、年代学、地球化学研究(王润民等,1987; 毛景文等,2002; 韩宝福等,2004; Zhou et al., 2004; 邓宇峰等,2011; Su et al., 20122013; Gao and Zhou, 2013; Gao et al., 2013; Sun et al., 2013)。刘德权(1983)Xiao et al.(2004)研究认为带内岩体属阿拉斯加型镁铁-超镁铁质岩体,邓宇峰等(2011)Gao et al.(2013)Gao and Zhou(2013)Sun et al.(2013)将这些含矿岩体理解为造山后岩石圈伸展产物,Zhou et al.(2004)Pirajno et al.(2008)Su et al.(2012)则认为它们属地幔柱成因,此外,部分学者也曾认为这些岩体属蛇绿岩套的组成部分(马瑞士等,1997; 白云来,2000)。可见,黄山-镜儿泉铜镍成矿带的成矿背景及岩浆起源争议明显。硫在岩浆中达到饱和,硫化物熔体从岩浆中熔离出来并局部富集是岩浆铜镍成矿的关键(Barnes and Lightfoot, 2005)。硫饱和的机制是什么?人们在黄山-镜儿泉铜镍成矿带的研究提出岩浆分离结晶机制(夏明哲等,2010; Zhang et al., 2011; 邓宇峰等,2012; 毛亚晶等,2014; 孙涛等,2014)、硅质地壳混染和岩浆结晶分异(Zhou et al., 2004; 柴凤梅,2006; 钱壮志等,2009)、A型花岗岩深部混染(Sun et al., 2013)等不同认识。黄山南岩体是近年在黄山-镜儿泉铜镍成矿带发现的重要含矿岩体,本文依此为对象,拟开展岩体地质、Sr-Nd-Pb-S同位素和元素地球化学研究,为理解上述问题提供新的参考。

2 区域背景

中亚造山带夹持于东欧板块、西伯利亚板块、华北板块与塔里木板块之间,从西到东横跨超过5000km(图 1a),它由大陆微地块、岛弧和大洋地壳混杂拼合构成(şengör et al., 1993; Zonenshain et al., 1990)。天山造山带在大地构造位置上处于中亚造山带南缘,从北到南被分为北天山、中天山和南天山三个构造单元(图 1b)(Windley et al., 1990)。黄山南岩浆铜镍硫化物矿床位于天山东段,属北天山单元,该区产出一系列含铜镍矿的镁铁-超镁铁质岩体(图 1c)。

图 1 中亚造山带地质简图(a,据Jahn, 2004略修改)、新疆北部主要构造单元(b,据Sun et al., 2013略修改)和黄山地区地质构造略图(c,据Gao et al., 2013略修改) Fig. 1 Simplified geologic map of the Central Asian Orogenic Belt(a,modified after Jahn,2004),tectonic units of northern Xinjiang(b,modified after Sun et al., 2013)and geological structural sketch map of the Huangshan area(c,modified after Gao et al., 2013

在黄山南岩浆铜镍硫化物矿床所在的黄山地区,出露地层从老到新包括泥盆系大南湖组和下石炭统雅满苏组、白鱼山组、干墩组以及中石炭统梧桐窝子组(孙赫,2009; 王润民等,1987)。大南湖组由中酸-中基性火山岩、火山碎屑岩组成。雅满苏组为中酸性火山岩、火山碎屑岩夹细碎屑岩、灰岩。白鱼山组为一套浅海相或半深海相的硅钙质沉积建造,包括上部砂质灰岩、变质细砂岩、粉砂岩和条带状大理岩和下部变质砂岩夹薄层灰岩、变质砾岩、凝灰质砂岩、结晶灰岩、石英角斑岩和千枚岩,总厚度3111m,与下伏雅满苏组呈断层接触或假整合接触。干墩组为一套厚度巨大的火山碎屑岩和含炭硅灰岩沉积建造,包括硅质岩、硅质凝灰岩、变质粉砂岩、细砂岩、砾岩、结晶灰岩、变粒岩和片岩等,总厚度6670m,与上覆梧桐窝子组整合接触或局部断层接触,与下伏白鱼山组呈断层接触。梧桐窝子组为一套海底喷溢相的基性熔岩,包括硅质凝灰岩、角斑岩、角斑质凝灰岩和硅质粉砂岩等,总厚度589m,与下伏干墩组呈整合接触。新生界广泛分布于区内低洼地带。

区域新元古代、早古生代、晚古生代等不同时代岩浆侵入体均有出露,尤以海西期最为发育,中酸性岩类最多,其次为超基性-基性岩类(孙赫,2009; 王润民等,1987)。超基性-基性岩类沿康古尔-黄山断裂分布,由西向东依次出露二红洼、土墩、香山、黄山、黄山南、黄山东、黑石梁、红石岗、葫芦、串珠、图拉尔根、马蹄和咸水泉等岩体(图 1c)。岩体形态多为长透镜状,明显受断裂带中次一级褶皱及断裂控制(孙赫,2009),形成时代多在晚石炭-早二叠世。海西期花岗岩类规模大,分布广,多幕次侵入,包括黑云角闪花岗岩、黑云斜长花岗岩和黑云母花岗岩。加里东期花岗岩类主要分布于镜儿泉以东,多呈长条带状产出,走向近东西向(孙赫,2009)。元古代花岗岩主要分布在中天山地块。

区域主干断裂东西走向为主,次为北东东向。从北到南依次为康古尔-黄山断裂、沙泉子断裂和星星峡断裂(图 1c)。康古尔-黄山断裂及其两侧地层发生了复杂而强烈的剪切变形,形成康古尔-黄山韧性剪切带,呈舒缓波状,近东西向展布,南北宽约20~40km,早期(~300Ma)表现为挤压推覆剪切,晚期(262.9~242.8Ma)表现为右行走滑剪切(陈文等,2005)。

黄山-镜儿泉成矿带是区域内规模最为重要的岩浆型铜镍硫化物成矿带,走向北东东,长约200km,宽约8~30km,相关镁铁-超镁铁质岩体主体沿康古尔-黄山断裂带及其附近产出(图 1c)。黄山南含铜镍岩体位于黄山-镜儿泉成矿带中部 。

3 岩体地质及Cu-Ni硫化物矿化

黄山南岩体地表形态呈透镜状,近东西向展布,长5.2km,最大宽度1.3km,出露面积约4km2(图 2)。岩体侵位于下石炭统干墩组黑云母石英片岩中,走向与地层走向多存在5°~10°的交角,局部两者走向一致。在岩体与围岩接触带,围岩有明显热接触变质现象,岩体内可见围岩捕虏体。黄山南岩体可分为镁铁质和超镁铁质两类岩相。超镁铁质岩相出露于黄山南岩体东部,包括二辉橄榄岩,橄榄二辉岩和二辉岩等;超镁铁质岩相中心部位多为辉石橄榄岩相,向外逐渐过渡为橄榄辉石岩相;在超镁铁质岩相内,可观察到含细晶橄榄岩深源包体的二辉橄榄岩不规则透镜体,其中橄榄石呈浑圆嵌晶状产在辉石中(图 3a)。镁铁质岩相在黄山南岩体东部及西部均有出露,呈不规则透镜状,岩体边缘见冷凝边(王润民等,1987),岩体内部垂直分带明显,上部为苏长岩相(其中见橄榄苏长岩透镜体),下部为角闪辉长岩相,边缘为细粒辉长岩、石英闪长岩及闪长岩;镁铁质岩石中自形-半自形长柱状斜长石构成格架,单斜辉石、斜方辉石和角闪石等矿物镶嵌其中,辉长结构明显(图 3b)。相对于超镁铁质岩相,镁铁质岩相遭受后期蚀变较弱。

图 2 黄山南岩浆铜镍硫化物矿区地质图(据内蒙古自治区矿产实验研究所,2011(①内蒙古自治区矿产实验研究所. 2011. 新疆哈密市黄山南铜镍矿区27-40号勘查线详查报告,1-151);王润民等,1987)
(a)黄山南矿区地质平面图;(b)A-A’线矿体联合剖面图
Fig. 2 Geological map of the Huangshannan Ni-Cu magmatic sulfide deposit(modified after Wang et al., 1987)
(a)plan view of the Huangshannan Ni-Cu sulfide deposit;(b)cross-sections from exploration line A-A’

图 3 黄山南矿床典型岩石和矿石特征
(a)二辉橄榄岩中橄榄石呈嵌晶状产在斜方辉石中;(b)角闪辉长岩中辉石和角闪石产在斜长石组成的格架中;(c)稀疏浸染状矿石中硫化物集合体呈不规则状;(d)浸染状矿石中硫化物集合体呈珠滴状;(e)块状矿石中大量的硫化物聚集在一起,硅酸盐矿物含量很少;(f)产在硅酸盐矿物间隙中的硫化物的共生关系,黄铜矿产在硫化物集合体的边部,镍黄铁矿产在磁黄铁矿的裂隙中. Ol-橄榄石;Opx-斜方辉石;Cpx-单斜辉石;Amp-角闪石;Pl-斜长石;Cpy-黄铜矿;Po-磁黄铁矿;Pn-镍黄铁矿;Gdf-辉砷镍矿
Fig. 3 The characteristics of representative rocks and sulfide ores from the Huangshannan deposit
(a)olivine occurs as poikilitic crystals in the orthopyroxene in the lherzolite;(b)plagioclase laths form a latticework in which olivine,orthopyroxene and clinopyroxene crystals infill the interstitial spaces in the hornblende gabbro;(c)sulfide assemblages occur as irregular patches in the sparsely disseminated sulfide ore;(d)sulfide assemblages occur as large patches in the disseminated sulfide ore;(e)a large amount of sulfide assemblages with minor silicate minerals in the massive sulfide ores;(f)the relationship of sulfide assemblages in interstitial spaces of silicates. Chalcopyrite is developed generally at the edge of sulfide assemblages whereas pentlandite occurs as veinlets in pyrrhotite. Ol-olivine; Opx-orthopyroxene; Cpx-clinopyroxene; Amp-amphibole; Pl-plagioclase; Cpy-chalcopyrite; Po-pyrrhotite; Pn-pentlandite; Gdf-gersdorffite

铜镍硫化物矿体主要呈似层状和透镜状产在超镁铁质岩相中,含矿岩石包括二辉岩和二辉橄榄岩(图 2)。在超镁铁质岩体内,铜镍硫化物矿体常赋存于岩体下部和底部,在不同岩相接触部位多见矿化富集(图 2b),矿体由浅至深,矿石品位逐渐升高。据矿石中金属硫化物与脉石矿物的相对含量,可分为稀疏浸染状(硫化物含量1%~10%)(图 3c),浸染状(硫化物含量10%~30%)(图 3d)和块状(硫化物含量大于50%)(图 3e)等矿石自然类型,以前两者为主,后者少见。在浸染状矿石中,可见珠滴状硫化物集合体分布在二辉橄榄岩中(图 3d),硫化物矿物集合体主要产在橄榄石和辉石粒间。矿石矿物主要有磁黄铁矿、镍黄铁矿、黄铜矿、紫硫镍矿、马基诺矿和黄铁矿等(图 3f)。黄铜矿和镍黄铁矿主要位于磁黄铁矿的边部(图 3f)。也见镍黄铁矿呈“火焰状”在磁黄铁矿中出溶。

4 样品和分析

本次岩石和矿石样品采自当前采矿坑道,包括主要含铜镍岩石及矿石,新鲜、有代表性。

首先将岩石和矿石样品用蒸馏水清洗干净晾干后粉碎到200目,备元素和同位素分析。Sr、Nd、Pb同位素组成分析在核工业北京地质研究院分析测试研究中心完成。Sr同位素质量分馏用86Sr/88Sr=0.1194校正,标准测量结果:NBS987为0.710250±7。实验室流程本底:Rb和Sr均为2×10-10g。Nd同位素质量分馏用146Nd/144Nd=0.7219校正,标准测量结果:JMC为143Nd/144Nd=0.512109±3。全流程本底Sm和Nd均小于50pg。对1μg的铅208Pb/206Pb测量精度≤0.005%。同位素测试所用仪器为ISOPROBE-T型热电离质谱仪,分析流程见赵海杰等(2010),此不赘述。分析结果见表 1,取矿区辉长岩成岩年龄282.5Ma(Zhao et al., 2015),得到黄山南岩体(87Sr/86Sr)i=0.7036~0.7057,εNd(t)=-1.2~7.4,(206Pb/204Pb)i=17.152~18.088,(207Pb/204Pb)i=15.385~15.571,(208Pb/204Pb)i=37.127~38.252。

表 1 黄山南岩体Sr、Nd、Pb同位素分析数据 Table 1 Sr,Nd,Pb isotope data of the Huangshannan intrusion

将矿石样品物理破碎并过筛,蒸馏水清洗60~80目粒级样品,淘洗法初步分离其中的重矿物并晾干;然后在实体显微镜下逐粒挑选所需的磁黄铁矿、镍矿铁矿单矿物样品,纯度优于99%;将样品在玛瑙研钵中研磨至200目,以备硫同位素组成分析。测试在中国地质大学(北京)地质过程与矿产资源国家重点实验室完成。首先把样品与Cu2O和V2O5混合氧化剂在高温真空条件下反应制取SO2,然后用EA-ISOPRIME型气体同位素质谱计分析硫同位素组成,所用内标为GBW04415和GBW04414 Ag2S,标准为CDT,以δ34S(‰)表达分析结果,分析误差为0.2‰。结果表明,矿石中镍黄铁矿δ34S介于0.04‰~1.62‰,磁黄铁矿δ34S介于-1.54‰~2.03‰(表 2)。

表 2 黄山南矿床硫化物δ34S同位素组成 Table 2 Sulfur isotope data from the Huangshannan deposit

矿石Se含量分析在国家地质实验测试中心完成,首先称取0.2g样品,用HClO4+HNO3+HF溶样,HCl提取,在1︰1 HCl介质中保温水浴30分钟预还原;然后加入Fe3+盐掩蔽干扰元素,以硼氢化钾为还原剂,用AFS-230型原子荧光分光光度计分析。分析结果见(表 3)。

表 3 黄山南矿床中矿石的Se和S含量及Se(×106)/S比值 Table 3 Se and S contents as well as Se(×106)/S values for sulfide ores from the Huangshannan deposit
5 讨论 5.1 岩浆源区

野外观察表明,黄山南岩体与围岩接触带,围岩有明显热接触变质现象,岩体内可见围岩捕虏体;该岩体所在的黄山-镜儿泉铜镍成矿带内,岩体也常使围岩地层受到热接触变质(王玉往等,2004; 毛亚晶等,2014),这些镁铁-超镁铁质岩体应属岩浆热侵位方式形成,而与蛇绿岩套无关;包括黄山南在内,黄山-镜儿泉铜镍成矿带内众多镁铁-超镁铁岩体的精确测年数据表明,岩体与围岩存在50~60Myr的年龄差(韩宝福等,2004; 毛景文等,2002; Qin et al., 2003; Zhao et al., 2015; Zhou et al., 2004),也表明这些含矿岩体与蛇绿岩套无关。当前,研究和认识争论的焦点是镁铁-超镁铁岩体的岩浆源区以及它们与二叠纪塔里木大火成岩省之关系(邓宇峰等,2011; Su et al., 2012; Zhao et al., 2015)。

大火成岩省的特征通常表现为:短时间内大规模幔源岩浆活动,溢流玄武岩多在1Myr内(Hofmann et al., 2000; Larsen and Tegner, 2006),也有研究表明大火成岩省是多期多阶段地幔柱活动的产物,可持续15Myr(Bryan and Ernst, 2008);大规模岩浆活动前地壳明显抬升(Griffiths and Campbell, 1990; Farnetani and Richards, 1994);大量基性岩墙群(Campbell,2001);大面积溢流玄武岩和同源镁铁-超镁铁侵入体;地幔源区是“干”的,挥发份含量非常低(Campbell and Griffiths, 1993)。包括黄山南在内,黄山-镜儿泉铜镍成矿带内镁铁-超镁铁岩浆活动侵入持续时间大于20Myr(苏本勋,2011),甚至出现图拉尔根Ⅱ和Ⅲ号(~350Ma)及四顶黑山(367Ma)等更老的岩体(三金柱等,2010; 焦建刚等,2013; 孙赫,2009);到目前,没有地壳明显抬升的证据,也未发现基性岩墙群;镁铁-超镁铁岩中普遍见角闪石、黑云母等原生的含水矿物,表明母岩浆可能不是“干”的。

黄山南镁铁-超镁铁岩样品的εNd(t)、(87Sr/86Sr)i、(206Pb/204Pb)i同位素组成与二叠纪塔里木大火成岩省玄武岩均存在明显不同(图 4);而且不同岩相表现出较大的εNd(t)和(87Sr/86Sr)i变化范围,显示明显壳源物质混染特征;同时,微量元素研究表明,黄山南岩体与二叠纪塔里木大火成岩省玄武岩存在明显差别(Zhao et al., 2015);分别以亏损地幔(DMM)、上地壳(UC)和下地壳(LC)为端元进行的计算模拟表明,黄山南岩体可能经历了<10%的下地壳物质混染和/或<5%的上地壳物质混染(图 4a)。研究表明,黄山南岩体具有较高Th/Yb和Nb/Yb比值,岩浆起源经历过地幔源区俯冲板片壳源物质加入和岩浆上升中地壳物质混染(Zhao et al., 2015),但是两者孰轻孰重并不清楚。Song et al.(2011)通过研究表明成分类似于洋中脊玄武岩(MORB)的母岩浆即使经历过10%的上地壳物质(相对于下地壳具有高的Th/Yb比值)混染然后再经历50%的分异结晶(70%橄榄石+30%单斜辉石)对Th/Yb和Nb/Yb比值的提高很有限。因此,推测黄山南岩浆源区在板片俯冲过程中壳源物质加入明显,而原始岩浆上升中地壳物质混染作用相对较弱。黄山南岩体的εNd(t)和(87Sr/86Sr)i组成(图 4b)显示出与阿拉斯加型岩体相似的特征(邓宇峰等,2011)。黄山南岩体Pb同位素组成(图 5)主体与甘肃黑山含铜镍矿镁铁-超镁铁质岩体接近,反映具有相似岩浆源区特征;研究表明,黑山岩体的岩浆源区受到俯冲物质强烈改造(Xie et al., 2012)。可见,黄山南岩浆源区不具有塔里木大火成岩省岩浆源区的特点,可能存在明显俯冲流体交代。

图 4 黄山南岩体Sr-Nd-Pb同位素组成图解
亏损地幔(DMM),下地壳(LC)和上地壳(UC)数据分别引自Zindler and Hart, 1986Rudnick and Gao, 2003;全球沉积物数据引自Dobosi et al., 2003;全球岛弧玄武岩数据引自http://www.petdb.org;活动大陆边缘(ACM)数据来自Hawkesworth,1982;塔里木二叠纪玄武岩(PTB)数据引自Zhou et al., 2009Yuan et al., 2012;部分原始数据夏明哲,2009
Fig. 4 Plots of Sr-Nd-Pb isotope systematics for the Huangshannan intrusion
Data for a depleted mantle-derived melt(DMM)and the lower and upper crusts(LC,UC)from Zindler and Hart(1986)and Rudnick and Gao(2003),respectively. The field of global sediments is from Dobosi et al.(2003). Data for global volcanic arc basalts(VAB)from a public database(http://www.petdb.org). The data of active continental margin(ACM)from Hawkesworth(1982). Data for Permian Tarim basalts(PTB)from Zhou et al.(2009)and Yuan et al.(2012). Some data from Xia,2009

图 5 黄山南岩体Pb同位素组成图解
黑山岩体范围据Xie et al., 2012; 部分原始数据夏明哲,2009
Fig. 5 Diagrams of Pb isotopic composition of the Huangshannan intrusive rocks
Data of Heishan intrusion from Xie et al., 2012; Some data from Xia,2009

对黄山南岩体所在的黄山-镜儿泉铜镍成矿带其他镁铁-超镁铁质岩体的研究均证明地幔源区经历过强烈俯冲板片流体交代(Gao et al., 2013; Mao et al., 2008; Su et al., 2012; Zhou et al., 2004)。但黄山南岩体地质特征与典型俯冲背景下阿拉斯加型岩体不同,阿拉斯加型岩体在剖面上常呈管状,多数不具层状结构(Johan,2002);环状结构中,核部为纯橄榄岩,向外依次为辉石橄榄岩、橄榄单斜辉石岩、角闪单斜辉石岩、角闪岩和辉长岩,闪长岩较少出现;辉石主要为单斜辉石,斜方辉石缺乏或含量很少;在橄榄辉石岩、角闪辉石岩和角闪岩中常见磁铁矿,含量达15%~20%(Taylor,1967; Irvine,1974; Pettigrew and Hattori, 2006; Ripley,2009)。而黄山南岩体不呈管状,略显层状;缺少纯橄榄岩相,岩石组合中闪长岩和石英闪长岩占一定比例;岩石中斜方辉石含量高,在部分岩相中达30%~40%,而磁铁矿含量一般<5%。黄山南岩体精确锆石U-Pb定年表明其形成于282.5±1.4Ma(Zhao et al., 2015),明显晚于东天山区域俯冲碰撞事件结束时间(~300Ma,Mao et al., 2008; Su et al., 2012; Zhou et al., 2004),更晚于大洋板块俯冲。由于早期俯冲板片流体的改造,许多造山后伸展环境中的岩浆也常显示出岛弧或者活动大陆边缘岩浆性质(Aït-Djafer et al., 2003; Song and Li, 2009; Deng et al., 2014)。因此,黄山南岩体虽然形成于造山后岩石圈伸展环境,但继承了早期俯冲板片流体交代的岩浆源区特征。

5.2 硫饱和方式

母岩浆中硫如何饱和?硫化物怎样熔离?一直是岩浆铜镍硫化物成矿研究焦点。Li and Ripley(2005)总结出导致岩浆中硫饱和的可能因素包括温度降低、压力升高、母岩浆成分变化(尤其FeO含量降低和SiO2、Na2O、K2O和MgO含量升高)、氧逸度升高、硫逸度降低5个因素。在封闭的岩浆通道系统中,即使初始岩浆中硫饱和,其上升侵位过程常导致岩浆中硫的不饱和状态,因为上升过程中压力降低所引起的硫溶解度升高程度远高于温度降低所引起的硫溶解度降低(Barnes and Lightfoot, 2005; Mavrogenes and O'Neill,1999; 孙赫,2009)。母岩浆自身的结晶分异会导致岩浆中FeO含量降低,进而引起硫化物熔离并富集成矿。Barnes and Lightfoot(2005)根据Cape Smith科马提质玄武岩浆成分计算得出,母岩浆须经过40%的结晶分异才能达到硫饱和。但Ni在橄榄石和辉石等硅酸盐矿物与岩浆之间的分配系数较大,D橄榄石/岩浆=1.35~13.6(Brenan et al., 2003),D辉石/岩浆=2.6~4(//earthref.org),这些早期结晶的硅酸盐矿物会导致岩浆中Ni大量消耗,即使岩浆中硫最终达到饱和,往往也不能形成具有重要经济意义的矿床。在地幔源区高氧逸度条件下,硫化物会转变为硫酸盐,硫溶解度迅速升高(Jugo et al., 2005)。黄山南岩体的地幔源区经历过明显俯冲板片流体交代,应具较高氧逸度,在岩石圈地幔部分熔融程度较低时,初始岩浆仍可富集大量成矿金属(Jugo et al., 2005)。而在浅部岩浆房中,硫溶解度受氧逸度、硫逸度影响明显,而后两者主要受控于岩浆中FeO含量(Mavrogenes and O'Neill,1999)。似乎地壳物质的加入对岩浆铜镍硫化物成矿至关重要。

一些世界级岩浆铜镍硫化物矿床显示出明显地壳硫同位素特征,如Noril’sk(Grinenko,1985; Malitch et al., 2014)、Pechenga(Barnes et al., 2001; Abzalov and Both, 1997)和Thompson(Bleeker,1990)等;而另一些世界级岩浆铜镍硫化物矿床硫同位素组成显示地幔特征,例如Voisey’s Bay(Ripley,1999)和金川(Ripley et al., 2005)等。造成这一现象的主要原因是混染的壳源硫的特征与幔源硫接近。黄山南矿石中硫化物δ34S=-1.54‰~2.03‰,显示地幔硫特征(图 6)。黄山南矿床所在的黄山-镜儿泉铜镍成矿带内其它岩浆铜镍硫化物矿石也显示地幔硫同位素组成特征,其组成与岩体的围岩石炭系梧桐窝子组、干墩组和泥盆系大南湖组中黄铁矿δ34S范围(3‰~5‰,孙赫,2009)接近。那么,黄山南成矿岩浆中硫饱和究竟是否与地壳物质加入有关?

图 6 黄山南岩浆铜镍硫化物矿石硫同位素分布直方图(地幔范围据Chaussidon and Lorand, 1990) Fig. 6 Histogram of sulfur isotope of the Huangshannan deposit(the field of mantle range from Chaussidon and Lorand, 1990)

Se属亲铜元素,通常在地壳岩石中含量低,而在幔源岩石中含量高,幔源岩石Se(×106)/S比值高(230~350),而地壳岩石Se(×106)/S比值较低(<50)(Eckstrand et al., 1989; McDonough and Sun, 1995),Se(×106)/S比值也许是一个衡量壳源硫混入的重要地球化学指示剂(Queffurus and Barnes, 2013)。黄山南岩浆铜镍硫化物矿床岩、矿石样品Se/S比值明显指示出壳源硫对岩浆的混染(图 7);黄山南岩体中多见围岩捕虏体(王润民等,1987)也是对壳源物质混染的地质映证。

图 7 黄山南岩浆铜镍硫化物矿石Se(×106)/S-S图解(地幔和地壳Se/S比值的范围据Eckstrand et al., 1989) Fig. 7 Digram of Se(×106)/S vs. S from the Huangshannan deposit(range in Se/S ratio of the mantle and crust from Eckstrand et al., 1989)
6 结论

黄山南岩浆铜镍硫化物矿床地幔岩浆源区表现明显俯冲流体交代特征,与二叠纪塔里木大火成岩省相关的“干”地幔源区明显不同,表明黄山-镜儿泉铜镍成矿带产出的一系列含矿的镁铁-超镁铁质岩体的形成与地幔柱活动并无直接联系;该成矿带中含矿的镁铁-超镁铁质岩体的母岩浆中硫饱和及硫化物熔离可能主要与壳源硫的加入有关。

致谢 野外工作期间得到了瑞伦矿业杨甲全工程师和中国地质调查局发展研究中心叶锦华研究员大力支持和协助;核工业北京地质研究院刘牧老师在实验过程中提供了便利条件;中国科学院贵阳地球化学研究所高剑锋老师在写作思路上给与了热情的指导;在此一并表示衷心的感谢。

参考文献
[1] Abzalov MZ and Both RA. 1997. The Pechenga Ni-Cu deposits, Russia: Data on PGE and Au distribution and sulphur isotope compositions. Mineralogy and Petrology, 61(1-4): 119-143
[2] Aït-Djafer S, Ouzegane K, Paul-Liégeois J and Kienast JR. 2003. An example of post-collisional mafic magmatism: The gabbro-anorthosite layered complex from the Tin Zebane area (western Hoggar, Algeria). Journal of African Earth Sciences, 37(3-4): 313-330
[3] Bai YL. 2000. Geotectonic setting of Huangshan-Jingerquan nickel-copper metallogenic system in Hami, Xinjiang. Acta Geologica Gansu, 9(2): 1-7 (in Chinese with English abstract)
[4] Barnes SJ, Melezhik VA and Sokolov SV. 2001. The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. The Canadian Mineralogist, 39(2): 447-471
[5] Barnes SJ and Lightfoot PC. 2005. Formation of magmatic nickel-sulfide ore deposits and processes affecting their copper and platinum-group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume, SEG, 179-213
[6] Bleeker W. 1990. Evolution of the Thompson Nickel Belt and its nickel deposits, Manitoba, Canada. Ph. D. Dissertation. New Brunswick: University of New Brunswick
[7] Brenan JM, McDonough WF and Dalpé C. 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters, 212(1-2): 135-150
[8] Bryan SE and Ernst RE. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202
[9] Campbell IH and Griffiths RW. 1993. The evolution of the mantle's chemical structure. Lithos, 30(3-4): 389-399
[10] Campbell IH. 2001. Identification of ancient mantle plumes. In: Ernst RE and Buchan KL (eds.). Mantle Plumes: Their Identification through Time. Boulder, Colorado: Geological Society of America, Special Paper, 352: 5-21
[11] Chai FM. 2006. Comparison on petrologic geochemistry of three mafic-ultramafic intrusions associated with Ni-Cu sulfide deposits in northern Xinjiang. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-154 (in Chinese with English summary)
[12] Chaussidon M and Lorand JP. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846
[13] Chen W, Sun S, Zhang Y, Xiao WJ, Wang YT, Wang QL, Jiang LF and Yang JT. 2005. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in East Tianshan, Xinjiang, NW China. Acta Geologica Sinica, 79(6): 790-804 (in Chinese with English abstract)
[14] Deng YF, Song XY, Chen LM, Cheng SL, Zhang XL and Li J. 2011. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan. Acta Petrologica Sinica, 27(12): 3640-3652 (in Chinese with English abstract)
[15] Deng YF, Song XY, Zhou TF, Yuan F, Chen LM and Zheng WQ. 2012. Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances. Acta Petrologica Sinica, 28(7): 2224-2234 (in Chinese with English abstract)
[16] Deng YF, Song XY, Chen LM, Zhou TF, Pirajno F, Yuan F, Xie W and Zhang DY. 2014. Geochemistry of the Huangshandong Ni-Cu deposit in northwestern China: Implications for the formation of magmatic sulfide mineralization in orogenic belts. Ore Geology Reviews, 56: 181-198
[17] Dobosi G, Downes H, Embey-Isztin A and Jenner GA. 2003. Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian basin (Hungary). Neues Jahrbuch Für Mineralogie-Abhandlungen, 178(3): 217-237
[18] Eckstrand OR, Grinenko LN, Krouse HR, Paktunc AD, Schwann PL and Scoates RF. 1989. Preliminary data on sulphur isotopes and Se/S ratios and the source of sulphur in magmatic sulphides from the Fox River Sill, Molson Dykes and Thompson nickel deposits, northern Manitoba. Geological Survey of Canada Paper, 89-1C: 235-242
[19] Farnetani CG and Richards MA. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research, 99(B7): 13813-13833
[20] Gao JF and Zhou MF. 2013. Generation and evolution of siliceous high magnesium basaltic magmas in the formation of the Permian Huangshandong intrusion (Xinjiang, NW China). Lithos, 162-163: 128-139
[21] Gao JF, Zhou MF, Lightfoot PC, Wang CY, Qi L and Sun M. 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8): 1833-1848
[22] Griffiths RW and Campbell IH. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66-78
[23] Grinenko LI. 1985. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform. International Geology Review, 27(6): 695-708
[24] Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429
[25] Hawkesworth CJ. 1982. Isotope characteristics of magmas erupted along destructive plate margins. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. New York: Wiley, 549-571
[26] Hofmann C, Féraud G and Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: Further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180(1-2): 13-27
[27] Irvine TN. 1974. Petrology of the Duke Island ultramafic complex southeastern Alaska. Geological Society of America Memoir, 138: 1-244
[28] Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226(1): 73-100
[29] Jiao JG, Zheng PP, Liu RP, Duan J and Jiang C. 2013. SHRIMP zircon U-Pb age of the No.3 intrusion in the Tulargen Cu-Ni mining area, East Tianshan Mountains, Xinjiang, and its geological significance. Geology and Exploration, 49(3): 393-404 (in Chinese with English abstract)
[30] Johan Z. 2002. Alaskan-type complexes and their platinum-group element mineralizaiton. In: Cabri LJ (ed.). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum Group Elements. Calgary, Alberta Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 669-719
[31] Jugo PJ, Luth RW and Richards JP. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimica et Cosmochimica Acta, 69(2): 497-503
[32] Larsen RB and Tegner C. 2006. Pressure conditions for the solidification of the Skaergaard intrusion: Eruption of East Greenland flood basalts in less than 300000 years. Lithos, 92(1-2): 181-197
[33] Li C and Ripley EM. 2005. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita, 40(2): 218-230
[34] Liu DQ. 1983. Plate tectonic and distribution of mineral resources in Xinjiang. Northwestern Geology, 4(2): 1-12 (in Chinese with English abstract)
[35] Ma RS, Shu LS and Sun JQ. 1997. Tectonic Evolution and Metallogeny of Eastern Tianshan Mountains. Beijing: Geological Publishing House, 1-202 (in Chinese)
[36] Malitch KN, Latypov RM, Badanina IY and Sluzhenikin SF. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204: 172-187
[37] Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)
[38] Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203
[39] Mao YJ, Qin KZ, Tang DM, Xue SC, Feng HY and Tian Y. 2014. Multiple stages of magma emplacement and mineralization of eastern Tianshan, Xinjiang: Examplified by the Huangshan Ni-Cu deposit. Acta Petrologica Sinica, 30(6): 1575-1594 (in Chinese with English abstract)
[40] Mavrogenes JA and O'Neill HSC. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180
[41] McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253
[42] Pettigrew NT and Hattori KH. 2006. The Quetico Intrusions of Western Superior Province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions. Precambrian Research, 149(1-2): 21-42
[43] Pirajno F, Mao JW, Zhang ZC, Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183
[44] Qian ZZ, Sun T, Tang ZL, Jiang CY, He K, Xia MZ and Wang JZ. 2009. Platinum-group elements geochemistry and its significances of the Huangshandong Ni-Cu sulfide deposit, East Tianshan, China. Geological Review, 55(6): 873-884 (in Chinese with English abstract)
[45] Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z and Mao JW. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb RJ, Seltmann R, Wang DW, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogency of the Chinese Altay and Tianshan: International Symposium of the IGCP-473 Project, IAGOD Guidebook Series 10, Urumqi, Xinjiang, China. London: Natural History Museum, 227-249
[46] Queffurus M and Barnes SJ. 2013. Processes affecting the sulfur to selenium ratio in magmatic nickel-copper and platinum-group element deposits. Ore Geology Reviews, doi: 10.1016/j.oregeorev.2013.08.009
[47] Ripley EM. 1999. Systematics of sulphur and oxygen isotopes in mafic igneous rocks and related Cu-Ni-PGE mineralization. In: Keays RR, Lesher CM, Lightfoot PC and Farrow CEG (eds.). Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploration. Geological Association of Canada. Short Course Notes, 13: 133-158
[48] Ripley EM, Sarkar A and Li CS. 2005. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Economic Geology, 100(7): 1349-1361
[49] Ripley EM. 2009. Magmatic sulfide mineralization in Alaskan-type complexes. In: Li CS and Ripley EM (eds.). New Developments in Magmatic Ni-Cu and PGE Deposits. Beijing: Geological Publishing House, 219-228
[50] Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
[51] San JZ, Qin KZ, Tang ZL, Tang DM, Su BX, Sun H, Xiao QH and Liu PP. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English abstract)
[52] Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307
[53] Song XY and Li XR. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303-327
[54] Song XY, Xie W, Deng YF, Crawford AJ, Zheng WQ, Zhou GF, Deng G, Cheng SL and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2): 128-143
[55] Su BX. 2011. Mafic-ultramafic complexes in Beishan area, Xinjiang: Petrogenesis, mineralization and constraints on the tectonic evolution of the eastern Tianshan and Beishan, and the Early Permian mantle plume. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-196 (in Chinese)
[56] Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP and Xiao QH. 2012. Subduction-induced mantle heterogeneity beneath eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos, 134-135: 41-51
[57] Su BX, Qin KZ, Tang DM, Sakyi PA, Liu PP, Sun H and Xiao QH. 2013. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic Belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57-73
[58] Sun H. 2009. Ore-forming Mechanism in conduit system and ore-bearing property evaluation for mafic-ultramafic complex in eastern Tianshan, Xinjiang. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-262 (in Chinese with English summary)
[59] Sun T, Qian ZZ, Deng YF, Li CS, Song XY and Tang QY. 2013. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China. Economic Geology, 108(8): 1849-1864
[60] Sun T, Wang DH, Qian ZZ, Fu Y, Chen ZH and Lou DB. 2014. Summary of metallogenic regularity for the nickel deposits, China. Acta Geologica Sinica, 88(12): 2227-2251 (in Chinese with English abstract)
[61] Taylor HP. 1967. The zoned ultramafic complexes of southeastern Alaska. In: Wyllie PJ (ed.). Ultramafic and Related Rocks. New York: John Wiley & Sons, 97-121
[62] Wang RM, Liu DQ and Yin DT. 1987. The conditions of controlling metallogny of Cu, Ni sulphide ore deposits and the orientation of finding ore Hami, Xinjiang, China. Minerals and Rocks, (1): 1-152 (in Chinese)
[63] Wang YW, Wang JB, Wang LJ and Fang TH. 2004. REE characteristics of Cu-Ni sulfide deposits in the Hami area, Xinjiang. Acta Petrologica Sinica, 20(4): 935-948 (in Chinese with English abstract)
[64] Windley BF, Allen MB, Zhang C, Zhao ZY and Wang GR. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia. Geology, 18(2): 128-131
[65] Xia MZ. 2009. The mafic-ultramafic intrusions in the Huangshan region eastern Tianshan, Xinjiang: Petrogenesis and mineralization implication. Ph. D. Dissertation. Xi'an: Chang'an University, 1-157 (in Chinese with English summary)
[66] Xia MZ, Jiang CY, Qian ZZ, Xia ZD, Wang BY and Sun T. 2010. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang. Acta Petrologica Sinica, 26(8): 2413-2430 (in Chinese with English abstract)
[67] Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395
[68] Xie W, Song XY, Deng YF, Wang YS, Ba DH, Zheng WQ and Li XB. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144-145: 209-230
[69] Yuan F, Zhou TF, Zhang DY, Jowitt SM, Keays RR, Liu S and Fan Y. 2012. Siderophile and chalcophile metal variations in basalts: Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geology Reviews, 45: 5-15
[70] Zhang MJ, Li CS, Fu PE, Hu PQ and Ripley EM. 2011. The Permian Huangshanxi Cu-Ni deposit in western China: Intrusive-extrusive association, ore genesis, and exploration implications. Mineralium Deposita, 46(2): 153-170
[71] Zhao HJ, Mao JW, Xiang JF, Zhou ZH, Wei KT and Ke YF. 2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English abstract)
[72] Zhao Y, Xue CJ, Zhao XB, Yang YQ and Ke JJ. 2015. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 105: 155-172
[73] Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257
[74] Zhou MF, Zhao JH, Jiang CY, Gao JF, Wang W and Yang SH. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583-594
[75] Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571
[76] Zonenshain LP, Kuzmin MI and Natapov LM. 1990. Geology of the USSR: A plate-tectonic synthesis. In: Page BM (ed.). Geodynamics Series. American Geophysical Union, 242
[77] 白云来. 2000. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景. 甘肃地质学报, 9(2): 1-7
[78] 柴凤梅. 2006. 新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化学特征对比研究. 博士学位论文. 北京: 中国地质大学, 1-154
[79] 陈文, 孙枢, 张彦, 肖文交, 王义天, 王清利, 姜立丰, 杨俊涛. 2005. 新疆东天山秋格明塔什-黄山韧性剪切带40Ar/39Ar年代学研究. 地质学报, 79(6): 790-804
[80] 邓宇峰, 宋谢炎, 陈列锰, 程松林, 张新利, 李军. 2011. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究. 岩石学报, 27(12): 3640-3652
[81] 邓宇峰, 宋谢炎, 周涛发, 袁峰, 陈列锰, 郑文勤. 2012. 新疆东天山黄山东岩体橄榄石成因意义探讨. 岩石学报, 28(7): 2224-2234
[82] 韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328
[83] 焦建刚, 郑鹏鹏, 刘瑞平, 段俊, 姜超. 2013. 东天山图拉尔根Ⅲ号岩体锆石年龄及地质意义. 地质与勘探, 49(3): 393-404
[84] 刘德权.1983.新疆板块构造与矿产分布. 西北地质,4(2): 1-12
[85] 马瑞士, 舒良树, 孙家齐. 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-202
[86] 毛景文, 杨建民, 屈文俊, 杜安道, 王志良, 韩春明. 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义. 矿床地质, 21(4): 323-330
[87] 毛亚晶, 秦克章, 唐冬梅, 薛胜超, 冯宏业, 田野. 2014. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用-以黄山铜镍矿床为例. 岩石学报, 30(6): 1575-1594
[88] 钱壮志, 孙涛, 汤中立, 姜常义, 何克, 夏明哲, 王建中. 2009. 东天山黄山东铜镍矿床铂族元素地球化学特征及其意义. 地质论评, 55(6): 873-884
[89] 三金柱, 秦克章, 汤中立, 唐冬梅, 苏本勋, 孙赫, 肖庆华, 刘平平. 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义. 岩石学报, 26(10): 3027-3035
[90] 苏本勋. 2011. 新疆北山镁铁-超镁铁岩的成岩过程、成矿作用及对东天山-北山构造演化与早二叠世地幔柱的制约. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-196
[91] 孙赫. 2009. 东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-262
[92] 孙涛, 王登红, 钱壮志, 付勇, 陈郑辉, 娄德波. 2014. 中国镍矿成矿规律初探. 地质学报, 88(12): 2227-2251
[93] 王润民, 刘德权, 殷定泰. 1987. 新疆哈密土墩-黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究. 矿物岩石, (1): 1-152
[94] 王玉往, 王京彬, 王莉娟, 方同辉. 2004. 新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义. 岩石学报, 20(4): 935-948
[95] 夏明哲. 2009. 新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用. 博士学位论文. 西安: 长安大学, 1-157
[96] 夏明哲, 姜常义, 钱壮志, 夏昭德, 汪帮耀, 孙涛. 2010. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因. 岩石学报, 26(8): 2413-2430
[97] 赵海杰, 毛景文, 向君峰, 周振华, 魏克涛, 柯于富. 2010. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784