岩石学报  2016, Vol. 32 Issue (7): 2069-2085   PDF    
钦-杭成矿带东段村前含矿斑岩地球化学特征及其构造环境与成矿意义
郝哲敏1, 肖渊甫2 , 杜慧富2, 王强2, 常静2, 沈利军2, 林玲2    
1. 成都理工大学沉积地质研究院, 成都 610059;
2. 成都理工大学地球科学学院, 成都 610059
摘要:村前铜多金属矿床位于钦杭成矿带东段,为一具有矽卡岩型矿化和斑岩型矿化的铜多金属矿床,含矿岩体为燕山早期花岗闪长斑岩,岩石具有富硅、富铝、富碱的特点,属于偏铝-过铝质钙碱性花岗岩类。岩体具有从深部向浅部蚀变增强,大部分组分活动性不明显,而成矿元素Cu-Mo-Fe-Pb-Zn-Au-Ag含量明显增加,Na2O、Sr含量降低,REE元素除Eu少量丢失外,其余均呈一致的迁入特征。岩体属I型花岗质岩石,由具角闪石+石榴子石残留相的火成岩部分熔融形成的熔浆,混合或混染了地壳重熔型岩浆上侵就位而成。钦杭结合带东段,燕山期中酸性岩浆活动具有从176~150Ma的埃达克岩或具岛弧花岗岩特征的I型花岗岩,至150~140Ma的S型花岗岩,向140~110Ma的A型花岗岩演化趋势,显示了地壳由厚减薄的过程,暗示其大地构造背景为岩石圈的伸展减薄环境,而形成于169.3±1.1Ma的村前斑岩体正处于伸展阶段早期。综合岩体成矿特征表明,钦杭成矿带东段及邻近地区,176~160Ma主要形成与I型花岗质岩石有关的以Cu为主的多金属矿床;160~150Ma主要形成与I型花岗质岩石有关的Cu-Mo矿床与W-Sn矿床;150~140Ma主要形成与S型花岗质岩石有关的以W-Sn-Mo为主的多金属矿床,以及以Ag-Pb-Zn为主的多金属矿床;140~110Ma主要形成与A型花岗质岩石有关的以W-Sn-Mo为主的多金属矿床,少量与I型花岗质岩石有关的Pb-Zn矿床。
关键词村前铜多金属矿床     花岗闪长斑岩     I型花岗岩     燕山早期     钦-杭成矿带东段    
Geochemistry of the Cunqian ore-bearing porphyry from the eastern Qin-Hang metallogenic belt and its implication for tectonic setting and mineralization
HAO ZheMin1, XIAO YuanFu2 , DU HuiFu2, WANG Qiang2, CHANG Jing2, SHEN LiJun2, LIN Ling2    
1. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China;
2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
Abstract: The Cunqian copper polymetallic deposit in the eastern Qin-Hang metallogenic belt is characterized by skarn type and porphyry type mineralization and granodiorite porphyry of Early Yanshanian is the ore-bearing rock. Geochemical study shows that the granodiorite porphyry is rich in silicon, alkali and, alumina, and belongs to calc-alkaline metaluminous to peraluminous granite. The alteration in the granodiorite porphyry is increased from deep to shallow part of the rock body and the activity of most components is not obvious. The content of ore-forming elements, such as Cu-Mo-Fe-Pb-Zn-Au-Ag, is increased significantly, while the content of Na2O, Sr decreased. REE elements are characterized by consistent migration except minor loss of Eu. The research is revealed that the granodiorite porphyry belongs to I-type granite resulted from emplacement of mixed magma with remelted hornblende + garnet residual phase. Intermediate-acid magmatic rocks of Yanshanian in eastern Qin-Hang metallogenic belt have an evolution tendency from adakites or I-type granites with characteristics of island arc rocks in 176~150Ma, to S-type granites in 150~140Ma, to A-type granites in 140~110Ma, implying the process from thickness to thinness of the crust and suggesting a tectonic background of lithosphere stretching and thinning. Characteristics of granodiorite porphyry mineralization indicate that copper polymetallic deposits, which are associated with I-type granite in eastern Qin-Hang metallogenic belt and its adjacent area, are formed in the period of 176~160Ma; Cu-Mo deposits and W-Sn deposits are associated with I-type granite and formed in the period of 160~150Ma; W-Sn-Mo polymetallic deposit and Ag-Pb-Zn polymetallic deposits are associated with S-type granite and formed in the period of 150~140Ma.
Key words: Cunqian copper polymetallic deposit     Granodiorite porphyry     I-type granite     Early Yanshanian     Qin-Hang metallogenic belt    
1 引言

村前铜多金属矿床位于江西省高安市村前镇境内,为一具有矽卡岩型矿化和斑岩型矿化的铜多金属矿床。钦杭结合带是扬子板块与华夏板块的碰撞拼接带,是我国华南地区一条重要的有色、贵金属成矿带,也是世界上最大的钨锡成矿带。前人研究表明,成矿带内已发现的铜、钼、铅锌、银、钨、锡矿床,大多与燕山期花岗岩类密切相关(杨明桂等,2009; 毛景文等,2011)。已发现有德兴、银山特大型铜多金属矿床,冷水坑特大型银铅锌矿床,以及世界上最大的钨矿床——大湖塘钨矿床(图 1)。由于其具有重要的铜及钨锡多金属矿床找矿勘查意义,因此中国地质调查局于2009年将其新增列为全国重点成矿区带,开展一系列找矿勘查部署及研究工作。

图 1 江西省村前铜多金属矿床矿区地质图(据贺明生等,2005(① 贺明生,游正义,游玮.2005.江西省高安市村前宜丰县新庄矿区铜铅锌矿储量地质告告.江西省地质矿产勘查开发局赣西地质调查大队)修改)

Ⅰ-扬子板块;Ⅱ-萍乡-绍兴结合带;Ⅲ-华夏板块;1-上白垩统河口组;2-下二叠统栖霞组;3-上石炭统黄龙组-船山组;4-灰岩;5-大理岩;6-燕山期花岗闪长斑岩;7-地质界线;8-角度不整合界线;9-断层;10-村前倒转背斜;11-桂花村向斜;12-(-64m)中段磁铁矿矿体平面投影;13-(-64m)中段铜矿体平面投影;14-(-64m)中段铅锌矿体平面投影;15-矿体编号;16-矿产地及名称 Fig. 1 Geological map of the Cunqian copper polymetallic deposit,Jiangxi Province

Ⅰ-Yangtze plate; Ⅱ-Pingxiang-Shaoxing Combined belt; Ⅲ-Cathaysia plate; 1-Upper Cretaceous Hekou Formation; 2-Lower Permian Qixia Formation; 3-Upper Carboniferous Huanglong-Chuanshan Formation; 4-limestone; 5-marble; 6-Yanshanian granodiorite porphyry; 7-geological boundary; 8-angular unconformity; 9-fault; 10-Cunqian overturned anticline; 11-Guihua Village syncline; 12-plane projection of magnetite orebody in -64m; 13-plane projection of copper orebody in -64m; 14-plane projection of lead-zinc mine orebody in -64m; 15-the number of orebodys; 16-sampling location and its name

村前铜多金属矿床为成矿带内较为典型的矽卡岩型+斑岩型铜多金属矿床,前人研究程度较低,仅有以下几方面的研究成果:①从矿床地质特征及控矿因素方面探讨了矿床成因类型属矽卡岩型+斑岩型铜多金属矿床(梁超群,1996; 李均良,2009);②确定了含矿岩体的成岩年龄为169.3±1.1Ma(王强等,2012);③矿石中发现的罕见金属矿物自然铝和锌铜互化物,表明矿床成矿流体中有幔源物质的加入(王强等,2013)。矿床的成矿物质来源、矿床成因等还缺乏深入研究;矿床深形成的大地构造背景,成岩与成矿的关系等方面研究还处于空白阶段,制约了矿床外围及深部找矿工作的部署,以及成矿带内同类型矿床的找矿勘查工作。

华南地区中生代花岗岩成因及其构造演化与成矿作用等方面的研究已有较为深厚的基础,而将钦杭成矿带从华南地区独立出来作为一个新的成矿区带,其研究程度还有待深入。钦杭成矿带作为一条狭长的成矿区带,跨越浙江、江西、湖南、广西四省,绵延近2000km,宽100~150km,对成矿带的划分方案还存在争议:中国地质调查局将钦杭成矿带划分为东、西两段,周永章等(2012)划分为北、中、南三段,其北段与中国地质调查局划分的东段相当(浙江-江西段),中段与南岭矿带大体一致,南段为南岭以南区域,大致与云开-十万大山带相当。钦杭成矿带作为华南成矿省的一部分,其中生代构造-岩浆活动与成矿作用与华南陆块中生代花岗岩成矿作用的关系怎样,是否具有相同的动力学机制还需进一步深入研究。

本文以村前铜多金属矿床为基点,通过其含矿岩体岩石学及岩石地球化学特征,探讨村前花岗闪长斑岩体的成因类型、岩浆来源及成岩大地构造背景。同时,结合区域上燕山期中酸性岩浆活动特征,浅析钦杭成矿带东段燕山期岩浆活动时限及其与成矿关系,为厘定钦杭成矿带划分方案提供参考,为揭示钦杭成矿带与华南陆块中生代构造岩浆活动与成矿作用的相互关系,以及为成矿带内矿产勘查的部署提供理论依据。

2 矿床地质特征

村前铜多金属矿床位于钦杭成矿带东段,萍乡-绍兴结合带西缘,宜丰-景德镇深大断裂南东侧。矿区内第四系覆盖严重,无基岩出露。由钻孔资料可知,矿区北部发育下二统栖霞组(P1q)含燧石灰岩;中部为上石炭统黄龙-船山组(C2h-C2c),为矿区主要赋矿地层,岩性以灰岩、白云质灰岩为主;南部为上白垩统河口组(K2h)砂砾岩、含砾粗砂岩;新元古界双桥山群(Pt3sh)为矿区变质基底,岩性组合为浅灰色绢云石英千枚岩、石英片岩、变质砂岩及粉砂岩。村前含矿斑岩主要侵位于双桥山群浅变质岩、黄龙组-栖霞组碳酸盐岩中,整体向北倾斜,与黄龙组-船山组接触范围最广,岩性为花岗闪长斑岩,成岩年龄169.3±1.1Ma(王强等,2012)。村前倒转倾伏背斜的核部及两翼为重要的赋矿构造,北北西向的两组断裂为重要的导矿构造(图 1)。

矿体主要产于村前斑岩体与上石炭统黄龙组-船山组碳酸盐岩接触带部位,主岩枝下盘碳酸盐岩层间破碎带,岩体附近黄龙组-船山组与双桥山群不整合面,以及岩体内部碳酸盐岩捕虏体,少量产出于斑岩体内裂隙带中,矿体形态主要为不规则状、似层状、透镜状。平面上磁铁矿矿体、黄铜矿矿体与铅锌矿矿体具有从岩体至围岩由南向北的分布特征,纵向上具有由深部向浅部的分布特征。磁铁矿矿体与铜矿体产出部位更靠近岩体,主要产于矽卡岩中,矿体与矽卡岩体界线不一致,部分矿体超出矽卡岩范围进入围岩层间裂隙中(图 2)。铅锌矿矿体一般分布于离岩体稍远的大理岩层间破碎带中,也有少量产于岩体与碳酸盐岩接触带部位。与成矿有关的围岩蚀变主要有石榴石化、透辉石化、阳起石化、绿帘石化、硅化、大理岩化等。

图 2 村前铜多金属矿床勘探线剖面图(据贺明生等,2005修改)

1-第四系;2-上白垩统河口组;3-上石炭统黄龙组-船山组;4-新元古界双桥山群;5-灰岩;6-大理岩;7-矽卡岩;8-花岗闪长斑岩;9-磁铁矿矿体;10-铜矿体;11-铅锌矿矿体;12-黄铁矿矿体;13-样品及编号 Fig. 2 The prospecting line profile map of the Cunqian copper polymetallic deposit

1-Quaternary; 2-Upper Cretaceous Hekou Formation; 3-Upper Carboniferous Huanglong-Chuanshan Formation; 4-Middle Proterozoic Shuangqiaoshan Group; 5-lmestone; 6-marble; 7-skarn; 8-granodiorite porphyry; 9-magnetite orebody; 10-copper orebody; 11-lead-zinc mine orebody; 12-pyrite orebody; 13-sample and its number

矿石类型主要有磁铁矿矿石、磁铁矿-黄铁矿矿石、磁铁矿-黄铜矿-黄铁矿矿石、黄铜矿-黄铁矿矿石、铅锌矿矿石;矿石构造主要有块状、团块状、浸染状、脉状及网脉状构造,次有角砾状、胶状、环状、肠状构造及蜂窝状、土状构造等;矿石结构主要有结晶作用形成的自形晶结构、半自形晶结构、他形晶结构、包含结构、环带结构,交代作用形成的浸蚀结构、网状结构、假象结构等,次有固溶体分离作用形成的乳浊状结构、次格状结构,胶体重结晶作用形成的胶状结构、浑圆粒状结构,生物沉积作用形成的草莓结构,压力作用形成的定向碎裂结构、花岗碎裂结构等。矿石矿物有自然铝、锌铜互化物、磁铁矿、赤铁矿、毒砂、楚碲铋矿、碲硫铋化物、硫铋化物、黄铜矿、斑铜矿、黄铁矿、磁黄铁矿、白铁矿、方铅矿、闪锌矿、铜蓝等。

3 含矿岩体岩石学特征

含矿岩体为村前花岗闪长斑岩体,岩体平面上呈东西向展布的椭圆形,剖面上呈上下等宽的似筒状,西部具分枝特点。岩体走向近东西,北界面外倾,南界面向内(北)倾,北接触带形态复杂,产状变化大,控制着主矿带的分布。在岩体走向、倾向拐弯部位及岩体与灰岩、变质砂岩接触地带,是富大矿体地段(图 2)。

分析样品分别采自村前矿区主矿体(Ⅱ号矿体)-64m、-104m、-144m、-184m、 -224m、 -264m采矿中段附近岩 体中(图 2),由于岩体普遍遭受不同程度蚀变,越靠近地表,蚀变越强,近地表岩体高岭土化十分严重(图 3a),样品采集过程中尽量选取新鲜岩石。新鲜样品手标本呈青灰色,致密块状构造,可见明显石英斑晶,粒径约2~5mm,发育有稀疏浸染状黄铁黄铜矿化(图 3b)。透射偏光显微镜下岩石具斑状结构,斑晶以石英、斜长石、和暗色矿物(黑云母)为主,见少量钾长石,基质为隐晶-微晶结构(图 3c)。石英斑晶呈半自形-自形粒状,粒度一般≤3mm,个别>3mm,表面洁净,颗粒中裂纹等较少,但边缘多有熔圆特征,局部呈港湾状,可见颗粒内部有少量细小包裹体。斜长石斑晶多呈自形-半自形板状,粒径一般≤3.5mm,多在2mm以下,已全部发生次生变化,主要为绢云母化,局部有少量硅化及碳酸盐化。黑云母呈片状,多被绿泥石、白云母、绢云母交代。副矿为磷灰石、锆石、黄铁矿、黄铜矿等。岩石常见绢云母化、弱方解石化、高岭石化、硅化、弱绿泥石化、及金属矿化现象,金属矿物含量约3%,主要为黄铁矿、黄铜矿,呈细脉浸染状产出。

图 3 岗闪长斑岩露头(a)、手标本(b)及镜下特征(c,正交偏光下)

Ser-绢云母(原矿物为黑云母斑晶和斜长石斑晶);Qtz-石英 Fig. 3 utcrop(a),hand specimen(b),and microscopic characteristic(c,under CPL)of the granodiorite porphyry

Ser-sericite(primary minerals are biotite phenocrysts and plagioclase pheocrysts); Qtz-quartz

4 岩体地球化学特征

样品分两批,分别送国土资源部华东矿产资源监督检测中心与西南冶金地质岩矿测试中心测试分析。测试样品采用无污染球磨制样,完全粉碎至<200μm,为了尽量使样品均匀且具有代表性,每个样品粉碎量约500g。将样品粉末分为三份,一份用于主量元素分析,一份用于微量及稀土元素分析,剩下留作备用。分析仪器为电感耦合等离子体发射光谱仪(ICP-OES)、电感耦合等离子体质谱仪(ICP-MS),测试分析过程遵循行业标准DZG20-02。分析结果见表 1

表 1 村前铜多金属矿床含矿斑岩主量(wt%)、微量和稀土元素(×10-6)分析结果 Table 1 Major element(wt%)and trace element(×10-6)compositions of the Cunqian ore-bearing porphyry
4.1 元素迁移特征

根据所采样品蚀变程度,将样品分为相对蚀变较弱组(Cref)、中等蚀变组(CiA)和强烈蚀变组(CiB),采用Grant(19862005)的“等浓度线法(Isocon)”,探讨岩体在热液蚀变过程中元素迁移特征。

Gresens(1967)Grant(1986)均认为在体系开放过程中应该存在多个不活动组分,如果这些不活动组分能够拟合成一条穿过原点的直线,那么这条直线可以作为Isocon。众多学者研究表明,热液蚀变过程中,Al2O3、Zr、Nb、Ta化学性质相当稳定,可视为不活动元素(Maclean and Kranidiotis,1987; Urqueta et al.,2009; 王翠云等,2012)。因此,本文选取以上四种元素,针对Cref、CiA和CiB三组数据分别两两投图,均能拟合成一条近似穿过原点的直线(图 4),符合不活动元素投图特征。比较得知,图 4a中拟合直线更接近穿过原点的直线,确定Isocon等浓度线方程为y=0.9667x,并以相对蚀变较弱样品均值(Cref)为基准,对中等蚀变样品均值(CiA)与强烈蚀变样品均值(CiB)做出Isocon图解(图 5)。

图 4 不活动组分投点拟合直线图

Cref代表相对蚀变较弱样品(b11、B11-1、B11-2)均值;CiA代表中等蚀变样品(B8、b8、B10)均值;CiB代表强烈蚀变样品(B3、b4、B5、b6、B7、CQ-10)均值 Fig. 4 nactive components plot points fitting line diagram

Cref is the average value of relatively fresh/weakly altered samples(b11,B11-1,B11-2); CiA is the average value of secondary altered samples(B8,b8,B10); CiB is the average value of strong altered samples(B3,b4,B5,b6,B7,CQ-10)


图 5 村前含矿斑岩Isocon图解(据Grant,19862005) Fig. 5 Isocon diagram of ore-bearing porphyry in Cunqian(after Grant,19862005)

图解结果(图 5)显示,岩石常量元素中大部分组分在蚀变过程中无明显变化,仅Fe2O3和TiO2随着蚀变增强迁入量增大,可能与Fe、Ti多在岩体中成矿有关;Na2O随着蚀变增强丢失量增大,可能与长石类矿物大量水解有关;CaO随着蚀变增强呈先迁入后迁出的特征,可能为同化混染碳酸盐岩吸入Ca元素,其后由于斜长石大量分解以及形成矽卡岩矿物过程中Ca元素大量丢失。微量元素主要表现为成矿元素(Cu、Mo、Fe、Pb、Zn、Au、Ag、Sb)的大量迁入,这可能与顶部岩体具明显的斑岩型矿化有关,矿质组分多在岩体顶部蚀变较强部分沉淀成矿;此外,Sr元素表现为随着蚀变增强丢失量增大,Sr在岩石组分中主要为代替Ca进入斜长石中,Sr的大量迁出可能与斜长石的大量分解有关;Rb元素相较于Isocon等浓度线表现为迁入特征,然后随着蚀变增强,其含量未发现变化,表明Rb元素含量的增加可能与蚀变关系不大。稀土元素(REE)表现出较好的一致性,随着蚀变增强,整体呈增加的趋势,仅Eu元素表现出相反的特征,可能与斜长石的大量分解有关。

综上可知,斑岩体中大多数组分在热液蚀变过程中无明显变化,仅少部分组分具有明显的带入或带出特征,在利用此部分组分分析岩石地球化学特征时,应注意考虑元素迁入或迁出的影响。微量元素主要表现为成矿元素的大量带入,以及Sr元素的丢失。稀土元素除Eu元素表现为丢失外,其它元素均表现为一致的富集特征,表明稀土元素作为整体具有较好的一致性,在热液蚀变过程中虽具有一定的活动性,但其整体性质基本保持不变,可以作为判定岩石相关化学性质的依据。

4.2 常量元素特征

村前斑岩体13个样品常量元素分析结果显示(表 1):SiO2含量范围变化不大,主要集中于65.12%~68.66%(除B6为60.10%外),平均65.87%,属中酸性岩类,在TAS图解中主要位于花岗闪长岩与石英二长岩区域(图 6a)。铝过饱和,A/CNK分布范围1.04~2.52,平均1.47,属偏铝-过铝质系列。考虑到Na2O在岩石蚀变过程中持续丢失,Al2O3、K2O基本不变,原岩化学性质可能更偏向于过铝质。Na2O+K2O=4.09%~9.03%,平均含量6.4%,无论岩石蚀变强弱,始终有K2O>Na2O,故岩石属富碱系列。里特曼指数(σ)大多<3.3(除一件样品为3.49外),平均1.79,属钙碱性系列岩石,在SiO2-AR图解中亦主要落入钙碱性岩石系列区域(图 6b)。

图 6 花岗闪长斑岩全碱-硅(TAS)分类图(a,底图据 Middlemost,1994)和AR-SiO2与碱度关系图(b,底图据Wright,1969) Fig. 6 The total alkali vs. silica(TAS)diagram(a,after Middlemost,1994)and AR vs. SiO2(b,after Wright,1969)of granodiorite porphyry
4.3 微量元素特征

村前斑岩体13个样品微量元素分析结果显示(表 1),样品中Au含量0.15×10-9~32.0×10-9,平均3.90×10-9。Ag含量0.03×10-6~4.84×10-6,平均0.99×10-6。铜含量7.81×10-6~10820×10-6,平均含量1032×10-6,呈明显富集,最高含量已达工业利用品位。钼含量0.24×10-6~2.92×10-6,平均1.39×10-6。铅含量15.8×10-6~152×10-6,平均42.3×10-6,锌含量12.7×10-6~292×10-6,平均86.5×10-6,具明显富集现象。以上事实证实了岩体的含矿性,与Cu、Pb、Zn矿化关系较密切。

按元素亲岩浆性减小排序,在原始地幔标准化比值蛛网图上显示(图 7a),岩石具有富集大离子亲石元素Rb、K、U,亏损大离子亲石元素Ba、Sr,亏损高场强元素Nb、Ta、Ti,与岛弧花岗质岩石具有相似的岩石化学特征(Liu et al.,2012)。岛弧花岗岩常与Cu多金属矿床成矿密切相关,暗示村前岩体具有较好的Cu多金属矿成矿条件。

图 7 含矿斑岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土配分型式图(b)(标准化值据Sun and McDonough,1989) Fig. 7 Primitive mantle-normalized trace element patterns(a)and chondrite-normalized REE patterns(b)of ore-bearing porphyry(normalization value from Sun and McDonough,1989)
4.4 稀土元素特征

村前斑岩体稀土元素总量(ΣREE)120×10-6~220×10-6,平均含量158×10-6(表 1)。轻重稀土比值(LREE/HREE)16.9~22.6,平均20.3,(La/Yb)N 30.1~60.1,平均44.4,轻重稀土分异明显,稀土配分型式图呈明显右倾型(图 7b),轻稀土明显富集,重稀土亏损明显。δEu值0.58~0.94,平均0.82,Eu显弱负异常。由于Eu元素在热液蚀变过程中,表现出明显的带出特征,其配分型式图中Eu的亏损可能与此有关。

5 讨论 5.1 岩石成因类型

FeOT/MgO-Zr+Nb+Ce+Y图用于区分A型花岗岩与非A型花岗岩,图解结果显示,村前斑岩体主要位于非A型花岗岩区域(图 8a)。Zr-TiO2图用于进一步区分I型花岗岩与S型花岗岩,图解结果显示,位于S型区域内的样品点主要为中等-强烈蚀变样品,位于I型区域内的样品点主要为弱-中等蚀变样品,少量蚀变强烈样品(图 8b),表明原岩性质可能更偏向于I型花岗岩类。前文已述,岩石蚀变与矿化作用会导致FeOT和TiO2含量增加,Zr、Nb、Ce、Y元素相对活动性较弱,含量变化较小,从而导致样品投点位置分别偏向图 8a中FG(分异的I & S型花岗岩类)与图 8b中S型花岗岩类一侧,投图结果与该结论吻合。

图 8 村前铜多金属矿床A型花岗岩FeOT/MgO-Zr+Nb+Ce+Y判别图(a,底图据Whalen et al.,1987)和I-S型花岗岩TiO2-Zr判别图(b,底图据Whalen et al.,1987) Fig. 8 Plot of FeOT/MgO vs. Zr+Nb+Ce+Y for A-type granite(a,after Whalen et al.,1987)and plot of TiO2 vs. Zr for I-type & S-type granite(b,after Whalen et al.,1987)of Cunqian copper polymetallic deposit

前文已述,稀土元素在岩石热液蚀变过程中具有一定的活动性,除Eu元素外,其余元素均表现出随着蚀变作用增强带入量增加的特征,具有较好的整体一致性。前人研究也认为,稀土元素作为整体,在成岩-变质作用过程中具有相似性质,其稀土总量可以发生变化,但配分型式基本是保持平行的(赵振华,1997)。因而可推断,具有相同成因的花岗岩类其稀土配分型式在同一构造区域应具有相似性。区域上燕山期不同成因类型的花岗质岩石亦具有明显不同的稀土配分型式。对比区域上已经确定成因类型的不同花岗岩类稀土配分型式图,得出村前花岗闪长斑岩的稀土配分型式与同一构造带上I型花岗岩高度相似(图 9),故综合认为村前斑岩体属于I型花岗岩,其S型花岗岩的地化学特征应是在成岩成矿过程中热液蚀变作用导致部分组分带入带出而形成的。

图 9 区域上不同成因类型花岗岩球粒陨石标准化稀土配分型式图(标准化值据 Sun and McDonough,1989)

底图数据来源:A-type:白菊花尖(Wong et al.,2009),黄石潭、九里岗、儒洪(Li et al.,2013c);I-type:德兴(朱玉娣等,2012; Wang et al.,2015)、桐村(朱玉娣等,2012);S-type:大湖塘(赵希林等,2013; Mao et al.,2015) Fig. 9 Chondrite-normalized REE patterns of different type granites from Qin-Hang metallogenic belt(normalization value from Sun and McDonough,1989)

5.2 岩浆来源

村前斑岩体更偏向于I型花岗质岩体的岩石化学特征,表明其岩浆来源主要为下地壳火成岩的部分熔融。无论岩石蚀变强弱,稀土元素配分型式近于一致,也表明稀土元素虽有一定的活动性,但作为整体仍能反映岩浆源区的特征。村前斑岩体球粒陨石标准化稀土元素配分型式表现陡倾斜特征,强烈富集轻稀土,强烈亏损重稀土,而Eu无明显异常,表明岩体未经历斜长石分离结晶作用,轻重稀土元素的强烈分异以及Eu无明显异常的特征,可能与部分熔融作用有关。石榴子石具有强烈富集重稀土的特征,斜长石具有强烈富集Eu的特征,由此推断岩浆源区残留相中可能具有石榴子石,无斜长石。岩体还具有高的La/Sm比值(7.98~10.8,平均9.64),暗示源区残留相中有角闪石(Kay and Abbruzzi,1996)。综合认为,村前斑岩体岩浆源区残留相可能为角闪石+石榴子石。

前文已述Nb、Ta元素热液蚀变过程中,活动性较弱,含量几乎不发生变化。通常也认为Nb、Ta元素较为稳定,在成岩过程中仅受一些含Ti矿物如钛铁矿、金红石、榍石、金云母和角闪石的影响,不容易发生分馏作用。Ti-Nb/Ta相关关系图(图 10)显示,村前斑岩体中,Ti的含量变化不影响Nb/Ta比值,由此可根据Nb/Ta比值判断原岩性质。村前斑岩体Nb/Ta除一件样品为15.8外,其余均介于13.0~13.6之间,变化范围很窄,与大陆地壳Nb/Ta比值10(据黎彤和袁怀雨,2011数据计算)接近,偏离C1球粒陨石中Nb/Ta比值17.6(据Sun and McDonough,1989数据计算),显示出S型花岗岩的岩石化学特征。村前岩体过铝质的岩石化学特征亦与S型花岗岩相似,暗示其岩浆来源可能为混合来源,即形成于残留相为角闪石+石榴子石的火成岩部分熔融的熔浆,在上侵就位过程中混合或混染了硅铝质地壳的熔浆。

图 10 村前含矿斑岩Ti-Nb/Ta相关关系图 Fig. 10 Correlation between Ti vs. Nb/Ta of ore-bearing porphyry in Cunqian
5.3 构造环境

不同温压条件下形成的岩浆熔体在地球化学特征上会具有不同性,造山运动必然会导致地壳加厚,从而导致下地壳压力升高,而伸展运动导致地壳减薄,压力减小,地幔上升。前人研究认为,埃达克岩指示厚地壳环境(翟明国,2004; 张旗,2008),A型花岗岩指示伸展环境(张旗,2012)。

在埃达克岩Sr/Y-Y判别图解中,村前斑岩体全部落入埃达克岩底边界区域(图 11a),而在埃达克岩(La/Yb)N-YbN判别图解中,几乎全部数据点均落入埃达克岩范围内(图 11b),表明村前含矿斑岩已经具有埃达克岩的部分地球化学特征。村前斑岩体Sr含量21.3×10-6~337×10-6,平均含量192×10-6,蚀变相对较弱样品Sr含量在212×10-6~296×10-6,仍远低于埃达克岩的Sr含量(>400×10-6),以德兴花岗闪长斑岩为例,其Sr含量高达172×10-6~1145×10-6,平均含量624×10-6(Liu et al.,2012)。由此看来,村前斑岩体并非埃达克岩。

图 11 村前铜多金属矿床含矿斑岩Sr/Y-Y判别图(a,底图据Defant and Drummond,1990)和(La/Yb)N-YbN判别图(b,底图据Martin,1999) Fig. 11 Plot of Sr/Y vs. Y(a,after Defant and Drummond,1990)and plot of(La/Yb)N vs. YbN(b,after Martin,1999)of the Cunqian ore-bearing porphyry

与村前斑岩体位于同一大地构造单元,且成岩时代十分接近的德兴斑岩体(锆石LA-ICP-MS U-Pb年龄:铜厂岩体171±2Ma,富家坞岩体170±1Ma,朱砂红岩体170±1Ma)(Wang et al.,2015),前人研究认为属于埃达克岩(Wang et al.,2015; 王强等,2004),表明其形成于厚地壳环境。同一构造单元中,成岩年龄更年轻的白菊花尖岩体(锆石SHRIMP U-Pb年龄126±3Ma),前人研究认为属于A型花岗岩(Wong et al.,2009),代表了伸展环境。

通过收集大量钦杭成矿带东段及邻区燕山期中酸性岩浆岩成岩年龄资料,显示区内燕山期岩浆活动始于~176Ma,在160~140Ma达到顶盛,110Ma后趋于平寂(表 2图 12)。岩浆岩具有从176~150Ma的以I型花岗岩为主→150~140Ma的以S型花岗岩为主→140~110Ma的以A型花岗岩为主的演化规律,反映出岩浆来源具有由深至浅的规律。同时,具有由I型(或埃达克岩)→S型→A型花岗岩演化的趋势,反映地壳厚度由厚减薄的过程,暗示了钦杭成矿带东段燕山期整体为一伸展的大地构造背景。

表 2 钦杭成矿带东段及邻近地区燕山期中酸性岩浆岩成岩年龄统计表 Table 2 Digenetic age of Yanshanian intermediate-acid magmatic from eastern Qin-Hang metallogenic belt and its adjacent region

图 12 钦杭成矿带东段及邻近地区燕山期中酸性岩浆岩成岩年龄频数柱状图 Fig. 12 Digenetic age of frequency histograms of Yanshanian intermediate-acid magmatic from eastern Qin-Hang metallogenic belt and its adjacent region

综上,钦杭成矿带燕山期大规模的中酸性岩浆活动可概括为:在伸展的大地构造环境下,首先是古板块结合带中地壳深处的古老岛弧岩石部分熔融,形成埃达克岩或具岛弧花岗岩特征的I型花岗岩,继而是中上部地壳的沉积岩部分熔融形成S型花岗岩,地壳的持续减薄,幔源岩浆的上涌,导致在浅部地壳低压高温环境下的岩石部分熔融,形成了大量的A型花岗岩。

5.4 岩浆成矿作用

村前斑岩体中Cu、Mo、Pb、Zn、Au、Ag等成矿元素具有明显富集特征,且随着岩体蚀变程度加深,以及深部岩体向浅部岩体成矿元素含量明显增加。这一现象可解释为,岩浆在上侵就位过程中,随着压力的减小,“水”从岩浆熔融体中不断出融,并从岩浆熔体及围岩萃取出大量成矿元素,形成含矿气水热液,由压力趋使含矿热液由深部向浅部聚集,这一过程中与岩体及围岩发生热液交代作用,尤其是在岩体顶部与碳酸盐岩接触交代蚀变过程中,随着岩体中CaO、Na2O、TiO2、Sr、REE等元素的带入带出,成矿元素在岩体顶部及接触带附近沉淀成矿,形成由深部向浅部岩体蚀变增强,且成矿元素含量剧增的现象。

已有大量研究表明,不同岩浆岩具有不同的成矿专属性,不同类型花岗质岩石可形成不同的矿床类型,也表明了成矿作用与类型具有源区继承性。地壳重熔型(S型)花岗岩多形成陆壳丰度较高的W、Sn、Nb、Ta、Be、U、REE等矿床,同熔型(I型)花岗岩多形成上地幔或下地壳丰度较高的Fe、Cu、Mo、Au、Pb、Zn矿床(徐克勤等,1982)。因此,区域岩浆岩成矿专属性的研究,有利于有目标有针对性的找矿勘查工作的部署。表 2内容还反映出,钦杭成矿带东段及邻近地区,176~160Ma主要形成与I型花岗质岩石有关的以铜为主的多金属矿床;160~150Ma主要形成与I型花岗质岩石有关的Cu-Mo矿床与W-Sn矿床;150~140Ma主要形成与S型花岗质岩石有关的以W-Sn-Mo为主的多金属矿床,以及以Ag-Pb-Zn为主的多金属矿床;140~110Ma主要形成与A型花岗有关的以W-Sn-Mo为主的多金属矿床,少量与I型花岗质岩石有关的Pb-Zn矿床。

6 结论

(1)村前铜多金属矿床为一与中酸性钙碱性I型花岗岩有关的矽卡岩型、斑岩型铜多金属矿床。

(2)村前斑岩体具有从深部向浅部蚀变增强,大部分组分活动性不明显,而成矿元素Cu-Mo-Fe-Pb-Zn-Au-Ag含量明显增加,Na2O、Sr含量降低,REE元素除Eu少量丢失外,其余均呈一致的迁入特征。

(3)村前斑岩体属I型花岗质岩石,稀土元素配分型式呈陡倾斜状,强烈富集轻稀土,强烈亏损重稀土,Eu无明显异常,暗示岩浆源区有石榴子石残留,无斜长石。高的La/Sm比值暗示源区有角闪石残留,Nb/Ta比值与地壳岩石接近,A/CNK值平均1.47,属偏铝-过铝质系列,暗示了其具有地壳重熔型岩浆特征。综合认为,村前斑岩体由具角闪石+石榴子石残留相的火成岩部分熔融形成的熔浆,混合或混染了地壳重熔型岩浆上侵就位而成。

(4)区域上钦杭结合带东段,燕山期中酸性岩浆活动具有从176~150Ma的埃达克岩或具岛弧花岗岩特征的I型花岗岩,至150~140Ma的S型花岗岩,向140~110Ma的A型花岗岩演化趋势,显示了地壳由厚减薄的过程,暗示其大地构造背景为岩石圈的伸展减薄环境,而形成于169.3±1.1Ma的村前斑岩体正处于伸展阶段早期。

(5)研究表明,钦杭成矿带东段及邻近地区,176~160Ma主要形成与I型花岗质岩石有关的以Cu为主的多金属矿床;160~150Ma主要形成与I型花岗质岩石有关的Cu-Mo矿床与W-Sn矿床;150~140Ma主要形成与S型花岗质岩石有关的以W-Sn-Mo为主的多金属矿床,以及以Ag-Pb-Zn为主的多金属矿床;140~110Ma主要形成与A型花岗质岩石有关的以W-Sn-Mo为主的多金属矿床,少量与I型花岗质岩石有关的Pb-Zn矿床。这一规律,对在该区域寻找针对性矿种和矿床类型具有一定的指导意义。

致谢   项目得到南京地质调查中心在资料和技术方面大力支持;骆学全研究员、张雪辉副研究员、孙建东助理研究员在研究工作中提供了很多帮助;孙燕教授在项目中全程给予了悉心指导;江西省宜丰万国矿业有限公司在样品采集过程中提供了方便;匿名审稿人提出了宝贵的修改意见;在此一并致以诚挚的谢意。

参考文献
[1] Bai YL, Wang ZQ, Wang T and Wu FF. 2015. LA-ICP-MS zircon U-Pb age, geochemistry and petrogenesis of the Yaoli pluton in northeastern Jiangxi Province. Acta Petrologica et Mineralogica, 34(1): 35-50 (in Chinese with English abstract)
[2] Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665
[3] Deng ZB, Liu SW, Zhang LF, Wang ZQ, Wang W, Yang PT, Luo P and Guo BR. 2014. Geochemistry, zircon U-Pb and Lu-Hf isotopes of an Early Cretaceous intrusive suite in northeastern Jiangxi Province, South China Block: Implications for petrogenesis, crust/mantle interactions and geodynamic processes. Lithos, 200-201: 334-354
[4] Ding X, Jiang SY, Ni P, Gu LX and Jiang YH. 2005. Zircon SMS U-Pb Geochronology of host granitoids in Wushan and Yongping copper deposits, Jiangxi Province. Geological Journal of China Universities, 11(3): 383-389 (in Chinese with English abstract)
[5] Feng CY, Zeng ZL, Zhang DQ, Qu WJ, Du AD, Li DX and She HQ. 2011. SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield, southern Jiangxi Province, China, and geological implications. Ore Geology Reviews, 43(1): 8-25
[6] Feng CY, Li DX, Zeng ZL, Zhang DQ and She HQ. 2014. Mineralization styles and genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn polymetallic orefield, southern Jiangxi Province, SE China: Evidence from geology, fluid inclusions, isotopes and chronology. Acta Geologica Sinica, 88(3): 825-844
[7] Grant JA. 1986. The isocon diagram: A simple solution to Gresens'equation for metasomatic alteration. Economic Geology, 81(8): 1976-1982
[8] Grant JA. 2005. Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, Parts A/B/C, 30(17-18): 997-1004
[9] Gresens RL. 1967. Composition-volume relationships of metasomatism. Chemical Geology, 2: 47-65
[10] Gu MG, Feng LX, Hu YH, Yu SQ and Wu M. 2011. LA-ICP-MS U-Pb dating of zircons from Guangshan and Zhaxi plutons in Shaoxing area, Zhejiang Province: Constraint on the ore-forming epoch of the Lizhu iron ore deposit. Geological Bulletin of China, 30(8): 1212-1219 (in Chinese with English abstract)
[11] Guo CL, Chen YC, Li CB, Chen ZH and Lou FS. 2011. Zircon SHRIMP U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the Late Jurassic granitoids in the Jiulongnao W-Sn-Pb-Zn ore-concentrated areas in Jiangxi Province and their geological significance. Acta Geologica Sinica, 85(7): 1188-1205 (in Chinese with English abstract)
[12] Huang F, Wang DH, Santosh M, Wang CH, Zeng ZL, Liu SB, Wang LQ and Zhang YZ. 2014. Genesis of the Yuanlingzhai porphyry molybdenum deposit, Jiangxi Province, South China: Constraints from petrochemistry and geochronology. Journal of Asian Earth Sciences, 79: 759-776
[13] Huang LC and Jiang SY. 2012. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract)
[14] Jia LQ, Xu WY, Yang D, Yang ZS and Wang L. 2014. Zircon U-Pb and molybdenite Re-Os dating of the Dongleiwan Skarn Cu polymetallic deposit in Jiangxi Province, eastern China. Acta Geologica Sinica, 88(2): 985-986
[15] Jia SH, Zhao YY, Wang ZQ, Wu YD, Wang T and Chen L. 2014. Zircon U-Pb dating and geochemical characteristics of granodiorite-porphyry in the Linghou copper deposit, western Zhejiang, and their geological significance. Acta Geologica Sinica, 88(11): 2071-2085 (in Chinese with English abstract)
[16] Kay SM and Abbruzzi JM. 1996. Magmatic evidence for Neogene lithospheric evolution of the central Andean "flat-slab" between 30°S and 32°S. Tectonophysics, 259(1-3): 15-28
[17] Li JL. 2009. Geological characteristics of the composite Cunqian skarn and prophyry Cu-Pb-Zn deposit in Jiangxi Province. Contributions to Geology and Mineral Resources Research, 24(2): 143-145 (in Chinese with English abstract)
[18] Li PJ, Yu XQ, Li HY, Qiu JT and Zhou X. 2013a. Jurassic-Cretaceous tectonic evolution of Southeast China: Geochronological and geochemical constraints of Yanshanian granitoids. International Geology Review, 55(10): 1202-1219
[19] Li T and Yuan HY. 2011. Element abundance in the oceanic and the continental lithospheres. Geochimica, 40(1): 1-5 (in Chinese with English abstract)
[20] Li XF, Watanabe Y and Yi XK. 2013b. Ages and sources of ore-related porphyries at Yongping Cu-Mo deposit in Jiangxi Province, southeast China. Resource Geology, 63(3): 288-312
[21] Li Y, Pan XF, Zhao M, Chen GH, Zhang TF, Liu X and Zhang C. 2014. LA-ICP-MS zircon U-Pb age, geochemical features and relations to the W-Cu mineralization of granitic porphyry in Zhuxi skarn deposit, Jingdezhen, Jiangxi. Geological Review, 60(3): 693-708 (in Chinese with English abstract)
[22] Li ZL, Zhou J, Mao JR, Santosh M, Yu MG, Li YQ, Hu YZ, Langmuir CH, Chen ZX, Cai XX and Hu YH. 2013c. Zircon U-Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition. Lithos, 179: 334-352
[23] Li ZL, Zhou J, Mao JR, Yu MG, Li YQ, Hu YZ and Wang HH. 2013. Age and geochemistry of the granitic porphyry from the northwestern Zhejiang Province, SE China, and its geological significance. Acta Petrologica Sinica, 29(10): 3607-3622 (in Chinese with English abstract)
[24] Liang CQ. 1996. Preliminary analysis on geological characteristics and ore-controlling condition of Cunqian Cu-Pb-Zn (Au-Ag) deposit, Jiangxi Province. Jiangxi Geological Science and Technology, 23(3): 101-106 (in Chinese with English abstract)
[25] Liu J, Mao JW, Ye HS, Xie GQ, Yang GQ and Zhang W. 2008. Zircon LA-ICPMS U-Pb dating of Hukeng granite in Wugongshan area, Jiangxi Province and its geochemical characteristics. Acta Petrologica Sinica, 24(8): 1813-1822 (in Chinese with English abstract)
[26] Liu SB, Wang CH, Liu ZQ, Liu JG, Wan HZ, Chen GH, Zhang C, Zhang SD and Zhang XL. 2014. Northeast Jiangxi Taqian-Fuchun metallogenic belt magmatite time limit and sequence division and its significance. Rock and Mineral Analysis, 33(4): 598-611 (in Chinese with English abstract)
[27] Liu X, Fan HR, Santosh M, Hu FF, Yang KF, Li QL, Yang YH and Liu YS. 2012. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: Implication for the formation of the Dexing porphyry copper deposit, Southeastern China. Lithos, 150: 85-100
[28] Luo L, Jiang SY, Yang SY, Zhao KD, Wang SL and Gao WL. 2010. Petrochemistry, zircon U-Pb dating and Hf isotopic composition of the granitic pluton in the Pengshan Sn-polymetallic orefield, Jiangxi Province. Acta Petrologica Sinica, 26(9): 2818-2834 (in Chinese with English abstract)
[29] Maclean WH and Kranidiotis P. 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82 (4): 951-962
[30] Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract)
[31] Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK and Luo XH. 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, Middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research, 28(2): 816-836
[32] Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429
[33] Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224
[34] Peng HM, Yuan Q, Li QY, Xia F, Zhang BX, Dan XH, Zhang ZS and Dong XF. 2015. U-Pb ages, Hf isotope of zircons from biotite granite porphyry in Dalingshang tungsten deposite, northwestern Jiangxi, and relations to the W-Cu mineralization. Geological Review, 61(5): 1089-1098 (in Chinese with English abstract)
[35] Qiu JS, Yang ZL, Xing GF, Yu MG, Zhao JL and Wang RQ. 2015. A comparison study between Caledonian and Yanshanian granites from Xiongjiashan molybdenum deposit in Jinxi County, Jiangxi Province, and its implications to metallogenesis. Acta Petrologica Sinica, 31(3): 656-674 (in Chinese with English abstract)
[36] Qiu JT, Yu XQ, Santosh M, Zhang DH, Chen SQ and Li PJ. 2013. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556
[37] Shui XF, Zhao YY, Guo S, Wu DX, Zhu XY and Wang ZK. 2012. U-Pb dating and Hf isotopic characteristics of zircons from granodiorite in the Dexing ore concentration area. Geology in China, 39(6): 1543-1561 (in Chinese with English abstract)
[38] Su HM, Mao JW, He XR and Lu R. 2013. Timing of the formation of the Tianhuashan Basin in northern Wuyi as constrained by geochronology of volcanic and plutonic rocks. Science China (Earth Sciences), 56(6): 940-955
[39] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication,, 42(1): 313-345
[40] Tang YW, Xie YL, Li YX, Qiu LM, Liu BS, Li Y, Zhang XX, Jiang YC, Han YD and Zhou JJ. 2012. Geochemical characteristics and Zircon LA-ICP-MS U-Pb ages of quartz-monzonite porphyry in Anji polymetallic ore district of Zhejiang and their geological implications. Geoscience, 26(4): 647-655 (in Chinese with English abstract)
[41] Tang YW, Xie YL, Li YX, Qiu LM, Zhang XX, Han YD and Jiang YC. 2013. LA-ICP-MS U-Pb ages, geochemical characteristics of the zircons from Wushanguan complex body in Anji mining area, northwestern Zhejiang and their geological significances. Geological Review, 59(4): 702-715 (in Chinese with English abstract)
[42] Tang ZC, Dong XF, Hu WJ, Meng XS and Rong YP. 2014. Shrimp zircon U-Pb dating of Xianlin granodiorite rock in western Zhejiang and their geological significance. Geoscience, 28(5): 884-892 (in Chinese with English abstract)
[43] Tao JH, Li WX, Li XH and Cen T. 2013. Petrogenesis of Early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U-Pb dating, Hf-O isotope and whole-rock geochemistry. Science China (Earth Sciences), 56(6): 922-939
[44] Urqueta E, Kyser TK, Clark AH, Stanley CR and Oates CJ. 2009. Lithogeochemistry of the Collahuasi porphyry Cu-Mo and epithermal Cu-Ag(-Au) cluster, northern Chile: Pearce element ratio vectors to ore. Geochemistry: Exploration, Environment, Analysis, 9 (1): 9-17
[45] Wang CY, Li XF, Xiao R, Bai YP, Yang F, Mao W and Jiang SK. 2012. Elements mobilization of mineralized porphyry rocks during hydrothermal alteration at Zhushahong porphyry copper deposit, Dexing district, South China. Acta Petrologica Sinica, 28(12): 3869-3886 (in Chinese with English abstract)
[46] Wang DX, Gao WL, Li CL, Wang ZX and Zhao ZD. 2015. LA-ICP-MS zircon U-Pb geochronology, petrochemistry of the Late Jurassic granite porphyry in central Zhejiang Province and their geological significance. Geology in China, 42(6): 1684-1699 (in Chinese with English abstract)
[47] Wang GG, Ni P, Yao J, Wang XL, Zhao KD, Zhu RZ, Xu YF, Pan JY, Li L and Zhang YH. 2015. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: Constraints from high-Mg Adakitic rocks. Ore Geology Reviews, 67: 109-126
[48] Wang JE, Liu YD, Jiang Y and Wang JG. 2014. Geochemistry and zircon SHRIMP U-Pb dating of Mo-bearing granite bodies in Shuanghuang area, southern Zhejiang. Geology in China, 41(3): 814-823 (in Chinese with English abstract)
[49] Wang JG, Wang LW, Chen XY, Zhao XD, Jiang Y, Zhou ZY, Yu GC and Yu YW. 2010. Shrimp U-Pb ages of zircons from Kailingjiao and Lichenjia granodiorites in western Zhejiang and their geological implications. Geology in China, 37(6): 1559-1565 (in Chinese with English abstract)
[50] Wang KQ, Zhang DH, Wang CS, Yin XB, Zhu YD and Fu F. 2015. Petrogenesis and metallogeny of Yinkeng porphyry Mo deposit in Jinhua, Zhejiang: The evidence from the petrology, petrogeochemistry, isotopes and SHRIMP zircon U-Pb dating. Earth Science Frontiers, 22(3): 357-367 (in Chinese with English abstract)
[51] Wang Q, Zhao ZH, Jian P, Xu JF, Bao ZW and Ma JL. 2004. SHRIMP zircon geochronology and Nd-Sr isotopic geochemistry of the Dexing granodiorite porphyries. Acta Petrologica Sinica, 20(2): 315-324 (in Chinese with English abstract)
[52] Wang Q, Sun Y, Zhang XH, Zhang SM, Wang YL and Zhang CM. 2012. Zircon LA-ICP-MS U-Pb age of plagiogranite porphyry in the Cunqian copper polymetallic deposit of Jiangxi Province and its geological implications. Geology in China, 39(5): 1143-1150 (in Chinese with English abstract)
[53] Wang Q, Xiao YF, Zhang XH, Yang L, Wang YL, Zhang SM, Gong TT and Zhang CM. 2013. The discovery of rare minerals in the Cunqian Cu-Pb-Zn deposit and its geological significance. Acta Petrologica et Mineralogica, 32(04):515-522 (in Chinese with English abstract)
[54] Wang XG, Liu ZQ, Liu SB, Wang CH, Liu JG, Wan HZ, Chen GH, Zhang SD and Liu XL. 2015. LA-ICP-MS zircon U-Pb dating and petrologic geochemistry of fine-grained granite from Zhuxi Cu-W deposit, Jiangxi Province and its geological significance. Rock and Mineral Analysis, 34(5): 592-599 (in Chinese with English abstract)
[55] Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419
[56] Wong J, Sun M, Xing GF, Li XH, Zhao GC, Wong K, Yuan C, Xia XP, Li LM and Wu FY. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125-100Ma and its tectonic significance for South China. Lithos, 112(3-4): 289-305
[57] Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370-384
[58] Xu KQ, Hu SX, Sun MZ and Ye J. 1982. On the two genetic series of granites in South China and their metallogenetic characteristics. Mineral Deposits, 1(2): 1-14 (in Chinese with English abstract)
[59] Xu QS, Wei YW, Huang AJ, Luo P, Wu CL, Zhao HS and Di YJ. 2014. Geochemical features, zircon U-Pb ages and relationship to Pb-Zn mineralization of subvolcanic rocks in Lizikeng volcanic basin, Shangrao, Jiangxi. Geological Review, 60(4): 932-944 (in Chinese with English abstract)
[60] Yang JH, Peng JT, Zhao JH, Fu YZ, Yang C and Hong YL. 2012. Petrogenesis of the Xihuashan granite in southern Jiangxi Province, South China: Constraints from zircon U-Pb geochronology, geochemistry and Nd isotopes. Acta Geologica Sinica, 86(1): 131-152
[61] Yang MG, Huang SB, Lou FS, Tang WX and Mao SB. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area. Geology in China, 36(3): 528-543 (in Chinese with English abstract)
[62] Yang SY, Jiang SY, Li L, Sun Y, Sun MZ, Bian LZ, Xiong YG and Cao ZQ. 2011. Late Mesozoic magmatism of the Jiurui mineralization district in the Middle-Lower Yangtze River Metallogenic Belt, eastern China: Precise U-Pb ages and geodynamic implications. Gondwana Research, 20(4): 831-843
[63] Yang ZL, Qiu JS, Xing GF, Yu MG and Zhao JL. 2014. Petrogenesis and magmatic evolution of the Yashan granite pluton in Yichun, Jiangxi Province, and their constraints on mineralization. Acta Geologica Sinica, 88(5): 850-868 (in Chinese with English abstract)
[64] Zhai MG. 2004. Adakite and related granitoids from partial melting of continental lower crust. Acta Petrologica Sinica, 20(2): 193-194 (in Chinese with English abstract)
[65] Zhang CM. 2013. Ore characters and metallogenic conditions of the Lengshuikeng Ag-Pb-Zn deposit, Jiangxi Province. Master Degree Thesis. Chengdu: Chengdu University of Technology, 1-83 (in Chinese with English summary)
[66] Zhang Q. 2008. Adakite research: Retrospect and prospect. Geology in China, 35(1): 32-39 (in Chinese with English abstract)
[67] Zhang Q, Ran H and Li CD. 2012. A-type granite: What is the essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract)
[68] Zhao XL, Mao JR, Liu K, Ye HM and Wang KH. 2013. A primary discussion on the age and genesis of the Jiuqu two-mica granite related to W-Sn mineralizations in southern Jiangxi Province. Geological Review, 59(1): 83-96 (in Chinese with English abstract)
[69] Zhao ZH. 1997. Principle of Trace Element Geochemistry. Beijing: Science Press, 1-238 (in Chinese with English abstract)
[70] Zhong YF, Ma CQ, She ZB, Lin GC, Xu HJ, Wang RJ, Yang KG and Liu Q. 2005. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi Province. Earth Science, 30(6): 685-691 (in Chinese with English abstract)
[71] Zhou Y, Liang XQ, Wu XC, Jiang Y, Wen SN and Cai YF. 2013. Geochronology and geochemical characteristics of the Xitian tungsten-tin-bearing A-type granites, Hunan Province, China. Geotectonica et Metallogenia, 37(3): 511-529 (in Chinese with English abstract)
[72] Zhou YZ, Zeng CY, Li HZ, An YF, Liang J, Lü WC, Yang ZJ, He JG and Shen WJ. 2012. Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou Bay juncture orogenic belt, southern China. Geological Bulletin of China, 31(2/3):486-491 (in Chinese with English abstract)
[73] Zhu YD. 2011. Characteristics of granites and discuss on the genesis of the Tongcun porphyry Mo (Cu) deposit, Kaihua, Zhejiang Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-91 (in Chinese with English summary)
[74] Zhu YD, Ye XF, Zhang DH and Wang KQ. 2012. A comparative study of granites in Tongcun porphyry molybdenum-copper deposit in west of Zhejiang Province and Dexing porphyriry copper deposit. Advances in Earth Sciences, 27(10): 1043-1053 (in Chinese with English abstract)
[75] 白玉岭, 王宗起, 王涛, 吴发富. 2015. 赣东北地区瑶里花岗岩年代学、地球化学及其岩石成因. 岩石矿物学杂志, 34(1): 35-50
[76] 丁昕, 蒋少涌, 倪培, 顾连兴, 姜耀辉. 2005. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学. 高校地质学报, 11(3): 383-389
[77] 顾明光, 冯立新, 胡艳华, 余盛强, 吴鸣. 2011. 浙江绍兴地区广山-栅溪岩体LA-ICP-MS锆石U-Pb定年: 对漓渚铁矿成矿时代的限定. 地质通报, 30(8): 1212-1219
[78] 郭春丽, 陈毓川, 黎传标, 陈郑辉, 楼法生. 2011. 赣南晚侏罗世九龙脑钨锡铅锌矿集区不同成矿类型花岗岩年龄、地球化学特征对比及其地质意义. 地质学报, 85(7): 1188-1205
[79] 黄兰椿, 蒋少涌. 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900
[80] 贾少华, 赵元艺, 王宗起, 武昱东, 王涛, 陈雷. 2014. 浙江建德岭后铜矿花岗闪长斑岩锆石U-Pb年龄、地球化学特征及其意义. 地质学报, 88(11): 2071-2085
[81] 李均良. 2009. 江西省村前夕卡岩+斑岩复合型铜铅锌矿地质特征. 地质找矿论丛, 24(2): 143-145
[82] 黎彤, 袁怀雨. 2011. 大洋岩石圈和大陆岩石圈的元素丰度. 地球化学, 40(1): 1-5
[83] 李岩, 潘小菲, 赵苗, 陈国华, 张天福, 刘茜, 张诚. 2014. 景德镇朱溪钨(铜)矿床花岗斑岩的锆石U-Pb年龄、地球化学特征及其与成矿关系探讨. 地质论评, 60(3): 693-708
[84] 厉子龙, 周静, 毛建仁, 余明刚, 励音骐, 胡逸洲, 汪惠惠. 2013. 浙西北木瓜燕山期花岗斑岩的定年、地球化学特征及其地质意义. 岩石学报, 29(10): 3607-3622
[85] 梁超群. 1996. 江西村前铜铅锌(金银)矿床地质特征及控矿条件初步分析. 江西地质科技, 23(3): 101-106
[86] 刘珺, 毛景文, 叶会寿, 谢桂青, 杨国强, 章伟. 2008. 江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征. 岩石学报, 24(8): 1813-1822
[87] 刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 张小林. 2014. 赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义. 岩矿测试, 33(4): 598-611
[88] 罗兰, 蒋少涌, 杨水源, 赵葵东, 汪石林, 高文亮. 2010. 江西彭山锡多金属矿集区隐伏花岗岩体的岩石地球化学、锆石U-Pb年代学和Hf同位素组成. 岩石学报, 26(9): 2818-2834
[89] 毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658
[90] 彭花明, 袁琪, 李秋耘, 夏菲, 张博譞, 但小华, 张中山, 董晓峰. 2015. 赣西北大岭上钨矿黑云母花岗斑岩锆石U-Pb年龄、Hf同位素及其与W、Cu矿化的关系. 地质论评, 61(5): 1089-1098
[91] 邱检生, 杨泽黎, 邢光福, 余明刚, 赵姣龙, 王睿强. 2015. 江西金溪熊家山钼矿床加里东期与燕山期花岗岩对比及其对成矿作用的启示. 岩石学报, 31(3): 656-674
[92] 水新芳, 赵元艺, 郭硕, 吴德新, 朱小云, 王增科. 2012. 德兴矿集区花岗闪长斑岩锆石U-Pb年龄、Hf同位素特征及其意义. 中国地质, 39(6): 1543-1561
[93] 唐燕文, 谢玉玲, 李应栩, 邱立明, 刘保顺, 李媛, 张欣欣, 姜研岑, 韩宇达, 周俊杰. 2012. 浙江安吉多金属矿区石英二长斑岩岩石化学特征和锆石U-Pb年龄及其地质意义. 现代地质, 26(4): 647-655
[94] 唐燕文, 谢玉玲, 李应栩, 邱立明, 张欣欣, 韩宇达, 姜妍岑. 2013. 浙江安吉多金属矿区坞山关杂岩体锆石LA-ICP-MS U-Pb年龄、地球化学特征及地质意义. 地质论评, 59(4): 702-715
[95] 唐增才, 董学发, 胡文杰, 孟祥随, 荣一萍. 2014. 浙西闲林岩体的锆石SHRIMP U-Pb定年及其地质意义. 现代地质, 28(5): 884-892
[96] 王翠云, 李晓峰, 肖荣, 白艳萍, 杨锋, 毛伟, 蒋松坤. 2012. 德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律. 岩石学报, 28(12): 3869-3886
[97] 王对兴, 高万里, 李春麟, 王宗秀, 赵志丹. 2015. 浙中地区晚侏罗世花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 中国地质, 42(6): 1684-1699
[98] 王加恩, 刘远栋, 姜禹, 汪建国. 2014. 浙南双黄地区含钼岩体地球化学特征及SHRIMP锆石U-Pb定年. 中国地质, 41(3): 814-823
[99] 汪建国, 汪隆武, 陈小友, 赵旭东, 姜禹, 周宗尧, 余国春, 俞云文. 2010. 浙西开岭脚和里陈家花岗闪长岩锆石SHRIMP U-Pb年龄及其地质意义. 中国地质, 37(6): 1559-1565
[100] 王科强, 张德会, 王晨昇, 印贤波, 朱玉娣, 付芬. 2015. 浙江金华银坑斑岩型钼矿床的成岩成矿作用: 来自岩石学、岩石地球化学、同位素与锆石SHRIMP U-Pb年代学的证据. 地学前缘, 22(3): 357-367
[101] 王强, 赵振华, 简平, 许继峰, 包志伟, 马金龙. 2004. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315-324
[102] 王强, 孙燕, 张雪辉, 张世铭, 王瑜亮, 张春茂. 2012. 江西省村前铜多金属矿床斜长花岗斑岩LA-ICP-MS锆石U-Pb年龄及地质意义. 中国地质, 39(5): 1143-1150
[103] 王强, 肖渊甫, 张雪辉, 杨玲, 王瑜亮, 张世铭, 龚婷婷, 张春茂. 2013. 江西省村前铜多金属矿床罕见矿物的发现及意义. 岩石矿物学杂志, 32(04):515-522
[104] 王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 2015. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 34(5): 592-599
[105] 徐克勤, 胡受奚, 孙明志, 叶俊. 1982. 华南两个成因系列花岗岩类及其成矿特征. 矿床地质, 1(2): 1-14
[106] 徐庆胜, 魏英文, 黄安杰, 罗平, 吴才来, 赵红松, 狄永军. 2014. 江西上饶梨子坑火山盆地潜火山岩地球化学特征、锆石U-Pb年龄及其与铅锌矿成矿关系. 地质论评, 60(4): 932-944
[107] 杨明桂, 黄水保, 楼法生, 唐维新, 毛素斌. 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543
[108] 杨泽黎, 邱检生, 邢光福, 余明刚, 赵姣龙. 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约. 地质学报, 88(5): 850-868
[109] 翟明国. 2004. 埃达克岩和大陆下地壳重熔的花岗岩类. 岩石学报, 20(2): 193-194
[110] 张春茂. 2013. 江西省冷水坑银铅锌矿床矿石特征及成矿条件. 硕士学位论文. 成都: 成都理工大学, 1-83
[111] 张旗. 2008. 埃达克岩研究的回顾和前瞻. 中国地质, 35(1): 32-39
[112] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626
[113] 赵希林, 毛建仁, 刘凯, 叶海敏, 王开虎. 2013. 赣南与钨锡矿化有关的九曲二云母花岗岩的形成时代及其岩石成因初探. 地质论评, 59(1): 83-96
[114] 赵振华. 1997. 微量元素地球化学原理. 北京: 科学出版社, 1-238
[115] 钟玉芳, 马昌前, 佘振兵, 林广春, 续海金, 王人镜, 杨坤光, 刘强. 2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学. 地球科学, 30(6): 685-691
[116] 周云, 梁新权, 梁细荣, 伍式崇, 蒋英, 温淑女, 蔡永丰. 2013. 湖南锡田含W-Sn A型花岗岩年代学与地球化学特征. 大地构造与成矿学, 37(3): 511-529
[117] 周永章, 曾长育, 李红中, 安燕飞, 梁锦, 吕文超, 杨志军, 何俊国, 沈文杰. 2012. 钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向. 地质通报, 31(2/3): 487-491
[118] 朱玉娣. 2011. 浙江桐村斑岩钼(铜)矿床岩浆岩特征及矿床成因讨论. 硕士学位论文. 北京: 中国地质大学, 1-91
[119] 朱玉娣, 叶锡芳, 张德会, 王科强. 2012. 浙西桐村斑岩型钼(铜)矿床与德兴斑岩铜矿岩浆岩对比研究. 地球科学进展, 27(10): 1043-1053