岩石学报  2016, Vol. 32 Issue (7): 1980-1996   PDF    
内蒙古乌拉山-大青山地区变泥质岩的地球化学特征及构造意义
蔡佳, 刘福来, 刘平华, 王舫, 施建荣    
中国地质科学院地质研究所, 北京 100037
摘要:乌拉山-大青山地区位于华北克拉通西北缘孔兹岩带的中段,该地区出露大面积的古元古代高级变质表壳岩系岩石,例如夕线(堇青)石榴二长片麻岩、石榴黑云二长片麻岩、黑云长英质片麻岩、石榴石英岩、大理岩、磁铁石英岩和钙硅酸盐岩等。其中该地区典型的变泥质岩石(夕线(堇青)石榴二长片麻岩和石榴黑云二长片麻岩)多以似层状产出,夕线(堇青)石榴二长片麻岩含有大量的石榴石、夕线石和/或堇青石,并保留典型的堇青石反应边结构。岩石地球化学研究结果表明上述变泥质岩石样品明显富Al2O3,属于过铝质岩石,其平均化学成分与上地壳平均值较为接近。样品的稀土配分型式具有中等程度的轻重稀土元素分异,轻稀土明显富集和弱铕负异常的特征。微量元素蛛网图显示变泥质岩石样品富集大离子亲石元素如Rb和Ba,而高场强元素如Zr、Hf含量相对较低,且Nb、Ta、P和Ti呈明显亏损的特征。多种原岩判别图解显示其原岩为一套富铝粘土岩及杂砂岩,且成熟度较低,为近源沉积。多数样品的CIA值低于太古宙后澳大利亚平均页岩和北美页岩的CIA值,反映其源岩经历了中等程度的风化作用。物源以上地壳的长英质成分为主,可能有古老沉积物的加入。多种构造判别图解表明研究区样品形成于有演化岛弧发育的活动大陆边缘环境。结合前人对孔兹岩带出露的变泥质岩石的变质作用研究普遍得到近等温减压型顺时针P-T演化轨迹以及锆石同位素年代学研究结果,综合表明乌拉山-大青山变泥质岩石形成于有演化岛弧发育的活动大陆边缘环境,中元古代物质(2.1~2.0Ga)为其提供主要的沉积物源,随后卷入~1950Ma华北克拉通西部古老陆块之间的碰撞造山作用,经历了大规模麻粒岩相变质作用,并于1920~1850Ma碰撞后折返至近地表。
关键词变泥质岩石     地球化学     构造判别     乌拉山-大青山地区     孔兹岩带    
Geochemistry and its tectonic implications of the Wulashan-Daqingshan metapelites in Inner Mongolia
CAI Jia, LIU FuLai, LIU PingHua, WANG Fang, SHI JianRong    
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Paleoproterozoic high-grade supracrustal rocks involving sillimanite-(cordierite-)garnet gneisses, garnet-biotite gneisses, quartzofeldspathic gneisses, garnet-bearing quartzites, marbles, magnetite quartzites and calc-silicate rocks are cropped out in the Wulashan-Daqingshan area in the central segment of the Khondalite Belt, North China Craton. Among which, typical metapelitic rocks including sillimanite-(cordierite-)garnet gneisses and garnet-biotite gneisses occur as interlayers, moreover sillimanite-(cordierite-)garnet gneisses are consist of garnet, sillimanite and/or cordierite, and preserve cordierite-bearing symplectites. Geochemical analyses reveal that the metapelitic rock samples are peraluminous with the enrichment of Al2O3, and the average bulk composition is similar to that of the upper continental crust. The chondrite-normalized rare earth element (REE) pattern for the samples displays characteristics of medium fractionation in light and heavy REE, strong enrichment in light REEs and weak negative Eu anomalies. The primitive mantle-normalized trace element pattern shows the enrichment of large ion lithophile elements such as Rb and Ba, the contents of high field strength elements such as Zr and Hf are relatively low; furthermore Nb, Ta, P and Ti are distinctly depleted. The protoliths of the studied metapelitic rocks are discriminated as aluminum-rich claystone and graywacke with low maturity and proximal sedimentation. The Chemical Index of Alteration (CIA) values of the samples are lower than those of post-Archean Australian shale and North American shale composite, indicating the source rocks of the samples underwent moderate chemical weathering. The uppercrust felsic sources with possible old sediment component make a contribution to their provenance. Tectonic discrimination diagrams show that the samples formed in the active continental margin with evolved arc setting. Combined with the reported clockwise P-T paths with near-isothermal decompressional stages and analyses of zircon dating for metapelitic rocks in the Khondalite Belt, it is therefore inferred that the metapelitic rocks in the Wulashan-Daqingshan area formed in the active continental margin with evolved arc setting, and mid-Paleoproterozoic materials (2.1~2.0Ga) provided the main sedimentary materials. The protoliths of the metapelitic rocks were involved in the Paleoproterozoic continent-continent collisional event along the Khondalite Belt in the North China Craton at ~1950Ma followed by exhumation and cooling at 1920~1850Ma accompanied with amphibolite-granulite-facies metamorphism.
Key words: Metapelitic rocks     Geochemistry     Tectonic discrimination     Wulashan-Daqingshan area     The Khondalite Belt    
1 引言

华北克拉通西北缘的孔兹岩带是一条古元古代碰撞构造带,是由西部陆块内北部的阴山陆块和南部的鄂尔多斯陆块碰撞形成的(Zhao et al., 1999200320052012; Zhai and Santosh, 2011),该孔兹岩带西段贺兰山-千里山、中段乌拉山-大青山以及东段集宁-凉城等地区出露大面积变泥质岩石(卢良兆等, 19921996)。有关孔兹岩带变泥质岩石的变质作用、同位素年代学等方面的研究已取得了大量的研究进展(卢良兆等, 19921996Lu and Jin, 1993; Liu et al., 19982014; 刘福来等,2002Wan et al., 200620092013; Dong et al., 200720132014; 董春艳等,2009Yin et al., 200920112014; Jiao et al., 2013ab2015; Guo et al., 2012; Ma et al., 2012; 刘平华等,2013蔡佳等, 2013ab20142015Cai et al., 20142015)。其中,通过变质作用研究,普遍得到了近等温减压的顺时针P-T轨迹(卢良兆等,1992Liu et al., 1993; Lu and Jin, 1993; 周喜文等,2010Wang et al., 2011; Jiao et al., 2013a2015; 蔡佳等,2013aCai et al., 20142015)。锆石或独居石的同位素年代学研究表明孔兹岩带变泥质岩和变基性岩中的变质锆石记录了1950~1850Ma的变质年龄(Wan et al., 200620092013; Dong et al., 200720132014; 周喜文和耿元生,2009Li et al., 2011; Yin et al., 20092011刘平华等,2013蔡佳等,2015Wang et al., 2015; Qiao et al., 2016),其中~1950Ma可能代表了北部的阴山陆块和南部鄂尔多斯陆块碰撞拼合的时代(Yin et al., 20092011; 赵国春,2009周喜文和耿元生,2009Zhao et al., 2010; Dong et al., 2013),1920~1850Ma则可能是碰撞后折返的时代(Yin et al., 2009; Jiao et al., 2013b)。

然而,前人对于孔兹岩带出露的古元古代变泥质岩石的地球化学性质和形成构造环境尚存在不同的认识。部分研究者认为其沉积于稳定大陆边缘环境(金巍等,1991Condie et al., 1992; 卢良兆等, 19921996Liu et al., 1993; Lu and Jin, 1993),而Dan et al.(2012)提出孔兹岩带变泥质岩石的沉积物源来自2180~2000Ma的大陆弧,沉积于活动大陆边缘环境。董晓杰(2012)则认为其原岩是在大陆裂谷环境下沉积,为一伸展的构造背景。因此基于前人的研究,本文选取孔兹岩带中段乌拉山-大青山地区的变泥质岩石,包括夕线(堇青)石榴二长片麻岩和石榴黑云二长片麻岩,通过详细的野外地质观察,结合室内岩相学、岩石地球化学特征等综合研究,通过主量、微量元素分析及其地球化学特征,以恢复其原岩类型、探讨其形成时的构造环境及物源区性质等,为进一步揭示华北克拉通孔兹岩带的演化历史提供新的科学依据。

2 区域地质背景

华北克拉通西北缘的孔兹岩带是位于西部陆块内的一条E-W向展布、长达1000km的古元古代碰撞构造带,由北部的阴山陆块和南部的鄂尔多斯陆块于~1950Ma碰撞拼合形成,西部陆块与东部陆块在~1850Ma碰撞形成中部造山带(Zhao et al., 199920022005; Zhao and Zhai, 2013)。孔兹岩带由西向东沿千里山-贺兰山,乌拉山-大青山和集宁-卓资-丰镇一带展布,分别出露西段千里山-贺兰山变质杂岩,中段乌拉山-大青山变质杂岩以及东段集宁变质杂岩,北邻阴山陆块,南侧与鄂尔多斯陆块相接(图 1ab),东侧紧邻中部造山带。

图 1 孔兹岩带在华北克拉通的分布和构造位置图(据Zhao et al., 2005) Fig. 1 Distribution of the Khondalite Belt in the North China Craton(after Zhao et al., 2005)

孔兹岩带出露大面积高级变质表壳岩系岩石(变泥质岩石),主要包括(含墨)夕线石榴斜长(二长)片麻岩、黑云斜长(二长)片麻岩、黑云石榴斜长(二长)片麻岩、石榴石英岩、大理岩、磁铁石英岩、钙硅酸盐岩和石墨片麻岩,这些变质程度达到高角闪岩相-麻粒岩相的以高铝质岩石为主的变沉积岩石组合常被称为孔兹岩系(卢良兆等, 19921996Liu et al., 1993; Lu and Jin, 1993; 李树勋等,1994Li et al., 2000)。与孔兹岩带变质表壳岩系共同产出的岩石还包括少量闪长质-花岗质片麻岩、长英质副片麻岩、基性麻粒岩、斜长角闪岩以及同构造紫苏花岗岩和S型花岗岩(金巍,1989卢良兆等, 19921996刘喜山, 19941996Zhao et al., 1999; 钟长汀等,2007)。近年来大量的SHRIMP与LA-ICP-MS 锆石U-Pb定年结果表明区内变泥质岩石的原岩沉积时代为2.1~2.0Ga,而变质时代为1950~1850Ma(Wan et al., 20062009; 吴昌华等,2006Xia et al., 2006ab; Dong et al., 200720132014; Yin et al., 20092011; 周喜文和耿元生,2009Jiao et al., 2013b; Santosh et al., 20092013; 蔡佳等,2015Wang et al., 2015; Qiao et al., 2016)。此外,孔兹岩带东段的土贵乌拉、和林格尔、土贵山和徐武家地区以及大青山地区的东坡一带零星出露超高温变质岩石(Santosh et al., 2007ab2012; Guo et al., 2012; Liu et al., 2012; Jiao et al., 2015),其变质温度可达950℃以上,变质时代为1930~1920Ma(Santosh et al., 2007b),有研究者认为区域内的超高温变质事件发生在阴山和鄂尔多斯陆块碰撞拼合之后,与碰撞后伸展环境下的地幔岩浆底侵有关(赵国春,2009Guo et al., 2012; Wan et al., 2013),而Peng et al.(20102011)所报道的土贵乌拉附近的徐武家出露~1930Ma辉长苏长岩墙群也进一步佐证了这一观点。

研究区位于孔兹岩带中段的乌拉山-大青山地区,出露的岩石类型主要为古元古代变质表壳岩系岩石(孔兹岩系),少量古元古代(石榴)基性麻粒岩和斜长角闪岩(卢良兆等, 19921996Lu and Jin, 1993; Zhao et al., 1999)、TTG质片麻岩、紫苏花岗岩、石榴黑云母花岗岩和少量(石墨)大理岩等。主要分布于柳坝沟、包头以北的哈德门沟、桃儿湾、忽鸡沟、大南沟、庙沟、五当召和鸡灯湾等地(图 2)。

图 2 孔兹岩带乌拉山-大青山地区的地质简图及采样位置(据卢良兆等,1992) Fig. 2 Geological map of the Wulashan-Daqingshan area of the Khondalite Belt and sample localities(after Lu et al., 1992)

在庙沟和哈德门沟等地赋存中小型石墨矿床。古元古代变质表壳岩系岩石主要包括(石榴)黑云二长/斜长片麻岩、夕线石榴堇青黑云二长/斜长片麻岩、长英质粒状岩石、(石墨)大理岩,多以互层状产出。少量古元古代(石榴)基性麻粒岩呈宽数十厘米到数米的变形岩墙(宽3~20m,长约10m)和不规则透镜体形式赋存于富铝片麻岩或(紫苏)花岗质片麻岩中(刘平华等,2013Liu et al., 2014)。该地区的变泥质岩石普遍记录了顺时针P-T演化轨迹,峰期和峰后近等温减压变质阶段的温压条件分别为840~880℃和9~11kbar和800~870℃和5.0~7.5kbar(Cai et al., 2014)。

3 野外产状和岩相学特征

孔兹岩带乌拉山-大青山地区的夕线(堇青)石榴二长片麻岩和石榴黑云二长片麻岩出露于巴彦花、哈德门沟、忽鸡沟、鸡灯湾和石拐区一带,均以似层状方式产出,其中夕线堇青石榴二长片麻岩可以夹层状产出于长英质片麻岩中,二者片麻理产状近一致。角闪二辉麻粒岩以大小不等的透镜状或似层状产出于夕线石榴二长片麻岩或(石榴)黑云斜长片麻岩中,两者的接触界线清晰(图 3a)。局部可见(含榴)长英质浅色体呈条带状、细脉状、团块状或网脉状,沿片麻理方向分布或切穿片麻理,其中石榴石呈浑圆状且粒径变化较大(0.1~0.8cm)(图 3bc)。在夕线堇青石榴二长片麻岩中的堇青石围绕石榴石边部形成“黑眼圈”结构,长柱状的夕线石集合体呈近定向分布(图 3d)。代表性样品的显微结构特征见图 4。本文所有矿物代号均采用Whitney and Evans(2010)的资料。

图 3 乌拉山-大青山地区变泥质岩石野外露头照片
(a)夕线石榴二长片麻岩与二辉麻粒岩呈似层状产出;(b)石榴黑云二长片麻岩;(c)夕线堇青石榴二长片麻岩与含石榴石的长英质浅色体;(d)夕线堇青石榴二长片麻岩
Fig. 3 Outcrops of the metapelitic rocks in the Wulashan-Daqingshan area
(a)sillimanite-garnet gneiss interlayered with mafic granulite;(b)garnet-biotite gneiss;(c)sillimanite-cordierite-garnet gneiss associated with garnet-bearing leucosome;(d)sillimanite-cordierite-garnet gneiss

图 4 乌拉山-大青山地区变泥质岩石显微结构照片
(a)石榴石变斑晶与基质黑云母、长石和石英共生(单偏光);(b)石榴石边部围绕柱状夕线石、黑云母和钛铁矿(单偏光);(c)石榴石与基质夕线石、黑云母和石英共生,部分石榴石边部围绕堇青石(单偏光);(d)石榴石边部围绕堇青石和黑云母,堇青石内包含细粒夕线石、黑云母和石英(正交偏光)
Fig. 4 Photomicrographs of the metapelitic rocks from the Wulashan-Daqingshan area
(a)photomicrograph(PPL)of porphyroblastic garnet associated with matrix biotite,feldspar,and quartz;(b)photomicrograph(PPL)of garnet porphyroblast surrounded by prismatic sillimanite,biotite,and ilmenite;(c)photomicrograph(PPL)of garnet associated with matrix sillimanite,biotite,and quartz,and garnet rimmed by a corona of cordierite;(d)garnet mantled by symplectites of cordierite,and minute sillimanite,biotite and quartz enclosed in cordierite

夕线(堇青)石榴二长片麻岩的主要组成矿物有石榴石、长石、石英、堇青石、黑云母和夕线石等,并含少量尖晶石、褐红色金红石、锆石、独居石、磁铁矿和钛铁矿。石榴石变斑晶呈浑圆状或拉长状,粒径为0.2~0.8cm(图 4b-图 d),可包裹细粒的石英、长石、黑云母和细长针状夕线石等矿物。部分石榴石边部被大量粗粒黑云母和夕线石围绕(图 4c),石榴石边部可形成含堇青石的后成合晶结构,堇青石内含有细粒夕 线石、黑云母、石英和Fe-Ti氧化物等(图 4b-d)。基质中的 夕线石呈针-柱状集合体,与黑云母、长石和石英共生(图 4bc)。

石榴黑云二长片麻岩的主要组成矿物有石榴石、长石、石英、黑云母,副矿物为锆石、磁铁矿和钛铁矿等(图 4a)。其中石榴石变斑晶呈浑圆状,粒径变化较大(0.1~1.2cm),含量6%~8%。部分石榴石可包裹黑云母等矿物(图 4a)。

4 岩石地球化学特征

选取13件代表性样品,包括12件夕线(堇青)石榴二长片麻岩(BH1-1、BH3-3、BH28-2、BH27-1、BH27-2、BH39-4、BT16-6、BT20-1、BT35-1、P01-2、P01-6、P01-10)和1件石榴黑云二长片麻岩(BH23-1)。考虑到研究区岩石普遍遭受麻粒岩相变质作用(卢良兆等,1992),部分活动性较强的元素如Cs、Rb、K、Ba、U、Th等容易受到熔体、晚期流体作用等的影响(Rollinson,1993)。然而,有研究者认为部分元素比值如K2O/Na2O和TiO2/Al2O3受高级变质作用的影响相对较小(Fralick and Kronberg, 1997; Roser and Korsch, 1986)。Mg、Fe、Ca、Mn、Cr、Ni、V、Co、Sc、Nb、Ta、Y及HREE属于不活动元素,不易受到化学风化作用的影响,Si、Ti、Al活动性较弱,可视为不活泼元素,而Na、Sr、Zr、Hf的地球化学行为介于活动元素和不活动元素之间,属于准不活泼元素(Rudnick et al., 1985; McLennan,1989; Rollinson,1993)。因此,本文尽量使用不活动元素进行原岩恢复和构造环境的讨论,而避免使用活动性强的元素,并结合多种构造判别图解。

选取样品新鲜的部分,在河北省区域地质调查所矿物分选实验室将全岩粉末样品磨制至200目,随后利用国家地质实验测试中心3080E型荧光光谱仪XRF和等离子质谱仪(ICP-MS)进行全岩主量元素、微量元素和稀土元素的测试分析,其中主量元素测试采用常规的XRF方法分析,微量和稀土元素均采用等离子体质谱仪(ICP-MS)进行分析。具体测试条件和分析步骤可参阅靳新娣和朱和平(2000)的论述。

4.1 主量元素特征

乌拉山-大青山地区代表性变泥质岩石样品的主量元素化学成分和元素比值的分析结果(表 1)显示,岩石明显富Al2O3(15.14%~25.70%,平均为18.11%),铝指数A/CNK为1.26~5.40,属于过铝质岩石。SiO2含量为52.13%~68.66%(平均61.61%),Fe2O3T含量为3.31%~11.37%(平均6.88%)、MgO含量为1.32%~4.67%(平均2.99%)、Na2O含量为1.43%~3.95%(平均2.91%)、K2O的含量为1.51%~5.38%(平均3.08%)。K2O/Na2O 比值为0.45~2.24,SiO2/Al2O3比值变化为2.03~4.54(平均3.43)。其地球化学特征与华北克拉通其它高级变泥质岩石十分相似(卢良兆等,1996)。Mg#=100×MgO/(MgO+FeO)在28~43之间变化。总体来看,上述样品的平均化学成分与上地壳平均值(UCC;Taylor and McLennan, 1995)较为接近,较北美页岩(NASC)的SiO2、CaO和K2O含量略低,而Al2O3、MgO和Na2O含量略高(Gromet et al., 1984)。此外,TiO2、Al2O3、Fe2O3T、MgO与SiO2均显示出明显的负相关关系(图 5),反映随着研究区变泥质岩原岩成熟度的增加,不稳定组分(如岩屑成分和长石)含量逐渐减少(Bhatia, 19831984; Camiré et al., 1993)。K2O、Na2O、CaO与SiO2均无相关性。

表 1 乌拉山-大青山地区变泥质岩石主量元素(wt%)、稀土元素和微量元素(×10-6)含量 Table 1 Major elements(wt%)and trace elements(×10-6)of the metapelitic rocks in the Wulashan-Daqingshan area

图 5 乌拉山-大青山地区变泥质岩石的SiO2与TiO2、Al2O3、Fe2O3T、MgO的相关图解 Fig. 5 Plots of SiO2 vs. TiO2,Al2O3,Fe2O3T and MgO for the metapelitic rocks in the Wulashan-Daqingshan area

研究区典型的孔兹岩系样品在野外多以似层状产出,含有特征变质矿物夕线石和堇青石等,表明其原岩中粘土矿物含量较高。进一步利用A-C-FM图解(图 6,转王仁民等,1987)进行原岩恢复,样品点落在富铝粘土岩和杂砂岩区。Simonen(1953)的尼格里参数(al+fm)-(c+alk)-Si原岩判别图解(图 7a)显示,样品点主要落在泥质沉积岩的区域。Herron(1988)提出的碎屑岩类型地球化学分类图解(图 7b)表明样品的原岩主要为页岩和硬砂岩,以及少量铁页岩。La/Yb-∑REE原岩判别图解(图 7cGromet et al., 1984)也显示样品点落于页岩粘土岩区和砂岩区。La-Th图解(图 7dMcLennan et al., 1990)指示样品的原岩主要为晚太古代沉积岩。

图 6 乌拉山-大青山地区变泥质岩石的A-C-FM原岩恢复图解(转王仁民等,1987) Fig. 6 A-C-FM classification diagram for the metapelitic rocks from the Wulashan-Daqingshan area(secondary source after Wang et al., 1987)

图 7 乌拉山-大青山地区变泥质岩石的地球化学图解
(a)(al+fm)-(c+alk)-Si尼格里参数图解(Simonen,1953);(b)log(Fe2O3/K2O)-log(SiO2/Al2O3)图解(据Herron,1988);(c)La/Yb-∑REE图解(Gromet et al., 1984);(d)La-Th图解(McLennan et al., 1990)
Fig. 7 Classification diagrams of the metapelitic rocks in the Wulashan-Daqingshan area
(a)(al+fm)-(c+alk)-Si(Simonen,1953);(b)log(Fe2O3/K2O)vs. log(SiO2/Al2O3)(Herron,1988);(c)La/Yb vs. ∑REE(Gromet et al., 1984);(d)La-Th(McLennan et al., 1990)
4.2 稀土元素特征

研究区变泥质岩石样品的稀土元素(REE)分析数据列于表 1。结果显示稀土元素总量(∑REE)在187.1×10-6~389.3×10-6之间,具有中等程度的轻重稀土元素分异,其中,轻稀土明显富集,重稀土相对亏损,(La/Yb)N比值变化于8.89~28.5之间,具有负铕异常,δEu(Eu/Eu*)值变化于0.42~0.82之间(表 1图 8a)。样品的稀土元素配分型式,与北美页岩(NASC;Gromet et al., 1984)、太古宙后澳大利亚平均页岩(PAAS;McLennan,1989)和上地壳平均成分(Taylor and McLennan, 1995)相似,表明研究区变泥质岩石成分类似上地壳岩石。负铕异常表明其物源中可能有成熟度较低且年轻的弧物质加入(Taylor and McLennan, 1985)。样品的稀土元素总量与Al2O3、K2O无明显的相关性,表明粘土矿物不是稀土元素主要的赋存矿物,稀土元素可能主要赋存于副矿物中(Gromet et al., 1984; Bhat and Ghosh, 2001)。

图 8 乌拉山-大青山地区变泥质岩石的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized rare earth element patterns(a)and primitive mantle-normalized trace element patterns(b)for the metapelitic rocks in the Wulashan-Daqignshan area(normalization values after Sun and McDonough, 1989)
4.3 微量元素特征

大离子亲石元素(Rb、Cs、Ba和Sr)研究区变泥质岩石中大离子亲石元素Rb的含量为40.6×10-6~171×10-6、Cs含量为0.39×10-6~8.04×10-6、Ba和Sr含量均变化较大,分别为550×10-6~1492×10-6和106×10-6~707×10-6(表 1)。除去样品石榴黑云二长片麻岩(BH23-1)和夕线(堇青)石榴二长片麻岩(BH39-4)的Rb含量较高,其它样品的Rb含量相比北美页岩(125×10-6Gromet et al., 1984)均偏低。此外,除去夕线(堇青)石榴二长片麻岩(BH39-4)的Cs含量较高,其它样品的Cs含量相比北美页岩(5.16×10-6Gromet et al., 1984)亦偏低。Ba和K2O具有较好的正相关性,表明其原岩中富钾的粘土矿物,如伊利石和绢云母等控制了该元素的含量(Nesbitt et al., 1980; Feng and Kerrich, 1990)。

亲镁铁矿物微量元素(Cr、Ni、Co和Sc)Cr、Co、Ni和V为相容元素,具有相似的地球化学性质,在风化沉积过程中常发生分异(Bhatia and Crook, 1986; Feng and Kerrich, 1990)。样品中的Cr(97×10-6~386×10-6)和Ni(37.6×10-6~149×10-6)含量变化较大,Co和Sc的含量分别为11.5×10-6~36.8×10-6和10.6×10-6~27.2×10-6(表 1)。Cr/Ni比值为1.28~6.68,Ni/Co比值为1.54~4.05,Sc/Ni比值为0.18~0.69、Sc/Cr比值为0.05~0.19,变化范围均较大。其中,Cr和Ni之间无相关性,表明两者在风化过程中发生分异。Cr、Ni与MgO的相关性均较明显,而Cr、Ni与Al2O3无相关性,表明Cr和Ni的含量在风化过程中可能受镁铁质矿物的控制。而Sc与Al2O3呈明显正相关性,表明Sc可能是吸附在粘土矿物上发生沉积的。

高场强元素(Zr、Hf、Nb、Ta、Y、Th和U)高场强元素在变泥质岩原岩的风化沉积过程中相对稳定,可以较好地反映源区特征(Winchester and Floyd, 1977; Taylor and McLennan, 1985; Bhatia and Crook, 1986)。样品中的高场强元素Zr(159×10-6~290×10-6)、Hf(4.47×10-6~8.51×10-6)、Nb(6.42×10-6~33.2×10-6)、Ta(0.22×10-6~2.94×10-6)、Y(13.5×10-6~38×10-6)、Th(9.64×10-6~31.6×10-6)、U(1.04×10-6~4.55×10-6)的平均值与上地壳平均值(Taylor and McLennan, 1995)接近。其中Nb、Ta、P和Ti在微量元素蛛网图上显示出明显亏损的特征(图 8b)。此外,Zr与Hf、Nb与Ta之间有很好的相关性,表明这些元素对有相似的地球化学行为,且在风化和沉积过程没有发生分异。Zr、Nb、Y与SiO2、Al2O3无相关性,表明风化、分选和沉积作用对其影响很小,代表了沉积物源区的特征(Bhatia and Crook, 1986)。Th与K2O、Al2O3无明显的相关性,表明粘土矿物并非Th的赋存矿物,而U与K2O有较好的相关性,Zr与Th无相关性。轻稀土元素与Th有较好的相关性,表明独居石可能是Th的赋存矿物。Th和U的相关性较好,Th/U比值为5.84~17.57(平均值为10.06),高于上地壳平均值(3.8;Taylor and McLenann, 1995),表明二者具有相似的地球化学性质。

5 讨论 5.1 源区风化程度

风化作用对乌拉山-大青山地区变泥质岩石原岩中的碎屑矿物含量和元素地球化学组成有重要影响(Nesbitt and Young, 19821984; McLennan,1993; Fedo et al., 1995)。上地壳岩石在化学风化作用下,长石容易发生蚀变并形成伊利石和高岭石等粘土矿物,因而长石中的碱性元素如Ca、Na、K和大离子亲石元素易被带走,最终导致Al2O3和TiO2等元素的比例增加(Nesbitt et al., 1980; McLennan et al., 1993)。因此,可以利用CIA(Chemical Index of Alteration)指数来评价源岩风化程度,它反映了碎屑沉积岩中长石和粘土矿物比例的变化(Nesbitt and Yong, 1982),CIA指数越大,表明源岩的风化程度越高,计算公式为CIA=(Al2O3/(Al2O3+CaO*+Na2O+K2O))×100(采用摩尔数计算),其中CaO*为岩石中硅酸盐组分所含CaO的摩尔数,可以采用P2O5来校正磷酸盐中的CaO,CaO* *=CaO-(P2O5×10/3)(用摩尔数计算)(McLennan,1993; Panahi et al., 2000)。

如校正后的CaO* *的摩尔数小于Na2O的摩尔数,则采用校正的CaO* *作为CaO*的摩尔数;如果校正后的CaO* *的摩尔数大于Na2O的摩尔数,则采用Na2O的摩尔数作为CaO*的摩尔数(Bock et al., 1998)。除样品BH28-2(CIA值为83.25)外,其他样品的CIA值为52.99~69.89(平均值为59.41),基本低于太古宙后澳大利亚平均页岩和北美页岩的CIA值(70和68),反映其源岩经历了中等程度的风化作用(Nesbitt and Young, 1982; Taylor and McLennan, 1985; Fedo et al., 1996)。

Al2O3-(CaO*+Na2O)-K2O(A-CN-K)图解(图 9Fedo et al., 1995)可以反映沉积岩的风化特征,理想的风化趋势近平行于A-CN边,结果表明多数样品的风化程度明显低于平均页岩,表明其风化阶段主要位于斜长石向粘土矿物转变(LaMaskin et al., 2008),并且样品点基本沿A-CN边分布,表明变泥质岩源岩的成岩作用发生之前,风化作用并未造成钾组分的大量流失,基本保持原始沉积环境中的钾含量。

图 9 乌拉山-大青山地区变泥质岩石的Al2O3-(Na2O+CaO*)-K2O图解(据Fedo et al., 1995) Fig. 9 Ternary plot of Al2O3-(Na2O+CaO*)-K2O for the metapelitic rocks in Wulashan-Daqingshan area(after Fedo et al., 1995)
5.2 沉积物成熟度

一般认为SiO2/Al2O3和La/V比值可以有效的判别沉积物的成熟度(Roser and Korsch, 1986)。样品的SiO2/Al2O3(2.03~4.54)和La/V(0.27~1.19)比值均较低,表明变泥质岩原岩的成熟度较低,为近源沉积。Cox et al.(1995)提出成分变化指数(Index of Compositional Variation,缩写为ICV)可以用于指示碎屑岩的成分成熟度,ICV越高,碎屑岩的成分成熟度越低,反映构造背景趋于不稳定。具体的计算公式为ICV=(Fe2O3T+Na2O+K2O+CaO+MgO+MnO+TiO2)/Al2O3(以重量百分比计算)。研究区样品的ICV值为0.77~1.32(平均值为1.04),表明其成熟度较低,可能形成于构造活动区。

5.3 物源区性质

A-CN-K图解除了可以直观地反映源岩风化程度,还可以限定源岩的成分。在没有K交代的情况下,数据点的延长线与钾长石-斜长石连线的交点可以反映未风化的源岩中两种长石的比例,以获得源岩的成分(Fedo et al., 1995)。如图 9所示,样品的源岩主要以花岗质岩石为主(英云闪长岩-花岗闪长岩-花岗岩),为其提供主要的碎屑沉积物。

样品的Al2O3/TiO2为16.48~38.25(平均值为23.91),指示其主要来源于长英质岩石而非铁镁质岩石(Girty et al., 1996; Hayashi et al., 1997)。此外,碎屑岩中的稀土元素、微量元素(如Th、U、Sc和高场强元素)对物质源区也有指示意义(Taylor and McLenann, 1985; Bhatia and Crook, 1986; McLennan et al., 19901995),这些元素在沉积过程中具有弱的活动性且难溶于水,在风化搬运过程中几乎没有变化,可以较好地反映物源区性质(Bhatia and Crook, 1986)。此外,基性岩和长英质源岩的Eu/Eu*、La/Sc和Th/Sc比值不同,可以据此指示沉积岩的物源(Taylor and Mclennan, 1985; McLennan and Taylor, 1991)。除样品BH23-1(Th/Sc比值较高,为2.98)外,其它样品的Th/Sc比值在0.47~1.34之间(平均值为1.01),接近上地壳的Th/Sc值(为1.0),表明源区物质以长英质为主。为进一步揭示乌拉山-大青山变泥质岩石的物源区性质,将样品投入La/Th-Hf源区判别图解(图 10Floyd and Leveridge, 1987),样品的La/Th比值(2.54~5.20)和Hf含量(4.47~8.51)较低,均落入长英质源区附近,靠近上地壳平均成分,说明其源岩物质来自上地壳,以长英质岩石为主,可能有古老沉积物的加入(Floyd and Leveridge, 1987; Gu et al., 2002)。

图 10 乌拉山-大青山地区变泥质岩样品的La/Th-Hf图解(据Floyd and Leveridge, 1987) Fig. 10 La/Th-Hf source rock discrimination diagram for the metapelitic rocks in the Wulashan-Daqingshan area(after Floyd and Leveridge, 1987)
5.4 构造环境分析

如前所述,部分研究者认为孔兹岩带出露的古元古代变泥质岩石原岩形成于(1)稳定大陆边缘环境(金巍等,1991Condie et al., 1992; Liu et al., 1993; Lu and Jin, 1993);(2)形成于活动大陆边缘环境,物源来自2.18~2.00Ga的大陆弧(Dan et al., 2012);(3)形成于大陆裂谷环境,为一伸展的构造背景(董晓杰,2012)。

变泥质岩的原岩形成于不同的构造环境会具有不同的地球化学特征,可利用其地球化学特征判别沉积构造环境(Maynard et al., 1982; Bhatia, 19831984; Taylor and McLennan, 1985; Bhatia and Crook, 1986; Roser and Korsch, 1986)。其中,Roser and Korsch(1986)根据碎屑岩中K2O/Na2O-SiO2关系,提出区分被动大陆边缘(PM)、活动大陆边缘(ACM)、岛弧(ARC)三种构造环境的判别图解。在K2O/Na2O-SiO2图中,样品点主要位于活动大陆边缘区内,少数样品位于岛弧环境区(图 11a)。在Maynard et al.(1982)提出的SiO2/Al2O3-K2O/Na2O双变量图解(图 11b)中,样品点主要落入活动大陆边缘区,部分样品落入演化的岛弧环境区。考虑到K、Na等主量元素的活动性,很多微量元素如稀土元素、Th、Nb、Y、Zr、Sc等具有不活动性,适合于沉积源区和构造环境的判别(Bhatia,1984; Bhatia and Crook, 1986; McLennan et al., 1993)。利用不活动元素La-Th-Sc(图 11cBhitia and Crook, 1986)和Th-Sc-Zr/10(图 11dBhitia and Crook, 1986)判别图解进行验证,结果显示样品点同样多位于活动大陆边缘(ACM)和大陆岛弧(CIA)区域。类似的,前人所报道的孔兹岩带变泥质岩石(石榴黑云片麻岩、夕线堇青石榴片麻岩)样品也主要落于活动大陆边缘(ACM)和大陆岛弧(CIA)区域内(Condie et al., 1992; 卢良兆等,1992李树勋等,1994董晓杰,2012;蔡佳,未发表数据)。综合研究认为研究区变泥质岩石主要形成于有演化岛弧发育的活动大陆边缘环境。

图 11 乌拉山-大青山地区变泥质岩石的构造环境判别图解
(a)K2O/Na2O-SiO2图解(Roser and Korsch, 1986);(b)SiO2/Al2O3-K2O/Na2O(Maynard et al., 1982);(c)La-Th-Sc图解(Bhatia and Crook, 1986);(d)Th-Sc-Zr/10图解(Bhatia and Crook, 1986).PM-被动大陆边缘;ACM-活动大陆边缘;ARC,A1-岛弧;A2-演化岛弧;CIA-大陆岛弧;OIA-大洋岛弧
Fig. 11 Discrimination diagrams of the metapelitic rocks in the Wulashan-Daqingshan area
(a)K2O/Na2O-SiO2(Roser and Korsch, 1986);(b)SiO2/Al2O3-K2O/Na2O(Maynard et al., 1982);(c)La-Th-Sc(Bhatia and Crook, 1986);(d)Th-Sc-Zr/10(Bhatia and Crook, 1986). PM-Passive Continental Margin; ACM-Active Continental Margin; ARC,A1-Island Arc; A2-Evolved Island Arc; CIA-Continental Island Arc; OIA-Oceanic Island Arc

如前所述,前人对孔兹岩带出露的变泥质岩石的变质作用研究普遍得到近等温减压型顺时针P-T演化轨迹(图 1周喜文和耿元生,2009; Yin et al., 2014; Jiao et al., 2013a2015; Cai et al., 20142015; Wang et al., 2011),顺时针P-T轨迹可能与地壳挤压增厚有关,反映碰撞造山过程中,地壳挤压增厚并随后折返至地表的动力学过程(England and Thompson, 1984; Condie et al., 1992; Brown,1993),进一步支持了孔兹岩带的碰撞拼合模式(Zhao et al., 2005),表明华北克拉通西部的阴山陆块和鄂尔多斯陆块间的俯冲-碰撞作用造成陆壳加厚。另外,孔兹岩带高级变泥质岩石和变基性岩的锆石同位素年代学研究结果总结(表 2Wan et al., 200620092013; 吴昌华等,2006Dong et al., 200720132014; 周喜文和耿元生,2009Li et al., 2011; Yin et al., 20092011刘平华等,2013Jiao et al., 2013b2015; 蔡佳等, 20142015Wang et al., 2015; Qiao et al., 2016)以及变泥质岩的继承性碎屑锆石和变质锆石年龄直方图(图 12图 13)综合显示,孔兹岩带高级变泥质岩的继承性碎屑锆石的主要峰值年龄为~2030Ma,并含有~2320Ma和~2430Ma两个次要峰值年龄,表明中元古代物质为其提供主要物质来源,其最大沉积时代应为~2000Ma。Wang et al.(2015)提出处于活动大陆边缘下的中元古代(2.1~2.0Ga)岩浆弧提供了孔兹岩带东缘变泥质岩石的沉积物源。孔兹岩带高级变泥质岩的变质锆石直方图显示~1950Ma,~1880Ma和~1850Ma三个年龄峰值,其中~1950Ma可能代表了北部的阴山陆块和南部鄂尔多斯陆块碰撞拼合的时代(Yin et al., 20092011; 赵国春,2009周喜文和耿元生,2009Zhao et al., 2010; Dong et al., 2013),1920~1880Ma则可能是碰撞后折返的时代,~1850Ma可能代表了进一步折返的时代(Yin et al., 2009; Jiao et al., 2013b)。

表 2 乌拉山-大青山孔兹岩带变质岩石锆石年龄总结 Table 2 Summary of zircon ages of metamorphic rocks inthe Khondalite Belt

图 12 乌拉山-大青山变泥质岩石的继承性碎屑锆石207Pb/206Pb年龄直方图 Fig. 12 Histogram of the 207Pb/206Pb ages of detrital zircons from the metapelitic rocks in the Wulashan-Daqingshan area

图 13 乌拉山-大青山变泥质岩石的变质锆石207Pb/206Pb年龄直方图 Fig. 13 Histogram of the 207Pb/206Pb ages of the metamorphic zircons from the metapelitic rocks in the Wulashan-Daqingshan area

综上表明乌拉山-大青山变泥质岩石形成于有演化岛弧发育的活动大陆边缘环境,中元古代物质(2.1~2.0Ga)为其提供主要沉积物源,随后卷入了~1950Ma华北克拉通西部古老陆块之间的碰撞造山作用,经历了大规模麻粒岩相变质作用,并于1920~1850Ma发生碰撞后折返至地表。

6 结论

对乌拉山-大青山地区古元古代变泥质岩石详细的野外地质观察、岩相学以及岩石地球化学等方面的综合分析研究,得出以下几点认识:

(1) 乌拉山-大青山地区夕线(堇青)石榴二长片麻岩和石榴黑云二长片麻岩富集大离子亲石元素,Zr和Hf含量较低,具有轻稀土元素富集和Eu负异常的特征;

(2) 研究区变泥质岩石的原岩为一套粘土岩或杂砂岩,物源以上地壳的长英质成分为主。稀土配分模式与太古宙后澳大利亚平均页岩和上地壳平均成分类似;

(3) 该变泥质岩石的源岩经历了中等程度的风化作用,沉积于有演化岛弧发育的活动大陆边缘环境。

(4) 乌拉山-大青山变泥质岩石原岩形成于有演化岛弧发育的活动大陆边缘环境,随后卷入了华北克拉通西部古老陆块之间的碰撞造山作用,并经历了麻粒岩相变质作用后折返至地表。

致谢 中国地质科学院地质研究所刘超辉副研究员和北京科技大学的肖玲玲老师在野外提供了很大的帮助;审稿人提出了建设性的修改意见;在此一并表示衷心感谢。

参考文献
[1] Bhat MI and Ghosh SK. 2001. Geochemistry of the 2.51Ga old Rampur Group pelites, western Himalayas: Implications for their provenance and weathering. Precambrian Research, 108(1-2): 1-16
[2] Bhatia MR. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611-627
[3] Bhatia MR. 1984. Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation. Sedimentary Geology, 41(2-4): 249-268
[4] Bhatia MR and Crook KAW. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181-193
[5] Bock B, McLennan SM and Hanson GN. 1998. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 45(4): 635-655
[6] Brown M. 1993. P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society, 150(2): 227-241
[7] Cai J, Liu PH, Liu FL, Liu JH, Wang F and Shi JR. 2013a. Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area, Daqingshan-Wulashan metamorphic complex belt. Acta Petrologica Sinica, 29(2): 437-461 (in Chinese with English abstract)
[8] Cai J, Liu FL, Liu PH, Shi JR and Liu JH. 2013b. Petrogenesis and metamorphic P-T conditions of garnet-spinel-biotite-bearing paragneiss in Danangou area, Daqingshan-Wulashan metamorphic complex belt. Acta Petrologica Sinica, 29(7): 2313-2328 (in Chinese with English abstract)
[9] Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 241: 161-184
[10] Cai J, Liu FL, Liu PH and Shi JR. 2014. Metamorphic P-T conditions and U-Pb dating of the sillimanite-cordierite-garnet paragneisses in Sanchakou, Jining area, Inner Mongolia. Acta Petrologica Sinica, 30(2): 472-490 (in Chinese with English abstract)
[11] Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2015. Silica-undersaturated spinel granulites in the Daqingshan Complex of the Khondalite Belt, North China Craton: Petrology and quantitative P-T-X constraints. Precambrian Research, 266: 119-136
[12] Cai J, Liu FL, Liu PH, Wang F and Shi JR. 2015. Geochronology of the Paleoproterozoic Khondalite rocks from the Wulashan-Daqingshan area, the Khondalite Belt. Acta Petrologica Sinica, 31(10): 3081-3106 (in Chinese with English abstract)
[13] Camiré GE, Lafléche MR and Ludden JN. 1993. Archaean metasedimentary rocks from the northwestern Pontiac Subprovince of the Canadian Shield: Chemical characterization, weathering and modelling of the source areas. Precambrian Research, 62(3): 285-305
[14] Condie KC, Boryta MD, Liu JZ and Qian XL. 1992. The origin of khondalites: Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton. Precambrian Research, 59(3-4): 207-223
[15] Cox R, Lowe DR and Cullers RL. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940
[16] Dan W, Li XH, Guo JH, Liu Y and Wang XC. 2012.Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? Precambrian Research, 222-223: 143-158
[17] Dong CY, Liu DY, Li JJ, Wan YS, Zhou HY, Li CD, Yang YH and Xie LW. 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(21): 2984-2994
[18] Dong CY, Liu DY, Wan YS, Xu ZY, Liu ZH and Yang ZS. 2009. Crustally derived carbonatite from the Daqinshan area: Zircon features and SHRIMP dating. Acta Geologica Sinica, 83(3): 388-398 (in Chinese with English abstract)
[19] Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125
[20] Dong CY, Wan YS, Wilde SA, Xu ZY, Ma MZ, Xie HQ and Liu DY. 2014. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Constraints on craton evolution. Gondwana Research, 25(4): 1535-1553
[21] Dong XJ. 2012. Composition and evolution of the Early Precambrian basement in Daqingshan region, Inner Mongolia. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
[22] England PC and Thompson AB. 1984. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894-928
[23] Fedo CM, Nesbitt HW and Young GM. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924
[24] Fedo CM, Eriksson KA and Krogstad EJ. 1996. Geochemistry of shales from the Archean (-3.0Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60(10): 1751-1763
[25] Feng R and Kerrich R. 1990. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54(4): 1061-1081
[26] Floyd PA and Leveridge BE. 1987. Tectonic environment of the Devonian Gramscatho basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4): 531-542
[27] Fralick PW and Kronberg BI. 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113(1-2): 111-124
[28] Girty GH, Ridge DL, Knaack C, Johnson D and Al-Riyami RK. 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66(1): 107-118
[29] Gromet LP, Haskin LA, Korotev RL and Dymek RF. 1984. The "North American Shale Composite": Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482
[30] Gu XX, Liu JM, Zheng MH, Tang JX and Qi L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence. Journal of Sedimentary Research, 72(3): 393-407
[31] Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93-1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142
[32] Hayashi KI, Fujisawa H, Holland HD and Ohmoto H. 1997. Geochemistry of -1.9Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137
[33] Herron MM. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58(5): 820-829
[34] Jiao SJ, Guo JH, Harley SL and Windley BF. 2013a. New constraints from garnetite on the P-T path of the Khondalite Belt: Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758
[35] Jiao SJ, Guo JH, Harley SL and Peng P. 2013b. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237: 78-100
[36] Jiao SJ, Guo JH, Wang LJ and Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269: 31-57
[37] Jin W. 1989. Geological evolution and metamorphic dynamics of Early Precambrian basement rocks along the northern boundary (central section) of the North China Craton. Ph. D. Dissertation. Changchun: Changchun College of Geology (in Chinese with English summary)
[38] Jin W, Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamophic dynamics. Acta Petrologica Sinica, 7(4): 27-35 (in Chinese with English abstract)
[39] Jin XD and Zhu HP. 2000. Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma-mass spectrometry. Chinese Journal of Analytical Chemistry, 28(5): 563-567 (in Chinese with English abstract)
[40] LaMaskin TA, Dorsey RJ and Vervoort JD. 2008. Tectonic controls on mudrock geochemisry, Mesozoic rocks of Eastern Oregon and Western Idaho, U.S.A.: Implications for Cordilleran tectonics. Journal of Sedimentary Research, 78(12): 765-783
[41] Li JH, Qian XL and Liu SW. 2000. Geochemistry of khondalites from the central portion of North China craton (NCC): Implications for the continental cratonization in the Neoarchean. Science in China (Series D), 43(3): 253-265
[42] Li SX, Xu XC, Liu XS and Sun DY. 1994. Early Precambrian Geology of Wulashan Region, Inner Mongolia. Beijing: Geological Publishing House, 1-78 (in Chinese)
[43] Li XP, Yang ZY, Zhao GC, Grapes R and Guo JH. 2011. Geochronology of khondalite-series rocks of the Jining Complex: Confirmation of depositional age and tectonometamorphic evolution of the North China craton. International Geology Review, 53(10): 1194-1211
[44] Liu FL, Shen QH, Geng YS, Xu XC and Ma R. 1998. Genetic relationship of metamorphic reaction and dehydration-melting: Example from Al-rich gneiss of Khondalite Series on the border of Jin (Shanxi Province)-Inner Mongolia. Science in China (Series D), 41(1): 49-56
[45] Liu FL, Shen QH and Zhao ZR. 2002. Evolution of mineral assemblages of khondalite series in the process of prograde metamorphism, southeastern Inner Mongolia: Evidence from mineral inclusions in zircons. Geological Bulletin of China, 21(2): 75-78 (in Chinese with English abstract)
[46] Liu PH, Liu FL, Cai J, Liu JH, Shi JR and Wang F. 2013. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484 (in Chinese with English abstract)
[47] Liu PH, Liu FL, Liu CH, Liu JH, Wang F, Xiao LL, Cai J and Shi JR. 2014. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246: 334-357
[48] Liu SJ, Tsunogae T, Li WS, Shimizu H, Santosh M, Wan YS and Li JH. 2012. Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos, 148: 54-70
[49] Liu XS, Jin W, Li SX and Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499-510
[50] Liu XS. 1994. Characteristics of basement reworked complex and implication for Daqingshan orogenic belt. Acta Petrologica Sinica, 10(4): 413-426 (in Chinese with English abstract)
[51] Liu XS. 1996. Progressive metamorphic genesis of Archaean granulites in Central Nei Mongol. Acta Petrologica Sinica, 12(2): 287-298 (in Chinese with English abstract)
[52] Lu LZ, Jin SQ, Xu XC and Liu FL. 1992. The Petrogenesis and Ore-bearing Potential of Precambrian Khondalite Series in Southeast Inner Mongolia. Changchun: Jilin Science and Technology Press, 4-121 (in Chinese)
[53] Lu LZ and Jin SQ. 1993. P-T-t paths and tectonic history of an Early Precambrian granulite facies terrane, Jining district, south-east Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 483-498
[54] Lu LZ, Xu XC and Liu FL. 1996. The Early Precambrian Khondalite Series in the North China. Changchun: Changchun Publishing House, 16-118 (in Chinese)
[55] Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY, Liu DY and Guo CL. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827
[56] Maynard JB, Valloni R and Yu HS. 1982. Composition of modern deep-sea sands from arc-related basins. In: Leggett JK (ed.). Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins. Geological Society, London, Special Publications, 10: 551-561
[57] McLennan SM. 1989. Rare earth elements in sedimentary rocks; Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200
[58] McLennan SM, Taylor SR, McCulloch MT and Maynard JB. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54(7): 2015-2050
[59] McLennan SM and Taylor SR. 1991. Sedimentary rocks and crustal evolution revisited: Tectonic setting and secular trends. The Journal of Geology, 99(1): 1-21
[60] McLennan SM. 1993. Weathering and global denudation. The Journal of Geology, 101(2): 295-303
[61] McLennan SM, Hemming S, McDaniel DK and Hanson GN. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson MJ and Basu A (eds.). Processes Controlling the Composition of Clastic Sediments. Boulder, Colorado: Geological Society of America Special Paper, 284: 21-40
[62] McLennan SM, Hemming SR, Taylor SR and Eriksson KA. 1995. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochimica et Cosmochimica Acta, 59(6): 1153-1177
[63] Nesbitt HW, Markovics G and Price RC. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666
[64] Nesbitt HW and Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717
[65] Nesbitt HW and Young GM. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534
[66] Panahi A, Young GM and Rainbird RH. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochimica et Cosmochimica Acta, 64(13): 2199-2220
[67] Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659
[68] Peng P, Guo JH, Windley BF and Li XH. 2011. Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction. Precambrian Research, 187(1-2): 165-180
[69] Qiao HZ, Yin CQ, Li QL, He XL, Qian JH and Li WJ. 2016. Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 276: 1-13
[70] Rollinson HR. 1993. Using Geochemical Data: Evalution, Presentation, Interpretation. Essex, England: Longman, 1-352
[71] Roser BP and Korsch RJ. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5): 635-650
[72] Rudnick RL, McLennan SM and Taylor SR. 1985. Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochimica et Cosmochimica Acta, 49(7): 1645-1655
[73] Santosh M, Tsunogae T, Li JH and Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263-285
[74] Santosh M, Wilde SA and Li JH. 2007b. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196
[75] Santosh M, Sajeev K, Li JH, Liu SJ and Itaya T. 2009. Counterclockwise exhumation of a hot orogen: The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos, 110(1-4): 140-152
[76] Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 70-106
[77] Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study. Precambrian Research, 227: 29-54
[78] Simonen A. 1953. Stratigraphy and sedimentation of the Svecofennidic, Early Archean supracrustal rocks in southwestern Finland. Bulletin of the Geological Society of Finland, 160: 1-64
[79] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345
[80] Taylor SR and Mclennan SM. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford, UK: Blackwell Scientific Publications, 1-312
[81] Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265
[82] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271
[83] Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. In: Cawood PA and Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 323: 73-97
[84] Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Cu H. 2013. Episodic Paleoproterozoic (-2.45, -1.95 and -1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93
[85] Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of khondalites from the Jining complex, North China craton. International Geology Review, 53(2): 212-229
[86] Wang LJ, Guo JH, Peng P, Liu F and Windley BF. 2015. Lithological units at the boundary zone between the Jining and Huai'an complexes (central-northern margin of the North China Craton): A Paleoproterozoic tectonic mélange? Lithos, 227: 205-224
[87] Wang RM, He GP, Chen ZZ, Zheng SY and Geng YS. 1987. Graphical Discriminance of the Protolith of Metamorphic Rocks. Beijing: Geological Publishing House (in Chinese)
[88] Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187
[89] Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
[90] Wu CH, Sun M, Li HM, Zhao GC and Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton: Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica, 22(11): 2639-2654 (in Chinese with English abstract)
[91] Xia XP, Sun M, Zhao GC and Luo Y. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199-212
[92] Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JP and Luo Y. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581-593
[93] Yin CQ, Zhao GC, Sun M, Xia XP, Wei CJ, Zhou XW and Leung WH. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78-94
[94] Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38
[95] Yin CQ, Zhao GC, Wei CJ, Sun M, Guo JH and Zhou XW. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172-186
[96] Zhai MG and Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25
[97] Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53
[98] Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of global 2.1-1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162
[99] Zhao GC, Sun M and Wilde SA. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23-38
[100] Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202
[101] Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract)
[102] Zhao GC, Wilde SA. Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276
[103] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CY. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 56-76
[104] Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240
[105] Zhong CT, Deng JF, Wan YS, Mao DB and Li HM. 2007. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: Geochemical characteristics and zircon SHRIMP dating of S-type granitoids. Geochimica, 36(6): 585-600 (in Chinese with English abstract)
[106] Zhou XW and Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843-1852 (in Chinese with English abstract)
[107] Zhou XW, Zhao GC and Geng YS. 2010. Helanshan high pressure pelitic granulite: Petrologic evidence for collision event in the western block of the North China Craton. Acta Petrologica Sinica, 26(7): 2113-2121 (in Chinese with English abstract)
[108] 蔡佳, 刘平华, 刘福来, 刘建辉, 王舫, 施建荣. 2013a. 大青山-乌拉山变质杂岩带石拐地区富铝片麻岩成因矿物学与变质演化. 岩石学报, 29(2): 437-461
[109] 蔡佳, 刘福来, 刘平华, 施建荣, 刘建辉. 2013b. 大青山-乌拉山变质杂岩带大南沟地区含榴尖晶黑云钾长片麻岩成因及其形成的P-T条件. 岩石学报, 29(7): 2313-2328
[110] 蔡佳, 刘福来, 刘平华, 施建荣. 2014. 内蒙古集宁三岔口地区夕线堇青石榴二长片麻岩变质作用及年代学研究. 岩石学报, 30(2): 472-490
[111] 蔡佳, 刘福来, 刘平华, 王舫, 施建荣. 2015. 内蒙古孔兹岩带乌拉山-大青山地区古元古代孔兹岩系年代学研究. 岩石学报, 31(10): 3081-3106
[112] 董春艳, 刘敦一, 万渝生, 徐仲元, 刘正宏, 杨振升. 2009. 大青山地区古元古代壳源碳酸岩: 锆石特征及SHRIMP定年. 地质学报, 83(3): 388-398
[113] 董晓杰. 2012. 内蒙古大青山地区早前寒武纪基底组成与演化. 博士学位论文. 长春: 吉林大学
[114] 金巍. 1989. 华北陆台北缘(中段)早前寒武纪地质演化及其变质动力学研究. 博士学位论文. 长春: 长春地质学院
[115] 金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35
[116] 靳新娣, 朱和平. 2000. 岩石样品中43种元素的高分辨等离子质谱测定. 分析化学, 28(5): 563-567
[117] 李树勋, 徐学纯, 刘喜山, 孙德育. 1994. 内蒙古乌拉山区早前寒武纪地质. 北京: 地质出版社, 1-78
[118] 刘福来, 沈其韩, 赵子然. 2002. 内蒙古东南部孔兹岩系进变质过程矿物组合演化——来自锆石中矿物包裹体的证据. 地质通报, 21(2): 75-78
[119] 刘平华, 刘福来, 蔡佳, 刘建辉, 施建荣, 王舫. 2013. 华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究. 岩石学报, 29(2): 462-484
[120] 刘喜山. 1994. 大青山造山带中基底再造杂岩的特征及其指示意义. 岩石学报, 10(4): 413-426
[121] 刘喜山. 1996. 内蒙古中部太古代麻粒岩递增变质成因. 岩石学报, 12(2): 287-298
[122] 卢良兆, 靳是琴, 徐学纯, 刘福来. 1992. 内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性. 长春: 吉林科学技术出版社, 4-121
[123] 卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社, 16-118
[124] 王仁民, 贺高品, 陈珍珍, 郑松彦, 耿元生. 1987. 变质岩原岩图解判别法. 北京: 地质出版社
[125] 吴昌华, 孙敏, 李惠民, 赵国春, 夏小平. 2006. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄-孔兹岩沉积时限的年代学研究. 岩石学报, 22(11): 2639-2654
[126] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792
[127] 钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 585-600
[128] 周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843-1852
[129] 周喜文, 赵国春, 耿元生. 2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报, 26(7): 2113-2121