岩石学报  2016, Vol. 32 Issue (6): 1901-1913   PDF    
三塘湖盆地晚石炭世火山岩气孔和裂缝填充物特征及其成因研究
南云1, 柳益群1 , 周鼎武2, 周宁超1, 焦鑫1, 周鹏1    
1. 大陆动力学国家重点实验室, 西北大学地质学系, 西安 710069;
2. 山东科技大学地球信息科学与工程学院, 青岛 266510
摘要: 火山岩气孔和裂缝填充物作为热液流体活动的产物,携带着流体沉淀时的物理化学环境信息。本文通过钻井岩芯、岩石薄片观察,结合X射线衍射、电子探针和扫描电镜等测试分析手段,对新疆三塘湖盆地晚石炭世火山岩气孔和裂缝填充物特征及成因进行了深入研究。研究区发育两类气孔填充物:一类气孔填充物的矿物类型多样,包括绿泥石、绿鳞石、片沸石、柱沸石、浊沸石、丝光沸石、方解石、赤铁矿,矿物填充序列为绿泥石/绿鳞石→沸石→方解石,主要赋存于熔岩层上部蚀变较为强烈的灰褐色安山岩中;另一类气孔填充物主要为蒙脱石,局部可见石英,矿物填充序列为蒙脱石→石英,常赋存于熔岩层中下部蚀变较弱的深灰色安山岩中。裂缝填充物分布具明显的分带性,其中由沸石、方解石、绿鳞石填充的脉体主要发育于灰褐色安山岩中,而石英脉仅见于深灰色安山岩中。根据气孔和裂缝填充物的沉淀序列及特定矿物稳定范围,结合岩石蚀变程度,笔者认为灰褐色安山岩火山岩气孔和裂缝填充物为低温碱性流体沉淀的产物,而深灰色安山岩气孔填充物为火山物质水化蚀变的产物,局部受到后期硅质流体的影响。
关键词: 气孔和裂缝填充物     低温碱性流体     火山岩     晚石炭世     三塘湖盆地     新疆    
Characteristics and origin of amygdale and crack fillers in volcanic rock of Late Carboniferous in Santanghu basin, Xinjiang
NAN Yun1, LIU YiQun1 , ZHOU DingWu2, ZHOU NingChao1, JIAO Xin1, ZHOU Peng1    
1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China;
2. Geoinformation Science & Engineering College, Shandong University of Science and Technology, Qingdao 266510, China
Abstract: As products of hydrothermal activity, amygdale and crack fillers in volcanic rock carried the information of physical and chemical condition during fluid precipitation. We studied on the characteristics and origin of amygdale and crack fillers in volcanic rock of Late Carboniferous in Santanghu basin, Xinjiang, by means of the observation of drill cores and thin sections, and the analysis of X-ray diffraction, electron microprobe and scanning electron microscopy. There were two kinds of amygdale fillers in the study area. One of the amygdale fillers were filled by many kinds of minerals, such as chlorite, celadonite, heulandite, epistilbite, laumontitization, mordenite, calcite and hematite. Filling sequence of minerals was chlorite/celadonite→zeolite→calcite. These fillers mainly occured in the strongly altered taupe andesite in the upper layer of lava. The other amygdale fillers were filled by smectite and quartz, which mainly distributed in weakly altered dark-gray andesite in the middle and lower layer of lava. Distribution of crack fillers was obviously zonation. Veins filled with zeolite, calcite, and celadonite mainly existed in taupe andesite, while quartz veins only distributed in dark-gray andesite. According to filling sequence of amygdale and crack fillers and stable range of typical minerals and combining with the degree of rock alteration, amygdale and crack fillers of taupe andesite were the precipitated products of low-temperature alkaline fluid, while amygdale fillers of dark-gray andesite were the hydration and alteration products of volcanic material and filled by siliceous fluid locally.
Key words: Amygdale and crack fillers     Low-temperature alkaline fluid     Volcanic rock     Late Carboniferous     Santanghu basin     Xinjiang    

随着油气勘探技术的发展,火山岩油气藏作为重要的资源勘探领域,引起了诸多学者的关注(邹才能等,2008;杜金虎等,2010;刘嘉麒等,2010;汤艳杰等,2010)。火山岩油气藏储集空间类型多样,成岩作用复杂(谢庆宾等,2002;杨金龙等,2004;高有峰等,2007;孙玉凯等,2009;柳成志等, 20102011;王盛鹏等,2012;罗静兰等,2013)。充填作用作为重要的火山岩成岩作用之一,主要表现为火山岩气孔和裂缝为次生矿物所充填,即形成气孔和裂缝填充物。火山岩气孔和裂缝填充物是古流体活动的产物,是流体中过饱和离子在合适的物化条件下沉淀形成的。笔者通过对三塘湖盆地火山岩气孔和裂缝填充物进行详细的矿物学研究,探讨古流体性质及适宜流体沉淀的物化条件,从而为火山岩气孔和裂缝填充物的成因机理提供理论依据。

1 地质背景和测试方法

三塘湖盆地地处新疆东北部,北邻阿尔泰构造带,南靠北天山构造带,西接准噶尔盆地,向北东方向延伸进入蒙古境内,是上叠于古生代造山带褶皱基底之上的晚古生代-中新生代叠合改造型陆内沉积盆地(肖序常等,1992;周鼎武等,2006;郝建荣等,2006;陈石等,2009)。三塘湖盆地晚石炭世火山活动极为活跃,发育一套巨厚的以陆相火山岩为主的火山-沉积建造。岩性以中性喷出岩和火山碎屑岩为主,夹基性、酸性喷出岩与细粒暗色沉积岩(陈石等,2009;王君等,2010;柳成志等,2011;李玮等,2012;张冀等,2013)。岩相以溢流相为主,火山沉积相和火山爆发相次之(孙玉凯等,2009;柳成志等, 20102011;司学强等,2012)。

在对三塘湖盆地晚石炭世火山岩气孔和裂缝填充物进行详细的岩芯手标本观察和宏观分类的基础上(取样井位置见图 1),将样品磨制成0.03mm厚的普通薄片后在LV100POL型尼康光学显微镜下进行岩相学观察,选取填充物圈层结构发育的样品磨制电子探针薄片,经喷碳粉后在型号为JXA-8230的电子探针测试仪上进行成分测试。此外,对于含水的沸石族矿物和粘土矿物进行了形貌特征和晶体结构分析,其中矿物形貌特征观察在FEI Quanta 400 FEG型扫描电镜及能谱测试仪上进行,晶体结构分析在D/max-2500型X衍射仪上进行。对碳酸盐填充物采用不同径宽的钻头进行原位微区取样,在MAT252质谱仪上进行无机碳、氧同位素测试。

图 1 新疆北部地区构造简图(据柳益群等,2013修改)
红色实心点代表采样点位置
Fig. 1 The simplified tectonic map of northern Xinjiang(modified after Liu et al., 2013)
The sampling sites are indicated by red filled circles
2 火山岩气孔和裂缝填充物特征

研究区气孔和裂缝填充物主要发育于两类安山岩中,一类安山岩呈灰褐色,杏仁构造发育,蚀变较为强烈,位于熔岩层上部;另一类安山岩呈灰黑色,蚀变较弱,分布于熔岩层中下部。镜下观察,安山岩均具斑状结构,斑晶含量小于10%,主要为自形-半自形的中性斜长石,镁铁质矿物较少,基质具玻基交织结构,斜长石微晶呈定向-半定向排列,其间充填玻璃质。蚀变较为强烈的灰褐色安山岩中镁铁质矿物发生了绿泥石、绿鳞石化。

笔者根据产状将研究区的填充物划分为气孔填充物和裂缝填充物,考虑到气孔填充物的发育程度、矿物组合、圈层结构及其赋存岩石均具明显的差异,将其细分为两类,一类气孔填充物极其发育,矿物类型多样,圈层结构发育,主要赋存于蚀变较为强烈的灰褐色安山岩中,简称为灰褐色安山岩杏仁体(图 2a);另一类气孔填充物较为发育,矿物类型单一,圈层结构不发育,主要赋存于蚀变较弱的深灰色安山岩中,简称为深灰色安山岩杏仁体(图 2b)。

图 2 三塘湖盆地TQ4井岩心柱状图Fig. 2 Core column of TQ4 well in Santanghu basin
2.1 火山岩气孔和裂缝填充物宏观特征

灰褐色安山岩杏仁体形态复杂,呈透镜状、椭球状、云朵状,大小不一,平均宽度为0.5~1cm,大者可达5cm,矿物类型多样,包括绿泥石、绿鳞石、片沸石、柱沸石、浊沸石、丝光沸石、方解石和赤铁矿(表 1),以上矿物多呈同心环状分布构成圈层结构发育的复合杏仁体,包括(由杏仁体边部至中部):1)绿鳞石-片沸石复合杏仁体(图 3ae图 4j);2)绿泥石-片沸石复合杏仁体(图 3bd图 4e);3)绿鳞石-绿泥石复合杏仁体(图 3e图 4il);4)绿泥石-方解石复合杏仁体(图 4p);5)绿鳞石-丝光沸石-片沸石复合杏仁体(图 3c);6)绿泥石-片沸石-浊沸石复合杏仁体(图 4a,b);7)绿泥石-绿鳞石-沸石复合杏仁体(图 3f图 4f);8)绿泥石-绿鳞石-绿泥石-沸石-方解石(填充于沸石解理缝中)复合杏仁体(图 4cd)。此外,可见圈层结构不发育的单成分杏仁体,如赤铁矿杏仁体(图 3cfg)、绿泥石杏仁体(图 3bcg)、绿鳞石杏仁体(图 3cfg图 4k)、沸石杏仁体(图 4o)和具环带结构的方解石杏仁体(图 4q)。

表 1 火山岩气孔和裂缝填充物X衍射数据表Table 1 XRD data sheet of amygdale and crack fillers in volcanic rock

图 3 三塘湖盆地晚石炭世火山岩气孔和裂缝填充物宏观特征
(a)绿鳞石(孔壁)-片沸石(内部)复合杏仁体和绿鳞石-沸石复合脉;(b)绿泥石(孔壁)-片沸石(内部)复合杏仁体、绿泥石杏仁体和绿鳞石-沸石复合脉;(c)绿鳞石(孔壁)-丝光沸石(中部)-片沸石(内部)复合杏仁体、赤铁矿杏仁体、绿泥石杏仁体和绿鳞石杏仁体;(d)绿泥石(孔壁)-片沸石(内部)复合杏仁体;(e)绿鳞石(孔壁)-绿泥石(内部)复合杏仁体和绿鳞石(孔壁)-片沸石(内部)复合杏仁体;(f)绿泥石(孔壁)-绿鳞石(中部)-浊沸石/柱沸石(内部)复合杏仁体、赤铁矿杏仁体和绿鳞石杏仁体;(g)赤铁矿杏仁体、绿泥石杏仁体、绿鳞石杏仁体和绿鳞石-沸石复合脉;(h)蒙脱石-石英复合杏仁体;(i)蒙脱石杏仁体;(j)方解石脉;(k)丝光沸石-石英复合脉;(l)淡红沸石脉切穿蒙脱石杏仁体;(m)片沸石脉.矿物代号:Cel-绿鳞石;Chl-绿泥石;Hul-片沸石;Mdn-丝光沸石;Epi-柱沸石;Lmt-浊沸石;Hem-赤铁矿;Cal-方解石;Qtz-石英;Sme-蒙脱石;Ste-淡红沸石
Fig. 3 Macroscopic scale features of amygdale and crack fillers in volcanic rock of Late Carboniferous in Santanghu basin
(a)celadonite(outer wall)-heulandite(centre)multiple amygdala and celadonite-zeolite multiple vein;(b)chlorite(outer wall)-heulandite(centre)multiple amygdala,chlorite amygdala and celadonite-zeolite multiple vein;(c)celadonite(outer wall)-mordenite(middle)-heulandites(center)multiple amygdala,hematite amygdala,chlorite amygdala and celadonite amygdala;(d)chlorite(outer wall)-heulandite(centre)multiple amygdala;(e)celadonite(outer wall)-chlorite(centre)multiple amygdala and celadonite(outer wall)-heulandite(centre)multiple amygdala;(f)chlorite(outer wall)-celadonite(middle)-laumontite/epistilbite(center)multiple amygdala,hematite amygdala,celadonite amygdala;(g)hematite amygdala,chlorite amygdala,celadonite amygdala and celadonite-zeolite multiple vein;(h)smectite-quartz multiple amygdala;(i)smectite amygdala;(j)calcite vein;(k)mordenite-quartz multiple vein;(l)Stellerite veins cut smectite amygdala;(m)heulandite vein. Mineral abbreviations: Cel-celadonite; Chl-chlorite; Hul-heulandite; Mdn-mordenite; Epi-epistilbite; Lmt-laumontite; Hem-hematite; Cal-calcite; Qtz-quartz; Sme-smectite; Ste-stellerite

图 4 三塘湖盆地晚石炭世火山岩气孔和裂缝填充物微观特征
(a、b)自孔壁到内部依次为绿泥石-片沸石-浊沸石;(c、d)自杏仁体边部到内部为皮壳状绿泥石-绿鳞石-放射状绿泥石-片沸石-方解石;(e)绿泥石-片沸石复合杏仁体;(f)绿泥石-绿鳞石-片沸石复合杏仁体;(g)细纤条状绿泥石;(h)微弯曲叶片状绿泥石;(i)自杏仁体边部到内部为绿鳞石-绿泥石;(j)绿鳞石-片沸石复合杏仁体;(k)蠕虫状绿鳞石集合体;(l)绿鳞石-绿泥石复合杏仁体;(m)片沸石脉;(n)具一组正交节理的浊沸石;(o)片沸石杏仁体;(p)方解石胶结绿泥石膜;(q)具环带结构的方解石杏仁体;(r、t)蒙脱石杏仁体;(s)蒙脱石边部的串珠状石英;(u)具环带结构的石英杏仁体;(v)杏仁体全为硅质,由外向内为微晶石英-亮晶石英.(a、c、j、k、m、p、r)为单偏光显微镜图像,(b、d、e、o、q、t、u、v)为正交偏光显微镜图像,(f、i、l、n)为电子探针背散射图像,(g、h、s)为扫描电镜图像.图中点号代表电子探针数据点位置
Fig. 4 Microscopic scale features of amygdale and crack fillers in volcanic rock of Late Carboniferous in Santanghu basin
(a, b)minerals of multiple amygdala show as chlorite-heulandite-laumontite from exterior to interior;(c, d)minerals of multiple amygdala show as crusted chlorite-celadonite-radial chlorite-heulandite-calcite from outer wall to central;(e)chlorite-heulandite multiple amygdala;(f)chlorite-celadonite-heulandite multiple amygdala;(g)fine fibered chlorite;(h)slightly curved bladed chlorite;(i)chlorite was located in the center and rimmed by celadonite;(j)celadonite-zeolite multiple amygdala;(k)wormlike celadonite aggregate;(l)celadonite-chlorite multiple amygdala;(m)heulandite vein;(n)laumontite with a set of orthogonal cleavage;(o)heulandite amygdala;(p)chlorite was cemented by calcite;(q)calcite amygdala with layer structure;(r, t)smectite and quartz(lining);(s)beaded quartz;(u)quartz amygdala with layer structure;(v)components of amygdala were chalcedony-quartz from outside to inside.(a, c, j, k, m, p, r)are polarizing microscope images;(b, d, e, o, q, t, u, v)are orthogonal polarized light microscope images;(f, i, l, n)are backscattered electron microprobe images;(g, h, s)are SEM images. The dot marks in the figure show the position of electron probe data

深灰色安山岩杏仁体呈椭球-球状,大小约为0.3~0.5cm,填充矿物类型较为单一。石英脉发育的层段,可见蒙脱石-石英复合杏仁体(图 3h)和石英杏仁体(图 4uv),而石英脉不发育的层段仅见蒙脱石杏仁体(图 3i图 4rt)。

按照脉体中填充的矿物类型将其分为单成分脉和复成分脉,单成分脉包括沸石脉(图 3ml图 4m)、方解石脉(图 3j)和石英脉,复成分脉(自脉体边部至中部)包括绿鳞石-沸石复合脉(图 3abg)、沸石-方解石复合脉、丝光沸石-石英复合脉(图 3k)和淡红沸石-石英复合脉。其中,沸石脉、方解石脉、沸石-方解石复合脉和绿鳞石-沸石复合脉主要产于灰褐色安山岩中,而局部发育的石英脉、丝光沸石-石英复合脉和淡红沸石-石英复合脉常发育于深灰色安山岩中。此外,可见橘红色的淡红沸石脉切穿蒙脱石杏仁体(图 3l),网状丝光沸石-石英复合脉将围岩分割成角砾状(图 3k)。

2.2 火山岩气孔和裂缝填充物矿物学特征 2.2.1 绿泥石

手标本观察,绿泥石呈浅绿色(图 3d)或墨绿色(图 3b)。镜下观察,浅-深褐色(图 4ac),细鳞片状集合体,具墨水蓝的异常干涉色(图 4de)。扫描电镜观察,杏仁体边部的绿泥石为细纤条状(图 4g),中部为微弯曲叶片状(图 4h)。

虽然电子探针分析无法直接获得矿物中Fe2+含量,但绿泥石中Fe2+通常占全铁量的95%以上(Deer et al., 1962;Foster,1962),因此,可以将全铁量视为Fe2+含量。根据电子探针数据计算出绿泥石中六次配位阳离子Fe2+和全部阳离子R2+(Fe2++Mg2++Mn2+)值(表 2),并将其投点到划分绿泥石变种的Si-Fe2+/R2+图解上,发现研究区杏仁体中发育的绿泥石落于辉绿泥石区(图 5)。据艾永富和刘国平(1998)研究认为辉绿泥石作为一种富镁的绿泥石,其主要形成于相对碱性的环境,指示研究区绿泥石为碱性流体沉淀的产物。

表 2 绿泥石成分(wt%)及主要参数计算结果Table 2 Components analyzed by electronic probe(wt%)and calculating result of main parameters of chlorite

图 5 绿泥石Si-Fe2+/R2+分类图(底图据Foster,1962)Fig. 5 Si-Fe2+/R2+ diagram for Chlorite(base map after Foster,1962)

Cathelineau and Nieva(1985)在研究墨西哥的Los Azufres地热体系时发现绿泥石成分中Al的含量与温度有关;Walshe(1986)利用热力学推导建立了一套利用绿泥石电子探针数据计算绿泥石端元组分含量、氧逸度、三价铁含量以及绿泥石形成温度的公式;之后,Kranidiotis and MacLean(1987)提出了Al、Fe、Mg和温度之间关系式:T(℃)=106×Al1+18,其中Al1=Al+0.7×Fe/(Fe+Mg)。Jowett(1991)对上述公式做了修正:Al1=Al+0.1[Fe/(Fe+Mg)],T(℃)=319Al1-69。计算结果显示研究区绿泥石形成温度较低(<200℃),介于110~170℃之间,主要集中在140~170℃(图 6),这与赵明等(2007)提出的辉绿泥石出现于温度较低的环境中的认识一致,且具有杏仁体边部形成温度高于中部的特点(表 2),表明随着温度逐渐降低,流体自气孔壁向内部依次沉淀。

图 6 绿泥石温度频率分布图Fig. 6 Frequency histogram of chlorite temperature
2.2.2 绿鳞石

绿鳞石是一种云母类二八面体层状硅酸盐矿物,理想的化学式为K(Mg,Fe2+)(Fe3+,Al)Si4O10(OH)2(常丽华等,2006)。由于绿鳞石晶体结构中出现了Fe2+和Fe3+对八面体位置上的Al替换造成(Baker et al., 2012)其手标本观察呈鲜明的蓝绿色-暗绿色(图 3afg)。镜下观察,呈深绿色,主要以纤维状或蠕虫状集合体产出(图 4jk)。虽然绿鳞石与海绿石的晶体结构极为相似,但绿鳞石结构式中四面体Si在3.70~4.0之间,八面体层中的MgO分子数在0.65左右(张乃娴和曲永新,1993),研究区绿鳞石四面体Si和八面体层中MgO分别介于3.62~4.15和0.62~0.78之间(表 3)。

表 3 绿鳞石电子探针成分分析数据(wt%)Table 3 Data of celadonite components analyzed by electronic probe(wt%)

通常认为绿鳞石是中基性火山岩在海洋环境中发生蚀变的产物,海水可以提供K和其他离子(Velde,1978;Odin et al., 1988),但陆相环境也可以发育绿鳞石(Baker,1997;Baker et al., 2012),其形成所必需的阳离子可能来自于火山玻璃或镁铁质矿物的蚀变(Baker et al., 2012)。研究区晚石炭世为陆内裂谷环境(杜金虎等,2010),绿鳞石主要以气孔和裂缝填充物形式产出,推测该区绿鳞石为火山物质蚀变形成的富含Mg、Fe、K的流体发生沉淀的产物;绿鳞石常形成于氧化环境中(Wise and Eugster, 1964;Andrews,1980;谭罗荣,1986),研究区发育与绿鳞石共生的赤铁矿也可以说明这一点。

2.2.3 沸石

沸石族矿物光性特征相近,均为低负突起,干涉色为一级灰到一级灰白,平行消光或消光角极小,偏光显微镜下较难区分。本次研究主要采用X射线衍射和扫描电镜对沸石族矿物进行详细鉴定,此外,还利用电子探针成分数据计算Si/Al比值进行识别(茅祖兴,1981)。研究区脉体中主要发育片沸石,其次为丝光沸石和淡红沸石,而杏仁体中主要为片沸石和浊沸石,少量柱沸石(表 4)和丝光沸石。本区发育的片沸石为淡红色和无色(图 3a-egm),浊沸石为灰白色(3f),发育一组正交解理(图 4n);柱沸石无色透明(图 3f),丝光沸石为淡褐黄色(图 3ck),而淡红沸石为橙红色(图 3l)。沸石为富含Na、K、Ca的架状硅酸盐矿物,其成因主要为富含Ca、Na、K的热液流体沉淀的产物(Chipera and Apps, 2001;Weisenberger and Selbekk, 2008;Chipera et al., 2008;Weisenberger and Spürgin,2009)。

表 4 沸石电子探针成分分析数据(wt%)Table 4 Data of zeolite components analyzed by electronic probe(wt%)
2.2.4 方解石

方解石手标本观察为无色透明,镜下特征为显著的闪突起,菱形解理,高级白干涉色。研究区发育具环带结构的方解石杏仁体,其边部由纤维状集合体构成,内部由粗大的粒状方解石组成(图 4q),由杏仁体边部至内部结晶程度变好。根据絮凝动力学原理,结晶速率总是先大后小。杏仁体边部晶体细小,说明结晶速率快(晶体成核作用强),而内部结晶速率慢(成核质点稀疏),导致晶体颗粒粗大(刘万洙等,2010),可知气孔的填充过程是自孔壁向内部依次进行。方解石电子探针成分显示(表 5),Fe、Mn元素略微富集,可能受周围火山物质影响。方解石碳氧稳定同位素测试结果显示,δ13C介于-6.17‰~-6.59‰(V-PDB),δ18O介于7.30‰~10.61‰(V-SMOW),与岩浆碳酸岩的碳氧同位素值接近(δ13C≈-8‰~-4‰,δ18O≈6‰~10‰,Taylor et al., 1967;δ13C≈-8‰~-2‰,δ18O≈6.5‰~9.5‰,Deines,1989),指示其为深部来源。

表 5 方解石和石英电子探针成分分析数据(wt%)Table 5 Data of calcite and quartz components analyzed by electronic probe(wt%)
2.2.5 蒙脱石

蒙脱石手标本观察为灰黑色(图 3hi),显微镜下,呈褐黄色(图 4r),纤维状集合体,干涉色为二级蓝绿(图 4t)。X衍射谱图上,钙质蒙脱石的面网间距d(001)介于14.2~15.2,而钠质蒙脱石为12.5~14.6(Abdioğlu and Arslan, 2005;Karakaya et al., 2011),因此,研究区发育钙质蒙脱石(图 7)。扫描电镜观察发现,蒙脱石边部发育有薄层呈串珠状排列的石英颗粒(图 4s)。研究区蒙脱石仅出现在深灰色安山岩中,且与该层段发育的脉体成分差异大(主要为石英脉),推测其为火山玻璃水化蚀变形成的过饱和碱性溶液沉淀的产物(Pichler et al., 1999;Ogihara,2000;Driefand and Schiffman, 2004;Chipera et al., 2008),反应方程式为:火山玻璃+水介质→蒙脱石+二氧化硅+金属离子溶液,而蒙脱石边部的微晶石英则为反应过程中产生的SiO2沉淀。

图 7 蒙脱石X衍射谱图Fig. 7 XRD spectrogram of smectite
2.2.6 石英

手标本观察,石英杏仁体的环带结构是由无色透明和乳白色两种圈层间互发育造成的(图 3h)。单偏条件下,无色透明的圈层干净明亮,乳白色圈层不太洁净,正交条件下,均为纤维状集合体(图 4u)。电子探针分析显示乳白色圈层与无色透明圈层相比,前者的Al2O3的含量较高(表 5),可能是流体的沉淀过程中温度或PH发生变化导致圈层中微量元素的差异(Lehmann et al., 2009;Jourdan et al., 2009;陈小丹等,2011)。有的气孔全部为硅质所填充,由气孔边部到内部依次为微晶石英-亮晶石英(图 4v),该结晶序列与具环带结构的方解石杏仁体的成因相似,均反映气孔中矿物的充填由孔壁到内部依次进行。

3 火山岩气孔和裂缝填充物的填充序列

灰褐色安山岩中主要发育由绿泥石、绿鳞石、沸石和方解石构成的复合杏仁体,单成分杏仁体少见。复合杏仁体边部至内部矿物组合包括:绿鳞石/绿泥石-片沸石、绿鳞石-绿泥石、绿泥石-方解石、绿鳞石-丝光沸石-片沸石、绿泥石-片沸石-浊沸石、绿泥石-绿鳞石-浊沸石/柱沸石/片沸石、绿泥石-绿鳞石-绿泥石-片沸石-方解石。由于矿物的结晶过程是自气孔壁到中部依次进行的,推断绿泥石和绿鳞石结晶早于沸石和方解石,其矿物填充序列为绿泥石/绿鳞石→沸石→方解石。因此,当气孔为绿泥石和绿鳞石完全填充时,则不发育沸石和方解石,这与实际观察到的绿泥石和绿鳞石单成分杏仁体中,沸石和方解石少见的现象一致;而当气孔未被绿泥石、绿鳞石完全填充时,后期的沸石、方解石可以在剩余空间内结晶充填,如方解石充填沸石的解理缝,方解石胶结绿泥石膜。相比于灰褐色安山岩,深灰色安山岩中主要发育蒙脱石杏仁体,仅在石英脉发育的层段,见蒙脱石-石英复合杏仁体,说明杏仁体中的石英与石英脉体发育程度密切相关,推测石英形成晚于蒙脱石,矿物填充序列为蒙脱石→石英。

研究区主要发育单成分脉,复成分脉较少,由脉体截切杏仁体可知,脉体形成晚于杏仁体。深灰色安山岩中发育的复成分脉体边部为淡红沸石或丝光沸石,中部为石英,推测沸石形成早于石英,矿物填充序列为淡红沸石/丝光沸石→石英;而灰褐色安山岩中发育的沸石-绿鳞石复成分脉中,绿鳞石为沸石脉体所截切,呈断续状分布,说明绿鳞石早于沸石,矿物填充序列为绿鳞石→沸石,其与灰褐色安山岩杏仁体中矿物的填充序列一致。

4 火山岩气孔和裂缝填充物成因探讨

关于杏仁体的成因争议较大,主要包括以下两种观点:一种观点认为携带着从围岩中淋滤的矿物离子的岩浆期后热液,通过微裂隙灌入由挥发分逸出形成的尚未完全封闭的气孔,并在其中发生沉淀(Andrews,1980;Gilg et al., 2003;张汉成等,2003;梁浩等,2011;Triana et al., 2012);另一种观点则认为是岩浆冷凝过程中,封闭在气孔中的挥发分或同期热液引发火山物质发生水合反应形成填充物(张术根等,2006;高有峰等,2007;刘万洙等,2010)。这两种观点的主要争议在于气孔的封闭性,研究区发育这两种成因的杏仁体。

研究区灰褐色安山岩杏仁体极为发育,且气孔填充物与该层段发育的裂缝填充物矿物类型一致,推测由于灰褐色安山岩位于熔岩层上部,挥发分逸出产生了大量的气孔和微裂隙,孔渗性较好,有利于期后热液流体反复淋滤围岩,形成了富含多种离子的热液流体,并在适宜条件下发生沉淀,因此,笔者认为灰褐色安山岩气孔和裂缝填充物为岩浆期后热液流体沉淀的产物。而灰黑色安山岩的杏仁体相对较少,矿物类型较为单一,与该层段的裂缝填充物矿物类型差异大,可能是由于其位于熔岩层中下部,气孔和裂缝少,孔渗性差,主要是封闭在气孔中的尚未逸出的挥发分或火山活动同期热液导致火山物质水化蚀变产生次生矿物充填。研究区脉体分布的差异性,可能是淋滤强度不同造成的,流体在孔渗性较好的岩石中反应萃取能力强,形成富含多种离子的热液沉淀产物;而在孔渗性较差的岩石中,形成矿物类型单一的硅质脉体。

火山岩气孔和裂缝填充物的形成过程可以划分为两个阶段,首先是形成富含多种离子的热液,其次热液在合适的物理化学环境中发生沉淀。

4.1 热液形成

据现代火山观察,岩浆中含有大量挥发分,其主要成分为H2O,其次为CO2、SO2、CO、N2、HCl、HF等。在地表浅处,压力降低,挥发分大量呈气相析出,在较低温度下,以热液的形式保存(邱家骧,1983),这些挥发分可以被封闭在孔渗性差的熔岩气孔中,也可以在气孔和裂缝较发育的岩石中聚集形成岩浆期后热液,同时,下渗的地表水也可作为岩浆期后热液的另一个重要来源(Pe-Piper,2000;Alt and Teagle, 2003)。封闭在气孔中的挥发分或岩浆期后热液与围岩长期相互作用,导致具有较高自由能的火山玻璃、低温下不稳定的镁铁质矿物等发生蚀变,从而形成富含Fe2+、Mg2+、K+、Na+、Ca2+、Cl-、HCO3-等多种离子的溶液。在合适物理化学条件下,富含多种离子的热液可以在封闭气孔中直接沉淀或沿裂隙灌入未完全封闭的气孔中发生沉淀。

4.2 流体沉淀

流体的沉淀受温度、酸碱度、离子浓度和氧逸度等影响(古阶祥,1980),因此,可以根据气孔和裂缝填充物的特征来推测流体古流体性质及其沉淀时的物理化学环境。研究区灰褐色安山岩中气孔和裂缝填充物主要为绿泥石、绿鳞石、沸石、方解石、赤铁矿,而绿泥石和绿鳞石稳定的pH范围为8~10(谭罗荣,1986;黄善炳,1987;刘万洙等,2010),沸石的沉淀pH多为7~10(Mariner and Surdam, 1970),方解石为pH>9(刘万洙等,2010),说明该套填充物为碱性流体活动的产物;结合矿物填充序列,即绿泥石/绿鳞石→沸石→方解石,推测流体沉淀过程主要受温度影响,随着流体温度降低,结晶温度较高的富含镁、铁的绿泥石/绿鳞石首先沉淀出来,其次为结晶温度较低的富含Na、K、Ca的沸石族矿物,随着铝硅酸盐矿物的沉淀,溶液中CO2的浓度增加,其与Ca结合形成方解石;基于灰褐色安山岩中绿泥石成分计算的最高温度为166.55℃(<200℃)及大量沸石族矿物的稳定温度范围(<150℃),说明该区主要发育低温热液流体活动;由于绿鳞石、赤铁矿主要发育于弱氧化-氧化环境中,推测流体氧逸度较高。而深灰色安山岩杏仁体中发育的蒙脱石为火山物质水化蚀变产生的富含的流体在封闭气孔中发生沉淀形成的,根据蒙脱石在pH>7的环境下稳定(刘兆莹和王祖福,1989)可知沉淀环境亦为碱性。综合上述分析,认为灰褐色安山岩中的杏仁体和脉体为低温碱性流体沉淀的产物,而深灰色安山岩杏仁体为火山玻璃水化蚀变的产物,局部受硅质流体活动影响。

致谢 中国地质调查局西安地质调查中心的刘亚非、侯弘老师,西北大学张宏法老师在样品测试期间给予了无私的帮助与指导;评审专家对本文的认真审阅及提出的宝贵而中肯意见;在此一并表示感谢。

参考文献
[1] Abdioğlu E and Arslan M. 2005. Mineralogy, geochemistry and genesis of bentonites of the Ordu area, NE Turkey. Clay Minerals, 40(1): 131-151
[2] Ai YF and Liu GP. 1998. The study of chlorite at Dajing deposit in Inner Mongolia of China. Acta Scientiarum Naturalium Universitatis Pekinensis, 34(1): 97-105 (in Chinese with English abstract)
[3] Alt JC and Teagle DAH. 2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: Mineral, chemical, and isotopic evidence from ODP Site 801. Chemical Geology, 201(3-4): 191-211
[4] Andrews AJ. 1980. Saponite and celadonite in layer 2 basalts, DSDP Leg 37. Contributions to Mineralogy and Petrology, 73(4): 323-340
[5] Baker JC. 1997. Green ferric clay in non-marine sandstones of the Rewan Group, southern Bowen Basin, eastern Australia. Clay Minerals, 32(4): 499-506
[6] Baker LL, Rember WC, Sprenke KF and Strawn DG. 2012. Celadonite in continental flood basalts of the Columbia River Basalt Group. American Mineralogist, 97(8-9): 1284-1290
[7] Cathelineau M and Nieva D. 1985. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contribution to Mineralogy Petrology, 91(3): 235-244
[8] Chang LH, Chen MY, Jin W, Li SC and Yu JJ. 2006. Identification Manual of Transparent Mineral in Thin Section. Beijing: Geological Publishing House, 1-138 (in Chinese)
[9] Chen S, Zhang YY and Guo ZJ. 2009. Zircon SHRIMP U-Pb dating and its implications of post-collisional volcanic rocks in Santanghu basin, Xinjiang. Acta Petrologica Sinica, 25(3): 527-538 (in Chinese with English abstract)
[10] Chen XD, Chen ZY, Cheng YB, Ye HS and Wang H. 2011. Distribution and application of trace elements in hydrothermal quartz: Understanding and prospecting. Geological Review, 57(5): 707-717 (in Chinese with English abstract)
[11] Chipera SJ and Apps JA. 2001. Geochemical stability of natural zeolites. Reviews in Mineralogy and Geochemistry, 45(1): 117-161
[12] Chipera SJ, Goff F, Goff CJ and Fittipaldo M. 2008. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25Ma lake of Valles caldera, New Mexico, USA. Journal of Volcanology and Geothermal Research, 178(2): 317-330
[13] Deer WA, Howie RA and Zussman J. 1962. Rock-Forming Minerals. V.3 Sheet Silicates. New York: John Wiley & Sons Canada, Limited, 1-270
[14] Deines P. 1989. Stable isotope variations in carbonatites. In: Bell K (ed.). Carbonatites: Genesis and Evolution. London: Unwin Hyman, 301-359
[15] Driefand A and Schiffman P. 2004. Very low-temperature alteration of sideromelane in hyaloclastites and hyalotuffs from Kilauea and Mauna Kea volcanoes: Implications for the mechanism of palagonite formation. Clays and Clay Minerals, 52(5): 622-634
[16] Du JH, Kuang LC, Liang SJ, Zou CN, Zhang GY, Hou LS, He QH and Tang Y. 2010. Volcanic Hydrocarbon Exploration of Carboniferous Formation in Northern Xinjiang. Beijing: Petroleum Industry Press, 76-159 (in Chinese)
[17] Foster MD. 1962. Interpretation of the composition and a classification of the chlorites. US Geological Survey Professional Paper, 414-A: 1-33
[18] French WJ, Hassan MD and Westcott JE. 1977. A celadonite-vermiculite series from the volcanic rocks of the Ochils, Stirlingshire. Mineralogical Magazine, 41(320): 481-485
[19] Gao YF, Liu WZ, Ji XY, Bai XF, Wang PJ, Huang YL, Zheng CQ and Min FQ. 2007. Diagenesis types and features of volcanic rocks and its impact on porosity and permeability in Yingcheng Formation, Songliao Basin. Journal of Jilin University (Earth Science Edition), 37(6): 1251-1258 (in Chinese with English abstract)
[20] Gilg HA, Morteani G, Kostitsyn Y, Preinfalk C, Gatter I and Strieder AJ. 2003. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): A fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Mineralium Deposita, 38(8): 1009-1025
[21] Gu JX. 1980. Zeolite. Beijing: China Building Industry Press, 72-76 (in Chinese)
[22] Hao JR, Zhou DW, Liu YQ and Xing XJ. 2006. Geochemistry and tectonic settings of Permian volcanic rocks in Santanghu basin, Xinjiang. Acta Petrologica Sinica, 22(1): 189-198 (in Chinese with English abstract)
[23] Huang SB. 1987. The celadonite in the sandstones, South Songliao Basin. Journal of Mineralogy and Petrology, 8(2): 16-20, 118 (in Chinese with English abstract)
[24] Jourdan AL, Vennemann TW, Mullis J, Ramseyer K and Spiers CJ. 2009. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21(1): 219-231
[25] Jowett EC. 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. Toronto, Canada: GAC/MAC/SEG Joint Annual Meeting, 27-29
[26] Karakaya MÇ, Karakaya N and Küpeli Ş. 2011. Mineralogical and geochemical properties of the Na- and Ca-bentonites of Ordu (NE Turkey). Clays and Clay Minerals, 59(1): 75-94
[27] Kranidiotis P and MacLean WH. 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82(7): 1898-1911
[28] Lehmann K, Berger A, Götte T, Ramseyer K and Wiedenbeck M. 2009. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineralogical Magazine, 73(4): 633-643
[29] Li W, Liu YQ, Dong YP, Zhou XH, Liu XM, Li H, Fan TT, Zhou DW, Xu XY and Chen XL. 2013. The geochemical characteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in northeastern Xinjiang, China. Science China (Earth Sciences), 56(8): 1318-1333
[30] Liang H, Luo QS, Kong HW, Fan TG, Ren ZY and Guo KC. 2011. Formation and distribution of zeolite in volcanic rock and its effect on reserviors in Santanghu basin. Acta Sedimentologica Sinica, 29(3): 537-543 (in Chinese with English abstract)
[31] Liu CZ, Sun YK, Yu HS, Yang WM and Lei HY. 2010. Study on characteristic of carboniferous volcanic oil and gas reservoirs and alkaline diagenesis in the Santanghu basin, NW China. Journal of Jilin University (Earth Science Edition), 40(6): 1221-1231 (in Chinese with English abstract)
[32] Liu CZ, Liu H, Wang XF, He RZ, Wang X and Yu HS. 2011. Characteristics of volcanic reservoirs of Harjiawu formation in Malang sag in Santanghu basin. Xinjiang Petroleum Geology, 32(6): 589-593 (in Chinese with English abstract)
[33] Liu JQ, Meng FC, Cui Y and Zhang YT. 2010. Discussion on the formation mechanism of volcanic oil and gas reservoirs. Acta Petrologica Sinica, 26(1): 1-13 (in Chinese with English abstract)
[34] Liu WZ, Huang YL, Pang YM and Wang PJ. 2010. Diagenesis of intermediate and mafic volcanic rocks of Yingcheng Formation (K1y) in the Songliao Basin: Sequential crystallization, amygdule falling and reservoir effect. Acta Petrologica Sinica, 26(1): 158-164 (in Chinese with English abstract)
[35] Liu YQ, Zhou DW, Jiao X, Nan Y, Yang W, Li H and Zhou XH. 2013. A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites, Santanghu area, Xinjiang, NW China. Acta Sedimentologica Sinica, 31(5): 773-781 (in Chinese with English abstract)
[36] Liu ZY and Wang ZF. 1989. On the characteristics and origin of montmorillonite from Xinguanyin, Rongxian. Journal of Chengdu College of Geology, 16(3): 36-43 (in Chinese with English abstract)
[37] Luo JL, Shao HM, Yang YF, Li M and Luo CY. 2013. Temporal and spatial evolution of burial-hydrocarbon filling-diagenetic process of deep volcanic reservoir in Songliao Basin. Earth Science Frontiers, 20(5): 175-187 (in Chinese with English abstract)
[38] Mao ZX. 1981. Study of some clinoptilolite, heulandites and mordenites in China. Scientia Geologica Sinica, (1): 21-29 (in Chinese with English abstract)
[39] Mariner RH and Surdam RC. 1970. Alkalinity and formation of zeolites in saline alkaline lakes. Science, 170(3961): 977-980
[40] Odin GS, Desprairies A, Fullagar PD, Bellon H, Decarreau A, Frohlich F and Zelvelder M. 1988. Nature and geological significance of celadonite. In: Chilingarian GV (eds.). Developments in Sedimentology. Amsterdam: Elsevier, 337-398
[41] Ogihara S. 2000. Composition of clinoptilolite formed from volcanic glass during burial diagenesis. Clays and Clay Minerals, 48(1): 106-110
[42] Pe-Piper G. 2000. Mode of occurrence, chemical variation and genesis of mordenite and associated zeolites from the morden area, Nova Scotia, Canada. The Canadian Mineralogist, 38(5): 1215-1232
[43] Pichler T, Ridley WI and Nelson E. 1999. Low-temperature alteration of dredged volcanics from the Southern Chile Ridge: Additional information about early stages of seafloor weathering. Marine Geology, 159(1-4): 155-177
[44] Qiu JX. 1983. Igneous Petrology. Beijing: Geological Publishing House, 1-7 (in Chinese)
[45] Si XQ, Wang X, Chen W, Yang ZL, Sang TY and Wen CJ. 2012. Division of volcanic cycles and stages of the Haerjiawu Formation in Malang depression, Santanghu basin. Geological Science and Technology Information, 31(6): 74-79 (in Chinese with English abstract)
[46] Sun YK, Luo QS, Zhang KA, Ren ZY and Shi JX. 2009. Lithologic and lithofacies features of volcanics and their control on reservoir capability in Niudong oilfield of Santanghu basin. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 31(3): 57-62 (in Chinese with English abstract)
[47] Tan LR. 1986. A mineralogical study of celadonite from Tongjiezi, Sichuan. Acta Mineralogical Sinica, 6(2): 127-131, 194 (in Chinese with English abstract)
[48] Tang YJ, Chen FK and Peng P. 2010. Characteristics of volcanic rocks in Chinese basins and their relationship with oil-gas reservoir forming process. Acta Petrologica Sinica, 26(1): 185-194 (in Chinese with English abstract)
[49] Taylor HP Jr, Frechen J and Degens ET. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimca et Cosmochimca Acta, 31(3): 407-430
[50] Triana RJM, Herrera RJF, Ríos RCA, Castellanos AOM, Henao MJA, Williams CD and Roberts CL. 2012. Natural zeolites filling amygdales and veins in basalts from the British Tertiary Igneous Province on the Isle of Skye, Scotland. Earth Sciences Research Journal, 16(1): 41-53
[51] Velde B. 1978. Infrared spectra of synthetic micas in the series muscovite-MgAl celadonite. American Mineralogist, 63(3-4): 343-349
[52] Walshe JL. 1986. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Economic Geology, 81(3): 681-703
[53] Wang J, Zhu RK, Guo HL, Li WK, Mao ZG and Wang ZY. 2010. Weathered crust volcanic reservoir: A case study on Malang depression, Carboniferous, Santanghu basin, NW China. Acta Petrologica Sinica, 26(1): 217-226 (in Chinese with English abstract)
[54] Wang SP, Lin T, Sun P, Liang H, Wang DL and Gou HG. 2012. Influences of diagenetic effects on volcanic rock reservoirs under two different sedimentary environments. Petroleum Geology & Experiment, 34(2): 145-152 (in Chinese with English abstract)
[55] Weisenberger T and Selbekk RS. 2008. Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland. International Journal of Earth Sciences, 98(5): 985-999
[56] Weisenberger T and Spürgin S. 2009. Zeolites in alkaline rocks of the Kaiserstuhl volcanic complex, SW Germany: New microprobe investigation and the relationship of zeolite mineralogy to the host rock. Geologica Belgica, 12(1-2): 75-91
[57] Wise WS and Eugster HP. 1964. Celadonite: Synthesis thermal stability and occurrence. American Mineralogist, 49(7-8): 1031-1083
[58] Xiao XC, Tang YQ, Feng YM, Zhu BQ, Li JY and Zhao M. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1-124 (in Chinese)
[59] Xie QB, Han DX, Zhu XM and Zhu YX. 2002. Reservoir space feature and evolution of the volcanic rocks in the Santanghu basin. Petroleum Exploration and Development, 29(1): 84-86, 111 (in Chinese with English abstract)
[60] Xu DK. 1977. Mineral Chemical Formula Calculation Method. Beijing: Geological Publishing House, 28-42 (in Chinese)
[61] Yang JL, Luo JL, He FQ, Yu RL and Zhai XX. 2004. Permian volcanic reservoirs in the Tahe region. Petroleum Exploration and Development, 31(4): 44-47 (in Chinese with English abstract)
[62] Zhang HC, Xiao RG, An GY, Zhang L, Hou WR and Gao L. 2003. Amygdales in the volcanic series of the Xiong'er Group on the southern margin of the North China plate: Evidence of hydrothermal mineralization. Geological Bulletin of China, 22(5): 356-363 (in Chinese with English abstract)
[63] Zhang J, Xu F, Ma YZ and Yang Y. 2013. Tectonic environment and age discrimination of Haljiawu Formation volcanic rock in Huangtushan-Keziletage area in Santanghu basin. Xinjiang Geology, 31(2): 147-151 (in Chinese with English abstract)
[64] Zhang NX and Qu YX. 1993. Study on celadonite from sedimentary intercalation in Emeishan Basalt at lower reach of Daduhe River, Sichuan Province. Scientia Geologica Sinica, 28(4): 383-389 (in Chinese with English abstract)
[65] Zhang SG, Ding J, Liu XH, Wang HP and Xu HF. 2006. Mineralogical characteristics and genesis of mordenite in Mesozoic volcanic rocks from Jinyun County, Zhejiang. Acta Mineralogica Sinica, 26(2): 159-164 (in Chinese with English abstract)
[66] Zhao M, Chen XM, Ji JF, Zhang Z and Zhang Y. 2007. Evolution of chlorite composition in the Paleogene prototype basin of Jiyang depression, Shandong, China, and its implication for paleogeothermal gradient. Science in China (Series D), 50(11): 1645-1654
[67] Zhou DW, Liu YQ, Xing XJ, Hao JR, Dong YP and Ouyang ZJ. 2006. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang. Science in China (Series D), 49(6): 584-596
[68] Zou CN, Zhao WZ, Jia CZ, Zhu RK, Zhang GY, Zhao X and Yuan XJ. 2008. Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China. Petroleum Exploration and Development, 35(3): 257-271 (in Chinese with English abstract)
[69] 艾永富, 刘国平. 1998. 内蒙大井矿床的绿泥石研究. 北京大学学报(自然科学版), 34(1): 97-105
[70] 常丽华, 陈曼云, 金巍, 李世超, 于介江. 2006. 透明矿物薄片鉴定手册. 北京: 地质出版社, 1-138
[71] 陈石, 张元元, 郭召杰. 2009. 新疆三塘湖盆地后碰撞火山岩的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 25(3): 527-538
[72] 陈小丹,陈振宇,程彦博,叶会寿,汪欢. 2011. 热液石英中微量元素特征及应用: 认识与进展. 地质论评, 57(5): 707-717
[73] 杜金虎, 匡立春, 梁世君, 邹才能, 张光亚, 候连华, 何清海, 唐勇. 2010. 新疆北部石炭系火山岩油气勘探. 北京: 石油工业出版社, 76-159
[74] 高有峰, 刘万洙, 纪学雁, 白雪峰, 王璞珺, 黄玉龙, 郑常青, 闵飞琼. 2007. 松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响. 吉林大学学报(地球科学版), 37(6): 1251-1258
[75] 古阶祥. 1980. 沸石. 北京: 中国建筑工业出版社, 72-76
[76] 郝建荣, 周鼎武, 柳益群, 邢秀娟. 2006. 新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析. 岩石学报, 22(1): 189-198
[77] 黄善炳. 1987. 松辽盆地南部砂岩中的绿鳞石. 矿物岩石, 8(2): 16-20, 118
[78] 李玮, 柳益群, 董云鹏, 周小虎, 柳小明, 李红, 樊婷婷, 周鼎武, 徐学义, 陈隽璐. 2012. 新疆三塘湖地区石炭纪火山岩年代学、地球化学及其大地构造意义. 中国科学(地球科学), 42(11): 1716-1728
[79] 梁浩, 罗权生, 孔宏伟, 范谭广, 任忠跃, 郭克诚. 2011. 三塘湖盆地火山岩中沸石的成因及其储层意义. 沉积学报, 29(3): 537-543
[80] 柳成志, 孙玉凯, 于海山, 杨文敏, 雷海艳. 2010. 三塘湖盆地石炭系火山岩油气储层特征及碱性成岩作用. 吉林大学学报(地球科学版), 40(6): 1221-1231
[81] 柳成志, 刘红, 王翔飞, 何仁忠, 王昕, 于海山. 2011. 马朗凹陷哈尔加乌组火山岩储集层特征. 新疆石油地质, 32(6): 589-593
[82] 刘嘉麒, 孟凡超, 崔岩, 张玉涛. 2010. 试论火山岩油气藏成藏机理. 岩石学报, 26(1): 1-13
[83] 刘万洙, 黄玉龙, 庞彦明, 王璞珺. 2010. 松辽盆地营城组中基性火山岩成岩作用: 矿物晶出序列、杏仁体充填和储层效应. 岩石学报, 26(1): 158-164
[84] 柳益群, 周鼎武, 焦鑫, 南云, 杨晚, 李红, 周小虎. 2013. 一类新型沉积岩: 地幔热液喷积岩——以中国新疆三塘湖地区为例. 沉积学报, 31(5): 773-781
[85] 刘兆莹, 王祖福. 1989. 荣县新观音蒙脱石特征及其成因初讨. 成都地质学院学报, 16(3): 36-43
[86] 罗静兰, 邵红梅, 杨艳芳, 李杪, 罗春燕. 2013. 松辽盆地深层火山岩储层的埋藏-烃类充注-成岩时空演化过程. 地学前缘, 20(5): 175-187
[87] 茅祖兴. 1981. 我国的一些斜发沸石、片沸石和丝光沸石的研究. 地质科学, (1): 21-29
[88] 邱家骧. 1983. 岩浆岩岩石学. 北京: 地质出版社, 1-7
[89] 司学强, 王鑫, 陈薇, 杨志力, 桑廷义, 文川江. 2012. 三塘湖盆地马朗凹陷哈尔加乌组火山岩旋回与期次划分. 地质科技情报, 31(6): 74-79
[90] 孙玉凯,罗权生,张克安,任忠跃,石家雄. 2009. 三塘湖盆地牛东油田火山岩岩性岩相特征及其对储集性能的控制作用.石油天然气学报(江汉石油学院学报), 31(3): 57-62
[91] 谭罗荣. 1986. 四川铜街子绿鳞石研究. 矿物学报, 6(2): 127-131, 194
[92] 汤艳杰, 陈福坤, 彭澎. 2010. 中国盆地火山岩特性及其与油气成藏作用的联系. 岩石学报, 26(1): 185-194
[93] 王君, 朱如凯, 郭宏莉, 李文科, 毛治国, 王志勇. 2010. 火山岩风化壳储层发育模式-以三塘湖盆地马朗凹陷石炭系火山岩为例. 岩石学报, 26(1): 217-226
[94] 王盛鹏, 林潼, 孙平, 梁浩, 王东良, 苟红光. 2012. 两种不同沉积环境下火山岩储层成岩作用研究. 石油实验地质, 34(2): 145-152
[95] 肖序常, 汤耀庆, 冯益民, 朱宝清, 李锦轶, 赵民. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社, 1-124
[96] 谢庆宾, 韩德馨, 朱筱敏, 朱毅秀. 2002. 三塘湖盆地火成岩储集空间类型及特征. 石油勘探与开发, 29(1): 84-86, 111
[97] 徐登科. 1977. 矿物化学式计算方法. 北京: 地质出版社, 28-42
[98] 杨金龙, 罗静兰, 何发歧, 俞任连, 翟晓先. 2004. 塔河地区二叠系火山岩储集层特征. 石油勘探与开发, 31(4): 44-47
[99] 张汉成, 肖荣阁, 安国英, 张龙, 侯万荣, 高亮. 2003. 华北板块南缘熊耳群火山岩系中的杏仁体——热水成矿作用的证据. 地质通报, 22(5): 356-363
[100] 张冀, 许凡, 马玉周, 杨屹. 2013. 三塘湖盆地黄土山-克孜勒塔格地区哈尔加乌组火山岩构造环境及时代判别. 新疆地质, 31(2): 147-151
[101] 张乃娴, 曲永新. 1993. 四川省大渡河下游峨眉山玄武岩夹层中绿鳞石的研究. 地质科学, 28(4): 383-389
[102] 张术根, 丁俊, 刘小胡, 王海平, 徐宏峰. 2006. 浙江缙云中生代火山岩丝光沸石矿物学特征及其成因浅析. 矿物学报, 26(2): 159-164
[103] 赵明, 陈小明, 季峻峰, 张哲, 张耘. 2007. 济阳坳陷古近系原型盆地中绿泥石的成分演化特征及其盆地古地温梯度. 中国科学(D辑), 37(9): 1141-1149
[104] 周鼎武, 柳益群, 邢秀娟, 郝建荣, 董云鹏, 欧阳征健. 2006. 新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学(D辑), 36(2): 143-153
[105] 邹才能, 赵文智, 贾承造, 朱如凯, 张光亚, 赵霞, 袁选俊. 2008. 中国沉积盆地火山岩油气藏形成与分布. 石油勘探与开发, 35(3): 257-271