岩石学报  2016, Vol. 32 Issue (6): 1851-1876   PDF    
洋底高原及其对地球系统意义研究综述
陆鹿, 严立龙, 李秋环, 曾璐, 金鑫, 张玉修, 侯泉林, 张开均     
中国科学院大学地球科学学院, 北京 100049
摘要: 洋底高原是洋壳的重要组成部分,是广泛分布在洋底的一种面积广大、以镁铁质-超镁铁质岩石为主并且具有异常厚度洋壳的区域。由于洋底高原分布广泛,加之其形成与地幔柱之间具有十分密切的关系,因此洋底高原是研究地球深部过程的一个重要窗口。本文系统总结了洋底高原的研究成果,主要包括洋底高原的全球分布情况、基本特征(产出规模、形成时限、岩石组合、结构组成、地球化学)、鉴别标志、成因机制、地球动力学意义以及洋底高原对于地球表层系统可能产生的影响。洋底高原的地球动力学意义主要表现在5个方面,即:制约大洋俯冲;引起大洋俯冲带后撤和俯冲极性反转;促进大陆增生,构成古老大陆的重要组成部分;促使洋壳平俯冲及高原隆升;诱导板块构造体制的发生。洋底高原对于地球表层系统的影响主要表现在4个方面,即:促使全球海平面升高;造成全球变暖与"温室效应";引起大洋缺氧与黑色页岩沉积;诱使生物大灭绝与快速更迭。除此之外,本文还简单介绍了西藏中部中特提斯残余洋底高原的基本特征,初步探讨了洋底高原在中特提斯洋发育、班公-怒江缝合带演化以及青藏高原初始隆升中所起到的重要作用。
关键词: 洋底高原     中特提斯     青藏高原    
Oceanic plateau and its significances on the Earth system: A review
LU Lu, YAN LiLong, LI QiuHuan, ZENG Lu, JIN Xin, ZHANG YuXiu, HOU QuanLin, ZHANG KaiJun     
College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: As important portion of oceanic crust, oceanic plateaux are geomorphic and tectonic units with large areas, extreme thicknesses and ultramafic-mafic components. Oceanic plateaux are distributed widely in oceanic plates, especially in Pacific and Indian oceans. Because of the wide distribution and genetic relationship with the mantle plume, ocenic plateaux will provide a significant window on knowledge of the geological processes in the depths of the earth. Based on a careful literature review, this paper firstly gives a comprehensive introduction on oceanic plateaux from the aspects of global distribution, basic characteristics (i.e., output size, formation time, rock composition, structure and geochemistry), genetic mechanism, and main discriminants that can be used to help the identification of oceanic plateaux in the geological record. Then we will analyze and discuss the main geodynamic implications of oceanic plateaux and the potential influences on the earth surface system. The main geodynamic implications of oceanic plateaux mainly involve five aspects, specifically including resisting subduction of oceanic plate, bringing about subduction retreat and flip, plateau accretion and continental growth, creating flat subduction of oceanic plate and continent marginal uplift, and causing the initiation of plate tectonic regime. The influences on the earth surface system largely include four aspects: bringing about global sea-level rise, causing global warming and the greenhouse effect, creating oceanic anoxia and black shale deposits, and inducing mass extinction and rapid alteration. Besides, we will introduce the basic characteristics of Meso-Tethyan oceanic plateau in central Tibet and explore its geodynamical implications for the development of the Meso-Tethys and the Bangong-Nujiang suture as well as the initial elevation of the Tibetan Plateau.
Key words: Oceanic plateaux     Meso-Tethys     Tibetan Plateau    

大火成岩省(LIPs)是近年来国际地学界关注的研究方向,其中最早研究的是位于大陆范围的“大陆溢流玄武岩省”。然而,自1970年以来,随着地球物理探测技术的发展以及在海洋地质中的应用,人们不断发现大洋地壳中也同样存在一些区域,其地壳厚度较大,有的甚至远超出正常洋壳的厚度(平均厚度约为7km;Condie and Abbott, 1999;Mann and Taira, 2004),例如东太平洋的加勒比板块(Donnelly,1973)和西南太平洋的翁通-爪哇海台(Kroenke,1974)。Kroenke(1974)最早将这些分布在洋底之上的面积广大、以镁铁质-超镁铁质岩石为主且具有异常厚度洋壳的区域称为“洋底高原”。与“大陆溢流玄武岩省”具有同等意义(Coffin and Eldholm, 1994),洋底高原构成了所谓“大火成岩省”(LIPS)的重要类型之一(Coffin and Eldholm, 1992),是研究地球深部过程的一个重要窗口。

目前,在国内,“大陆溢流玄武岩省”已得到学者的高度重视,并已开展了大量的研究工作(徐义刚和钟孙霖,2001;张招崇和王福生, 20022004;张招崇等,2003;肖龙等,2007;杨树锋等,2014;等)。然而,相比而言,洋底高原却未能得到国内学者应有的认识,甚至很少学者的研究工作涉及该领域。为了引起国内学者对于洋底高原的重视,本文总结并介绍了近年来国际上有关洋底高原的研究成果,主要包括洋底高原的全球分布情况、基本特征、鉴别标志、成因机制、大陆动力学意义以及洋底高原对于地球表层系统可能产生的影响。除此之外,本文还简单介绍了最近新发现的西藏中部中特提斯残余洋底高原的基本特征,初步探讨了洋底高原在中特提斯洋发育、班公-怒江缝合带演化以及青藏高原初始隆升中所起到的重要作用。

1 洋底高原的分布

从分布位置来看,洋底高原大体可分为两种。一种是形成时代距今较短,一般在150Ma以内的现代洋底高原,其多数分布在大洋内部或靠近大陆边缘的浅海位置;另一种是形成时代距今较为久远的古老洋底高原,由于后期构造作用的运移而多数分布在大陆内部或大陆边缘位置,是构成一些古老绿岩带的重要组成部分。

现代洋底高原在大洋盆地中的分布见图 1。据统计,目前已发现的大大小小的现代洋底高原数量大约有184个,总面积约占大洋面积的5.11%,主要分布在印度洋和太平洋之中,分别占据两个大洋面积的7%和8%(Harris et al., 2014)。在形成时代方面,这些洋底高原主要集中于中生代的三个时期,即晚侏罗世-白垩纪早期(约145Ma)、白垩纪中期(约122~115Ma)和白垩纪晚期(约100~90Ma)(Kerr,2014)。其中,规模较大并且最具代表性的洋底高原主要包括印度洋中的凯尔盖朗洋底高原(Kerguelen Plateau)、太平洋中的加勒比-哥伦比亚洋底高原(Caribbean-Colombia Plateau)、翁通-爪哇洋底高原(Ontong Java Plateau)以及大西洋中的冰岛洋底高原(Iceland Plateau)等,它们的分布面积均达数百万平方千米之巨,是研究洋底高原的重要典范。

图 1 白垩纪以来世界范围内主要洋底高原的分布(据Mann and Taira, 2004; Bryan and Ernst, 2008; Kerr et al., 2014综合改编)Fig. 1 The distribution of Cretaceous main oceanic plateaux in the whole world(modified after Mann and Taira, 2004; Bryan and Ernst, 2008; Kerr et al., 2014)

古老洋底高原由于后期地质作用的改造,其地质面貌多发生明显改变,与围岩之间的界线也变得十分模糊,因此使得在地质记录中识别古老洋底高原变得十分困难。然而,对于上述现代洋底高原的研究,为识别大陆内部古老洋底高原建立了一系列的鉴别标准。运用这些地质和地球化学方面的识别标志,地质学家在大陆内部的地质记录中找到了许多古老洋底高原的残片,尤其是在一些古老绿岩带中,其产出时代可从太古代延续到晚侏罗世(Abouchami et al., 1990;Richards et al., 1991;Storey et al., 1992;Boher et al., 1992;de Wit et al., 1992;Kusky and Kidd, 1992;Desrochers et al., 1993;Francis et al., 1983;Jones et al., 1993;Kimura et al., 19931994;Puchtel and Zhuravlev, 1993;Herzig et al., 1997;Mihalynuk et al., 1994;Dunphy et al., 1995;Lassiter et al., 1995ab;Stern et al., 1995;Bruguier,1996;Lucas et al., 1996;Peltonen et al., 1996;Skulski and Percival, 1996;Stein and Goldstein, 1996;Fan and Kerrich, 1997;Isozaki,1997;Puchtel et al., 19971998ab;Sinton et al., 1997;Polat et al., 1998;Tomlinson et al., 19981999;Condie and Abbott, 1999;Hollings and Wyman, 1999;Kerr et al., 2000;Kerr,2014;Tatsumi et al., 2000;Polat and Kerrich, 2001;Hoernle et al., 2002;Ichiyama et al., 200820122014;Ganbat et al., 2012;等)。

现今环太平洋海岸带是这种古老洋底高原分布的重要地带,尤其是美洲西海岸位置。例如,在晚侏罗世至早白垩世期间拼贴至北美大陆西部阿拉斯加地区的兰格利亚洋底高原(Wrangellia Oceanic Plateau),其形成时间大致为230~225Ma。在日本也有很多古老洋底高原的遗存,其形成时间从石炭纪跨越至白垩纪(Tatsumi et al., 2000;Ichiyama et al., 200820122014;等)。这些古老洋底高原的发现有力地反驳了Condie and Abbott(1999)的“洋底高原在地质记录中并不常见”的论断,由此说明碰撞-拼贴至大陆之上的洋底高原是一些绿岩带的重要组成部分,其在大陆增生过程中或许曾发挥过重要的作用(Ben-Avraham et al., 1981;Stein and Hofmann, 1994;Abbott and Mooney, 1995;Saunders et al., 1996;White et al., 1999)。

2 洋底高原的基本特征

就目前所掌握的研究资料,大多数洋底高原的基本特征一般较为一致,主要体现在以下几个方面。

2.1 洋底高原的产出规模

洋底高原的面积巨大,通常大于105km2(Saunders et al., 1996;徐斐和周祖翼,2003),例如翁通-爪哇洋底高原的面积约为1.86×106km2,相当于整个阿拉斯加的面积(Kerr et al., 1998)。洋底高原的地壳厚度一般大于10km,甚至大于20~30km(Kerr et al., 2000;Kerr and Mahoney, 2007)(图 2)。例如,加勒比-哥伦比亚洋底高原的地壳厚度约为8~20km,而现代冰岛(Staples et al., 1997)和翁通-爪哇洋底高原(Gladczenko et al., 1997)的地壳厚度均大于30km,接近于正常大陆地壳的厚度。如此大的规模构成了洋底高原的首要特征。另外,由于遭到后期俯冲消减或剥蚀作用的影响,一些古老洋底高原的规模常常遭到缩减,使其存在规模要小于形成时的原始规模(金性春等,1995;徐斐和周祖翼,2003)。因此,可以推测,有些洋底高原在形成之初的规模可能要比现今存在的大得多。

图 2 洋底高原地壳速度结构特征
鄂霍次克和冰岛洋底高原分别据Staples et al., 1997; Bogdanov and Dobretsov, 2002;其余据Mann and Taira, 2004
Fig. 2 The crustal velocity structure of some oceanic plateaux
Data sources: Okhotsk from Staples et al., 1997; Iceland from Bogdanov and Dobretsov, 2002; others from Mann and Taira, 2004
2.2 洋底高原的形成时限特征

与大洋中脊位置洋壳的产生过程不同,洋底高原并不是通过玄武质岩浆长期缓慢连续喷发形成的,而是通过一系列短暂而快速的幕式岩浆喷发作用形成(金性春等,1995;Saunders et al., 1996;徐斐和周祖翼,2003),其整体形成时限通常小于2~3Ma(Courtillot and Renne, 2003)。尽管有的洋底高原的某些部分具有相对复杂的演化历史,但其主体部分还是形成于若干个时间较短却大规模集中喷发的岩浆活动。例如,翁通-爪哇洋底高原的喷出集中在120Ma前后的几个百万年之中(Tarduno et al., 1991;Mahoney et al., 1993ab;Tejada et al., 19962002;Parkinson et al., 2001;Chambers et al., 2004);大部分加勒比洋底高原的组成物质形成于93~89Ma间(Kerr et al., 2003);凯尔盖郎洋底高原中大量岩浆则形成于若干个时限小于5Ma地质事件(Coffin et al., 2002;Duncan,2002)。另外,由于受到特殊构造体制的影响,在太古代时期岩浆喷发事件的频率和规模可能要比白垩纪时期大得多,只是其产物由于后期地质作用的改造而在现今很少保存而已。

2.3 洋底高原的岩石组合特征

对于洋底高原完整的物质组成特征的研究具有重要意义,一方面可以明确限定整个洋底高原喷发事件的时间,搭建起记录着地幔柱高频变化的完整地层剖面,更好地研究与洋底高原有关的地幔柱动力学演化特征,另一方面也可以帮助我们评价现有的一些关于地幔柱理论的正确与否。结合地球物理探测和模拟手段,地质学家曾初步建立了洋底高原的物质组成模型(Farnetani et al., 1996;Gladczenko et al., 1997)。然而,针对已有模型中的一些组成单元在现实洋底高原中是否真实存在,目前仍然需要通过更加详细的实地调查工作加以证实。

整体而言,除了个别洋底高原以外,多数洋底高原的岩石组成基本相似,其主体部分由火成岩组成,在顶面位置常常还会有少量的海相沉积岩。其中,火成岩以镁铁质-超镁铁质岩为主,最主要的是上部的拉斑玄武质熔岩,其次为下部的镁铁质-超镁铁质的堆积岩和侵入体。玄武熔岩多数具有枕状构造,而块状构造的玄武熔岩也经常可见。玄武岩的MgO含量多数<11%,而MgO<3%的玄武岩则很少,例如翁通-爪哇洋底高原和凯尔盖郎洋底高原便是如此。常见的镁铁质-超镁铁质堆积岩和侵入岩包括以橄榄石和辉石为主要矿物的超镁铁质堆积岩、层状构造辉长岩类堆积岩以及块状构造辉长岩(Farnetani et al., 1996;Kerr et al., 1998)。另外,类似于大陆溢流玄武岩省(张招崇和王福生,2002;张招崇等,2003),在一些洋底高原中还发现一些高镁熔岩,如苦橄岩和科马提岩(Echeverría,1980;Storey et al., 1992;Schuth et al., 2004),这些岩石在加勒比-哥伦比亚地区的洋底高原以及增生至美洲大陆之上的古老洋底高原残片中最为常见。例如,在整个加勒比-哥伦比亚地区洋底高原中,高镁熔岩见于南哥伦比亚(Spadea et al., 1989)、库拉索岛、委内瑞拉、尼科亚半岛(哥斯达黎加)及海地地区(Kerr et al., 1997b),其中最为著名的是位于西南哥伦比亚地区高格纳岛(Gorgona Island)之上的具有鬣刺构造的科马提岩(Kerr et al., 1998)。一般认为,以无水苦橄岩和科马提岩为代表的高镁熔岩来源于高温地幔源区(Arndt et al., 1997;Révillon et al., 2000),并靠近地幔柱柱头的中心位置(Campbell,2007),通常形成于地幔柱诱使的喷发作用的早期,代表地幔柱起源的原始岩浆组成特征(Kerr et al., 1996a;Arndt et al., 1997)。因此,洋底高原中高镁岩石的产出对于洋底高原的成因研究具有重要的指示意义。

由于洋底高原厚度较大,表面有时会处于相对较浅或近水面环境,有的甚至会高出海面,如现代冰岛和凯尔盖朗洋底高原(Frey et al., 2000)。因此,一些洋底高原的岩性组合往往会具有相应的浅水标志。例如,枕状玄武岩中常常会包含大量的气孔和杏仁构造,有时还会见到玄武质熔结角砾岩的出现。这些特征明显不同于海平面以下3~4km深处正常大洋底部喷出的玄武岩。在沉积物方面,洋底高原表面除了常见的深水含放射虫硅质岩、远洋沉积细粒砂-泥岩以外,在有些洋底高原中有时还可以见到沉积于碳酸盐补偿深度以上的深水灰岩、浅水灰岩以及礁灰岩等(Tarduno et al., 1985)。在距水面很浅的洋底高原中,由于经常受到海浪作用的影响,原有的一些火山熔岩和沉积岩将会被打碎,并经过一定程度的搬运磨圆之后形成砾岩堆积。在高出海面的洋底高原中,由于风化作用的影响,可以发现一些古风化壳甚至古土壤层。另外,由于喷发作用发生在近水面甚至高出水面的位置,火山喷出作用常常还可以形成层状堆积的火山灰及火山角砾。

另外,Gladczenko et al.(1997)曾通过地球物理探测手段对翁通-爪哇洋底高原的深部物质进行研究,认为存在于地壳深处的高速层可能代表了已发生变质的辉长岩,其变质程度已达到石榴石麻粒岩阶段。Furumoto et al.(1976)Nixon and Coleman(1978)也曾得出类似的认识。然而,由于研究程度的限制,目前尚未在翁通-爪哇等洋底高原中发现过变质辉长岩的存在,并且Gladczenko et al.(1997)的这一论断也与其他学者(Farnetani et al., 1996)的研究成果不相吻合。因此,洋底高原的深处,尤其是靠近莫霍面的位置是否存在已经变质的岩浆岩依然需要进一步探讨。在凯尔盖朗洋底高原中,还发现以石榴石黑云母片麻岩为主的前寒武纪岩石,后经研究证明为冈瓦纳大陆裂解、印度洋形成之初残存于地幔柱中的“大陆碎片”或“循环地壳”(Operto and Charvis, 1996;Frey et al., 2000;Nicolaysen et al., 2001;Weis et al., 2001;Ingle et al., 2002ab)。

2.4 洋底高原的结构组成特征

以翁通-爪哇洋底高原深部结构地球物理勘探结果为基础,Farnetani et al.(1996)最早提出了一个适用于一般洋底高原的结构模型。该结构模型认为,部分熔融作用发生在地幔柱柱头内部70~120km深度范围内(Farnetani and Richards, 1994),形成的苦橄质熔体通过渗流作用或裂隙通道向莫霍面运移,在此过程中,岩浆熔体一直处于液相线以上位置,未发生明显的结晶分异作用。当熔体到达莫霍面附近地壳底部位置后,将发生大规模的分离结晶作用,形成橄榄石-尖晶石堆积岩。该堆积岩体具有不同厚度并且呈透镜体形态,其横向分布范围远小于表层玄武质喷出熔岩的分布范围,对应于地幔柱内部部分熔融作用较强的位置。经过分离结晶作用后的残余熔体继续向上运移并不断向玄武质组分演化。在下地壳位置,熔浆分离结晶形成暗色辉长岩类堆积岩,而在上地壳位置形成的岩石则主要由斜长石构成,其中分布有大量的橄榄辉长岩侵入体。最终残留的玄武质熔浆喷出地表形成大面积分布且厚度较大的玄武质喷出熔岩,其损耗岩浆体积约占初始幔源苦橄质熔体的40%(Farnetani et al., 1996)。

根据对加勒比-哥伦比亚地区洋底高原的研究,Kerr(Kerr et al., 1998;Kerr,2014)建立了更为完善且准确的洋底高原结构模型(图 3)。该结构模型认为,原始洋底高原的下部主体由超镁铁质-镁铁质堆积岩及大规模镁铁质侵入岩基构成,其基底靠近莫霍面的位置为橄榄堆积岩和辉石堆积岩,向上为层状构造堆积辉长岩,再向上为均质辉长岩。洋底高原的上部主体由大规模巨厚熔岩层构成,熔岩层的底部常常以地球化学不均一的科马提岩和苦橄岩为特征,向上则主体为枕状构造玄武岩层,其次为块状构造玄武岩。在熔岩层中还时常分布一些小规模的辉长岩侵入体,其直径约为5~10km,成分类似于下部大规模辉长岩侵入岩基,说明二者之间成因相关,具有统一的岩浆源区。不同于形成于其他构造背景(如洋中脊和弧后盆地)中的蛇绿岩套,洋底高原中缺失由大量分叉岩脉构成的席状岩墙群,代之以存的是大量厚度较大的水平岩席和岩床(Kerr et al., 1996b1997a;Petterson et al., 1997)。Kerr et al.(1997b)曾对这种水平岩席和岩床的成因进行过合理的解释,认为其形成是缘于就位岩浆过量,超出单凭由构造扩展作用产生的容纳空间,从而迫使岩浆在垂向堆积的同时大规模侧向顺层侵入。

图 3 洋底高原结构示意图(据Kerr et al., 1998)Fig. 3 The internal structure of oceanic plateau(modified after Kerr et al., 1998)

另外,地震探测发现,在一些洋底高原中,于地壳底部莫霍面位置存在一异常高速层(Den et al., 1969;Kogan,1981;ten Brink and Brocher, 1987;Watts and ten Brink,1989;Becq et al., 1990;Carass et al., 1995;Driad et al., 1995;Mauffret and Leory, 1997),其P波波速Vp约为7.4~7.9km/s,间于洋壳层3(Vp=6.6~7.0km/s)和地幔(Vp=8.0~8.2km/s)波速值之间。关于这一异常高速层的成因,目前尚存在不同的解释,通常认为可能是上地幔顶部位置的超镁铁质岩,具体为橄榄岩和纯橄榄岩。由于热液流体引起的蛇纹石化的作用,原有的超镁铁质地幔岩的波速值有所降低,从而间于正常地幔岩和洋壳层之间。有的学者认为这一异常高速层为含绿帘石角闪岩和镁铁质石榴石麻粒岩(Carlson et al., 1980),或为形成于扩张中脊下部地壳内大规模岩浆房的堆积岩序列(Mutter and North Atlantic Transect(NAT)Study Group,1985)。根据上述Farnetani et al.(1996)的模型,洋底高原地壳底部异常高速层的形成应与地幔岩浆的作用有关,可能代表了上地幔位置苦橄质岩浆结晶分异与堆积作用的产物,其具体岩石类型则取决于岩浆的物质组成。例如,由在30~20kbar压力条件下形成的地幔熔体结晶分异形成的高速层以超镁铁质岩和暗色辉长岩为主,而在10kbar压力条件下形成的地幔熔体结晶分异形成的高速层则以辉长岩为主(Farnetani et al., 1996)。

2.5 洋底高原的地球化学特征

对于白垩纪时期洋底高原的研究表明,除了个别洋底高原以外,洋底高原中的玄武质熔岩一般具有较为均一的化学组分,主要体现在不相容微量元素(包括稀土元素)和镁的含量方面。洋底高原中玄武熔岩的MgO含量主体以<11%为主,而<3%的玄武岩很少见。MgO的含量变化一般较窄,例如,翁通-爪哇洋底高原中玄武岩的MgO含量局限在6%~8%范围内(Mahoney et al., 1993ab);哥伦比亚地区洋底高原中玄武岩的MgO含量局限在6%~9%范围内(Kerr et al., 1998)。相比而言,高镁熔岩具有相对较高的MgO含量,尤其是在加勒比-哥伦比亚洋底高原,其中发现的一些高镁熔岩的MgO含量可达24%(Kerr et al., 1998)。

在微量元素方面,构成洋底高原的喷出熔岩和侵入岩的相容元素含量整体较低,例如Ni的含量一般小于300×10-6,而Cr的含量则小于1000×10-6。尽管洋底高原的Ni、Cr含量相对较低,但仍高于弧后盆地背景下形成的玄武熔岩的含量,因此是区分洋底高原和弧后盆地玄武熔岩的一项重要标志。洋底高原中多数玄武熔岩的不相容微量元素含量相对均一,并且具有水平的稀土和微量元素配分模式,明显不同于大洋中脊玄武岩(MORB)中轻稀土亏损的配分模式,也明显不同于洋岛玄武岩中轻稀土富集而重稀土亏损的配分模式(表现为高Sm/Yb和La/Yb)。特别的是,在凯尔盖郎洋底高原中,由于地壳物质的混染,其中早期产出的一些玄武熔岩的轻稀土含量明显增高,并且呈现出较大的变化范围(Frey et al., 2002)。对于来自洋底高原的富镁质熔岩而言,例如加勒比洋底高原中发现的苦橄岩,其轻稀土则显示出从相对富集到相对亏损的较大的变化范围(Spadea et al., 1989;Kerr et al., 2003;Kerr,2014)。洋底高原中玄武熔岩的Nb/La比较高,(Nb/La)PM一般大于或等于1.0,在结合其他地质学标志的前提下,这一特征可以作为区别洋底高原和弧后盆地玄武熔岩的重要判别标志。另外,洋底高原玄武熔岩的Nb/Y比一般较高,大于大洋中脊玄武岩(MORB)中的比值。

在放射性同位素方面,未受大陆物质混染的洋底高原的ε(Nd)i一般表现为较高的正值特征,例如来自加勒比洋底高原的玄武熔岩,其ε(Nd)i大体在6.0和9.0之间变化(Kerr,2014)。ε(Hf)i表现出类似于ε(Nd)i的分布特征,普遍显示正值特征,例如在翁通-爪哇和加勒比洋底高原中整体介于10到18之间。与不相容微量元素特征类似,在高镁岩石中,ε(Nd)iε(Hf)i的变化范围也一般较大。另外,在受大陆物质混染的洋底高原中,例如典型的凯尔盖朗洋底高原,由于受到大陆岩石圈的混染作用,ε(Nd)iε(Hf)i表现出较大的变化范围,其中部分岩石的ε(Nd)iε(Hf)i较低,呈负值特征(Ingle et al., 2003)。

3 洋底高原的成因

洋底高原是一类规模巨大而形成时限却非常短暂的“洋底大火成岩省”,这一特征意味着形成洋底高原的岩浆侵入与喷发作用要进行得非常迅速且猛烈。这一过程很难用板块构造理论加以解释。因此,究竟是何种机制造成岩浆在短期内异常快速的侵入-喷发是探讨洋底高原成因的关键。关于洋底高原的形成机制,目前存在多种假说,如裂谷减压熔融(King and Anderson, 1995)、大规模岩石圈拆沉和板片断离(Keskin,2003)以及陨石撞击(Alvarez,2003;Jones,2005;Jones et al., 2005),但广泛接受的解释是地幔柱作用假说。例如,加勒比-哥伦比亚洋底高原的形成就与当时的太平洋加拉帕格斯(Galapagos)地幔柱(约90Ma)有关,其岩石组成代表着地幔柱头作用下的早期猛烈岩浆侵入-喷发作用的产物(Burke,1988;Storey et al., 1991;Hill,1991;Kerr et al., 1996ab)。

一般认为,大规模地幔柱通常起源于核-幔边界或大约660km深处的上下地幔不连续边界层(Campbell,2007),而规模较小的地幔柱则起源于地幔浅部(Pisias and Delaney, 1999)。由于高温、低黏度的地幔热物质在浅部大量堆积,地幔柱在上升到岩石圈底部位置时会形成巨大的球形顶冠,其直径通常比尾随其后的柱状颈干要大得多,因此造成的岩浆-热效应可影响直径达1000km的范围(Griffiths and Campbell, 1990)。在热浮力的驱动下,伴随深源热物质的持续供给,地幔柱以巨大头冠、狭长尾柱的形式逐渐上升,这不仅为浅部岩浆活动提供大量的熔浆,同时也为上覆岩石圈地幔的部分熔融提供所需的热源和降低岩浆熔融温度的挥发组分。

尽管在地幔柱的作用下上覆岩石圈会发生部分熔融作用,但形成洋底高原的熔浆则绝大多数来源于地幔柱本身(Arndt and Christensen, 1992;Farnetani and Richards, 1994)。岩石学模拟实验和地幔二辉橄榄岩熔融实验表明,地幔柱部分熔融作用主要发生在70~120kbar条件下,在此压力条件下形成的原始熔浆多为苦橄质成分,具有较高的镁含量,一般为15%~18%(Farnetani et al., 1996)。这种苦橄质熔浆在热浮力的作用下不断上侵,并在上侵的过程中发生结晶分异作用,形成超镁铁质-镁铁质堆积岩及侵入岩,最终残余的熔浆以玄武质熔岩的形式喷出。在喷发作用的早期,少量的苦橄质原始熔浆可能不经过结晶分异作用就直接喷出,从而在巨厚熔岩层的底部形成一些苦橄质熔岩。之所以苦橄质熔浆在早期会直接喷发是因为在喷发作用早期,岩石圈尚未由于岩浆底侵和喷发-侵入作用而加厚,岩浆房发育尚不成熟,苦橄质熔浆很容易在未经明显结晶分异的情况下快速穿过厚度较薄的岩石圈,从而直接喷发形成苦橄岩和科马提岩。然而在喷发作用的后期,由于岩浆加入使得岩石圈的厚度得以明显加大,其中岩浆房的数量和规模也趋于增加,苦橄质熔浆在运移的过程中很容易被岩浆房捕获并在其中发生明显的岩浆混合和结晶分异作用,从而使得原本成分不均一的苦橄质岩浆最终演化为相对均一的玄武质熔浆。对于加勒比-哥伦比亚地区洋底高原各岩石组成单元的地球化学分析表明,形成洋底高原的各种岩石组成之间具有相对一致的地球化学特征,说明它们之间具有密切的成因联系,具有统一的岩浆源区(Kerr et al., 1998)。

大量地球化学和地球物理证据表明构成洋底高原的地幔源区具有相对较高的温度,这也得到来自岩石学证据的支持。例如,在加勒比洋底高原和一些碰撞拼贴至大陆之上的前寒武纪洋底高原中可以发现一些以无水苦橄岩和科马提岩为代表的高镁岩石,这些无水高镁岩石的存在表明其岩浆源区的温度要远高于周围上地幔的温度(1280~1400℃;Herzberg et al., 2007;McKenzie and Bickle, 1988)。洋底高原内部指示高温物质的存在证实了洋底高原的形成与大规模地幔柱的隆升密切相关,因为如此异常高温的地幔物质通常存在于地幔柱内部,并以地幔柱的形式向浅部运移。在这种地幔柱中,核部位置的温度一般会高出周围上地幔约200℃(McKenzie and Bickle, 1988;Campbell,2007;Herzberg et al., 2007)。这一论点也得到来自其他学者的模拟计算结果的证实(Echeverría,1980;Aitken and Echeverría,1984;Farnetani and Richards, 1994;Kerr et al., 1996b2002;Arndt et al., 1997;Révillon et al., 2000;Herzberg and O'Hara,2002;Chazey Ⅲ and Neal, 2004;Fitton and Godard, 2004;Herzberg,2004;Herzberg and Gazel, 2009;Hastie and Kerr, 2010)。另外,通过对洋底高原与大陆溢流玄武岩省的对比,地质学家发现洋底高原与大陆溢流玄武岩省在岩石组合、结构构造及喷发方式方面都具有明显的相似性。例如,两者的岩性组成均以超美铁质-镁铁质侵入岩、堆积岩以及镁铁质喷出熔岩为主。而且,尽管有些部分的演化历史较为复杂,但大多数洋底高原的岩石组成还是形成于一期或多期时间较短却大规模集中喷发的岩浆活动。这一比较说明,洋底高原与大陆溢流玄武岩省相同,同样系大规模地幔柱活动的结果(Campbell and Griffiths, 1992;Mahoney et al., 1993a;Coffin and Eldholm, 1994;Arndt and Weis, 2002)。

洋底高原的形成是否与大洋内部扩张中脊有关是探讨洋底高原成因的另一个关键性问题。对此可有两种情况(图 4)。其一,大规模地幔柱的隆升位于大洋板块内部的岩石圈之下。当岩石圈厚度较薄时,地幔柱岩浆很容易穿透上覆岩石圈,从而造成大规模岩浆喷发并形成洋底高原。在此情况下形成的洋底高原位于大洋板块内部,而与扩张中脊无关。洋底高原熔岩的扩展以垂直叠加和长距离横向溢流方式为主,大范围内岩浆喷发与侵入作用近于同时,这一特征近似于大陆内部的溢流玄武岩省(White and Mckenzie, 1989)。当岩石圈厚度较大时,地幔柱则不能及时破坏岩石圈,而是在岩石圈之下逐渐孕育发展,以热侵蚀的方式逐渐使岩石圈变薄并最终侵出。其二,大规模地幔柱的隆升位于大洋内部扩张中脊之上或靠近扩张中脊的位置。由于地幔柱可以有效地捕获扩张中脊,因此大洋内部地幔柱的侵出常常会与扩张中脊相互伴生。目前看来,多数洋底高原的形成都发生在扩张中脊之上或其附近的位置,例如现代冰岛(Pálmason,1986)、部分凯尔盖朗洋底高原(Gautier et al., 1990;Mattielli et al., 2002)、加勒比-哥伦比亚洋底高原87~90Ma期间形成的部分(Kerr et al., 1998)、马尼希基洋底高原以及沙茨基洋底高原(Saunders et al., 1996)。凯尔盖朗洋底高原是研究洋底高原形成的难得实例,因为它的整个形成过程经历了从大陆裂谷、裂解大陆边缘到大洋中脊再到大洋板块内部的一系列构造背景(Gautier et al., 1990;Mattielli et al., 2002)。凯尔盖朗洋底高原内部残存的大陆岩石圈很好地证明了其形成早期位于大陆裂谷位置的构造属性(Operto and Charvis, 1996;Frey et al., 2000;Ingle et al., 2002ab;Nicolaysen et al., 2001;Weis et al., 2001;Borissova et al., 2003)。

图 4 洋底高原形成构造背景(据Saunders et al., 1996改编)Fig. 4 The tectonic setting of oceanic plateau formation(modified after Saunders et al., 1996)

扩张中脊的扩张速率与岩浆喷发量之间的关系决定着洋底高原产出的基本形态。在正常大洋中脊位置,由扩张中脊溢出的玄武质熔浆通常以侧向加积的形式构成向大洋中脊倾斜的镜像熔岩层,从而形成正常厚度的大洋地壳。然而,在地幔柱的作用下,当岩浆喷发量在短期内远大于由扩张作用产生的容纳空间时,喷出的玄武质熔岩将不断垂直堆积,形成厚度巨大的洋底高原。当其厚度达到一定程度时,洋底高原的表面可能会靠近水面甚至超出水面,例如现代的冰岛就是典型代表(Pálmason,1986)。相比,当扩张中脊的扩张速率相对增加时,容纳空间也随之增加,部分火山熔浆将会发生侧向溢流,抵消部分垂向加积作用,由此形成的洋底高原的厚度一般较薄,其表面也将处于水面以下较深的位置。另外,由于喷出熔岩的重力负载以及岩石圈的冷却收缩,熔岩在堆积的过程中将不断下沉,造成洋底高原大量熔岩的深埋,这一点在现代冰岛得到充分的体现。

4 与其它构造背景下类似岩石组合的区别

洋底高原是由镁铁质-超镁铁质火山熔岩、侵入岩及堆积岩构成的一类特殊的构造-地貌单元,这种类似的岩石组合也会出现在其他构造背景中,例如显生宙洋壳、火山岛弧、洋岛、弧后盆地、大陆溢流玄武岩省以及裂解大陆边缘等。如何将洋底高原与这些产出于其他构造背景下的类似岩石组合准确地区别开来,是识别并研究洋底高原的基础,尤其是那些碰撞-拼贴至大陆之上古老洋底高原。它们之间的主要区别标志总结如表 1

表 1 洋底高原与其它构造背景下类似岩石组合的区别标志Table 1 The discriminants of plateau with rock assemblages in other tectonic settings
5 洋底高原的地球动力学意义

海洋地质研究发现,大洋内部现存原位洋壳的年龄仅仅局限于最新的180Ma,除此之外并不存在更为古老的原位洋壳。这一年龄分布与上述大洋内部现代洋底高原的年龄分布相一致,间接说明了古老大洋盆地内也曾广泛存在洋底高原,只是它们随着老洋壳的俯冲而同步消失而已。再者,对于最近200Ma期间洋盆大火成岩省的统计发现,这些类似于洋底高原的大火成岩省平均每20Myr就产生一个(Ernst,2007),与整个元古代和古生代时期大陆内部大火成岩省的形成速率相同(Ernst and Buchan, 2002)。如果将该速率值外推至更早的地质历史时期,即认为至少自2500Ma以来洋盆中大火成岩省的形成速率就一直保持在每20Myr一个的话,那么在整个元古代和古生代时期就曾存在过100多个大火成岩省(Dilek and Ernst, 2008)。另外,有证据表明,在太古宙时期,由于特殊的全球构造体制的影响,大洋盆地中洋底高原的形成相比今天要更为广泛,其厚度规模也更大(Kerr et al., 2000;Kerr 2014)。因此,无论是在地质历史的今天,还是在更加久远的过去,洋底高原的分布都是十分广泛的。

如此多的洋底高原随着大洋板块不断漂移,当靠近板块边缘俯冲带时势必会表现出不同的构造行为,要么随大洋板块俯冲消亡,要么通过构造作用拼贴至大陆边缘。洋底高原在板块边缘的构造行为是地史上一种重要的地质过程,对于大洋俯冲和大陆增生等地球动力学演化具有重要意义。洋底高原的地球动力学意义具体可总结为以下几个方面。

5.1 对大洋俯冲的制约

俯冲作用的进行依赖于板块下拉力的作用,即岩石圈重物质下沉并拖拽后续板块进入俯冲带深部的过程(Forsyth and Uyeda, 1975;Chapple and Tullis, 1977;Lithgow-Bertelloni and Richards, 1995;Funiciello et al., 2003)。因此,可以预见的是,当一些轻浮的构造单元进入到俯冲带时,势必会抵抗俯冲的进行,甚至可能会终止俯冲。

洋底高原是在大规模地幔柱的作用下形成,来自于地幔源区的大量热物质的侵入和喷出使得洋底高原的地壳厚度普遍较大且温度较高。由于这些物质的密度一般小于地幔平均值(Arrial and Billen, 2013),因此相比于正常洋壳而言,洋底高原会承受来自于地幔的更大的浮力,尤其是形成不久的年轻洋底高原(<5Ma;Cloos,1993;Abbott and Mooney, 1995)。因此,当洋底高原随着大洋板块运移至俯冲带时,由于上述浮力效应和高耸地形的影响,很可能难以继续向下俯冲,从而减小俯冲带的俯冲汇聚速率,甚至迫使俯冲作用“窒息”并停滞。

Cloos(1993)认为要想使洋底高原无法完成俯冲,其最小地壳厚度应该达到17km左右。然而,通过对现有实例的观察发现,洋底高原是否俯冲似乎与单纯的厚度特征并没有绝对关系。例如,以加勒比为代表的一些洋底高原,尽管其厚度不大,但地质学家们至今尚未在它们的地质记录观察到俯冲迹象(Caribbean Plateau,厚15km;Kerr et al., 1999;Mann and Taira, 2004)。相反,一些厚度较大的洋底高原却有可能发生过或正在发生俯冲,例如亚库塔特洋底高原(Yakutat Plateau,厚25km;Bruns,1985;Brocher et al., 1991)和鄂霍次克洋底高原(Okhost Plateau;Mann and Taira, 2004)。甚至目前厚度最大的翁通-爪哇洋底高原(厚30~40km;Gladczenko et al., 1997;Miura et al., 2004;Mann and Taira, 2004),也同样正在发生深达200km的俯冲作用(Phinney et al., 2004)。

Arrial and Billen(2013)以物质组成和洋底高原规模为变量模拟了洋底高原在不同情况下的俯冲表现。结果表明,在俯冲带深处俯冲地壳未发生榴辉岩化的情况下,为了有效阻止俯冲作用的进行,洋底高原的规模需要同时满足以下几项要求,即:1)厚度大于25km;2)垂直于俯冲带方向上的长度大于200km;3)在平行于俯冲带的方向上,洋底高原与两侧正常洋壳的延伸长度之比应大于0.6。相比,当俯冲带深处前缘俯冲地壳发生榴辉岩化时,洋底高原的俯冲则相对容易,因为在岩石圈深处超过15kbar和400℃的条件下(Hacker et al., 2003;Bousquet et al., 2005;Yamato et al., 2007)产生的榴辉岩化地壳的质量较重,可拖拽后端大洋板块向地幔深处不断沉没。由此可见,影响洋底高原俯冲的因素也许不单单是厚度特征,同时还可能包括洋底高原在水平方向上的尺寸、前缘俯冲地壳是否发生榴辉岩化等。另外,时间也是重要的影响因素。随着形成时间的延长,大洋板块将逐渐冷却,岩石圈的上浮力将呈逐渐变小的趋势。当减少到一定数值后,岩石圈板块将容易发生俯冲下沉。可以预见的是,当洋底高原的年龄足够老时,无论厚度多大的洋底高原均能发生俯冲作用(Arrial and Billen, 2013)。因此,在判定洋底高原是否能够抵抗俯冲作用时,需综合考虑上述诸多因素的影响。

5.2 促使大洋俯冲带后撤和俯冲极性反转

Kerr(2014)认为,当洋底高原运动至俯冲带并与对侧大陆或岛弧相互碰撞时,由于其不易发生俯冲,可能会导致以下几种构造效应(图 5):

图 5 洋底高原与洋内岛弧和大陆边缘碰撞模式(据Saunders et al., 1996; Kerr et al., 2014改编)
(a-c)洋底高原和洋内岛弧碰撞;(d-f)洋底高原和大陆边缘碰撞
Fig. 5 Idealized cross-sections of collisions of oceanic plateau with island arc and active continental margin(modified after Saunders et al., 1996 and Kerr et al., 2014

(a-c)collision between oceanic plateau and island arc;(d-f)collision between oceanic plateau and continental margin

(1) 当与活动大陆边缘(弧)碰撞时,可导致老的俯冲带堵塞后弃置,在区域挤压应力的作用下,俯冲带跳跃后撤至洋底高原后侧,并在洋底高原后方形成新的同向俯冲带。

(2) 当与洋内岛弧碰撞时,不仅可以促使上述洋底高原后方新俯冲带的形成(俯冲后撤),同时还可导致洋内岛弧后侧出现新的俯冲带,并且该俯冲带的俯冲方向与早先俯冲方向相反,即俯冲极性反转(Subduction flip)。

(3) 当上述两个俯冲极性相反的俯冲带共同出现时,夹持于两者之间的洋壳部分(包括洋底高原和岛弧)将形成独立的构造单元,进而可能产生新的板块构造单元。

例如,作为现今厚度最大的洋底高原(约33km;Taylor,2006),翁通-爪哇洋底高原主要形成于122Ma和90Ma的两个阶段(Mahoney et al., 1993b;Tejada et al., 1996;Babbs,1997;Neal et al., 1997)。自90Ma以来,翁通-爪哇洋底高原随着太平洋板块向西运移并在大约25Ma的时候与西部的所罗门岛弧发生碰撞,阻塞太平洋板块向西俯冲的发展(Petterson et al., 1999)。随着板块运动的进行,翁通-爪哇洋底高原和所罗门岛弧的碰撞最终在晚中新世时期导致在所罗门岛弧的后侧形成一个俯冲极性相反的俯冲带(Mann and Taira, 2004)。

5.3 促使大陆增生,构成古老大陆的重要组成部分

当洋底高原运移至大陆边缘俯冲带之后,由于自身浮力及地形特征的影响,一些规模较大的洋底高原可以有效地抵制俯冲作用的发生,并与上盘大陆地块发生碰撞,进而拼贴至大陆边缘,促使大陆地壳的增生。现有的一些洋底高原增生实例的发现证实了洋底高原在大陆增生作用中的意义。最直观的例证多数分布在环太平洋的大陆边缘地带。在这里洋底高原碎片构成了环太平洋大陆边缘诸多地体的主要组成部分,例如在白垩纪末分别增生到美洲中部和欧亚大陆边缘的加勒比-哥伦比亚洋底高原(White et al., 1999;Kerr and Tarney, 2005)和鄂霍次克洋底高原(Bogdanov and Dobretsov, 2002)以及形成于230~225Ma(Greene et al., 20082009ab)并于晚侏罗-早白垩增生至北美西海岸的兰格利亚洋底高原(Jones et al., 1977)。另外,在古老绿岩带中,尤其是太古代,很多蚀变的玄武岩块体被证明依然具有洋底高原的地质特征(Abbott,1996;Albarède,1998;Condie and Abbott, 1999;Smithies et al., 2005;Polat et al., 2009)。

增生至大陆边缘的洋底高原镁铁质物质由于后方新生俯冲带的俯冲以及自身残余热量的影响,常常会发生部分熔融,从而形成富硅质岩浆侵入体,这些岩浆的侵入将使得镁铁质洋底高原物质渐趋稳定,并不断转化为稳定大陆地壳的组成部分(White et al., 1999;White,1999;Kerr et al., 2000)。在增生至大陆边缘的洋底高原碎片中,虽然有的地表露头表现的很窄,但实际厚度和面积巨大。例如,在美国西雅图和波特兰一线,经地震勘查就发现埋藏于深处的洋底高原残片厚度将近30km,而面积则达10万平方千米(Liu et al., 2008)。另外,洋底高原可能是构成大陆克拉通基底的重要组成部分(Abbott and Mooney, 1995;Tharimena et al., 20132014;Kusky and Mooney, 2015)。当厚度巨大的洋底高原构造拼贴至大陆边缘之后,随着上覆沉积物的堆积,洋底高原中镁铁质岩石组合将垫托在厚层沉积物之下形成克拉通的基底。也许这种由洋底高原构成基底的大陆克拉通相比那些基底起源于大陆地壳的克拉通在后期演化过程中要稳定得多(Kusky and Mooney, 2015)。

在碰撞仰冲的过程中,一些厚度较大的洋底高原将会发生水平方向的拆离,而这种拆离作用常常会沿着洋底高原上部玄武质熔岩的基底发生(Kimura and Ludden, 1995),这就使得绝大多数仰冲并保留在大陆之上的洋底高原碎片仅仅是洋底高原上部的玄武质火山熔岩以及少量的辉绿岩侵入体,而缺失以镁铁质-超美铁质堆积岩为代表的下部层位,例如翁通-爪哇洋底高原(Tejada et al., 1996)和北美阿拉斯加地区的兰格利亚洋底高原(Lassiter et al., 1995a)。然而,例外的是,在加勒比-哥伦比亚地区,部分洋底高原的深部层位也同时被仰冲至大陆之上,表现为哥伦比亚西部广泛分布的玻利瓦尔超美铁质岩体(Kerr et al., 1998)。之所以加勒比-哥伦比亚洋底高原的仰冲会与其他洋底高原不同,可能主要与洋底高原在碰撞仰冲时的年龄有关。已有研究资料表明,兰格利亚洋底高原和翁通-爪哇洋底高原的碰撞仰冲与喷发形成之间都存在较长的时间间隔,例如兰格利亚洋底高原喷发于227Ma(Lassiter et al., 1995b)并在150Ma之后与北美大陆碰撞(Jones et al., 1986),翁通-爪哇洋底高原主体喷发于120Ma和90Ma(Mahoney et al., 1993a;Bercovici and Mahoney, 1994)并于70Ma之后仰冲至所罗门岛弧之上(Wells,1989)。相比而言,加勒比洋底高原的喷出与仰冲之间的时间间隔要小得多,仅仅不到25Myr(Burke,1988),因此在仰冲时岩体内部的温度依然较高,并且相比兰格利亚洋底高原和翁通-爪哇洋底高原而言也更加轻浮,从而更容易使得深层岩体仰冲并保存在大陆之上。除此之外,厚度也可能是造成上述差异的原因之一。翁通-爪哇洋底高原的厚度(32km;Gladczenko et al., 1997)要比加勒比洋底高原(8~20km;Edgar et al., 1971)大得多,这就使得前者在仰冲的时候很难将深部层位的岩体仰冲至大陆之上。

增生型造山带作为增生大陆的重要组成部分,其中不乏一些洋底高原碎片的存在。例如,在中亚造山带蛇绿混杂岩的研究中,研究者发现一些成因上与地幔柱有关的来自于海山或洋底高原的基性岩(玄武岩)增生块体,其岩浆结晶时间跨度较大,从晚新元古到早石炭均有分布(Safonova,2009;Safonova et al., 20092015;Sofonova and Santosh, 2014;Yang et al., 2012ab2015ab)。Yang et al.(2015b)通过研究西准格尔蛇绿混杂岩带,认为来自海山或洋底高原的玄武质块体是参与中亚造山带构造增生的重要物质来源。类似于洋底高原,它们在中亚造山带的形成发育过程中可能起到了重要的构造意义。一方面,通过碰撞增生存在于造山带内部的海山或洋底高原块体能够为古亚洲洋的俯冲-碰撞过程提供重要的时间限定。另一方面,通过对这些增生块体的研究能够有效解决古亚洲洋的俯冲以及中亚造山带增生的构造机制以及地质过程。例如,中亚造山带西准格尔段海山或洋底高原玄武岩块体的喷出年龄集中在早古生代和晚古生代(早-中泥盆世至晚石炭世)两个时期,说明该段古亚洲洋的俯冲及增生作用延续到了晚古生代时期(Yang et al., 2015b)。与地幔柱有关的板内岩浆活动在整个古亚洲洋演化过程中均有发生。伴随着洋壳俯冲,板内岩浆活动成因的海山或洋底高原不断增生至大陆边缘或岩浆弧前,从而促使多期次板块俯冲后撤以及板内俯冲的发生(Yang et al., 2015b)。

5.4 促使洋壳平俯冲及高原隆升

平缓俯冲是地质历史中较为常见的现象(Lallemand et al., 2005)。据统计,在现代实例中,大约有10%的俯冲带具有相对平缓或低角度俯冲的段落(Gutscher et al., 19992000b)。平缓俯冲一般很难用正常厚度洋壳的俯冲加以解释,因为模拟结果表明即使再多正常洋壳的俯冲,其产生的上浮力也很难抵抗下沉板片的重力而形成平俯冲(Arrial and Billen, 2013)。因此,大洋板块的平俯冲多被归因于异常轻浮洋壳的纳入(van Hunen et al., 2002;Martinod et al., 2005;Espurt et al., 2008),例如发育有无震洋脊、海山链等构造单元的大洋板块(Dickinson and Snyder, 1978;Livaccari et al., 1981;Cross and Pilger Jr,1982;McGeary et al., 1985;Bird,1988;Gutscher et al., 2000b;Arrial and Billen, 2013)。洋底高原作为大洋底部重要的地壳加厚区段,与正常洋壳相比具有明显的轻浮特征,因此它的俯冲很可能会使板片的俯冲角度变得平缓,尤其是一些形成不久的浮力较大的洋底高原(Arrial and Billen, 2013)。例如,亚库塔特洋底高原(Yakutat Plateau)向南阿拉斯加底部的俯冲,使得该位置太平洋板块的俯冲较为低缓,在距离俯冲带500km的内陆范围内俯冲角度仅为5°~10°(Gudmundsson and Sambridge, 1998;Ratchkovski and Hansen, 2002;Ferris et al., 2003)。

洋底高原的俯冲不仅会造成大洋板块平俯冲的发生,与此同时水平俯冲的大洋岩石圈将会改造上覆板块的构造体制,进一步可能导致相邻大陆内部造山作用及高原隆升的出现。由于平俯冲的俯冲角度相对低缓,增加了俯冲通道的长度,因此俯冲板片与上覆板块之间的接触面积也随之变大。上下板块之间构造耦合造成的摩擦力不仅会降低俯冲板片的俯冲速度,而且还会通过上下板片之间的力学耦合将应力传递到内陆地区,造成仰冲板块的构造缩短与加厚,进一步造成上覆板块的明显隆升(English et al., 2003),形成造山带或大陆高原(图 6)。平俯冲作用造成上覆板块构造缩短的现象现已得到前人实验模拟的证实(Espurt et al., 2008)。由于俯冲板片可以横向深入到大陆内部达600~700km的距离,因此构造缩短作用可以在距离俯冲带较远的内陆地区发育(Martinod et al., 2010),这一点明显不同于正常俯冲带的造山作用。

图 6 加利福尼亚地区洋底高原俯冲导致太平洋板块平俯冲及大陆高原隆升(据Saleeby,2003)Fig. 6 Flat-slab subduction of Pacific plate and continental margin uplift caused by subduction of oceanic plateau in California(after Saleeby,2003)

关于洋底高原俯冲造成洋壳平俯冲及大陆隆升的实例,现今具有代表性的是北美地区的拉勒米造山带(Laramide Orogeny)。由于古沙茨基洋底高原在晚白垩世向北美大陆之下俯冲,驮载该洋底高原的东太平洋法拉隆板块的俯冲角度在距俯冲带长达700km的内陆范围内变得十分平缓,从而在落基山脉的前陆地区引发了波及基底的地块隆起,形成拉勒米造山作用(Coney and Reynolds, 1977;Dickinson et al., 1978;Livaccari et al., 1981;Bird,1988;English et al., 2003)(图 6)。现已通过地震探测手段清晰地追踪到已俯冲进入地幔的残留洋底高原的存在(Liu et al., 2010)。

另有研究认为(Liu et al., 2010),拉勒米造山带的局部隆升肇始于洋底高原俯冲造成的平俯冲板片的板底垫托作用,但区域上大规模的隆升则与随后的洋底高原的拆沉有关。随着俯冲到岩石圈深处的古沙茨基洋底高原向内陆地区推进,当温度和压力达到一定条件时,加之脱水作用的影响,洋壳玄武岩将逐渐发生榴辉岩化,其密度也将随之增大。在此过程中,由于重力作用以及平俯冲板片与上覆板块之间的力学耦合,洋底高原在初期将拖拽上覆板块,使得地表发生下沉,典型代表如秘鲁地区的印加洋底高原(Inca Plateau)。当上述重力增加到一定程度而发生重力失衡时,平俯冲洋底高原及大洋板块将发生拆沉,随之发生的则是上覆板块的大规模回返造山。据研究,这一回返造山作用开始于80Ma前后,而在70~60Ma左右达到峰期,其隆升的最大值大约为600m。

南美大陆西海岸的安第斯山脉是现今地球上重要的中新生代造山作用实例之一。该造山带的形成自晚白垩开始,而南美大陆西海岸大洋板块的俯冲至少在侏罗纪便已发生,因此可见安第斯山脉的形成并非与单纯的正常洋壳的俯冲相关。目前为止,有的地质学家认为安第斯山脉的形成可能与已俯冲消失的印加洋底高原以及能够发挥类似构造作用的古洋脊的俯冲有关(Gutscher et al., 19992000ab)。

在中国的华南地区也同样有洋底高原俯冲的实例。Zhou and Li(2000)Li and Li(2007)认为,我国华南250~190Ma间异常宽(宽达1300km)的岩浆弧的形成可能就肇始于西太平洋中洋底高原俯冲引起的洋壳平俯冲。该模式认为,大约在250Ma时,随着直径约1000km的洋底高原的俯冲,西太平洋板块俯冲角度变得平缓,在随后的40Myr里连续的平俯冲使得岩浆弧、前陆盆地以及造山前缘不断向华南内陆地区迁移。在大约190Ma时,由于洋底高原俯冲的结束或者由于榴辉岩化俯冲洋底高原的重力牵引,俯冲板片变陡,从而使得190~90Ma期间火山弧花岗岩变窄并沿东南方向逐渐变年轻。

尽管平俯冲作用可能与洋底高原的俯冲有关,但并不是所有洋底高原的俯冲都会产生相应的平俯冲。之所以如此,其主要原因在于影响洋底高原在俯冲过程中的表现的因素较多,不单纯是洋壳的厚度,还与洋底高原的面积、物质组成及形成时间等要素有关(Arrial and Billen, 2013)。

5.5 诱导板块构造体制的发生

板块构造是现今全球大地构造体制的主流,然而关于板块构造何时在地球上产生以及产生的具体机制问题,现今依然充满争议。由于俯冲带是整个板块构造体制的重要组成部分,因此正确理解俯冲带的形成机理对于解决现代板块构造体制的起源问题具有重要意义(Korenaga,2013)。

关于俯冲带的形成,目前主要的争议点在于其形成是否需要以先期汇聚作用为前提(McKenzie,1977;Gurnis et al., 2004)抑或是俯冲带的形成是否能够在无汇聚的情况下自发地进行(Kemp and Stevenson, 1996;Stern,2004;Mart et al., 2005;Nikolaeva et al., 2010)。翁通-爪哇洋底高原与所罗门岛弧的碰撞证实了持续的板块汇聚作用可以诱导俯冲带的形成(Cooper and Taylor, 1985;Cloos,1993;Stern,2004),这也得到了地球动力学模拟结果的再现(Hall et al., 2003)。而对于俯冲作用是否能够在没有先期汇聚的情况下自发形成,地球动力学模拟结果也给予了肯定的答案(Stern,2004),并认为造成俯冲带自发形成的动力多来自于岩石圈底部的拆沉(Kemp and Stevenson, 1996;Stern,2004;Mart et al., 2005;Nikolaeva et al., 2010)。

由于岩石圈具有高强度特征,因此无论是上述哪种机制,俯冲带的形成都需要岩石圈软弱带作为基础(Whattam and Stern, 2015)。在板块构造体制盛行的今天,这些岩石圈软弱带可以是来自板块构造体制本身产生的转换断层(Casey and Dewey, 1984;Stern,2004),抑或是消亡的扩张中心(Casey and Dewey, 1984)。然而在前寒武纪,尤其是在板块构造体制尚未形成或者形成伊始,岩石圈薄弱带是如何形成依然未能得到合理的解释。宇宙撞击说(Hansen,2007)和岩石圈拆离说(Bercovici and Ricard, 2014)是目前存在的两种成因解释,然而均存在一些不足之处。

洋底高原是由大规模地幔柱的隆升形成,当幔柱上升至岩石圈底部时,柱头部位将发生直径达1000km的横向扩展(Campbell and Griffiths, 1990)。在此过程中,由地幔柱带来的热物质与上覆岩石圈发生相互作用,不仅会形成大规模的洋底高原,同时由于热效应与大量岩脉的侵入,上覆岩石圈的强度也将发生明显软化。与此同时,由于地幔柱影响范围的限制,洋底高原周围的岩石圈仍然保持坚硬的固化状态,其密度和强度依然较大。当洋底高原的规模足够大时,由于重力失衡,分布在周围重的高强度的岩石圈板块很容易以洋底高原为中心向下垮塌,从而促使板块俯冲带的形成。这一过程已得到地球物理模拟结果的证明(Ueda et al., 2008;Gerya et al., 2015)。Whattam and Stern(2015)最近以加勒比板块的形成演化为例,研究了加勒比板块南缘及南美大陆西北缘俯冲带的成因机制。该项研究有力地支持了上述板块俯冲带的成因解释,也使得加勒比地区成为洋底高原(抑或大规模地幔柱)诱发板块俯冲构造形成的重要实例(图 7)。由此可见,大规模地幔柱形成的洋底高原可能是板块俯冲作用发生的诱导因素,尤其是对于板块构造尚未盛行的前寒武纪时期,洋底高原在诱发板块俯冲带方面所起到的作用可能更为重要。

图 7 洋底高原诱导俯冲带形成模式(据Whattam and Stern, 2015改编)Fig. 7 Subduction initiation induced by oceanic plateau(modified after Whattam and Stern, 2015)
6 洋底高原对于地球表层系统的影响

白垩纪是地球表层系统研究的典范,也是洋底高原集中喷发的重要时期,尤其是白垩纪的中期。在此期间,除了洋底高原集中喷发以外,还曾发生过其它的一些异常事件,包括海底扩张速度变快(Larson,1991)、大规模洋内火山活动(Duncan and Hargraves, 1984;Tarduno et al., 1991;Duncan,2002)、海平面升高(Matsumoto,1980;Kominz,1984;Huber et al., 2002;Jarvis et al., 2002)、温室效应(Chumakov,1995;Tarduno et al., 1998;Fricke,2000;Huber et al., 2002;Bice and Norris, 2002;Royer et al., 2004;Bice et al., 2006)、大洋缺氧事件与黑色页岩(Schlanger and Jenkyns, 1976;黄永建等,2008;王成善等,2009)、大洋红层与富氧作用(Hu et al., 2005;Wang and Hu, 2005;Wang et al., 2005)、生物群灭绝和更替(Leckie et al., 2002)等。这些发生在地球各圈层的重大地质事件并不是孤立存在的,而是在时间上相互耦合,表明它们之间应该存在某种密切的成因联系(王成善等,2009)(图 8)。

图 8 白垩纪时期主要地质事件之间的关系Fig. 8 The relations between Cretaceous main geological events
Data sources:(a)from Kaiho,1994;(b)from Erba,2004;(c)from Hay,2011;(d)from Hong and Lee, 2012;(e)from Hanson and Wallmann, 2003;(f)from Jones and Jenkyns, 2001; Steuber,2003;(g)from Hardenbol et al., 1998; Hong and Lee, 2012;(h)from Dilek and Ernst, 2008;(i)from Wallmann,2001;(j)from Jones and Jenkyns, 2001;(k)from Larson,1991;(l)from Kappel and Adams, 2001;(m)from Erba,2004; Coccioni et al., 2006; Hu et al., 2012;(n)from Kerr et al., 2014

现有研究表明,白垩纪时期洋底高原的喷发在一定程度上会影响到地球其他圈层的演化(Kerr,2014)。Vogt(1989)Sinton and Duncan(1997)Kerr et al.(1998)Kerr(2014)曾注意到在白垩纪时期全球大洋缺氧、黑色页岩沉积、生物灭绝和洋底高原喷发事件之间在时间上具有良好的耦合关系,尤其是在森诺曼阶和土仑阶之交(所谓CTB事件或OAE2)(93.5Ma)及阿普第阶(所谓OAE1a)(124~112Ma)(Sliter,1989;Bralower et al., 1993;Jahren,2002),从而判定白垩纪时期以全球大洋缺氧、黑色页岩沉积、大洋生物灭绝与更替为代表的重大事件可能与洋底高原的喷发有关。例如,在CTB事件期间,与地幔柱相关的最为强烈的岩浆喷发主要就发生在大洋盆地之中,如加勒比洋底高原、部分翁通-爪哇和凯尔盖朗洋底高原的喷发。该阶段总的洋底高原喷出熔岩的体积约为1.0×107km3,而真实的体积可能还会更大(Kerr et al., 1998;Kerr,2005)。除此之外,这一论断也得到来自地球化学方面证据的支持。对于黑色页岩地球化学分析表明,CTB黑色页岩的微量元素(Leary and Rampino, 1990;Orth et al., 1993;Kerr et al., 1998;Snow et al., 2005)和同位素地球化学特征(Kuroda et al., 2007;MacLeod et al., 2008;Turgeon and Creaser, 2008)与洋底高原的火山岩相一致,因此很好地说明了CTB事件与洋底高原形成之间的密切关系。

洋底高原对于地球表层系统的影响作用具体体现在以下几个方面。

6.1 全球海平面的升高

白垩纪时期是全球海平面升高的重要时期(Hallam,1989;Voigt et al., 2006),大约在90Ma(即CTB或OAE2事件发生时期)时达到了古生代以来的最高点,此时海洋面积相比现在扩大了10%,致使约1/3的陆块面积被海水所覆盖(王成善等,2009)。表现在海水地球化学特征方面,海平面上升导致当时海水中87Sr/86Sr比值持续下降,由晚森诺曼期的0.70753降低至中土伦期的0.70737(Kerr et al., 1998;Kerr,2014),而氧同位素出现明显负偏移(Erba,2004)。从时间上看,白垩纪海平面升高与洋底高原的集中喷发之间具有良好的耦合关系,说明洋底高原很可能是白垩纪海平面升高的重要诱因。

洋底高原促使全球海平面的升高主要是通过喷出大量火山熔岩并置换海水来实现。另外,形成洋底高原的地幔柱在热浮力的作用下隆升而引起的洋底隆起以及海水在岩浆加热作用下的体积膨胀也将促使海平面的上升。例如,晚阿尔必阶和森诺曼阶全球海平面升高很可能与加勒比-哥伦比亚洋底高原、翁通-爪哇洋底高原以及凯尔盖朗洋底高原的猛烈喷发有关。

6.2 全球变暖与“温室效应”

洋底高原的喷发会产出大量的CO2气体,使得白垩纪时期全球气温明显升高,出现“温室效应”(Kaiho and Saito, 1994;Kerr et al., 1998;Kerr,2005;Voigt et al., 2004)。现有资料表明,CTB时期洋底高原的喷发释放了大约1017kg的CO2(Kerr et al., 1998),当时大气中CO2的含量大约为前工业时代的3~10倍(Arthur et al., 1987;Berner,1992;Barclay et al., 2010)。洋底高原除了产出CO2以外,还会喷出大量的酸性气体,如SO2、氯、氟以及H2S等,这些酸性气体溶解到海水之后可以提高海水酸度,使得碳酸盐岩溶解,从而也会增加大气中CO2的含量(Arthur et al., 1987;Kerr et al., 1998;Kerr,2005)。

大气中CO2的增高导致全球温度明显升高,出现“温室效应”。例如,在CTB时期,全球大气或海水的平均温度明显高于现今值(Kaiho and Saito, 1994;Voigt et al., 2004)。来自海洋和大陆的古气候指标表明白垩纪是200Ma以来古气温最高的时期(Frakes et al., 1992;Huber et al., 1995)。全球气温升高反过来又会使海水中CO2的溶解度降低,使更多的CO2释放到大气之中,进而使得全球“温室效应”的程度进一步加强。

6.3 大洋缺氧与黑色页岩沉积

洋底高原的喷出可以造成大范围的大洋缺氧。例如,CTB事件是白垩纪最为显著的缺氧事件之一,也是与洋底高原关系最明显的一次事件(Sinton and Duncan, 1997;Kerr et al., 1998;Kerr, 20052014;Snow et al., 2005;Kuroda et al., 2007)。该时期,海水中溶解氧的含量远低于正常时期的含量值,并且造就的富有机质黑色页岩在全球范围内普遍分布于一系列的沉积环境中,因此具有全球分布的特征(Schlanger et al., 1987)。另外,洋底高原的喷出作用促使大洋有机质埋藏和保存的效率提高(Jenkyns, 19761980;Schlanger et al., 1987;Arthur et al., 1988;Weissert and Lini, 1991;Jenkyns et al., 1994),使得海洋沉积物中碳同位素δ13C持续出现正异常(其值可偏移至+4‰~+5‰;Arthur et al., 1987;Sageman et al., 2006)。

洋底高原喷发造成大洋缺氧事件主要通过以下几个途径实现:1)巨大洋底高原在大洋之中的分布以及与之有关的地幔柱隆升造成的洋底隆起可能会打破大洋循环系统,使得两极地区处于低温氧化状态的海水无法顺利流通至低纬度地区,从而使得低纬度地区的海水呈现缺氧状态(Kerr et al., 1998);2)来自洋底高原火山喷发的热液流体可以增加大洋中海水的温度,从而降低氧的溶解度,进而加剧海水的缺氧程度(Sinton and Duncan, 1997);3)洋底高原喷发作用为海水提供丰富的营养物质,例如磷酸盐、铁元素等。在海水温度不断升高的环境下,这些营养物质可有效促使以浮游生物为代表的大量海洋生物的繁殖,进而造成海洋表层有机质产率的提升。大量繁殖的浮游生物将不断消耗海水中氧气,必然会加剧海水的缺氧程度。

6.4 生物大灭绝与快速更迭

除了广泛分布的富有机质黑色页岩的沉积以外,CTB事件期间还具有其他一些重要特征,其中令人瞩目的要数大规模的海洋生物的灭绝。据现有研究成果,CTB时期洋底高原的喷出致使大约26%的原有生物属从地球上消失(Sepkoski Jr,1986)。对于钙质浮游生物与放射虫的研究表明,在缺氧事件附近存在显著的生物灭绝与更替现象(Erbacher et al., 1996),而对于白垩纪颗石藻和其他钙质超微生物的研究发现,OAE1a和OAE2时期对应着生物多样性的最低值(Bown et al., 1999)。

7 西藏中部中特提斯洋底高原的发现

现有研究表明,青藏高原中部,尤其是沿着我国境内近东西向延伸约2000余千米的班公湖-怒江缝合带,分布着大量的以镁铁质-超镁铁质岩石为主的蛇绿岩残片,这些蛇绿岩出露面积逾1500km2(Girardeau et al., 19841985;西藏地质矿产局,1993)。前人对那曲以西班公湖-怒江缝合带相关蛇绿岩研究表明,这里的蛇绿岩碎片主体来源于非正常洋壳,这不仅表现在地球化学和Sr-Nd-Pb同位素上广泛存在的富集特征(赖绍聪和刘池阳,2003;中国地质调查局和成都地质矿产研究所,2004;中国地质调查局,2004;Bao et al., 2007;夏斌等,2008;Liu et al., 2014),同时在洞错、塔仁本、阿索和多巴等地的蛇绿岩碎片中还发现伴有浅水沉积的岩石,如浅水灰岩、点礁等(曲永贵等2003a,b;唐峰林等,2005;王忠恒等,2005;曾庆高等,2006)。

①曲永贵,王永胜,段建祥等.2003b.1:25万多巴幅区域地质调查报告.北京:中国地质调查局,1-269

①曾庆高,毛国正,王保弟等.2006.1:25万改则幅区域地质调查报告和地质图.北京:中国地质调查局

基于长期野外地质研究和大量实验室分析,并结合前人研究成果,本文作者在张开均教授的领导下首次发现在上述西藏中部那曲以西广泛分布的蛇绿岩中多数呈现出类似于洋底高原的地质、地球化学特征,从而提出了“西藏中部中特提斯洋底高原”这一概念,并认为这些蛇绿岩应该是洋底高原的陆上残留(Zhang et al., 2014)。这些洋底高原残片主要沿班公湖-怒江缝合带西段零星分布,主要分布在拉萨地块之上,其次少量分布于羌塘地块南缘(图 9)。从分布范围来看,这些岩体在东西方向上主要集中于那曲和阿里之间,延伸约1000km,而在南北方向上延伸则达200km,总的平面面积达2×105km2(Zhang et al., 2014)(图 9)。由于后期遭到明显的地质作用改造,该洋底高原在形成之初的分布范围可能要比现在大得多。

图 9 西藏中部中特提斯洋底高原分布
图中虚线圈定区域为推测洋底高原的分布范围;插图:ctop-中特提斯洋底高原分布范围;b-班公湖-怒江缝合带;g-冈底斯岩浆弧;K-昆仑地块;L-拉萨地块;Q-羌塘地块;s-南羌塘岩浆弧;Sp-松潘-甘孜混杂岩
Fig. 9 The distribution of Meso-Tethyan oceanic plateau in central Tibet
Area delineated by dotted lines corresponds to the speculated distribution of oceanic plateau; Insets: ctop-the distribution area of Meso-Tethys; b-Bangong-Nujiang suture; g-Gangdese magmatic arc; K-Kunlun block; L-Lhasa block; Q-Qiangtang block; s-Southern Qiangtang block; Sp-Songpan-Ganzi melange
7.1 中特提斯洋底高原的基本特征

西藏中部中特提斯洋底高原残片的形成时代大致可划归至2个年龄阶段,即193~173Ma(早侏罗)和127~104Ma(白垩纪中期),其均值分别为184.4Ma和121.3Ma。这些蛇绿岩碎片中的玄武质熔岩具有一致的地球化学组成,无论在微量元素和同位素组成方面均显示与全球大型洋底高原相似的特征,特别与特提斯地幔柱和印度洋中现今存在的凯尔盖朗洋底高原的地球化学组成相吻合。具体数据和分析见Zhang et al.(2014)

在岩石组成方面,枕状构造的拉斑玄武岩是洋底高原残片的主要岩石组成,其次包括一些镁铁质-超镁铁质的堆积岩和侵入岩。由于后期地质作用的改造,有些层序已经发生变质作用至沸石相和绿片岩相。除此之外,在有些岩体的顶部还可以见到一些从深水相到相对浅水相的沉积岩,包括放射虫硅质岩、杂砂岩、泥岩、灰质砾岩、火山碎屑岩、浅水灰岩以及生物灰岩和生物礁等。例如,在洞错地区的洋底高原残片中,典型的浅水台地相灰岩可见完好出露。这些灰岩以块状层孔虫礁灰岩为主,与下伏玄武岩呈沉积接触,接触面附近的灰岩和玄武岩中都能找到彼此的角砾。石灰岩经岩浆喷发热变质作用普遍发生大理岩化。在蓬错,可见石灰岩夹于两层玄武岩之间,其中沉积有玄武岩角砾,明显不整合于下伏玄武岩之上并被上覆玄武岩烘烤发生大理岩化和矽卡岩矿化;上覆玄武岩似乎有下伏玄武岩和灰岩的捕虏体。在申扎地区,玄武岩上建筑有规模小的灰岩点礁,玄武岩中也能见到大理岩捕虏体。在塔仁本地区,洋底高原残片顶面的灰岩以浅水台地相为特征,周围被固着蛤礁灰岩所围绕,再向外围可见灰岩相变为深水盆地相的含沥青灰岩,其中富含大量的浮游生物化石。在阿索地区的玄武岩上也能见到局部点礁。另外,科马提岩和苦橄岩在洞错和江错附近可见出露,它代表了洋底高原的深部岩石组成,是洋底高原的重要组成部分。

在产出规模方面,上述洋底高原残片中有些野外出露厚度相当大,例如蓬湖、塔仁本、热帮地区的总厚度约为5~6km,革吉和东巧地区的总厚度约为10~11km,而洞错地区的总厚度则达到了约14km,远超出正常洋壳的厚度。这些异常大的厚度特征使得洋底高原的表面往往存在一些浅水标志,例如玄武质砾石层、古土壤层、玄武岩中的气孔和杏仁构造、火山角砾岩和火山灰堆积层、浅水灰岩以及一些浅水改造特征。这些地质特征与上述地球化学标志相结合,可很好地证明西藏中部中特提斯洋底高原的存在。

7.2 中特提斯洋底高原的科学意义

西藏中部中特提斯洋底高原是现今碰撞-拼贴至陆壳之上的洋底高原不可多得的实例和范本,国际上鲜见规模如此之大、结构如此完整的实例报道。相比于大洋内部出露有限的洋底高原而言,碰撞拼贴至大陆之上的洋底高原出露往往相对较为完整,能够包含更多的信息。相较于海上研究,这里的研究更为直接,更为方便,可以采用的研究方法也更多样,成本更低。因此,西藏中部中特提斯洋底高原的研究可以帮助我们深入剖析洋底高原的基本特征,例如结构组成、岩性组合、地球化学、时间序列及成因特征等,也是深入理解中特提斯演化和相关地幔动力学的有效途径。

中特提斯洋底高原作为大洋底部高地形单元的重要代表,其俯冲-碰撞很可能对于青藏高原的初期隆升具有重要意义(图 10)。据Zhang et al.(2014)估计,这一过程可能造成青藏高原中部在晚白垩世约2km的初始隆升。另外,西藏中部中特提斯洋底高原的形成与发展是中特提斯洋演化过程中的重要事件,对洋内构造格局必定会产生重要的影响和制约,它的俯冲有可能会重塑班公湖-怒江缝合带的形态和分布,改变板块俯冲极性和古板块构造格局。因此,中特提斯洋底高原在青藏高原构造演化,尤其是在高原早期隆升和中特提斯洋演化方面,是一项有意义但有待深化的探索。

图 10 中特提斯洋底高原的形成及其在中特提斯演化的作用Fig. 10 The formation of Meso-Tethyan oceanic plateau and its significance in Meso-Tethys evolution
8 洋底高原研究不足与展望

由于洋底高原分布广泛,加之其形成与地幔柱之间具有十分密切的关系,因此洋底高原是研究地球深部过程的一个重要窗口。尽管经过近几十年的研究,我们对洋底高原的认识已取得了相当大的进展,但距离对其深入了解还相差甚远,还有许多问题未得到很好的解决。主要体现在以下几个方面:

(1) 目前,经过DSDP和ODP多年来的钻探,地球科学家在一些洋底高原中获取了一定数量的岩石样品。然而,由于技术能力有限,目前仅仅触及到了距洋底高原表面几百米左右的深度范围,使得人们对洋底高原深部的物质组成和结构特征的了解受到了很大的限制。因此,依托于先进的钻探技术钻取大洋盆地内部洋底高原的深部物质对于了解洋底高原完整的物质组成及结构特征具有重要意义。

(2) 以加勒比-哥伦比亚地区为代表的构造拼贴至大陆之上的洋底高原碎片为洋底高原的研究提供了重要的天然实验室。目前西藏中部中特提斯洋底高原的发现也为洋底高原的陆上研究提供了重要的范本。然而,除此之外,在大陆内部古缝合带位置是否还有其它一些重要的洋底高原残片仍然是一个尚未揭开的谜底,例如广布于亚洲内部的中亚造山带。因此,在全球各大陆边缘及大陆内部古缝合带寻找洋底高原残片是洋底高原研究者应该努力的一个重要方向。对于这些洋底高原碎片的研究可以更好地帮助我们探讨洋底高原的地球动力学意义,尤其是在板块俯冲、大陆增生、大陆隆升等过程中的影响作用。

(3) 对于洋底高原近几十年的研究初步查明了洋底高原在世界范围的分布、岩石组成、结构构造、地球化学及同位素特征。然而,这些方面目前仍然有很多不成熟的地方需要进一步的完善。另外,由于多数研究者认为洋底高原的形成与地幔柱的关系较为密切,因此洋底高原的研究为探讨地幔深部过程提供了重要窗口。然而,目前地质学家对于形成洋底高原的地幔柱动力学及地幔深部过程的研究程度尚浅,仍有很多方面需要研究。

(4) 西藏中部广泛出露中特提斯洋底高原型蛇绿岩残片,是我国在陆地上得天独厚的洋底高原“实验室”。然而由于缺乏系统性研究,目前的研究程度尚浅,仍有许多不足之处,例如其分布范围仍待精准确定、结构和物质组成仍待详细研究、岩浆喷发和构造就位的时代仍待准确厘定、伴生沉积系统有待系统研究、地球动力学意义仍待深入探讨等。对于中特提斯洋底高原的研究能够有效帮助我们理解青藏高原的构造演化,尤其是在高原早期隆升和中特提斯洋演化方面,因此是一项有意义但有待深化的探索。

参考文献
[1] Abbott D and Mooney W. 1995. The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33(S1): 231-242
[2] Abbott DH. 1996. Plumes and hotspots as sources of greenstone belts. Lithos, 37(2-3): 113-127
[3] Abouchami W, Boher M, Michard A and Albarède F. 1990. A major 2.1Ga event of mafic magmatism in West Africa: An early stage of crustal accretion. Journal of Geophysical Research: Solid Earth, 95(B11): 17605-17629
[4] Aitken BG and Echeverría LM. 1984. Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia. Contributions to Mineralogy and Petrology, 86(1): 94-105
[5] Albarède F. 1998. The growth of continental crust. Tectonophysics, 296(1-2): 1-14
[6] Alvarez W. 2003. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology, 3(1): 153-161
[7] Arndt NT and Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Journal of Geophysical Research: Solid Earth, 97(B7): 10967-10981
[8] Arndt NT, Kerr AC and Tarney J. 1997. Dynamic melting in plume heads: The formation of Gorgona komatiites and basalts. Earth and Planetary Science Letters, 146(1-2): 289-301
[9] Arndt NT and Weis D. 2002. Oceanic plateaus as windows to the Earth's interior: An ODP success story. JOEDES Journal, 28(1): 79-84
[10] Arrial PA and Billen MI. 2013. Influence of geometry and eclogitization on oceanic plateau subduction. Earth and Planetary Science Letters, 363: 34-43
[11] Arthur MA, Schlanger SO and Jenkyns HC. 1987. The Cenomanian-Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. In: Brooks J and Fleet AJ (eds.). Marine Petroleum Source Rocks. Geological Society, London, Special Publication, 26: 401-420
[12] Arthur MA, Dean WE and Pratt LM. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335(6192): 714-717
[13] Babbs TL. 1997. Geochemical and petrological investigations of the deeper portions of the Ontong Java plateau: Maliata, Solomon Islands. Ph. D. Dissertation. Leicester: University of Leicester
[14] Bao PS, Xiao XC, Su L and Wang J. 2007. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongco ophiolite in Tibet. Science in China (Series D), 50(5): 660-671
[15] Barclay RS, McElwain JC and Sageman BB. 2010. Carbon sequestration activated by a volcanic CO2 pulse during ocean anoxic event 2. Nature Geoscience, 3(3): 205-208
[16] Ben-Avraham Z, Nur A, Jones D and Cox A. 1981. Continental accretion: From oceanic plateaus to allochthonous terranes. Science, 213(4503): 47-54
[17] Bercovici D and Mahoney J. 1994. Double flood basalts and plume head separation at the 660-kilometer discontinuity. Science, 266(5189): 1367-1369
[18] Bercovici D and Ricard Y. 2014. Plate tectonics, damage, and inheritance. Nature, 508(7497): 513-516
[19] Berner RA. 1992. Palaeo-CO2 and climate. Nature, 358(6382): 114
[20] Bice KL and Norris RD. 2002. Possible atmospheric CO2 extremes of the warm Middle Cretaceous (Late Albian-Turonian). Paleoceanography, 17(4): 22-1-22-17
[21] Bice KL, Birgel D, Meyers PA, Dahl KA, Hinrichs K U and Norris RD. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography, 21(2), doi: 10.1029/2005PA001203
[22] Bird P. 1988. Formation of the Rocky Mountains, western United States: A continuum computer model. Science, 239(4847): 1501-1507
[23] Bogdanov NA and Dobretsov NA. 2002. The Okhotsk volcanic oceanic plateau. Russian Geology and Geophysics, 43(2): 101-114
[24] Boher M, Abouchami W, Michard A, Albarède F and Arndt NT. 1992. Crustal growth in West Africa at 2.1Ga. Journal of Geophysical Research: Solid Earth (1978-2012), 97(B1): 345-369
[25] Borissova I, Coffin MF, Charvis P and Operto S. 2003. Structure and development of a microcontinent: Elan Bank in the southern Indian Ocean. Geochemistry, Geophysics, Geosystems, 4(9): 1071
[26] Bousquet R, Goffé B, Pichon XL, de Capitani C, Chopin C and Henry P. 2005. Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents" by Bradley R. Hacker, Geoffrey A. Abers and Simon M. Peacock. Journal of Geophysical Research, 110(B2), doi: 10.1029/2004JB003450
[27] Bown PR, Rutledge DC, Crux JA and Gallagher LT. 1999. Lower Cretaceous. In: Bown PR (ed.). Calcareous Nannofossil Biostratigraphy. Netherlands: Kluwer Academic Publishers, 86-131
[28] Bralower TJ, Sliter WV, Arthur MA, Leckie RM, Allard DJ and Schlanger SO. 1993. Dysoxic/anoxic events in the Aptian-Albian (Early Cretaceous). In: Pringle MS, Sager WW, Sliter WV and Stein S (eds.). The Mesozoic Pacific: Geology, Tectonics, and Volcanism: A Volume in Memory of Sy Schlanger. Geophysical Monograph Series. Washington, DC: American Geophysical Union Monograph, 77: 5-37
[29] Brocher TM, Nokleberg WJ, Christensen NI, Lutter WJ, Geist EL and Fisher MA. 1991. Seismic reflection/refraction mapping of faulting and regional dips in the Eastern Alaska Range. Journal of Geophysical Research, 96(B6): 10233-10249
[30] Bruguier O. 1996. U-Pb ages on single detrital zircon grains from the Tasmiyele group: Implications for the evolution of the Olekma block (Aldan shield, Siberia). Precambrian Research, 78(4): 197-210
[31] Bruns T. 1985. Tectonics of the yakutat block, an allochthonous terrane in the northern Gulf of Alaska. Open File Report 85-13. U.S. Geological Survey, 112
[32] Bryan SE and Ernst RE. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202
[33] Bureau of China Geological Survey. 2004. Results and progress of regional geological survey: The Bangong Co-Nujiang Juncture Zone. Geological Bulletin of China, 23(1): 61-62 (in Chinese)
[34] Bureau of China Geological Survey, Chengdu Institute of Geology and Mineral Resources. 2004. Description of Geological Map in the Tibetan Plateau and Adjacent Regions (1:1500000). Chengdu: Chengdu Map Press (in Chinese)
[35] Bureau of Geology and Mineral Resources of Tibet Autonomous Region. 1993. Regional Geology of the Tibet Autonomous Region. Beijing: Geological Publishing House (in Chinese)
[36] Burke K. 1988. Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences, 16(1): 201-230
[37] Campbell IH and Griffiths RW. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79-93
[38] Campbell IH and Griffiths RW. 1992. The changing nature of mantle hotspots through time: Implications for the chemical evolution of the mantle. The Journal of Geology, 100(5): 497-523
[39] Campbell IH. 2007. Testing the plume theory. Chemical Geology, 241(3-4): 153-176
[40] Caress DW, McNutt MK, Detrick RS and Mutter JC. 1995. Seismic imaging of hotspot-related crustal underplating beneath the Marquesas Islands. Nature, 373(6515): 600-603
[41] Carlson RL, Christensen NI and Moore RP. 1980. Anomalous crustal structures in ocean basins: Continental fragments and oceanic plateaus. Earth and Planetary Science Letters, 51(1): 171-180
[42] Casey JF and Dewey JF. 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centers-implications for ophiolitic geology and obduction. In: Gass IG, Lippard SJ and Shelton AW (eds.). Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publication, 13: 269-290
[43] Chambers LM, Pringle MS and Fitton JG. 2004. Phreatomagmatic eruptions on the Ontong Java Plateau: An Aptian 40Ar/39Ar age for volcaniclastic rocks at ODP Site 1184. In: Fitton JG, Mahoney JJ, Wallace PJ and Saunders AD (eds.). Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publication, 229: 325-331
[44] Chapple WM and Tullis TE. 1977. Evaluation of forces that drive the plates. Journal of Geophysical Research, 82(14): 1967-1984
[45] Chazey Ⅲ WJ and Neal CR. 2004. Large igneous province magma petrogenesis from source to surface: Platinum-group element evidence from Ontong Java Plateau basalts recovered during ODP Legs 130 and 192. In: Fitton JG, Mahoney JJ, Wallace PJ and Saunders AD (eds.). Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publication, 229: 219-238
[46] Chumakov NM. 1995. Climatic zones in the middle of the Cretaceous Period. Stratigraphy and Geological Correlation, 3: 3-14
[47] Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin, 105(6): 715-737
[48] Coccioni R, Luciani V and Marsili A. 2006. Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: Paleoecological and paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 235(1-3): 66-92
[49] Coffin MF and Eldholm O. 1992. Volcanism and continental break-up: A global compilation of large igneous provinces. In: Storey BC, Alabaster T and Pankhurst RJ (eds.). Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publication, 68: 17-30
[50] Coffin MF and Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1): 1-36
[51] Coffin MF, Pringle MS, Duncan RA, Gladczenko TP, Storey M, Müller RD and Gahagan LA. 2002. Kerguelen hotspot magma output since 130Ma. Journal of Petrology, 43(7): 1121-1137
[52] Condie KC and Abbott DH. 1999. Oceanic plateaus and hotspot islands: Identification and role in continental growth. Lithos, 46(1): 1-4
[53] Coney PJ and Reynolds SJ. 1977. Cordilleran Benioff zones. Nature, 270(5636): 403-406
[54] Cooper PA and Taylor B. 1985. Polarity reversal in the Solomon Islands arc. Nature, 314(6010): 428-430
[55] Courtillot VE and Renne PR. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335(1): 113-140
[56] Cross TA and Pilger Jr RH. 1982. Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions. Geological Society of America Bulletin, 93(6): 545-562
[57] de Wit MJ, de Ronde CJE, Tredoux M, Roering C, Hart RJ, Armstrong RA, Green RWE, Peberdy E and Hart RA. 1992. Formation of an Arcahean continent. Nature, 357(6379): 553-562
[58] Den N, Ludwig WJ, Murauchi S, Ewing JI, Hotta H, Edgar NT, Yoshii T, Asanuma T, Hagiwara K, Sato T and Ando S. 1969. Seismic-refraction measurements in the Northwest Pacific Basin. Journal of Geophysical Research, 74(6): 1421-1434
[59] Desrochers JP, Hubert C, Ludden JN and Pilote P. 1993. Accretion of Archean oceanic plateau fragments in the Abitibi, Greenstone Belt, Canada. Geology, 21(5): 451-454
[60] Dickinson WR and Snyder WS. 1978. Plate tectonics of the Laramide Orogeny. In: Matthews III V (ed.). Laramide Folding Associated with Basement Block Faulting in the Western United States. Boulder, Colorado: The Geological Society of America, Inc., 151: 355-366
[61] Dilek Y and Ernst R. 2008. Links between ophiolites and Large Igneous Provinces (LIPs) in Earth history: Introduction. Lithos, 100(1-4): 1-13
[62] Donnelly TW. 1973. Late Cretaceous basalts from the Caribbean, a possible flood basalt province of vast size. Eos, Transactions of the American Geophysical Union, 54(1): 1004
[63] Driad LA, Hirn A, Nercessian A, Charvis P, Laesanpura A and Gallart J. 1995. Crustal and upper mantle structure under the Réunion hotspot from seismic wide angle data. Eos, Transactions of the American Geophysical Union, 95(S): 587
[64] Duncan RA and Hargraves RB. 1984. Plate tectonic evolution of the Caribbean region in the mantle reference frame. Geological Society of America Memoirs, 162: 81-93
[65] Duncan RA. 2002. A time frame for construction of the Kerguelen Plateau and Broken Ridge. Journal of Petrology, 43(7): 1109-1119
[66] Dunphy JM, Ludden JN and Francis D. 1995. Geochemistry of mafic magmas from the Ungava orogen, Québec, Canada, and implications for mantle reservoir compositions at 2.0Ga. Chemical Geology, 120(3-4): 361-380
[67] Echeverría LM. 1980. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: Field relations and geochemistry. Contributions to Mineralogy and Petrology, 73(3): 253-266
[68] Edgar NT, Ewing JI and Hennion J. 1971. Seismic refraction and reflection in Caribbean Sea. AAPG Bulletin, 55(6): 833-870
[69] English JM, Johnston ST and Wang KL. 2003. Thermal modelling of the Laramide orogeny: Testing the flat-slab subduction hypothesis. Earth and Planetary Science Letters, 214(3-4): 619-632
[70] Erba E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52(1-4): 85-106
[71] Erbacher J, Thurow J and Littke R. 1996. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24(6): 499-502
[72] Ernst RE and Buchan KL. 2002. Maximum size and distribution in time and space of mantle plumes: Evidence from large igneous provinces. Journal of Geodynamics, 34(2): 309-342
[73] Ernst RE. 2007. Mafic-ultramafic large igneous provinces (LIPs): Importance of the pre-Mesozoic record. Episodes, 30(2): 108-113
[74] Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C and Brusset S. 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27(3): TC3011
[75] Fan J and Kerrich R. 1997. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: A heterogeneous mantle plume-convergent margin environment. Geochimica et Cosmochimica Acta, 61(22): 4723-4744
[76] Farnetani CG and Richards MA. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research, 99(B7): 13813-13833
[77] Farnetani CG, Richards MA and Ghiorso MS. 1996. Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth and Planetary Science Letters, 143(1-4): 81-94
[78] Ferris A, Abers GA, Christensen DH and Veenstra E. 2003. High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50-150km depth. Earth and Planetary Science Letters, 214(3-4): 575-588
[79] Fitton JG and Godard M. 2004. Origin and evolution of magmas on the Ontong Java Plateau. In: Fitton JG, Mahoney JJ, Wallace PJ and Saunders AD (eds.). Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publication, 229: 151-178
[80] Forsyth DW and Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43(1): 163-200
[81] Frakes LA, Francis JE and Skytus JI. 1992. Climate Modes of the Phanerozoic. Cambridge: Cambridge University Press, 1-274
[82] Francis D, Ludden J and Hynes A. 1983. Magma evolution in a Proterozoic rifting environment. Journal of Petrology, 24(4): 556-582
[83] Frey FA, Coffin MF, Wallace PJ, Weis D, Zhao X, Wise SW, Wöhnert V, Teagle DAH, Saccocia PJ, Reusch DN, Pringle MS, Nicolaysen KE, Neal CR, Müller RD, Moore CL, Mahoney JJ, Keszthelyi L, Inokuchi H, Duncan RA, Delius H, Damuth JE, Damasceno D, Coxall HK, Borre MK, Boehm F, Barling J, Arndt NT and Antretter M. 2000. Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Science Letters, 176(1): 73-89
[84] Frey FA, Weis D, Borisova AY and Xu G. 2002. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: New perspectives from ODP Leg 120 sites. Journal of Petrology, 43(7): 1207-1239
[85] Fricke HC. 2000. Latitudinal gradients in temperature over North America during the Early Eocene using a combined oxygen isotope-paleobotanical approach. GFF, 122(1): 50
[86] Funiciello F, Morra G, Regenauer-Lieb K and Giardini D. 2003. Dynamics of retreating slabs: 1. Insights from two-dimensional numerical experiments. Journal of Geophysical Research Atmospheres, 108(B4): 2206
[87] Furumoto AS, Webb JP, Odegard ME and Hussong DM. 1976. Seismic studies on the Ontong Java Plateau, 1970. Tectonophysics, 34(1-2): 71-90
[88] Ganbat E, Ishiwatari A and Demberel O. 2012. Geochemistry and petrology of greenstones from the Erdenetsogt formation, central Mongolia: New evidence for a middle Paleozoic mantle plume. In: AGU Fall Meeting Abstracts. Washington, DC: American Geophysical Union, 1: 2341
[89] Gautier I, Weis D, Mennessier JP, Vidal P, Giret A and Loubet M. 1990. Petrology and geochemistry of the Kerguelen archipelago basalts (South Indian Ocean): Evolution of the mantle sources from ridge to intraplate position. Earth and Planetary Science Letters, 100(1-3): 59-76
[90] Girardeau J, Marcoux J, Allègre CJ, Bassoullet JP, Tang Y, Xiao XC, Zao YG and Wang XB. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27-31
[91] Girardeau J, Marcoux J, Fourcade E, Bassoullet JP and Tang Y. 1985. Xainxa ultramafic rocks, central Tibet, China: Tectonic environment and geodynamic significance. Geology, 13(5): 330-333
[92] Gladczenko TP, Coffin MF and Eldholm O. 1997. Crustal structure of the Ontong Java Plateau: Modeling of new gravity and existing seismic data. Journal of Geophysical Research, 102(B10): 22711-22729
[93] Greene AR, Scoates JS and Weis D. 2008. Wrangellia flood basalts in Alaska: A record of plume-lithosphere interaction in a Late Triassic accreted oceanic plateau. Geochemistry, Geophysics, Geosystems, 9(12): Q12004
[94] Greene AR, Scoates JS, Weis D and Israel S. 2009a. Geochemistry of Triassic flood basalts from the Yukon (Canada) segment of the accreted Wrangellia oceanic plateau. Lithos, 110(1-4): 1-19
[95] Greene AR, Scoates JS, Weis D, Nixon GT and Kieffer B. 2009b. Melting history and magmatic evolution of basalts and picrites from the accreted Wrangellia Oceanic Plateau, Vancouver Island, Canada. Journal of Petrology, 50(3): 467-505
[96] Griffiths RW and Campbell IH. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66-78
[97] Gudmundsson ó and Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model. Journal of Geophysical Research, 103(B4): 7121-7136
[98] Gurnis M, Hall C and Lavier L. 2004. Evolving force balance during incipient subduction. Geochemistry, Geophysics, Geosystems, 5(7): Q07001
[99] Gutscher MA, Olivet JL, Aslanian D, Eissen JP and Maury R. 1999. The "lost Inca Plateau": Cause of flat subduction beneath Peru? Earth and Planetary Science Letters, 171(3): 335-341
[100] Gutscher MA, Maury R, Eissen JP and Bourdon E. 2000a. Can slab melting be caused by flat subduction? Geology, 28(6): 535-538
[101] Gutscher MA, Spakman W, Bijwaard H and Engdahl ER. 2000b. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19(5): 814-833
[102] Hacker BR, Abers GA and Peacock SM. 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research, 108(B1): 2029
[103] Hall C, Gurnis M, Sdrolias M, Lavier LL and Müller RD. 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 212(1-2): 15-30
[104] Hallam A and Cohen JM. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates (and discussion). Philosophical Transactions of the Royal Society B: Biological Sciences, 325(1228): 437-455
[105] Hansen KW and Wallmann K. 2003. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective. American Journal of Science, 303(2): 94-148
[106] Hansen VL. 2007. Subduction origin on early Earth: A hypothesis. Geology, 35(12): 1059-1062
[107] Hardenbol J, Thierry J, Farley MB, Jacquin T, De Graciansky PC and Vail PR. 1998. Cretaceous sequence chronostratigraphy. In: De Graciansky PC, Hardenbol J, Jacquin T and Vail PR (eds.). Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication 60. Tulsa, Oklahoma: Society for Sedimentary Geology, 3-13
[108] Harris PT, Macmillan-Lawler M, Rupp J and Baker EK. 2014. Geomorphology of the oceans. Marine Geology, 352: 4-24
[109] Hastie AR and Kerr AC. 2010. Mantle plume or slab window? Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth-Science Reviews, 98(3-4): 283-293
[110] Hay WW. 2011. Can humans force a return to a "Cretaceous" climate? Sedimentary Geology, 235(1-2): 5-26
[111] Herzberg C and O'Hara MJ. 2002. Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology, 43(10): 1857-1883
[112] Herzberg C. 2004. Partial melting below the Ontong Java Plateau. In: Fitton JG, Mahoney JJ, Wallace PJ and Saunders AD (eds.). Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publication, 229: 179-184
[113] Herzberg C, Asimow PD, Arndt N, Niu YL, Lesher CM, Fitton JG, Cheadle MJ and Saunders AD. 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8(2): Q02006
[114] Herzberg C and Gazel E. 2009. Petrological evidence for secular cooling in mantle plumes. Nature, 458(7238): 619-622
[115] Herzig CT, Kimbrough DL and Hayasaka Y. 1997. Early Permian zircon uranium-lead ages for plagiogranites in the Yakuno ophiolite, Asago district, Southwest Japan. Island Arc, 6(4): 396-403
[116] Hill RI. 1991. Starting plumes and continental break-up. Earth and Planetary Science Letters, 104(2-4): 398-416
[117] Hoernle K, van den Bogaard P, Werner R, Lissinna B, Hauff F, Alvarado G and Garbe-Schönberg CD. 2002. The missing history (16-71Ma) of the Galápagos hotspot: Implications for the tectonic and biological evolution of the Americas. Geology, 2002, 30(9): 795-798
[118] Hollings P and Wyman D. 1999. Trace element and Sm-Nd systematics of volcanic and intrusive rocks from the 3Ga Lumby Lake Greenstone belt, Superior Province: Evidence for Archean plume-arc interaction. Lithos, 46(2): 189-213
[119] Hong SK and Lee YI. 2012. Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth and Planetary Science Letters, 327-328: 23-28
[120] Hu XM, Jansa L, Wang CS, Sarti M, Bak K, Wagreich M, Michalik J and Soták J. 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: Occurrences, lithofacies, age and environments. Cretaceous Research, 26(1): 3-20
[121] Hu XM, Wagreich M and Yilmaz IO. 2012. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 38: 1-6
[122] Huang YJ, Wang CS and Gu J. 2008. Cretaceous oceanic anoxic events: Research progress and forthcoming prospects. Acta Geologica Sinica, 82(1): 21-30 (in Chinese with English abstract)
[123] Huber BT, Hodell DA and Hamilton CP. 1995. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin, 107(10): 1164-1191
[124] Huber BT, Norris RD and MacLeod KG. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30(2): 123-126
[125] Ichiyama Y, Ishiwatari A and Koizumi K. 2008. Petrogenesis of greenstones from the Mino-Tamba belt, SW Japan: Evidence for an accreted Permian oceanic plateau. Lithos, 100(1-4): 127-146
[126] Ichiyama Y, Ishiwatari A, Kimura JI, Senda R, Kawabata H and Tatsumi Y. 2012. Picrites in central Hokkaido: Evidence of extremely high temperature magmatism in the Late Jurassic ocean recorded in an accreted oceanic plateau. Geology, 40(5): 411-414
[127] Ichiyama Y, Ishiwatari A, Kimura JI, Senda R and Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: Accreted fragments of oceanic plateaus. Contributions to Mineralogy and Petrology, 168(1): 1019
[128] Ingle S, Weis D and Frey FA. 2002a. Indian continental crust recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137). Journal of Petrology, 43(7): 1241-1257
[129] Ingle S, Weis D, Scoates JS and Frey FA. 2002b. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwanan margins. Earth and Planetary Science Letters, 197(1-2): 35-50
[130] Ingle S, Weis D, Doucet S and Mattielli N. 2003. Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hot spot activity since-120Ma. Geochemistry, Geophysics, Geosystems, 4(8): 1068
[131] Isozaki Y. 1997. Jurassic accretion tectonics of Japan. Island Arc, 6(1): 25-51
[132] Jahren AH. 2002. The biogeochemical consequences of the Mid-Cretaceous superplume. Journal of Geodynamics, 34(2): 177-191
[133] Jarvis I, Mabrouk A, Moody RTJ and de Cabrera S. 2002. Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography, Palaeoclimatology, Palaeoecology, 188(3-4): 215-248
[134] Jenkyns HC. 1980. Cretaceous anoxic events: From continents to oceans. Journal of the Geological Society, 137(2): 171-188
[135] Jenkyns HC, Gale AS and Corfield RM. 1994. Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131(1): 1-34
[136] Jin XC, Zhou ZY and Wang PX. 1995. Oceanic Drilling and Earth Science in China. Shanghai: Tongji University Press (in Chinese)
[137] Jones AP. 2005. Meteorite impacts as triggers to large igneous provinces. Elements, 1(5): 277-281
[138] Jones AP, Wünemann K and Price GD. 2005. Modeling impact volcanism as a possible origin for the Ontong Java Plateau. In: Foulger GR, Natland JH, Presnall DC and Anderson DL (eds.). Plates, Plumes and Paradigms. Special Papers. Boulder, CO: Geological Society of America, 388: 711-720
[139] Jones CE and Jenkyns HC. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301(2): 112-149
[140] Jones DL, Silberling NJ and Hillhouse J. 1977. Wrangellia: A displaced terrane in northwestern North America. Canadian Journal of Earth Sciences, 14(11): 2565-2577
[141] Jones DL, Silberling NJ and Coney PJ. 1986. Collision tectonics in the cordillera of western N America: Examples from Alaska. In: Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society, London, Special Publication, 19: 367-387
[142] Jones G, Sano H and Valsami-Jones E. 1993. Nature and tectonic setting of accreted basalts from the Mino terrane, central Japan. Journal of the Geological Society, 150(6): 1167-1181
[143] Kaiho K. 1994. Planktonic and benthic foraminiferal extinction events during the last 100m.y. Palaeogeography, Palaeoclimatology, Palaeoecology, 111(1-2): 45-71
[144] Kaiho K and Saito S. 1994. Oceanic crust production and climate during the last 100Myr. Terra Nova, 6(4): 376-384
[145] Kappel E and Adams J. 2001. Solid Earth cycles and geodynamics. In: Earth, Oceans and Life: IODP Initial Science Plan. Washington DC: International Work Group Support Office
[146] Kemp DV and Stevenson DJ. 1996. A tensile flexural model for the initiation of subduction. Geophysical Journal International, 125(1): 73-93
[147] Kerr AC, Marriner GF, Arndt NT, Tarney J, Nivia A, Saunders AD and Duncan RA. 1996a. The petrogenesis of komatiites, picrites and basalts from the Isle of Gorgona, Colombia: New field, petrographic and geochemical constraints. Lithos, 37(2-3): 245-260
[148] Kerr AC, Tarney J, Marriner GF, Klaver GT, Saunders AD and Thirlwall MF. 1996b. The geochemistry and petrogenesis of the Late-Cretaceous picrites and basalts of Curaçao Netherlands Antilles: A remnant of an oceanic plateau. Contributions to Mineralogy and Petrology, 124(1): 29-43
[149] Kerr AC, Marriner GF, Tarney J, Nivia A, Saunders AD, Thirlwall MF and Sinton CW. 1997a. Cretaceous basaltic terranes in western Columbia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 677-702
[150] Kerr AC, Tarney J, Marriner GF, Nivia A and Saunders AD. 1997b. The Caribbean-Colombian Cretaceous igneous province: The internal anatomy of an oceanic plateau. In: Mahoney JJ and Coffin M (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington, DC: American Geophysical Union, 100: 45-93
[151] Kerr AC, Tarney J, Nivia A, Marriner GF and Saunders AD. 1998. The internal structure of oceanic plateaus: Inferences from obducted Cretaceous terranes in western Colombia and the Caribbean. Tectonophysics, 292(3-4): 173-188
[152] Kerr AC, Iturralde-Vinent MA, Saunders AD, Babbs TL and Tarney J. 1999. A new plate tectonic model of the Caribbean: Implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks. Geological Society of America Bulletin, 111(11): 1581-1599
[153] Kerr AC, White RV and Saunders AD. 2000. LIP reading: Recognizing oceanic plateaux in the geological record. Journal of Petrology, 41(7): 1041-1056
[154] Kerr AC, Tarney J, Kempton PD, Spadea P, Nivia A, Marriner GF and Duncan RA. 2002. Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean-Colombian oceanic plateau. Journal of Geophysical Research, 107(B7): ECV 2-1-ECV 2-13
[155] Kerr AC, White RV, Thompson PME, Tarney J and Saunders AD. 2003. No oceanic plateau-No Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution. In: Bartolini C, Buffler RT and Blickwede J (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics. Tulsa, OK: American Association of Petroleum Geologists, 79: 126-168
[156] Kerr AC. 2005. Oceanic LIPs: The kiss of death. Elements, 1(5): 289-292
[157] Kerr AC and Tarney J. 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33(4): 269-272
[158] Kerr AC and Mahoney JJ. 2007. Oceanic plateaus: Problematic plumes, potential paradigms. Chemical Geology, 241(3-4): 332-353
[159] Kerr AC. 2014. Oceanic plateaus. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry: Vol. 4: The Crust. 2nd Edition. Amsterdam: Elsevier, 4: 631-667
[160] Keskin M. 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24): 8046
[161] Kimura G, Ludden JN, Desrochers JP and Hori R. 1993. A model of ocean-crust accretion for the Superior Province, Canada. Lithos, 30(3-4): 337-355
[162] Kimura G, Sakakibara M and Okamura M. 1994. Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan. Tectonics, 13(4): 905-916
[163] Kimura G and Ludden J. 1995. Peeling oceanic crust in subduction zones. Geology, 23(3): 217-220
[164] King SD and Anderson DL. 1995. An alternative mechanism of flood basalt formation. Earth and Planetary Science Letters, 136(3-4): 269-279
[165] Kogan LI. 1981. Crustal structure of the Shatsky Rise of the northwestern Pacific, from deep seismic reflection profiling. Dokl. Akad. Nauk SSSR, 258: 25-30
[166] Kominz MA. 1984. Oceanic ridge volumes and sea-level change: An error analysis. In: Schlee JS (ed.). Interregional Unconformities and Hydrocarbon Accumulation. Tulsa, Okla: American Association of Petroleum Geologists, 109-127
[167] Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41(1): 117-151
[168] Kroenke LW. 1974. Origin of continents through development and coalescence of oceanic flood basalt plateaus. Eos, Transactions of the American Geophysical Union, 55: 443
[169] Kuroda J, Ogawa NO, Tanimizu M, Coffin MF, Tokuyama H, Kitazato H and Ohkouchi N. 2007. Contemporaneous massive subaerial volcanism and Late Cretaceous oceanic anoxic event 2. Earth and Planetary Science Letters, 256(1-2): 211-223
[170] Kusky TM and Kidd WSF. 1992. Remnants of an Archean oceanic plateau, Belingwe greenstone belt, Zimbabwe. Geology, 20(1): 43-46
[171] Kusky TM and Mooney W. 2015. Is the Ordos Basin floored by a trapped oceanic plateau? Earth and Planetary Science Letters, 429: 197-204
[172] Lai SC and Liu CY. 2003. Geochemistry and genesis of the island-arc ophiolite in Anduo area, Tibetan Plateau. Acta Petrologica Sinica, 19(4): 675-682 (in Chinese with English abstract)
[173] Lallemand S, Heuret A and Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9), doi: 10.1029/2005GC000917
[174] Larson RL. 1991. Latest pulse of Earth: Evidence for a Mid-Cretaceous superplume. Geology, 19(6): 547-550
[175] Lassiter JC, DePaolo DJ and Mahoney JJ. 1995a. Geochemistry of the Wrangellia flood basalt province: Implications for the role of continental and oceanic lithosphere in flood basalt genesis. Journal of Petrology, 36(4): 983-1009
[176] Lassiter JC, Silk MT, Richards MA, DePaolo DJ, Farnetani CG and Duncan RA. 1995b. Constraints on the origin of the Wrangellia flood basalt province: Support for the plume impact model of flood basalt volcanism. Eos, Transactions of the American Geophysical Union, 76: 587
[177] Leary PN and Rampino MR. 1990. A multi-causal model of mass extinctions: Increase in trace metals in the oceans. In: Kauffman EG and Walliser OH (eds.). Extinction Events in Earth History. Berlin Heidelberg: Springer, 30: 45-55
[178] Leckie RM, Bralower TJ and Cashman R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the Mid-Cretaceous. Paleoceanography, 17(3): 13-1-13-29
[179] Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182
[180] Lithgow-Bertelloni C and Richards MA. 1995. Cenozoic plate driving forces. Geophysical Research Letters, 22(11): 1317-1320
[181] Livaccari RF, Burke K and Şengör AMC. 1981. Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, 289(5795): 276-278
[182] Liu LJ, Spasojević S and Gurnis M. 2008. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322(5903): 934-938
[183] Liu LJ, Gurnis M, Seton M, Saleeby J, Müller RD and Jackson JM. 2010. The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 3(5): 353-357
[184] Liu WL, Xia B, Zhong Y, Cai JX, Li JF, Liu HF, Cai ZR and Sun ZL. 2014. Age and composition of the Rebang Co and Julu ophiolites, central Tibet: Implications for the evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447
[185] Lucas SB, Stern RA, Syme EC, Reilly BA and Thomas DJ. 1996. Intraoceanic tectonics and the development of continental crust: 1.92-1.84Ga evolution of the Flin Flon Belt, Canada. Geological Society of America Bulletin, 108(5): 602-629
[186] MacLeod KG, Martin EM and Blair SW. 2008. Nd isotopic excursion across the Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology, 36(10): 811-814
[187] Mahoney JJ, Storey M, Duncan RA, Spencer KJ and Pringle M. 1993a. Geochemistry and age of the Ontong Java Plateau. In: Pringle MS (ed.). The Mesozoic Pacific: Geology, Tectonics, and Volcanism: A Volume in Memory of Sy Schlanger. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 77: 233-261
[188] Mahoney JJ, Storey M, Duncan RA, Spencer KJ and Pringle M. 1993b. Geochemistry and geochronology of Leg 130 basement lavas: Nature and origin of the Ontong Java Plateau. In: Berger WH, Kroenke LW and Mayer LA (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program. Texas: Texas A&M University College Station, 130: 3-22
[189] Mann P and Taira A. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389(3-4): 137-190
[190] Mart Y, Aharonov E, Mulugeta G, Ryan W, Tentler T and Goren L. 2005. Analogue-modelling of the initiation of subduction. Geophysical Journal International, 160(3): 1081-1091
[191] Martinod J, Funiciello F, Faccenna C, Labanieh S and Regard V. 2005. Dynamical effects of subducting ridges: Insights from 3-D laboratory models. Geophysical Journal International, 163(3): 1137-1150
[192] Martinod J, Husson L, Roperch P, Guillaume B and Espurt N. 2010. Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters, 299(3-4): 299-309
[193] Matsumoto T. 1980. Inter-regional correlation of transgressions and regressions in the Cretaceous period. Cretaceous Research, 1(4): 359-373
[194] Mattielli N, Weis D, Blichert-Toft J and Albarède F. 2002. Hf isotope evidence for a Miocene change in the Kerguelen mantle plume composition. Journal of Petrology, 43(7): 1327-1339
[195] Mauffret A and Leroy S. 1997. Seismic stratigraphy and structure of the Caribbean Igneous Province. Tectonophysics, 283(1-4): 61-104
[196] McGeary S, Nur A and Ben-Avraham Z. 1985. Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus. Tectonophysics, 119(1-4): 195-221
[197] McKenzie DP. 1977. The initiation of trenches: A finite amplitude instability. In: Talwani M and Pitman III WC (eds.). Island Arcs, Deep Sea Trenches and Back-arc Basins. Washington, DC: American Geophysical Union, 1: 57-61
[198] McKenzie DP and Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625-679
[199] Mihalynuk MG, Nelson JA and Diakow LJ. 1994. Cache Creek terrane entrapment: Oroclinal paradox within the Canadian Cordillera. Tectonics, 13(3): 575-595
[200] Miura S, Suyehiro K, Shinohara M, Takahashi N, Araki E and Taira A. 2004. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data. Tectonophysics, 389(3-4): 191-220
[201] Mutter JC and North Atlantic Transect (NAT) Study Group. 1985. Multichannel seismic images of the oceanic crust's internal structure: Evidence for a magma chamber beneath the Mesozoic Mid-Atlantic ridge. Geology, 13(9): 629-632
[202] Neal CR, Mahoney JJ, Kroenke LW, Duncan RA and Petterson MG. 1997. The ontong java plateau. In: Mahoney JJ and Coffin M (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington, DC: American Geophysical Union, 100: 183-216
[203] Nicolaysen K, Bowring S, Frey F, Weis D, Ingle S, Pringle MS and Coffin MF. 2001. Provenance of Proterozoic garnet-biotite gneiss recovered from Elan Bank, Kerguelen Plateau, southern Indian Ocean. Geology, 29(3): 235-238
[204] Nikolaeva K, Gerya TV and Marques FO. 2010. Subduction initiation at passive margins: Numerical modeling. Journal of Geophysical Research, 115(B3), doi: 10.1029/2009JB006549
[205] Nixon PH and Coleman PJ. 1978. Garnet-bearing lherzolites and discrete nodule suites from the Malaita alnoite, Solomon Islands, and their bearing on the nature and origin of the Ontong Java Plateau. Bulletin of the Australian Society of Exploration Geophysicists, 9(3): 103-107
[206] Operto S and Charvis P. 1996. Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle seismic data. Journal of Geophysical Research, 101(B11): 25077-25103
[207] Orth CJ, Attrep Jr M, Quintana LR, Elder WP, Kauffman EG, Diner R and Villamil T. 1993. Elemental abundance anomalies in the Late Cenomanian extinction interval: A search for the source(s). Earth and Planetary Science Letters, 117(1-2): 189-204
[208] Pálmason G. 1986. Model of crustal formation in Iceland, and application to submarine mid-ocean ridges. In: Vogt PR and Tucholke BE (eds.). The Geology of North America: The Western North Atlantic Region. Boulder: Geological Society of America, 87-97
[209] Parkinson IJ, Schaefer BF and ODP Leg Shipboard Scientific Party. 2001. A lower mantle origin for the world's biggest LIP? A high precision Os isotope isochron from Ontong Java Plateau basalts drilled on ODP Leg 192. Eos, Transactions of the American Geophysical Union, 82(47): F1398
[210] Peltonen P, Kontinen A and Huhma H. 1996. Petrology and geochemistry of metabasalts from the 1.95Ga Jormua ophiolite, northeastern Finland. Journal of Petrology, 37(6): 1359-1383
[211] Petterson MG, Neal CR, Mahoney JJ, Kroenke LW, Saunders AD, Babbs TL, Duncan RA, Tolia D and McGrail B. 1997. Structure and deformation of north and central Malaita, Solomon Islands: Tectonic implications for the Ontong Java Plateau Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283(1-4): 1-33
[212] Petterson MG, Babbs T, Neal CR, Mahoney JJ, Saunders AD, Duncan RA, Tolia D, Magu R, Qopoto C, Mahoa H and Natogga D. 1999. Geological-tectonic framework of Solomon Islands, SW Pacific: Crustal accretion and growth within an intra-oceanic setting. Tectonophysics, 301(1-2): 35-60
[213] Phinney EJ, Mann P, Coffin MF and Shipley TH. 2004. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon Arc-Ontong Java Plateau convergent zone). Tectonophysics, 389(3-4): 221-246
[214] Pisias NG and Delaney ML. 1999. Large igneous provinces: Their implications for Earth and planetary evolution. In: Complex: Conference on Multiple Platform Exploration of the Ocean. Vanconver, British Columbia: Joint Oceanographic Institutions
[215] Polat A, Kerrich R and Wyman DA. 1998. The Late Archean Schreiber-Hemlo and White River-Dayohessarah greenstone belts, Superior Province: Collages of oceanic plateaus, oceanic arcs, and subduction-accretion complexes. Tectonophysics, 289(4): 295-326
[216] Polat A and Kerrich R. 2001. Geodynamic processes, continental growth, and mantle evolution recorded in Late Archean greenstone belts of the southern Superior Province, Canada. Precambrian Research, 112(1-2): 5-25
[217] Polat A, Kerrich R and Windley BF. 2009. Archaean crustal growth processes in the southern Superior Province and southern West Greenland: Geodynamic and magmatic constraints. In: Cawood PA and Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publication, 318: 155-191
[218] Puchtel IS and Zhuravlev DZ. 1993. Petrology of mafic-ultramafic metavolcanics and related rocks from the Olondo greenstone belt, Aldan Shield. Petrology, 1(3): 306-344
[219] Puchtel IS, Haase KM, Hofmann AW, Chauvel C, Kulikov VS, Garbe-Schönberg CD and Nemchin AA. 1997. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an Early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimica et Cosmochimica Acta, 61(6): 1205-1222
[220] Puchtel IS, Arndt NT, Hofmann AW, Haase KM, Kröner A, Kulikov VS, Kulikova VV, Garbe-Schönberg CD and Nemchin AA. 1998a. Petrology of mafic lavas within the Onega plateau, central Karelia: Evidence for 2.0Ga plume-related continental crustal growth in the Baltic Shield. Contributions to Mineralogy and Petrology, 130(2): 134-153
[221] Puchtel IS, Hofmann AW, Mezger K, Jochum KP, Shchipansky AA and Samsonov AV. 1998b. Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth and Planetary Science Letters, 155(1-2): 57-74
[222] Qu YG, Zhang SQ, Zheng CZ, Wang YS, Lv P, Wang HS, Li XB and Li QW. 2003a. The Late Jurassic-Early Cretaceous Rila Formation, Rila Formation Suor clastic rocks and characteristics of biotas in the Yunzhug ophiolite belt, northern Tibet. Geological Bulletin of China, 22(11-12): 959-963 (in Chinese with English abstract)
[223] Ratchkovski NA and Hansen RA. 2002. New evidence for segmentation of the Alaska subduction zone. Bulletin of the Seismological Society of America, 92(5): 1754-1765
[224] Recq M, Brefort D, Malod J and Veinante JL. 1990. The Kerguelen Isles (southern Indian Ocean): New results on deep structure from refraction profiles. Tectonophysics, 182(3-4): 227-248
[225] Révillon S, Arndt NT, Chauvel C and Hallot E. 2000. Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: The plumbing system of an oceanic plateau. Journal of Petrology, 41(7): 1127-1153
[226] Richards MA, Jones DL, Duncan RA and Depaolo DJ. 1991. A mantle plume initiation model for the Wrangellia flood basalt and other oceanic plateaus. Science, 254(5029): 263-267
[227] Royer DL, Berner RA, Montanez IP, Tabor NJ and Beerling DJ. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today, 14: 4-9
[228] Safonova IY. 2009. Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140Ma. Ore Geology Reviews, 35(2): 137-154
[229] Safonova IY, Utsunomiya A, Kojima S, Nakae S, Tomurtogoo O, Filippov AN and Koizumi K. 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 16(3-4): 587-608
[230] Safonova IY and Santosh M. 2014. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126-158
[231] Safonova IY, Kojima S, Nakae S, Romer RL, Seltmann R, Sano H and Onoue T. 2015. Oceanic island basalts in accretionary complexes of SW Japan: Tectonic and petrogenetic implications. Journal of Asian Earth Sciences, 113(1): 508-523
[232] Sageman BB, Meyers SR and Arthur MA. 2006. Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology, 34(2): 125-128
[233] Saleeby J. 2003. Segmentation of the Laramide Slab: Evidence from the southern Sierra Nevada region. Geological Society of America Bulletin, 115(6): 655-668
[234] Saunders AD, Tarney J, Kerr AC and Kent RW. 1996. The formation and fate of large oceanic igneous provinces. Lithos, 37(2-3): 81-95
[235] Schlanger SO and Jenkyns HC. 1976. Cretaceous oceanic anoxic events: Causes and consequences. Geologie en Mijnbouw, 55: 179-184
[236] Schlanger SO, Arthur MA, Jenkyns HC and Scholle PA. 1987. The Cenomanian-Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In: Brooks J and Fleet AJ (eds.). Marine Petroleum Source Rocks. Geological Society, London, Special Publication, 26: 371-399
[237] Schuth S, Rohrbach A, Münker C, Ballhaus C, Garbe-Schönberg D and Qopoto C. 2004. Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contributions to Mineralogy and Petrology, 148(3): 288-304
[238] Sepkoski Jr JJ. 1986. Phanerozoic overview of mass extinction. In: Raup DM and Japlonski D (eds.). Pattern and Processes in the History of Life. Berlin, Heidelberg: Springer-Verlag, 277-295
[239] Sinton CW and Duncan RA. 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92(7-8): 836-842
[240] Skulski T and Percival JA. 1996. Allochthonous 2.78Ga Oceanic plateau slivers in a 2.72Ga continental arc sequence: Vizien greenstone belt, northeastern Superior Province, Canada. Lithos, 37(2-3): 163-179
[241] Sliter WV. 1989. Aptian anoxia in the Pacific Basin. Geology, 17(10): 909-912
[242] Smithies RH, Van Kranendonk MJ and Champion DC. 2005. It started with a plume-Early Archaean basaltic proto-continental crust. Earth and Planetary Science Letters, 238(3-4): 284-297
[243] Snow LG, Duncan RA and Bralower TJ. 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20(3): PA3005
[244] Spadea P, Espinosa A and Orrego A. 1989. High-Mg extrusive rocks from the Romeral zone ophiolites in the southewestern Colombian Andes. Chemical Geology, 77(3-4): 303-321
[245] Staples RK, White RS, Brandsdóttir B, Menke W, Maguire PKH and McBride JH. 1997. Färoe-Iceland Ridge Experiment 1. Crustal structure of northeastern Iceland. Journal of Geophysical Research, 102(B4): 7849-7866
[246] Stein M and Hofmann AW. 1994. Mantle plumes and episodic crustal growth. Nature, 372(6501): 63-68
[247] Stein M and Goldstein SL. 1996. From plume head to continental lithosphere in the Arabian-Nubian shield. Nature, 382(6594): 773-778
[248] Stern RA, Syme EC and Lucas SB. 1995. Geochemistry of 1.9Ga MORB- and OIB-like basalts from the Amisk collage, Flin Flon Belt, Canada: Evidence for an intra-oceanic origin. Geochimica et Cosmochimica Acta, 59(15): 3131-3154
[249] Stern RJ. 2004. Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters, 226(3-4): 275-292
[250] Steuber T. 2003. Strontium isotope chemostratigraphy of rudist bivalves and Cretaceous carbonate platforms. In: Gili E, Negra MEH and Skelton PW (eds.). North African Cretaceous Carbonate Platform Systems. Netherlands: Springer, 229-238
[251] Storey M, Mahoney JJ, Kroenke LW and Saunders AD. 1991. Are oceanic plateaus sites of komatiite formation? Geology, 19(4): 376-379
[252] Storey M, Kent RW, Saunders AD, Salters VJ, Hergt J, Whitechurch H, Sevigny JH, Thirwall MF, Leat P, Ghose NC and Gifford M. 1992. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. In: Wise Jr SW and Schlich R (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program. Texas: Texas A & M University College Station, 120: 33-53
[253] Tang FL, Huang JC, Luo XC and Huang CG. 2004. The discovery and significance of the Asuo structural melangesin North Tibet. Journal of East China Institute of Technology, 27(3): 245-250 (in Chinese with English abstract)
[254] Tarduno JA, McWilliams M, Debiche MG, Sliter WV and Blake Jr MC. 1985. Franciscan Complex Calera limestones: Accreted remnants of Farallon Plate oceanic plateau. Nature, 317(6035): 345-347
[255] Tarduno JA, Sliter WV, Kroenke L, Leckie M, Mayer H, Mahoney JJ, Musgrave R, Storey M and Winterer EL. 1991. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science, 254(5030): 399-403
[256] Tarduno JA, Brinkman DB, Renne PR, Cottrell RD, Scher H and Castillo P. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science, 282(5397): 2241-2243
[257] Tatsumi Y, Kani T, Ishizuka H, Maruyama S and Nishimura Y. 2000. Activation of Pacific mantle plumes during the Carboniferous: Evidence from accretionary complexes in southwest Japan. Geology, 28(7): 580-582
[258] Taylor B. 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3-4): 372-380
[259] Tejada MLG, Mahoney JJ, Duncan RA and Hawkins MP. 1996. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. Journal of Petrology, 37(2): 361-394
[260] Tejada MLG, Mahoney JJ, Neal CR, Duncan RA and Petterson MG. 2002. Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. Journal of Petrology, 43(3): 449-484
[261] Ten Brink US and Brother TM. 1987. Multichannel seismic evidence for a subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism. Journal of Geophysical Research, 92(B13): 13687-13707
[262] Tharimena S, Rychert C and Harmon N. 2013. Resolving structure of the Ontong-Java Plateau using SS waveform modelling. In: American Geophysical Union Fall Meeting 2013. Vienna: American Geophysical Union
[263] Tharimena S, Rychert C and Harmon N. 2014. Radially anisotropic viscous root beneath Ontong-Java Plateau: Evidence from SS waveform modelling. In: EGU General Assembly. Vienna: American Geophysical Union
[264] Tomlinson KY, Stevenson RK, Hughes DJ, Hall RP, Thurston PC and Henry P. 1998. The Red Lake greenstone belt, Superior Province: Evidence of plume-related magmatism at 3Ga and evidence of an older enriched source. Precambrian Research, 89(1-2): 59-76
[265] Tomlinson KY, Hughes DJ, Thurston PC and Hall RP. 1999. Plume magmatism and crustal growth at 2.9 to 3.0Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos, 46(1): 103-136
[266] Turgeon SC and Creaser RA. 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454(7202): 323-326
[267] van Hunen J, van den Berg AP and Vlaar NJ. 2002. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics, 352(3-4): 317-333
[268] Vogt PR. 1989. Volcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions. Geological Society of America Bulletin, 101(10): 1225-1245
[269] Voigt S, Gale AS and Flögel S. 2004. Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography, 19(4): PA4020
[270] Voigt S, Gale AS and Voigt T. 2006. Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe: An integrated palaeoenvironmental analysis. Cretaceous Research, 27(6): 836-858
[271] Wallmann K. 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta, 65(18): 3005-3025
[272] Wang CS, Hu XM, Sarti M, Scott RW and Li XH. 2005. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-sea environments. Cretaceous Research, 26(1): 21-32
[273] Wang CS and Hu XM. 2005. Cretaceous world and oceanic red beds. Earth Science Frontiers, 12(2): 11-21 (in Chinese)
[274] Wang CS, Cao K and Huang YJ. 2009. Sedimentary record and Cretaceous Earth Surface System changes. Earth Science Frontiers, 16(5): 1-14 (in Chinese with English abstract)
[275] Wang ZH, Wang YS, Xie YH, Sun ZG, Lu ZL, Qu YG, Li CZ and Jiang XF. 2005. The Tarenben oceanic island basalts in the middle part of the Bangong-Nujiang suture zone, Xizang and their geological implications. Sedimentary Geology and Tethyan Geology, 25(1-2): 155-162 (in Chinese with English abstract)
[276] Watts AB and ten Brink US. 1989. Crustal structure, flexure and subsidence history of the Hawaiian Islands. Journal of Geophysical Research, 94(B8): 10473-10500
[277] Weis D, Ingle S, Damasceno D, Frey FA, Nicolaysen K, Barling J and Leg 183 Shipboard Scientific Party. 2001. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137). Geology, 29(2): 147-150
[278] Weissert H and Lini A. 1991. Ice age interludes during the time of Cretaceous greenhouse climate. In: Müller DW, McKenzie JA and Weissert H (eds.). Controversies in Modern Geology-Evolution of Geologic Theories in Sedimentology, Earth History and Tectonics. New York: Academic Press, 173-191
[279] Wells RE. 1989. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau: Insights from Cenozoic plate motion models. Tectonophysics, 165(1-4): 219-235
[280] Whattam SA and Stern RJ. 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1): 38-63
[281] White R and McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94(B6): 7685-7729
[282] White RV. 1999. The fundamentals of crust generation: Major tonalite intrusions associated with an oceanic plateau, Aruba, Dutch Caribbean. Ph. D. Dissertation. Leicester, United Kingdom: University of Leicester
[283] White RV, Tarney J, Kerr AC, Saunders AD, Kempton PD, Pringle MS and Klaver GT. 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust. Lithos, 46(1): 43-68
[284] Xia B, Xu LF, Wei ZQ, Zhang YQ, Wang R, Li JF and Wang YB. 2008. SHRIMP zircon dating of gabbro from the Dongqiao ophiolite in Tibet and its geological implications. Acta Geologica Sinica, 82(4): 528-531 (in Chinese with English abstract)
[285] Xiao L, Pirajno F and He Q. 2007. A preliminary discussion on large igneous provinces and associated ore deposits. Geological Journal of China Universities, 13(2): 148-160 (in Chinese with English abstract)
[286] Xu P and Zhou ZY. 2003. Oceanic plateaus: Windows to the Earth's interior. Advances in Earth Science, 18(5): 745-752 (in Chinese with English abstract)
[287] Xu YG and Zhong SL. 2001. The Emeishan large igneous province: Evidence for mantle plume activity and melting conditions. Geochimica, 30(1): 1-9 (in Chinese with English abstract)
[288] Yamato P, Agard P, Burov E, Le Pourhiet L, Jolivet L and Tiberi C. 2007. Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, Western Alps). Journal of Geophysical Research, 112(B7): B07410
[289] Yang GX, Li YJ, Santosh M, Gu PY, Yang BK, Zhang B, Wang HB, Zhong X and Tong LL. 2012a. A Neoproterozoic seamount in the Paleoasian Ocean: Evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China. Lithos, 140-141: 53-65
[290] Yang GX, Li YJ, Santosh M, Yang BK, Yan J, Zhang B and Tong LL. 2012b. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences, 59: 141-155
[291] Yang GX, Li YJ, Santosh M, Xiao WJ, Yang BK and Tong LL. 2015a. Alkaline basalts in the Karamay ophiolitic mélange, NW China: A geological, geochemical and geochronological study and implications for geodynamic setting. Journal of Asian Earth Science, 113: 110-125
[292] Yang GX, Li YJ, Xiao WJ and Tong LL. 2015b. OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth-Science Reviews, 150: 477-496
[293] Yang SF, Chen HL, Li ZL, Li YQ, Yu X, Li DX and Meng LF. 2013. Early Permian Tarim large igneous province in Northwest China. Science China (Earth Sciences), 56(12): 2015-2026
[294] Zhang KJ, Xia B, Zhang YX, Liu WL, Zeng L, Li JF and Xu LF. 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 210-211: 278-288
[295] Zhang ZC and Wang FS. 2002. Permian picritic lava discovered in the Emei igneous megaprovince. Geological Review, 48(4): 448 (in Chinese)
[296] Zhang ZC, Hao YL and Wang FS. 2003. Picrites in large igneous provinces and their implications. Earth Science Frontiers, 10(3): 105-114 (in Chinese with English abstract)
[297] Zhang ZC and Wang FS. 2004. Magnesian olivines, high-chromium spinels, and significances in picritic lavas of Ermeishan continental flood basalt. Progress in Natural Science, 14(1): 70-74 (in Chinese)
[298] Zhou XM and Li WX. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287
[299] 黄永建, 王成善, 顾健. 2008. 白垩纪大洋缺氧事件: 研究进展与未来展望. 地质学报, 82(1): 21-30
[300] 金性春, 周祖翼, 汪品先. 1995. 大洋钻探与中国地球科学. 上海: 同济大学出版社
[301] 赖绍聪, 刘池阳. 2003. 青藏高原安多岛弧型蛇绿岩地球化学及成因. 岩石学报, 19(4): 675-682
[302] 曲永贵, 张树岐, 郑春子, 王永胜, 吕鹏, 王洪双, 李学斌, 李庆武. 2003a. 西藏北部永珠蛇绿岩带晚侏罗世-早白垩世日拉组索尔碎屑岩及生物群特征. 地质通报, 22(11-12): 959-963
[303] 唐峰林, 黄建村, 罗小川, 黄传冠.2005. 藏北阿索构造混杂岩的发现及其地质意义. 东华理工学院学报,27(3): 245-250
[304] 王成善, 胡修棉. 2005. 白垩纪世界与大洋红层. 地学前缘, 12(2): 11-21
[305] 王成善, 曹珂, 黄永建. 2009. 沉积记录与白垩纪地球表层系统变化. 地学前缘, 16(5): 1-14
[306] 王忠恒, 王永胜, 谢元和, 孙忠纲, 鲁宗林, 曲永贵, 李存直, 姜雪飞. 2005. 西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义. 沉积与特提斯地质, 25(1-2): 155-162
[307] 西藏地质矿产局. 1993. 西藏自治区区域地质志. 北京: 地质出版社
[308] 夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528-531
[309] 肖龙, Pirajno F, 何琦. 2007. 试论大火成岩省与成矿作用. 高校地质学报, 13(2): 148-160
[310] 徐斐, 周祖翼.2003. 洋底高原:了解地球内部的窗口. 地球科学进展,18(5): 745-752
[311] 徐义刚, 钟孙霖. 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件. 地球化学, 30(1): 1-9
[312] 杨树锋, 陈汉林, 厉子龙, 励音骐, 余星, 李东旭, 孟立丰. 2014. 塔里木早二叠世大火成岩省. 中国科学(地球科学), 44(2): 187-199
[313] 张招崇, 王福生. 2002. 峨眉山大火成岩省中发现二叠纪苦橄质熔岩. 地质论评, 48(4): 448
[314] 张招崇, 郝艳丽, 王福生. 2003. 大火成岩省中苦橄岩的研究意义. 地学前缘, 10(3): 105-114
[315] 张招崇, 王福生. 2004. 峨眉山大陆溢流玄武岩省苦橄质岩石的高镁橄榄石和高铬尖晶石及其意义. 自然科学进展, 14(1): 70-74
[316] 中国地质调查局. 2004. 班公湖-怒江结合带区域地质调查成果与进展. 地质通报, 23(1): 61-62
[317] 中国地质调查局, 成都地质矿产研究所. 2004. 青藏高原及邻区地质图说明书(1︰1500000). 成都: 成都地图出版社