岩石学报  2014, Vol. 30 Issue (10): 3100-3112   PDF    
西藏打加错晚三叠世安山质岩浆作用的锆石U-Pb年代学和Hf同位素
宋绍玮, 刘泽, 朱弟成 , 王青, 张立雪, 张亮亮, 赵志丹    
中国地质大学地质过程与矿产资源国家重点实验室, 中国地质大学地球科学与资源学院, 北京 100083
摘要:青藏高原南部拉萨地体晚三叠世-早侏罗世时期岩浆活动的地球动力学背景仍是尚待解决的一个重要科学问题。本文报道了南部拉萨地体西部打加错地区新发现的安山玢岩的锆石U-Pb年代学、Hf同位素和全岩地球化学数据。打加错安山玢岩主要由蚀变细粒斜长石、辉石和角闪石组成。2件样品的LA-ICP-MS锆石U-Pb定年结果分别为204±4Ma和203±2Ma,表明打加错地区在晚三叠世发生了安山质岩浆活动。结合近期报道的打加错地区辉石角闪二长闪长岩的年龄(207.3±3.6Ma)记录,表明南部拉萨地体西部打加错地区发生了晚三叠世岩浆活动。2件安山玢岩的锆石εHft)值多为正值(分别为-2.2~+8.8和-2.0~+10.7),可比于南部拉萨地体中东部其它地区同期岩浆记录的Hf同位素成分(如:工布江达南部203Ma正长花岗岩的锆石εHft)为-4.9~+2.7;日喀则东部约205Ma二长花岗岩的锆石εHft)为+11.9~+15.8),这表明南部拉萨地体晚三叠世岩浆活动从东工布江达向西延伸到打加错一带,东西延伸约800km。打加错地区2件安山玢岩样品(SiO2=56.1%~59.0%)以较低Mg#(45.8~48.7)和Al2O3含量(16.4%~17.0%)为特征,属于偏铝质钾玄质-高钾钙碱性火山岩。本文获得的新数据,结合最近报道的早侏罗世桑日群岩浆活动记录以及打加错地区上三叠统地层研究新进展,本文更赞成打加错地区和南部拉萨地体其它地区的晚三叠世岩浆活动形成于与班公湖-怒江洋壳南向俯冲有关的弧后环境。
关键词锆石U-Pb年代学     晚三叠世岩浆活动     弧后背景     打加错     南部拉萨地体    
Zircon U-Pb chronology and Hf isotope of the Late Triassic andesitic magmatism in Dajiacuo, Tibet
SONG ShaoWei, LIU Ze, ZHU DiCheng , WANG Qing, ZHANG LiXue, ZHANG LiangLiang, ZHAO ZhiDan    
State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
Abstract: The geodynamic setting of the Late Triassic-Early Jurassic magmatic activities in the Lhasa Terrane remains hotly debated. This paper reports zircon LA-ICP-MS U-Pb dating, Hf isotopic, and whole-rock geochemical data of the andesite porphyrites from Dajiacuo in the western segment of the southern Lhasa subterrane. The Dajiacuo andesite porphyrites consist mainly of hornblende, pyroxene, and altered fine-grained plagioclase. Two andesitic porphyrite samples have been dated at 204±4Ma and 203±2Ma, respectively, indicating the present of the Late Triassic andesitic magmatism in this region. In combination with the presence of pyroxene-bearing amphibole monzodiorite of 207.3±3.6Ma recently reported from Dajiacuo, it is suggesting that the Late Triassic magmatism was active in the western segment of the southern Lhasa subterrane. These two andesitic porphyrite samples mainly show positive zircon εHf(t) values (-2.2~+8.8 and -2.0~+10.7, respectively), comparable to those of the coeval magmatic records reported from the middle and eastern segments of the southern Lhasa subterrane (e.g., ca.203Ma syenogranite to the south of Gongbogyamda display zircon εHf(t) of -4.9~+2.7, and ca.205Ma monzogranite to the east of Xigaze exhibit zircon εHf(t) of +11.9~+15.8). Such similarity indicates that the Late Triassic magmatic activity extended from Gongbogyamda in the east to Dajiacuo in the west, covering over 800km along the length of the southern Lhasa subterrane. Two andesitic porphyrite samples (SiO2=56.1%~59.0%) are characterized by low Mg# (45.8~48.7) and Al2O3 (16.4%~17.0%) contents and are shoshonitic or high-K calc-alkaline. These new data, together with the data of volcanic rocks recently reported from the Lower Jurassic Sangri Group and the new identification of the Upper Triassic strata around the Dajiacuo, enable us to favor that the Late Triassic magmatic activity documented from Dajiacuo and other segments of the southern Lhasa subterrane is most likely associated with a back-arc setting in response to the southward subduction of the Bangong-Nujiang oceanic lithosphere.
Key words: Zircon U-Pb chronology     Late Triassic magmatism     Back-arc setting     Dajiacuo     southern Lhasa Terrane    

拉萨地体发育着非常广泛的中生代岩浆岩(朱弟成等,2008; Zhu et al., 2011),这些岩浆岩对研究拉萨地体中生代时期经历的俯冲和碰撞历史提供了重要约束(Chu et al., 2006; Zhu et al., 20092011; Ji et al., 2009)。例如,拉萨地体中北部地区的白垩纪岩浆活动,可能是班公湖-怒江洋壳南向俯冲、板片断离(Zhu et al., 20092011; Sui et al., 2013; Chen et al., 2014)和岩石圈拆沉作用(Wang et al., 2014)的产物;而拉萨地体南部地区的白垩纪岩浆活动,可能记录了雅鲁藏布新特提斯的北向俯冲(Ji et al., 2009; Zhang et al., 2010)。但对拉萨地体晚三叠世-早侏罗世岩浆岩,目前虽然积累了较多资料(李才等,2003;和钟铧等, 20052006; 刘琦胜等,2006; Chu et al., 2006; 张宏飞等, 2007ab; Ji et al., 2009; 朱弟成等,2008; Zhu et al., 200820112013; 董昕和张泽明,2013; Kang et al., 2014),但对其形成的地球动力学背景仍然存在新特提斯洋北向俯冲(Ji et al., 2009; 纪伟强,2010; Kang et al., 2014)和班公湖-怒江洋南向俯冲(莫宣学等,2005; 潘桂棠等,2006; Zhu et al., 20112013)等不同认识。本文报道了最近在南部拉萨地体西部打加错地区发现的安山玢岩的锆石U-Pb年代学、锆石Hf同位素和全岩地球化学数据,利用这些新数据并结合目前已有新资料,讨论了拉萨地体晚三叠世-早侏罗世时期的地球动力学背景。

1 地质背景及样品描述

位于青藏高原南部的拉萨地体是夹持于印度河-雅鲁藏布缝合带(IYZSZ)和班公湖-怒江缝合带(BNSZ)之间的一条长约2500km,宽约150~300km的巨型构造-岩浆岩带。拉萨地体内部以狮泉河-纳木错蛇绿混杂岩带(SNMZ)和洛巴堆-米拉山断裂带(LMF)为界,可以进一步划分为北部拉萨地体、中部拉萨地体和南部拉萨地体(Zhu et al., 2013)(图 1a)。本文涉及的南部拉萨地体,以新生地壳为特征,其东部可能存在古老的结晶基底(Zhu et al., 2013)。南部拉萨地体以白垩纪-第三纪冈底斯岩基(莫宣学等,2005)和古近纪林子宗火山岩为主(莫宣学等,2003; Mo et al., 2008; Zhu et al., 2011),记录了雅鲁藏布特提斯洋壳北向俯冲以及随后的印度-欧亚大陆碰撞等构造过程(Chung et al., 20052009; Mo et al., 2008; Zhu et al., 20112013)。

本文在南部拉萨地体西部打加错北采集的2件次火山岩样品,呈脉状侵位于1 25万桑桑幅区域地质调查报告(张振利等,2003)认为的林子宗群典中组地层中(图 1b)。这里的典中组地层被第四系坡积物覆盖。在采样地点北,出露有下二叠统昂杰组和下白垩统麻木下组。其中的昂杰组为变质复成分砾岩、含砾粉砂岩、砂岩、板岩、含生物碎屑泥晶灰岩、泥灰岩等,厚度大于300m。麻木下组以一套浅灰白色不等厚层状石英质砾岩、钙质复成分砾岩、(石英质)砂砾岩、含砾(石英质)钙质岩屑(杂)砂岩为主,厚度大于900m。在采样地点北西约10km,出露有一套早期认为是典中组但最近确定为上三叠统的石英砂岩、粉砂岩、生物碎屑灰岩夹放射虫硅质岩组合(黄韶春等,2013)。

本文在打加错地区采集的2件安山玢岩样品,GPS坐标为29°59.280′N,85°41.857′E(12DJC02-1)和29°59.310′N,85°41.646′E(12DJC03-1)。样品蚀变较为强烈,显示似斑状结构,基质为显晶质-玻璃质结构。斑晶矿物主要有蚀变斜长石(20%)、蚀变角闪石(10%)和较新鲜的单斜辉石(5%)(图 1c);基质主要由火山玻璃(30%)、微晶斜长石(25%)、微晶单斜辉石(5%)和微晶石英(5%)等(图 1d)组成。

图 1 研究区地质简图和样品显微照片(a)-青藏高原拉萨地体构造单元划分(据Zhu et al., 2011);(b)-打加错地区地质简图(据张振利等,2003 ;谢国刚等,2002改绘);(c)-样品12DJC02-1显微照片;(d)-样品12DJC03-1显微照片Fig. 1 Simplified geological map of the studied area and petrographical photos of samples(a)-tectonic subdivision of the Lhasa Terrane,Tibetan Plateau(modified after Zhu et al., 2011);(b)-simplified geological map of Dajiacuo area;(c)-petrographical photo of sample 12DJC02-1;(d)-petrographical photo of sample 12DJC03-1
① 张振利,田立富,范永贵,方勇勇,贾建称. 2003. 中华人民共和国1 25万桑桑区幅区域地质调查报告
② 谢国刚,邹爱建,袁建芽,廖思平,李晓勇. 2002. 中华人民共和国1 25万措麦区幅区域地质调查报告 2 分析方法

本文对打加错地区的2件次火山岩样品开展了锆石U-Pb定年和Hf同位素分析。在河北廊坊区调所实验室采用常规方法分选出锆石,在北京奥金顿科技有限公司进行了锆石阴极发光(CL)。锆石LA-ICP-MS U-Pb同位素年龄分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室进行。实验过程中的激光剥蚀斑束直径为32μm,激光剥蚀深度为20~40μm。锆石年龄计算采用国际标准锆石91500作为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NIST610作为外标,29Si作为内标元素进行校正。样品的同位素比值和元素含量数据处理采用ICPMSDataCal软件(Liu et al., 2010)。并采用Anderson(2002)软件对测试数据进行普通铅校正,年龄计算及谐和图采用ISOPLOT(2.49版; Ludwig,2001)软件完成。详细的实验原理和流程及仪器参数见(Liu et al., 2010)。

在台湾大学地质系,利用LA-ICP-MS系统对经过LA-ICP-MS锆石U-Pb定年的同一测点进行了Hf同位素测试。测试时激光束直径为50μm,激光脉冲频率为4~6Hz。本次分析过程中使用锆石国际标样Mud Tank作为外标。Mud Tank的176Hf/177Hf值为0.282537±45(n=515)。仪器分析 条件和数据获取方法见文献(Li et al., 2010; Wu et al., 2006)。

全岩主量元素分析在河北廊坊区调所实验室进行,主量元素由XRF法测试,仪器型号为Axios MAX,分析精度好于5%。微量元素是在中国地质大学(武汉)地质过程与矿产资源国家重点实验室由ICP-MS法进行测试,分析精度好于5%。测试过程中,根据同时测定的BHVO-1,AGV-1,GSP-2和RGM-2等标样来监测测试精度。分析测试方法详见Liu et al.(2008)

3 分析结果 3.1 锆石U-Pb年龄

西藏打加错地区2件安山玢岩样品的部分锆石阴极发光(CL)图像和U-Pb谐和年龄图见图 2,分析数据列于表 1

图 2 打加错地区安山玢岩的锆石CL图像和U-Pb年龄谐和图Fig. 2 Cathodoluminescence(CL)images and concordia diagrams of zircons from the Dajiacuo and esitic porphyrites

表 1 南部拉萨地体打加错地区晚三叠世安山玢岩的锆石U-Pb年龄数据Table 1 Zircon U-Pb age data of the late Triassic and esitic porphyrites from Dahiacuo in the southern Lhasa subterrane

样品12DJC02-1的锆石颗粒显示长柱状到短柱状的自形到半自形晶形,见清晰的生长韵律或振荡环带,极少数锆石显示核-边结构(图 2a)。去除3个具有较老年龄的测点,15个测点的Th/U比值介于0.98~1.39之间,该比值高于变质成因锆石(通常<0.1)而与岩浆锆石特征(>0.1,Hoskin and Schaltegger, 2003)一致。15个测点显示的206Pb/238U年龄范围为202~205Ma,在置信度95%时的206Pb/238U加权平均年龄值为204±4Ma(MSWD=0.23)(图 2b)。

样品12DJC03-1锆石显示短柱状到椭圆状的自形到半自形晶形,见较清晰的生长韵律和振荡环带,部分颗粒具安山质岩浆锆石所特有的砂钟构造(Kostov,1973)(图 2c)。不考虑3个不谐和的测点,15个测点的Th/U比值介于0.86~1.45之间,同12DJC02-1类似,显示岩浆锆石成因(Hoskin and Schaltegger, 2003)。15个测点显示的206Pb/238U年龄范围为201~205Ma,谐和年龄为203±2Ma(MSWD=0.1)(图 2d)。

3.2 全岩地球化学

2件安山玢岩样品SiO2含量分别为56.1%和59.0%(扣除烧失量后重新计算到100%),以较低MgO(3.24%~4.45%)、Mg#(45.8~48.7)和Al2O3含量(16.4%~17.0%)为特征(表 2),在SiO2-Zr/TiO2分类图解上(Winchester and Floyd, 1977),位于安山岩区域(图 3a)。这种特征可比于最近获得的约190Ma的桑日群安山岩的主量元素特征(如:SiO2含量介于59.1%~62.1%之间,Mg#介于34.4~54.5之间)(Kang et al., 2014)。采用对蚀变火山岩有效的岩石系列分类图解(Hastie et al., 2007),打加错地区的两件安山玢岩样品位于高钾钙碱性-钾玄质系列范围内(图 3b)。

表 2 打加错地区晚三叠世安山玢岩的主量元素(wt%)和微量元素(×10-6)分析结果Table 2 Whole-rock major(wt%) and trace element(×10-6)data of the Late Triassic and esite from Dajiacuo

图 3 打加错安山玢岩和桑日群火山岩岩石类型和系列划分图解(a)SiO2-Zr/TiO2分类图解(Winchester and Floyd, 1977);(b)Th-Co图解(Hastie et al., 2007)Fig. 3 Diagrams of rock-type and rock series of the Dajiacuo and esitic porphyrites and Sangri Group volcanic rocks(a)SiO2 vs. Zr/TiO2 diagram(Winchester and Floyd, 1977);(b)Th vs. Co diagram(Hastie et al., 2007)

在稀土元素球粒陨石标准化配分图中(图 4a),轻稀土元素相对富集,重稀土元素相对亏损(如:(La/Yb)N=10.2~12.1),Eu显示弱的负异常(δEu=0.77~0.80)。在原始地幔标准化的微量元素蜘蛛图上(图 4b),样品大离子亲石元素(如:Rb、Ba、Th和U)显示正异常,高场强元素(如:Nb、Ta和Ti)显示明显的负异常。

图 4 打加错安山玢岩样品的球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值均据Sun and McDonough, 1989)Fig. 4 Chondrite-normalized REE pattern and primitive mantle-normalized trace-element spidergram of the Dajiacuo and esitic porphyrites(normalization values after Sun and McDonough, 1989)
3.3 锆石Hf同位素

锆石Hf同位素测试是在U-Pb定年工作的基础上进行的,剔除不谐和年龄的测点和继承锆石的测点后,对其余测点进行了Hf同位素分析。本文获得的29颗锆石176Yb/177Hf和176Lu/177Hf比值范围分别为0.017615~0.038973和0.000526~0.001150(表 3)。样品12DJC02-1的13颗锆石的(176Hf/177Hf)t比值范围为0.282591~0.282590,除2个测点具有负的εHf(t)外(分别为-2.0和-0.3),其它11个测点的εHf(t)值为正且变化范围较大(0.3~10.7),对应的地幔模式年龄tDM为426~929Ma;样品12DJC03-1的16颗锆石的(176Hf/177Hf)t比值范围为0.282586~0.282896,其中2个测点显示了负的εHf(t)值(分别为-2.2和-0.1),其它13个测点的εHf(t)为正,变化于0.8~8.8之间,对应的地幔模式年龄tDM为503~931Ma。由此可见,2件样品具有相似的锆石εHf(t)值和地幔模式年龄tDM(图 5a,b)。

表 3 南部拉萨地体打加错地区晚三叠世安山玢岩的锆石Hf同位素分析结果Table 3 Zircon Hf-isotope data of the late Triassic and esite from Dajiacuo in the southern Lhasa subterrane

图 5 南部拉萨地体晚三叠世-早侏罗世岩浆活动的锆石εHf(t)-年龄图解(a)和εHf(t)-经度图解(b)Fig. 5 Zircon εHf(t)vs. ages(a) and longitude(b)plots for the Late Triassic-Early Jurassic magmatic activity in southern Lhasa subterrane
4 讨论 4.1 拉萨地体晚三叠世-早侏罗世岩浆作用的空间分布

最近,黄韶春等(2013)在打加错地区1 5万区域地质调查过程中,在原划分的典中组火山岩分布区,通过对一套石英砂岩、粉砂岩、生物碎屑灰岩所夹的放射虫硅质岩的研究,将该套原划分的典中组火山岩地层修正为上三叠统。本文样品采集自这套新识别出的上三叠统地层南东约10km,本文获得的2件超浅成相安山玢岩样品的晚三叠世锆石U-Pb年 龄(分别为204±4Ma和203±2Ma),应该接近地层时代,因而本文年龄数据进一步证实打加错地区部分原典中组火山岩地层,可能属于上三叠统。同时,本文获得的这一年龄数据,近似于彭建华等(2013)报道的打加错地区辉石角闪二长闪长岩的年龄(207.3±3.6Ma),这表明南部拉萨地体西部打加错地区也发生了晚三叠世岩浆活动。最近几年来,在南部拉萨地体的中东部地区,先后发现了晚三叠世-早侏罗世岩浆活动的记录,包括工布江达地区的花岗岩类(Zhu et al., 2011; 纪伟强,2010)、桑日县北东沃卡电站的花岗闪长岩和加查县北东崔久沟的花岗岩和角闪辉长岩(董昕和张泽明,2013; 纪伟强,2010)、达孜叶巴地区玄武岩和酸性岩石(Zhu et al., 2008; Kang et al., 2014; 魏友卿,2014)、乌郁盆地的黑云母花岗岩(Chu et al., 2006)和日喀则附近的努玛、尼木、汤白等地区花岗岩类等(Chu et al., 2006; Ji et al., 2009; Zhu et al., 2011; Guo et al., 2013; Lang et al., 2014; 张宏飞等,2007a)(图 1a表 4)。本文新获得的年代学数据,将南部拉萨地体晚三叠世-早侏罗世岩浆活动的空间分布范围从东部的工布江达地区延伸至西部的打加错地区,目前已限定的东西延伸距离约800km。

除了南部拉萨地体的晚三叠世-早侏罗世岩浆记录外,近年在中部拉萨地体的工布江达、门巴、当雄和罗扎也发现了同期花岗岩类(图 1a)。尤其是最近在中部拉萨地体更西部的邦多岩体中,获得了晚三叠世锆石U-Pb年龄(图 1a朱弟成等,2008)。这些新的数据表明,中部拉萨地体在晚三叠世-早侏罗世时期,也发生了与南部拉萨地体在时间和空间上均可比的同期岩浆活动。这些岩浆活动跨越了洛巴堆-米拉山断裂带,现今南北向宽度约200km。

表 4 南部拉萨地体晚三叠世-早侏罗世岩浆岩的锆石U-Pb年龄数据Table 4 Summary of the zircon U-Pb isotopic age data of the Late Triassic-Early Jurassic magmatic rocks in the southern Lhasa subterrane
4.2 打加错晚三叠世岩浆活动的起源

打加错地区2件晚三叠世安山玢岩样品具有非常类似的地球化学特征(图 4),表明其来源相同。这些安山玢岩样品正的锆石εHf(t)值和较年轻的Hf同位素地幔模式年龄,类似于南部拉萨地体米林地区的晚三叠世-早侏罗世花岗岩类(Zhu et al., 2011)和达孜地区的早侏罗世叶巴组镁铁质岩(魏友卿,2014)(图 5),这暗示南部拉萨地体晚三叠世-早侏罗世岩浆活动应该具有类似的起源。安山质岩石的成因非常复杂,包括多种不同的解释,如受富水流体交代的地幔楔橄榄岩部分熔融、下地壳或中地壳变玄武岩(角闪岩)的脱水熔融、幔源玄武岩或玄武安山岩在不同地壳层次分离结晶作用的结果以及酸性岩浆和基性岩浆混合作用的产物等(Annen et al., 2006; Li et al., 2014; Wang et al., 2014及该文参考文献)。由于地球化学数据非常有限,目前还很难讨论打加错地区晚三叠世安山玢岩的来源。但这些安山质岩石表现出的高钾钙碱性-钾玄质系列特征(图 3b)暗示其不太可能由受富水流体交代的地幔楔橄榄岩部分熔融产生。考虑到其出露位置靠近具有古老基底的中部拉萨地体,其较高的SiO2含量和低且变化范围大的锆石εHf(t)值(-2.2~+10.7)(图 5),指示这些安山质岩浆可能来源于下地壳物质的脱水熔融产物与围岩物质的同化混染或岩石圈地幔来源的玄武质岩浆与中部拉萨地体古老下地壳物质的混合。

4.3 南部拉萨地体晚三叠世岩浆活动的构造背景

拉萨地体晚三叠世-早侏罗世时期岩浆活动的构造背景迄今仍然是拉萨地体中生代构造演化研究中一个悬而未决的重要科学问题。目前主要有两种代表性的观点。一种观点认为,拉萨地体晚三叠世-早侏罗世时期岩浆活动由雅鲁藏布特提斯洋的北向俯冲产生的(模型1)(Chu et al., 2006; 董彦辉等,2006; 张宏飞等,2007a; Zhu et al., 2008; Ji et al., 2009; 陈炜等,2009; 纪伟强,2010; Guo et al., 2013; Kang et al., 2014);另外一种观点认为,该时期的岩浆活动可能与班公湖-怒江特提斯洋的南向俯冲有关(模型2)(Zhu et al., 20112013; 潘桂棠等,2006)。

模型1的主要论点在于,由于白垩纪时期的拉萨-羌塘碰撞、中新生代时期新特提斯洋的俯冲和随后的印度-欧亚碰撞,使拉萨地体发生了明显的构造缩短(Murphy et al., 1997; Tapponnier et al., 2001);从现今拉萨地体的南北向宽度(200~300km),复原白垩纪以前拉萨地体的宽度可能超过400~500km,南部拉萨地体在晚三叠世-早侏罗世时期的岩浆活动距离雅鲁藏布缝合带所代表的新特提斯洋更近,所以这些岩浆活动应该与新特提斯洋的北向俯冲有关。在这种模型中,可将具有安第斯型弧火山岩亲缘性的打加错晚三叠世安山玢岩(图 6a)解释为雅鲁藏布新特提斯洋壳北向俯冲的产物。但已有研究表明,目前在雅鲁藏布缝合带中发现的最早放射虫化石为中晚三叠世(王玉净等,2002朱杰等,2005),即使这些放射虫和相关的古地磁数据能够证实雅鲁藏布新特提斯在中晚三叠世(约230Ma)已经打开,要使其洋壳俯冲形成中部拉萨地体的晚三叠世岩浆岩(最老约228Ma),那么必定意味着雅鲁藏布新特提斯经历了非常快速的扩张和俯冲过程,这在机制上很难解释。除非能够找到雅鲁藏布新特提斯洋在中晚三叠世以前就打开的确凿证据,否则这种解释在地球动力学机制上还是难以让人信服。同时,打加错地区晚三叠世地层所具有的细碎屑岩、碳酸盐岩中部夹硅质岩组合(黄韶春等,2013),也明显不同于以火山碎屑岩和火山岩为特征的岩浆弧记录。最近一项非常重要的进展是,在桑日地区以前认为是下白垩统的桑日群火山岩中,获得了195Ma和190Ma的年代学数据,这些钙碱性系列岩石(图 3b)可能指示了雅鲁藏布新特提斯洋壳的北向俯冲(Kang et al., 2014)。但我们注意到,这个时期的玄武岩具有非常平缓的重稀土元素分布型式(Kang et al., 2014),在一些构造环境判别图上类似于弧后盆地玄武岩(图 6b,c),而不同于典型的大陆弧玄武岩。

图 6 西藏打加错和桑日群火山岩的构造环境判别图解 (a)La/Yb-Sc/Ni图解(Condie et al., 1986);(b)Ti-Zr 图解(Pearce,1982);(c)Th/Yb-Ta/Yb 图解(Pearce,1982).数据来源:Shaojiwa 弧后盆地玄武岩(Li et al., 2013),Maze弧后盆地玄武岩(Shuto et al., 2006),Mariana弧后盆地玄武岩(Pearce and Stern, 2006),桑日群玄武岩(Kang et al., 2014)Fig. 6 Tectonic discriminations for the Dajiacuo and esitic porphyrites and Sangri Group volcanic rocks(a)La/Yb-Sc/Ni diagram(Condie et al., 1986);(b)Ti-Zr diagram(Pearce,1982);(c)Th/Yb-Ta/Yb diagram(Pearce,1982). Data sources: Shaojiawa back-arc basin basalts(Li et al., 2013),Maze back-arc basin basalts(Shuto et al., 2006),Mariana back-arc basin basalts(Pearce and Stern, 2006),Sangri Group basalts(Kang et al., 2014)

模型2的主要论点在于,中部拉萨地体为一古老的微陆块,现今的南部和北部拉萨地体主体均为晚三叠世以来的沉积地层,这可能意味着在中生代早期拉萨地体的南北向宽度与现今宽度差不多,其南北两侧的中生代中晚期地层和相关岩浆记录,可能是这个微陆块边缘两侧不同时期岛弧侧向增生的结果(Zhu et al., 20112013)。在地球动力学机制上,这一模型将拉萨地体从冈瓦纳大陆北缘的裂离和雅鲁藏布新特提斯洋盆的开启,解释为班公湖-怒江洋壳南向俯冲引起的弧后扩张。在Ti-Zr图解上(图 6b),195~189Ma的桑日群玄武岩样品(Kang et al., 2014)投点位置和以陆壳为基底的Middle Okinawa海槽弧后盆地玄武岩区(Shinjo et al., 1999)和Maze(日本海)弧后盆地玄武岩区(Shuto et al., 2006; Yoon et al., 2014)类似。在Th/Yb-Ta/Yb图解上(图 6c),桑日群玄武岩样品投点和以陆壳为基底的Middle Okinawa海槽弧后盆地玄武岩范围相似,其高的Th/Yb比值明显不同于以洋壳为基底的Mariana海槽弧后盆地玄武岩。这些信息暗示早侏罗世玄武岩可能具有以陆壳为基底的弧后盆地玄武岩的亲缘性。在这种情况下,打加错晚三叠世安山玢岩可解释为与班公湖-怒江洋壳南向俯冲有关的弧后背景,中部拉萨地体北部邦多地区的同期岩石(图 1a)可解释为对应的岩浆弧记录。打加错地区新识别出的晚三叠世细碎屑岩、碳酸盐岩中部夹硅质岩组合(黄韶春等,2013)也支持这种可能性。但这种模型解释还需要更多的地球化学数据和更精细的沉积学研究工作。

5 结论

在南部拉萨地体西部打加错北获得的安山玢岩脉的锆石LA-ICP-MS U-Pb定年结果为204Ma,指示南部拉萨地体日喀则以西发生的晚三叠世岩浆活动记录,使得南部拉萨地体晚三叠世岩浆作用的空间分布范围从东部的工布江达延伸至西部的打加错一带,东西展布近800km。打加错安山玢岩属于高钾钙碱性-钾玄质系列,富集轻稀土元素,显示正异常的大离子亲石元素(Rb、Ba、Th和U)和负异常的高场强元素(Nb、Ta和Ti)。地球化学和沉积学记录指示打加错地区的安山质岩浆活动和南部拉萨地体其它地区同期的晚三叠世岩浆活动可能形成于与班公湖-怒江洋壳南向俯冲有关的弧后环境。

致谢    感谢河北省廊坊市区域地质调查研究所实验室在样品分离和挑选过程中给予的支持,同时感谢中国地质大学(武汉)刘勇胜教授、胡兆初、宗克清老师在锆石LA-ICP-MS定年和台湾大学李皓扬博士在锆石Hf同位素分析过程中的帮助;感谢纪伟强副研究员、夏瑛、李世民和王皓在论文写作过程中提供的指导和帮助;感谢两位匿名审稿人提出的评审意见。

参考文献
[1] Annen C, Blundy JD and Sparks RSJ. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505-539
[2] Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258
[3] Chen W, Ma CQ, Bian QJ, Hu YQ, Long TC, Yu SL, Chen DM and Tu JH. 2009. Evidences from geochemistry and zircon U-Pb geochronology of volcanic rocks of Yeba Formation in Demingding area, the east of Middle Gangdise, Tibet. Geological Science and Technology Information, 28(3): 31-40 (in Chinese with English abstract)
[4] Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC and Mo XX. 2014. Slab breakoff triggered ca.113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463
[5] Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson NJ, Ji JQ and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748
[6] Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196
[7] Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48
[8] Condie KC, Bowling GP and Allen P. 1986. Origin of granites in an Archean high-grade terrane, southern India. Contributions to Mineralogy and Petrology, 92(1): 93-103
[9] Dong X and Zhang ZM. 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrologica Sinica, 29(6): 1933-1948 (in Chinese with English abstract)
[10] Dong YH, Xu JF, Zeng QG, Wang Q, Mao GZ and Li J. 2006. Is there a Neo-Tethys' Subduction Record Earlier than arc volcanic rocks in the Sangri Group? Acta Petrologica Sinica, 22(3): 661-668 (in Chinese with English abstract)
[11] Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269
[12] Guo LS, Liu YL, Liu SW, Cawood PA, Wang ZH and Liu HF. 2013. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: Implications for early history of the Neo-Tethys. Lithos, 179: 320-333
[13] Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357
[14] He ZH, Yang DM, Zheng CQ and Huang YC. 2005. Geochemistry of the Indosinian granitoids in the Mamba area, Gangdise belt, Tibet and its tectonic significance. Geological Bulletin of China, 24(4): 354-359 (in Chinese with English abstract)
[15] He ZH, Yang DM, Zheng CQ and Wang TW. 2006. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys. Geological Review, 52(1): 100-106 (in Chinese with English abstract)
[16] Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews of Mineralogy and Geochemistry, 53(1): 27-62
[17] Huang SC, Gong C, Zhao XL and Cai QL. 2013. Firstly discovered Late Triassic radiolarian fossils in siliceous rocks in Dajiacuo area, Coqen Country, Tibet and their significance. Resources Survey & Environment, 34(4): 216-220 (in Chinese with English abstract)
[18] Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245
[19] Ji WQ. 2010. Geochronology and petrogenesis of granitic rocks from east segment of the Gangdese Batholith, southern Tibet. Ph. D. Dissertation. Beijing: Chinese Academy of Sciences, 1-146 (in Chinese)
[20] Kang ZQ, Xu JF, Wilde SA, Feng ZH, Chen JL, Wang BD, Fu WC and Pan HB. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200-201: 157-168
[21] Kostov I. 1973. Zircon morphology as a crystallogenetic indicator. Kristall und Technik, 8(1-3): 11-19
[22] Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q and Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79(Part B): 608-622
[23] Li C, Wang TW, Li HM and Zeng QG. 2003. Discovery of Indosinian megaporphyritic granodiorite in the Gangdise area: Evidence for the existence of Paleo-Gangdise. Geological Bulletin of China, 22(5): 364-366 (in Chinese with English abstract)
[24] Li LM, Lin SF, Xing GF, Davis DW, Davis WJ, Xiao WJ and Yin CQ. 2013. Geochronology and geochemistry of volcanic rocks from the Shaojiwa Formation and Xingzi Group, Lushan area, SE China: Implications forNeoproterozoic back-arc basin in the Yangtze Block. Precambrian Research, 238: 1-17
[25] Li SM, Zhu DC, Wang Q, Zhao ZD, Sui QL, Liu SA, Liu D and Mo XX. 2014. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284-297
[26] Li XH, Li WX, Li QL, Wang XC, Liu Y and Yang YH. 2010. Petrogenesis and tectonic significance of the similar to 850Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry. Lithos, 114(1-2): 1-15
[27] Liu QS, Jiang W, Jian P, Ye PS, Wu ZH and Hu DG. 2006. Zircon SHRIMP U-Pb age and petrochemical and geochemical features of Mesozoic muscovite granite in Ningzhong, Tibet. Acta Petrologica Sinica, 22(3): 643-652 (in Chinese with English abstract)
[28] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
[29] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546
[30] Ludwig KR. 2001. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 1a: 1-55
[31] Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract)
[32] Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract)
[33] Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67
[34] Murphy MA, Harrison TM, Durr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X. 1997. Significant crustal shortening in south-central Tibet prior to the Indo-Asian collision. Geology, 25: 719-722
[35] Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and Its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)
[36] Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 528-548
[37] Pearce JA and Stern RJ. 2006. Origin of back-arc basin magmas: Trace element and isotope perspectives. Geological, Biological, Chemical, and Physical Interactions, 63-68
[38] Peng JH, Zhao XL, He J, Huang SQ and Gong C. 2013. Discovery of Indosinian magmatic rocks and its significance in western Gangdise, Tibet. Journal of East China Institute of Technology, 36(Suppl.2): 21-26 (in Chinese with English abstract)
[39] Shinjo R, Chung SL, Kato Y and Kimura M. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research, Solid Earth (1978-2012), 104(B5): 10591-10608
[40] Shuto K, Ishimoto H, Hirahara Y, Sato M, Matsui K, Fujibayashi N, Takazawa E, Yabuki K, Sekine M, Kato M and Rezanov AI. 2006. Geochemical secular variation of magma source during Early to Middle Miocene time in the Niigata area, NE Japan: Asthenospheric mantle upwelling during back-arc basin opening. Lithos, 86(1-2): 1-33
[41] Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324
[42] Sui QL, Wang Q, Zhu DC, Zhao ZD, Chen Y, Santosh M, Hu ZC, Yuan HL and Mo XX. 2013. Compositional diversity of ca.110Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos, 168-169: 144-159
[43] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345
[44] Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang JS. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 23(5547): 1671-1677
[45] Wang Q, Zhu DC, Zhao ZD, Liu SA, Chung SL, Li SM, Liu D, Dai JG, Wang LQ and Mo XX. 2014. Origin of the ca.90Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 198-199: 24-37
[46] Wang YJ, Yang Q, Matsuoka A, Kobayashi K, Nagahashi T and Zeng QG. 2002. Triassic radiolarians from the Yarlung Zangbo suture zone in the Jinlu area, Zetang County, southern Tibet. Acta Micropalaeontologica Sinica, 19(3): 215-227 (in Chinese with English abstract)
[47] Wei YQ. 2014. The geochronology, geochemistry and petrogenesis of the volcanic rocks of Yeba Formation, southern Tibet. Master Degree Thesis. Beijing: China University of Geosciences, 1-59 (in Chinese with English summary)
[48] Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
[49] Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126
[50] Yoon SH, Sohn YK and Chough SK. 2014. Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Marine Geology, 352: 70-88
[51] Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007a. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdise terrane, Tibet: Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353 (in Chinese with English abstract)
[52] Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007b. Indosinian orogenesis of the Gangdise Terrane: Evidences from zircon u-pb dating and petrogenesis of granitoids. Earth Science, 32(2): 155-166 (in Chinese with English abstract)
[53] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research, 17(4): 615-631
[54] Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP Zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471
[55] Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC and Yuan SH. 2008. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China, 27(9): 1535-1550 (in Chinese with English abstract)
[56] Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312
[57] Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255
[58] Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454
[59] Zhu J, Du YS, Liu ZX, Feng QL, Tian WX, Li JP and Wang CP. 2006. Mesozoic radiolarian chert from the middle sector of the Yarlung Zangbo suture zone, Tibet and its tectonic implications. Science in China (Series D), 35(12): 1131-1139 (in Chinese)
[60] 陈炜, 马昌前, 边秋娟, 胡远清, 龙桃成, 喻水林, 陈冬明, 屠江海. 2009. 西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据. 地质科技情报, 28(3): 31-40
[61] 董昕, 张泽明. 2013. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义. 岩石学报, 29(6): 1933-1948
[62] 董彦辉, 许继峰, 曾庆高, 王强, 毛国政, 李杰. 2006. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么? 岩石学报, 22(3): 661-668
[63] 和钟铧, 杨德明, 郑常青, 黄映聪. 2005. 西藏冈底斯带门巴地区印支期花岗岩地球化学特征及其构造意义. 地质通报, 24(4): 354-359
[64] 和钟铧, 杨德明, 郑常青, 王天武. 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束. 地质论评, 52(1): 100-106
[65] 黄韶春, 龚臣, 赵希良, 蔡青龙. 2013. 西藏措勤县打加错地区硅质岩中首次发现晚三叠世放射虫化石及其意义. 资源调查与环境, 34(4): 216-220
[66] 纪伟强. 2010. 藏南冈底斯岩基东段花岗岩时代与成因. 博士学位论文. 北京: 中国科学院研究生院
[67] 李才, 王天武, 李惠民, 曾庆高. 2003. 冈底斯地区发现印支期巨斑花岗闪长岩——古冈底斯造山的存在证据. 地质通报, 22(5): 364-366
[68] 刘琦胜, 江万, 简平, 叶培盛, 吴珍汉, 胡道功. 2006. 宁中白云母二长花岗岩 SHRIMP锆石U-Pb年龄及岩石地球化学特征. 岩石学报, 22(3): 643-652
[69] 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148
[70] 莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张凤琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290
[71] 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533
[72] 彭建华, 赵希良, 何俊, 黄韶春, 龚臣. 2013. 西藏冈底斯西部地区印支期岩浆岩的发现及其意义. 东华理工大学学报(自然科学版), 36(S2): 21-26
[73] 王玉净, 杨群, 松冈笃, 小林健太, 武井雅彦, 曾庆高. 2002. 藏南泽当雅鲁藏布缝合带中的三叠纪放射虫. 微体古生物学报, 19(3): 215-227
[74] 魏友卿. 2014. 藏南叶巴组火山岩的年代学、地球化学及岩石成因. 硕士学位论文. 北京: 中国地质大学, 1-59
[75] 张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007a. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353
[76] 张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007b. 冈底斯印支期造山事件: 花岗岩类锆石U-Pb年代学和岩石成因证据. 地球科学, 32(2): 155-166
[77] 朱弟成, 潘桂堂, 王立全, 莫宣学, 赵志丹, 周长勇, 廖忠礼, 董国臣, 袁四化. 2008. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550
[78] 朱杰, 杜远生, 刘早学, 冯庆来, 田望学, 李金平, 王昌平. 2005. 西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义. 中国科学(D辑), 35(12): 1131-1139