岩石学报  2014, Vol. 30 Issue (8): 2279-2286   PDF    
缅甸硬玉岩锆石U-Pb年龄及其对新特提斯洋俯冲带流体活动的制约
祁敏1, 向华1, 张泽明1, 钟增球2    
1. 大陆构造与动力学国家重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 中国地质大学地球科学学院, 武汉 430074
摘要:硬玉岩大多产于蛇纹石化橄榄岩中,是洋壳俯冲带低温高压条件下流体与超基性岩相互作用的产物。缅甸硬玉岩产于新特提斯洋俯冲带中,是世界上最大和最重要的硬玉矿床。本文对一块缅甸紫色硬玉岩中的锆石进行了内部结构、微量元素和U-Pb定年研究。所研究的锆石晶形不规则,普遍遭受了不同程度的重结晶改造。锆石U-Pb年龄与Ti含量具有明显的正相关性,反映了受重结晶改造越强,Ti含量越低。受重结晶改造较弱的锆石区域具有弱的岩浆分带特征,较高的Th/U比值(0.11~0.29)和REE含量(ΣREE=607×10-6~2494×10-6),Ti含量在1.58×10-6~8.60×10-6之间,对应的锆石Ti温度为598~732℃,206Pb/238U年龄加权平均值为158±4Ma(MSWD=3.5,N=6),代表了硬玉岩中岩浆锆石结晶年龄的最小估计值;重结晶改造较强的锆石区域呈现出杂乱的补丁状分带,根据锆石Th/U比值、REE含量和Ti含量分为完全重结晶锆石和不完全重结晶锆石。完全重结晶锆石区域具有相对低的Th/U比值(集中在0.11~0.17),REE含量较低(ΣREE=143×10-6~362×10-6)并具有非常低的Ti含量(0.19×10-6~0.68×10-6),对应的锆石Ti温度为473~543℃,与硬玉岩形成的温度条件相符,给出的206Pb/238U加权平均年龄为79±2Ma(MSWD=0.88,N=5),代表了硬玉岩有关的流体活动的年龄。而不完全重结晶锆石区域的地球化学特征介于两者之间,Th/U比值在0.14~0.43,Ti含量多数在0.25~7.17之间,其年龄范围在91~142Ma之间,不具有明确的地质意义。结合已有的缅甸硬玉岩的年代学数据,我们认为在新特提斯洋俯冲过程中发生了多期次的流体交代作用,在147~79Ma期间形成了不同时代的硬玉岩。
关键词硬玉岩     锆石U-Pb年龄     水-岩相互作用     缅甸    
Zircon U-Pb ages of Myanmar jadeitite and constrain on the fluid in subduction zone of Neo-Tethys
QI Min1, XIANG Hua1, ZHANG ZeMing1, ZHANG ZenQiu2    
1. State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Abstract: The Jadeite rocks, which usually produced by the interaction between subduction-related fluids and ultramafic rocks (peridotite), are generally occurs in serpentinized ultramafic rocks in oceanic subduction zones. The Myanmar jadeitite is the largest and most important jadeitite deposits in the world, which occurs in a distinctive tectonic unit of the Tethys subduction zone. This paper presents a combined study of zircon geochronology, microstructure and trace elements in one Myanmar purple jadeitite. Most of the studied zircon grains occur as irregular crystals and experienced various degrees of recrystallization. Zircon U-Pb ages are positively correlated with Ti content indicating that the zircon with low Ti content are experienced higher degree of recrystallization. Unrecrystallized zircons are identified according CL images, they are characterized by relatively high Th/U ratios (0.11~0.29), relatively high REE concentrations (ΣREE=607×10-6~2494×10-6)and Ti contents between 1.58×10-6~8.60×10-6. Crystallization temperature estimated by Ti-in-zircon geothermometer are 598~732℃. The 206Pb/238U weighted mean age is 158±4Ma (MSWD=3.5, N=6), which should represents the protolith age. Recrystallization zircons, which show discrepant patches zoning, can be divided into recrystallized zircon and incomplete recrystallized zircon according to their Th/U ratio and REE contents. Recrystallized zircons have relatively low Th/U ratios (0.11~0.17), relatively low REE concentrations (ΣREE=143~362×10-6), and very low contents of Ti. Ti-in-zircon geothermometer gives the crystallization temperature of 473~543℃, which is consistent with the jadeite formation temperature. The 206Pb/238U weighted mean age is 79±2Ma (MSWD=0.88, N=5), which represents the formation age of the studied jadeitite. Incompletely recrystallized zircons give Th/U ratios of 0.14~0.43, Ce/Ce* ratios of 2.83~44.8 and Ti contents between 0.25~7.17. The U-Pb ages range between 91~142Ma and we believed such ages has no clear geological implications. The results, together with previous studies, suggest that multi stages of metasoamtism during the Neo-Tethys subduction and formed different generation of jadeitite between 147~79Ma.
Key words: Jadeitite     Zircon U-Pb age     Fluid-rock interactions     Myanmar    
1 引言

硬玉岩是一种稀少的岩石,大多呈脉状、块状、透镜状产于洋壳俯冲带蛇纹石化超基性岩中,常与蓝片岩和榴辉岩伴生(Harlow and Sorensen, 2005; Tsujimori and Harlow, 2012)。一般认为硬玉岩是在洋壳俯冲带低温高压条件下流体交代超基性岩的产物(Harlow and Sorensen, 2005; Harlow et al., 2007)。硬玉岩的形成机制有利于了解洋壳俯冲过程中流体、元素迁移/循环,其形成年龄可以为区域构造提供年龄约束(Tsujimori and Harlow, 2012; Yui et al., 2012; Flores et al., 2013)。缅甸硬玉岩是世界上最大和最重要的玉石矿床之一,位于印度板块和欧亚板块之间的新特提斯洋缝合带中(Harlow and Sorensen, 2005; Shi et al., 2008)。缅甸硬玉岩年代学研究对于了解新特提斯洋俯冲带流体作用过程具有重要意义。

目前,对硬玉岩形成机制可以分为两类:一种为直接从富Na-Al-Si的含水流体中结晶沉淀的产物;另一种为流体整体交代蛇纹岩中(火成岩)构造块体而形成硬玉岩(Yui et al., 2010; Tsujimori and Harlow, 2012)。但不管哪种形成模式,有一点是达成共识的,即硬玉岩是俯冲带中低温-高压条件下流体活动的产物。对低温热液作用的定年相对困难,因为很难找到合适的定年矿物。虽然对缅甸硬玉岩进行了大量的年代学研究工作,仍具有较大的争议,得到的年龄从158Ma到77Ma,跨度较大(Shi et al., 20082009; 丘志力等,2008; Yui et al., 2013; Qi et al., 2013)。锆石U-Pb定年作为最常用也是最理想的定年手段,被大量运用于缅甸硬玉岩。但锆石的成因较复杂,硬玉形成过程中存在不完全重结晶锆石,以及岩浆锆石和热液锆石目前缺乏明确区分标准(Bulle et al., 2010; Harley et al., 2007),导致对硬玉岩中锆石U-Pb年龄所代表的地质意义解释存在争议(原岩年龄或交代/热液年龄)(Shi et al., 20082009; 丘志力等,2008; Yui et al., 2013)。本文通过阴极发光等手段详细地研究缅甸硬玉岩中锆石内部结构、识别出不同成因的锆石区域,并结合锆石Th/U比、微量元素特征、锆石Ti温度计来解释硬玉岩中不同类型锆石U-Pb年龄所代表的地质意义。 2 地质背景

缅甸位于复杂构造转换带上,位于喜马拉雅造山带以南,代表印度板块向东俯冲到缅甸板块底部的苏门答腊-安达曼海沟以东(图 1)(Brunnschweiler,1966; Mitchell and McKerrow, 1975; Acharyya et al., 1990)。该区域主要由印缅山岭(Indo-Burman Range,IBR),缅甸中央盆地(Myanmar Central Basin,MCB)和东部的掸高原(Shan Plateau)组成。缅甸硬玉岩主要产于克钦邦帕敢地区,呈构造块状或脉状分布于实皆走滑断裂带西部的蛇绿混杂岩中。属于新特提斯洋中生代-早新生代的东俯冲带(Morley,2004; Mitchell et al., 2007; Shi et al., 20082009)。超基性岩属于印度板块的东蛇绿岩带(Ni et al., 1989)。矿体长5~100m不等,厚0.5~5m(Harlow and Sorensen, 2005; Shi et al., 2012)。毗邻混杂岩的围岩包括多硅白云母-蓝闪石片岩和黑硬绿泥石石英岩,以及含石榴石的角闪岩和含透辉石的大理岩等角闪岩相岩石(施光海等,2001)。硬玉岩脉与蛇纹石化超基性岩之间具明显的过渡层,从内到外分别为硬玉岩脉,钠质闪石层,绿泥石(金云母)片岩层,蛇纹石化超基性岩(祁敏等,2011)。在局部地方可见钠长石脉分布于硬玉岩与钠质角闪石层之间。硬玉岩脉、角闪石层等常被后期的钠长石脉切割(张位及,2002)。此外,局部可见早期硬玉岩被晚期硬玉岩脉穿切,指示了至少有两期硬玉化过程(Shi et al., 2012)。

图 1 缅甸北部构造地质图(据Shi et al., 2008修改) Fig. 1 Tectonic map of northern Myanmar(after Shi et al., 2008)
3 样品描述

本文研究的锆石定年样品X6为一块重约10kg的紫色-绿色缅甸硬玉岩样品,手标本上可见细粒绿色硬玉填充在粗粒紫色硬玉团块之间,边界不明显(图 2a)。该硬玉岩粗粒粒状变晶结构,紫色部分硬玉颗粒粗大,粒径约1~2mm之间,且较自形,内部裂隙及包裹体发育(图 2b)。而绿色部分粒度较小,在0.2~1mm之间(图 2c)。部分硬玉颗粒变形明显,发育有明显的波状消光(图 2d)。

图 2 缅甸硬玉岩样品照片及显微结构照片 Fig. 2 Photograph and photomicrographs of the studied Myanmar jadeitite
4 锆石U-Pb定年 4.1 分析方法

锆石样品利用标准重矿物分离技术分选,然后在双目镜下挑选出不同晶形、不同颜色、无明显包裹体和透明度好的锆石,在玻璃板上用环氧树脂固定,并抛光至锆石中心。在原位分析之前,通过双目镜和阴极发光(CL)图像详细研究锆石的晶体形貌和内部结构特征,以选择同位素分析的最佳点。锆石阴极发光(CL)照相在西北大学大陆动力学国家重点实验室的扫描电镜+Gatan阴极发光MonoCL3+上完成。

锆石U-Pb年龄和微量元素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用LA-ICP-MS方法测定。分析仪器为Geolas2005激光剥蚀系统和Agilent7500a电感耦合等离子质谱仪(ICP-MS),激光光束直径为32μm,频率为6Hz。应用标准锆石91500进行同位素分馏校正,分析方法及仪器参数见文献Yuan et al.(2004)和Liu et al.(2007)。锆石U-Pb同位素比值、表面年龄和元素含量计算采用ICPMSDataCal8.3软件,采用Andersen(2002)方法对普通Pb进行校正,锆石加权平均年龄计算及谐和图绘制采用ISOPLOT 3.0程序(Ludwig,2003)。 4.2 锆石U-Pb年龄结果

锆石粒径约200~300μm,晶形不规则状他形。CL图像(图 3)显示,锆石普遍遭受了不同程度的流体改造及重结晶作用。局部残留有重结晶改造较弱的区域,CL发光性相对较弱,并具有典型岩浆环带。被流体熔蚀改造和重结晶区域显示斑杂状分带,重结晶较完全的锆石区域CL发光较强,无明显环带。

图 3 锆石CL图像 Fig. 3 Cathodoluminescence(CL)images of the zircons

对样品X6中的13颗锆石进行了18个点的LA-ICPMS U-Pb年龄及微量元素测定(表 1表 2图 3)。重结晶改造较弱的岩浆锆石区域U含量在173×10-6~994×10-6之间,Th含量为20×10-6~432×10-6之间,Th/U比值相对较高,在0.11~0.43之间变化,多数集中在0.2~0.43之间。稀土元素含量较高(ΣREE=607×10-6~2494×10-6),且明显富集重稀土元素,具有显著的正Ce异常(Ce/Ce*>12.9),Eu异常不明显(图 4)。Ti含量在1.58×10-6~8.60×10-6之间,根据Ferry and Watson(2007)标定的Ti-in-zircon温度计计算所得的温度为598~732℃(图 5)。所有重结晶改造较弱的岩浆锆石区域分析点均落在谐和线附近,206Pb/238U年龄集中在160~154Ma之间,加权平均值为158±4Ma(1σ,MSWD=3.5),该年龄可以解释为硬玉岩中继承的岩浆锆石结晶年龄的最小估计值。被重结晶改造的锆石区域具有明显的杂乱无章的补丁状分带,U-Pb年龄与Ti含量及锆石Ti温度具有明显的正相关性(图 5)。根据锆石U-Pb年龄、Th/U比值、REE和Ti含量分为完全重结晶锆石和不完全重结晶锆石。完全重结晶锆石CL较亮,U和Th含量相对较低,分别在43×10-6~323×10-6和5×10-6~104×10-6之间,Th/U变化范围较大,在0.11~0.48之间,但多数集中在0.11~0.17之间。该区域具有低的稀土元素含量(ΣREE=143×10-6~362×10-6),富集HREE,Ce异常较弱(Ce/Ce*<4),这些特征与危地马拉(Yui et al., 2010)和日本(Mori et al., 2011; Yui et al., 2012)硬玉岩中热液锆石特征相似。此外,完全重结晶的锆石区域具有的Ti含量(0.19×10-6~0.68×10-6),对应的锆石Ti温度为473~543℃(图 5),与硬玉岩形成的温度条件相符(Mével and Kiénast , 1986; Goffé et al., 2000; Shi et al., 2003; Sorensen et al., 2006)。该区域6个分析点的206Pb/238U年龄集中在76~85Ma,加权平均值为79±2Ma(MSWD=0.88),代表了与硬玉岩的形成有关的流体活动年龄。不完全重结晶锆石区域在CL图像中呈斑杂状,地球化学特征均介于岩浆锆石区域和完全重结晶锆石区域之间,Th/U变化范围较大,在0.14~0.43之间,稀土元素含量ΣREE=343×10-6~832×10-6,富集HREE,Ce/Ce*=2.10~44.8,无明显Eu异常,Ti含量主要在0.25×10-6~7.17×10-6之间,206Pb/238U年龄分布在91~142Ma之间,年龄较为分散,为不完全重结晶的结果,没有明确的地质意义。

表 1 缅甸硬玉岩锆石U-Pb年龄结果 Table 1 The LA-ICP-MS zircon U-Pb isotopic data of Myanmar jadeitite

表 2 缅甸硬玉岩锆石稀土元素分析结果(×10-6) Table 2 REE compositions of zircons from the studied samples(×10-6)

图 4 缅甸硬玉岩锆石U-Pb年龄谐和图(a)和锆石REE配分模式(b,球粒陨石值据Sun and McDonough, 1989) Fig. 4 Concordia diagram of U-Pb age(a) and chondrite-normalized REE patterns(b,chondrite values after Sun and McDonough, 1989)of zircons from Myanmar jadeitite

图 5 缅甸硬玉岩锆石U-Pb年龄与Ti含量(a)以及Ti温度(b)关系图 Fig. 5 Plots of U-Pb ages vs. Ti contents(a) and U-Pb ages vs. Ti-in-zircon temperatures(b)for zircon in the Myanmar jadeitite
5 讨论 5.1 缅甸硬玉岩中锆石U-Pb年龄解释

Shi et al.(2008)对缅甸硬玉岩进行SHRIMP锆石U-Pb定年,并获得了三组不同年龄的锆石,其中第一组锆石具有典型的振荡环带,其206Pb/238U年龄为163±3Ma,这被认为是与硬玉密切相关的超基性岩的形成时代或蛇纹石化作用的时代。第二组锆石主要为第一组锆石的增生边,CL图像显示无分带特征并具有比较低的Th/U比值,其206Pb/238U年龄为147±3Ma,该年龄被解释为硬玉岩的形成年龄。第三组锆石具有最低Th/U比值,可以切穿前面两组锆石生长,单点分析给出的206Pb/238U年龄为122±5Ma,该年龄被认为记录了硬玉形成后的一次热事件。丘志力等(2008)对缅甸豆青种翡翠中的锆石进行LA-ICP-MS U-Pb定年,获得加权平均206Pb/238U年龄为158±2Ma,与Shi et al.(2008)所获得的第一组年龄在误差范围内一致。由于该锆石中发现有硬玉和绿辉石包体,丘志力等(2008)认为158±2Ma的年龄代表了缅甸硬玉岩的形成时代。Yui et al.(2013)对缅甸硬玉岩中锆石进行了SHRIMP U-Pb定年,并获得了三组年龄:第一组岩浆锆石(Type I)含钾长石、钠长石、绿泥石包裹体并具振荡/扇形环带,其206Pb/238U平均年龄为160±1Ma,解释为原岩形成年龄;第二组(Type II)锆石具有不均匀补丁状结构,其内含大量硬玉、钠质角闪石和钠锆石等包裹体,年龄为77±3Ma,被解释为硬玉形成时代;第三组锆石(Type III)含有硬玉和绿辉石包裹体并具有不均匀补丁状结构,其U-Pb年龄为153~105Ma,被解释为不完全重结晶的结果。

本文所研究的硬玉岩样品X6中的锆石普遍遭受了不同程度的流体改造及重结晶作用。根据锆石内部结构、238U/206Pb年龄和微量元素特征,本文缅甸硬玉岩锆石可以分为三组:重结晶改造较弱的岩浆锆石,其206Pb/238U平均年龄为158±4Ma,代表了岩浆锆石年龄的最小估计值,这与Shi et al.(2008)(163±3Ma)和Yui et al.(2013)(160±1Ma)所获结果在误差分析范围内一致。因此,我们认为缅甸硬玉岩原岩年龄约为160Ma。不完全重结晶锆石206Pb/238U年龄为91~142Ma之间,与Yui et al.(2013)在不完全重结晶锆石中获得年龄(153~105Ma)一致,不具有地质意义。近完全重结晶的锆石区域206Pb/238U年龄集中在76~85Ma之间,加权平均值为79±2Ma(MSWD=0.88),与Yui et al.(2013)获得的最小年龄(77±3Ma)在误差范围内一致。锆石U-Pb年龄与Ti含量和Ti温度具有明显的正相关性(图 5),年龄越小,Ti含量和温度越低。这很可能是由于锆石遭受低温热液改造和重结晶作用,改造程度越高,Ti含量越低,所对应的Ti温度越接近流体活动的实际温度。近完全重结晶的锆石区域Ti温度计给出的形成温度在473~543℃之间,与硬玉岩的形成温压条件(350~500℃和1~1.5GPa)相符(Mével and Kiénast,1986; Goffé et al., 2000; Shi et al., 2003; Sorensen et al., 2006),其平均年龄79±2Ma(MSWD=0.88)应该代表了与硬玉岩形成有关的热液活动年龄。 5.2 缅甸硬玉岩形成过程中多期次流体交代作用

Shi et al.(2008)对缅甸硬玉岩进行了SHRIMP 锆石U-Pb定年,并获得163±3Ma和147±3Ma的年龄,分别解释为是与硬玉密切相关的超基性岩的形成时代或蛇纹石化作用的时代,和硬玉岩形成年龄。但Yui et al.(2013)认为缅甸硬玉形成年龄为77Ma,160Ma代表了原岩年龄,153~105Ma的年龄为不完全重结晶锆石的年龄,没有地质意义。最近,Shi et al.(2014)对缅甸硬玉矿区的蓝片岩中蓝闪石进行了40Ar/39Ar定年,获得了152.4±1.5Ma的变质年龄,该年龄略大于硬玉岩年龄147±3Ma,作者解释为蓝闪石具有少量的过剩Ar。而缅甸矿区蓝片岩中多硅白云母的40Ar/39Ar年龄为147Ma(作者未发表数据),与147±3Ma的硬玉年龄,以及蓝闪石40Ar/39Ar年龄在误差范围内一致。这些结果表明,在缅甸硬玉岩矿存在晚侏罗纪与俯冲相关的变质热事件。

Qi et al.(2013)利用激光阶段加热40Ar/39Ar定年法对缅甸含角闪石硬玉岩中硬玉以及不同世代的角闪石进行直接定年,获得硬玉坪年龄为124±3Ma,与硬玉共生的钠质角闪石坪年龄为135±3Ma,而切割硬玉岩的晚期角闪岩中钠质角闪石给出了93±1Ma的坪年龄。这些角闪石与硬玉都是高压-低温条件下流体交代的产物(Shi et al., 2003)。因此,至少有一期硬玉岩形成于早白垩纪135~124Ma,并且缅甸硬玉岩记录了早白垩纪135~124Ma和晚白垩纪93Ma两期高压-低温交代变质作用(Qi et al., 2013)。本文所研究的硬玉岩X6中完全重结晶锆石区域获得的年龄为79±2Ma,与Yui et al.(2013)获得的最小一组年龄(77±3Ma)在误差范围内一致,应该代表了一期与硬玉形成有关的流体交代作用的年龄。

硬玉岩是洋壳俯冲带高压条件下流体交代超基性岩的产物,形成的温、压条件为350~500℃和1~1.5GPa(Mével and Kiénast,1986; Goffé et al., 2000; Shi et al., 2003; Sorensen et al., 2006)。因此硬玉岩的出现代表着有洋壳俯冲,且在深部有强烈的流体活动。缅甸硬玉岩位于印度板块和欧亚板块之间的新特提斯洋俯冲带(Yin and Harrison, 2000; Shi et al., 2014)。结合已有缅甸硬玉岩的年代学研究结果表明,在新特提斯洋俯冲过程中至少记录了4期高压-低温条件下的流体交代作用(147Ma,135~124Ma,93Ma和79Ma),并在147~79Ma期间形成了不同时代的硬玉岩。 6 结论

利用LA-ICP-MS方法对缅甸硬玉岩中的锆石进行U-Pb定年、微量元素以及锆石Ti温度计研究,获得重结晶改造较弱的岩浆锆石区域锆石Ti温度多数大于700℃,年龄为158±4Ma,代表了硬玉岩中继承岩浆锆石的结晶年龄;完全重结晶区域锆石Ti温度为473~543℃,年龄为79±2Ma,解释为与硬玉岩形成有关的流体活动的年龄。结合已有的缅甸硬玉岩年代学数据,我们认为在新特提斯洋俯冲过程中发生了多期次的流体交代作用,在147~79Ma期间形成了不同时代的硬玉岩。

致谢 感谢中国科学院地质与地球物理研究所陈意在文章撰写过程中的指导以及中国地质科学院地质研究所张建新研究员和戚学祥研究员在评审过程中提出的宝贵意见!

参考文献
[1] Acharyya S, Ray K and Sengupta S. 1990. Tectonics of the ophiolite belt from Naga Hills and Andaman Islands, India. Journal of Earth System Science, 99(2): 187-199
[2] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79
[3] Brunnschweiler RO. 1966. On the geology of the Indo-Burma ranges. Geological Society of Australia, 13: 127-194
[4] Bulle F, Brcker M, Gartner C and Keasling A. 2010. Geochemistry and geochronology of HP mélanges from Tinos and Andros, Cycladic blueschist belt, Greece. Lithos, 117(1-4): 61-81
[5] Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437
[6] Flores KE, Martens UC, Harlow GE, Brueckner HK and Pearson NJ. 2013. Jadeitite formed during subduction: In situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone. Earth and Planetary Science Letters, 371-372: 67-81
[7] Goffé B, Rangin C and Maluski H. 2000. Jade and associated rocks from jade mines area, northern Myanmar as record of a poly-phased high-pressure metamorphism. Eos, 81: F1365
[8] Harley SL, Kelly NM and Mller A. 2007. Zircon behaviour and the thermal histories of mountain chains. Elements, 3(1): 25-30
[9] Harlow GE and Sorensen SS. 2005. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. International Geology Review, 47(2): 113-146
[10] Harlow GE, Sorensen SS and Sisson VB. 2007. Jade. In: Groat LA (ed.). The Geology of Gem Deposit. Short Course Handbook Series 37, Mineralogical Association of Canada, Quebec, 207-254
[11] Liu XM, Gao S, Diwu CR, Yuan HL and Hu ZC. 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size. Chinese Science Bulletin, 52(9): 1257-1264
[12] Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronlogical Center Special Publication, 25-32
[13] Mével C and Kiénast JR. 1986. Jadeitite-kosmochlor solid solution and chromite, sodic amphiboles in jadeitites and associated rocks from Tawmaw (Burma). Bulletin de Minéralogie, 109: 617-633
[14] Mitchell A and McKerrow W. 1975. Analogous evolution of the Burma orogen and the Scottish Caledonides. Geological Society of America Bulletin, 86(3): 305-315
[15] Mitchell AHG, Htay MT, Htun KM, Win MN, Oo T and Hlaing T. 2007. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. Journal of Asian Earth Sciences, 29(5-6): 891-910
[16] Mori Y, Orihashi Y, Miyamoto T, Shimada K, Shigeno M and Nishiyama T. 2011. Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks, Kyushu, Japan. Journal of Metamorphic Geology, 29(6): 673-684
[17] Morley CK. 2004. Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia. Journal of the Geological Society, London, 161(5): 799-812
[18] Ni JF, Guzman-Speziale M, Bevis M, Holt WE, Wallace TC and Seager WR. 1989. Accretionary tectonics of Burma and the three-dimensional geometry of the Burma subduction zone. Geology, 17(1): 68-71
[19] Qi M, Xiang H, Zhong ZQ and Zhou HW. 2011. Fluid-ultramafic rock interaction and formation of jadeite rocks. Earth Science, 36(3): 511-520 (in Chinese with English abstract)
[20] Qi M, Xiang H, Zhong ZQ, Qiu HN, Wang H, Sun XL and Xu B. 2013. 40Ar/39Ar geochronology constraints on the formation age of the Myanmar jadeitite. Lithos, 162-163: 107-114
[21] Qiu ZL, Wu FY, Yang SF, Zhu M, Sun JF and Yang P. 2009. Age and genesis of the Myanmar jadeite: Constraints from U-Pb ages and Hf isotopes of zircon inclusions. Chinese Science Bulletin, 54(4): 658-668
[22] Shi GH, Cui WY, Liu J and Yu HX. 2001. The petrology of jadeite-bearing serpentinized peridotite and its country rocks from northwestern Myanmar (Burma). Acta Petrologica Sinica 17(3): 483-490 (in Chinese with English abstract)
[23] Shi GH, Cui WY, Tropper P, Wang CQ, Shu GM and Yu HX. 2003. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma. Contributions to Mineralogy and Petrology, 145(3): 355-376
[24] Shi GH, Cui WY, Cao SM, Jiang N, Jian P, Liu DY, Miao LC and Chu BB. 2008. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite. Journal of the Geological Society, 165(1): 221-234
[25] Shi GH, Jiang N, Liu Y, Wang X, Zhang ZY and Xu YJ. 2009. Zircon Hf isotope signature of the depleted mantle in the Myanmar jadeitite: Implications for Mesozoic intra-oceanic subduction between the Eastern Indian Plate and the Burmese Platelet. Lithos, 112(3-4): 342-350
[26] Shi GH, Harlow GE, Wang J, Wang J, Ng E, Wang X, Cao SM and Cui WY. 2012. Mineralogy of jadeitite and related rocks from Myanmar: A review with new data. European Journal of Mineralogy, 24(2): 345-370
[27] Shi GH, Lei WY, He HY, Ng YK, Liu Y, Liu YX, Yuan Y, Kang ZJ, Gen X. 2014. Superimposed tectono-metamorphic episodes of Jurassic and Eocene age in the jadeite uplift, Myanmar, as revealed by 40Ar/39Ar dating. Gondwana Research, in press
[28] Sorensen S, Harlow GE and Rumble III D. 2006. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. American Mineralogist, 91(7): 979-996
[29] Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in the Ocean Basin. Geological Society of London, Special Publication, 42(1): 313-345
[30] Tsujimori T and Harlow GE. 2012. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: A review. European Journal of Mineralogy, 24(2): 371-390
[31] Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280
[32] Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geoanalytical and Geostandard Newsletters, 28(3): 353-370
[33] Yui TF, Maki K, Usuki T, Lan CY, Martens U, Wu CM, Wu TW and Liou JG. 2010. Genesis of Guatemala jadeitite and related fluid characteristics: Insight from zircon. Chemical Geology, 270(1-4): 45-55
[34] Yui TF, Maki K, Wang KL, Lan CY, Iizuka Y, Wu CM, Wu TW, Nishiyama T, Martens U, Liou JG and Groov M. 2012. Hf isotope and REE compositions of zircon from jadeitite (Tone, Japan and north of the Motagua fault, Guatemala): Implications on jadeitite genesis and possible protoliths. European Journal of Mineralogy, 24(2): 263-275
[35] Yui TF, Fukoyama M, Iizuka Y, Wu CM, Wu TW, Liou JG and Grove M. 2013. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon. Lithos, 160-161: 268-282
[36] Zhang WJ. 2002. Jadeite deposit geology in Pharkant area, North Myanmar. Yunnan Geology, 21(4): 378-390 (in Chinese with English abstract)
[37] 祁敏, 向华, 钟增球, 周汉文. 2011. 流体-超镁铁质岩相互作用与硬玉岩的形成. 地球科学, 36(3): 511-520
[38] 丘志力, 吴福元, 杨树锋, 朱敏, 孙金凤, 杨萍. 2008. 缅甸翡翠形成时代和成因的锆石U-Pb年龄与Hf同位素制约. 科学通报, 53(24): 3104-3111
[39] 施光海, 崔文元, 刘晶, 于海峡. 2001. 缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究. 岩石学报, 17(3): 483-490
[40] 张位及. 2002. 缅甸北部帕敢地区翡翠矿床地质. 云南地质, 21(4): 378-390