岩石学报  2014, Vol. 30 Issue (6): 1695-1706   PDF    
拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄
付长垒1, 闫臻1 , 郭现轻2, 牛漫兰3, 夏文静3, 王宗起2, 李继亮4    
1. 中国地质科学院地质研究所, 大陆构造与动力学国家重点实验室, 北京 100037;
2. 中国地质科学院矿产资源研究所, 北京 100037;
3. 合肥工业大学资源与环境工程学院, 合肥 230009;
4. 中国科学院地质与地球物理研究所, 北京 100029
摘要:拉脊山口蛇绿混杂岩是分布于中祁连和南祁连构造带之间蛇绿混杂带的重要组成部分。该混杂带中的岩石种类相对齐全,各岩性间为构造接触;其中辉绿岩以岩块和岩墙两种形式产出。辉绿岩块SiO2含量为49.80%~50.13%,MgO含量为5.43%~5.64%,FeOT为10.96%~11.52%,TiO2含量较高(2.38%~2.62%);辉绿岩墙SiO2含量为43.41%~45.74%,MgO含量为9.04%~10.64%,FeOT为8.39%~9.96%,TiO2含量较低(0.89%~1.02%),二者均属拉斑玄武岩系列。其中辉绿岩块ΣREE为135.4×10-6~150.9×10-6,(La/Yb)N=3.51~4.03,具有右倾型稀土配分模式,富集Rb、Ba、K、Sr等大离子亲石元素及Th、Nb、Ta、Zr、Hf、Ti等高场强元素,呈现洋岛拉斑玄武岩特征;辉绿岩墙ΣREE为36.10×10-6~43.72×10-6,(La/Yb)N=1.12~1.20,稀土配分曲线相对平坦,呈现出与洋中脊玄武岩相似的稀土和微量元素配分模式。这两类辉绿岩样品均缺乏Nb、Ta和Ti负异常,可能分别形成于洋岛/海山和洋中脊环境。SHRIMP锆石U-Pb测年结果显示,辉绿岩块形成时代为491.0±5.1Ma。这些不同构造属性的辉绿岩可能形成于原特提斯洋向北俯冲消减过程。
关键词辉绿岩     洋岛/海山     洋中脊     蛇绿混杂岩     拉脊山    
Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane
FU ChangLei1, YAN Zhen1 , GUO XianQing2, NIU ManLan3, XIA WenJing3, WANG ZongQi2, LI JiLiang4    
1. State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Department of Resources and Environment, Hefei University of Technology, Hefei 230009, China;
4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: The Lajishankou ophiolitic mélange, which is an important ingredient of the ophiolitic mélange between the Central and the South Qilian terranes, contains varities of lithological units showing tectonic relationship between them. Diabases in this mélange occur as blocks and dykes respectively. The formers have SiO2 contents of 49.80%~50.13%, MgO contents of 5.43%~5.64%, FeOT contents of 10.96%~11.52% and relatively higher TiO2 contents of 2.38%~2.62%; the laters have SiO2 contents of 43.41%~45.74%, MgO contents of 9.04%~10.64%, FeOT contents of 8.39%~9.96% and low TiO2 contents of 0.89%~1.02%. They belong to tholeiitic rocks. The diabase blocks have high total REE contents (135.4×10-6~150.9×10-6) and (La/Yb)N ratios (3.51~4.03) with right-inclined REE patterns and enrichment in large ion lithophile elements (including Rb, Ba, K, Sr) and high field strength elements (including Th, Nb, Ta, Zr, Hf, Ti), showing typical features of OIB. However, the diabase dykes have low total REE contents (36.10×10-6~43.72×10-6) and (La/Yb)N ratios (1.12~1.20) and flat REE patterns, indicating similar character of MORB. In addition, diabase blocks and dykes are lack of negative Nb, Ta and Ti anomalies. SHRIMP zircon U-Pb dating of diabase block yields a weighted mean 206Pb/238U age of 491.0±5.1Ma, representing the age of crystallization. These characters suggest that the mafic diabases in the Lajishankou ophiolitic mélange were probably formed in ocean island/seamount and mid-ocean ridge environments, which were mixed with other lithological units during the northward subduction-accretion of the Proto-Tethys Ocean.
Key words: Diabase     Ocean island/Seamount     Mid-ocean ridge     Ophiolitic mé     lange     Lajishan Mountain    

1 引言

祁连造山带处于青藏高原的东北缘(图 1a),是典型的增生型造山带(Xiao et al., 2009),通常被划分为北、中、南3个构造带(冯益民等,2002图 1b)。祁连造山带中存在多条以蛇绿混杂岩为主的增生杂岩(李春昱等,1978肖序常等,1978邱家骧等,1997许志琴等,1994张建新等,1995曾广策等,1997史仁灯等, 2004Tseng et al., 2007张雪亭和杨生德,2007Xiao et al., 2009),其中拉脊山口蛇绿混杂岩是中祁连和南祁连构造带之间蛇绿混杂带的重要组成部分,由橄榄岩、蛇纹岩、辉长辉绿岩、枕状玄武岩、硅质岩、灰岩、杂砂岩及硅质泥岩等共同组成(闫臻等,2012)。该蛇绿混杂岩的形成环境一直存在较大争议,多数研究者认为其形成于裂陷槽或裂谷环境(左国朝等,1996曾广策等,1997邱家骧等,1997)。然而夏林圻等(1991)侯青叶等(2005)根据岩石地球化学特征认为拉脊山口蛇绿混杂岩形成于洋岛环境;王二七等(2000)通过区域构造分析研究认为,拉脊山蛇绿混杂岩是北祁连早古生代蛇绿岩的重要组成部分,它是北祁连早古生代蛇绿岩在古生代中期陆内变形阶段沿祁连中央冲付长垒等:拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄断带向南俯冲至中祁连元古代结晶地块之下并经过古生代晚期、中生代晚期和新生代多期构造变形抬升至地表,呈现“构造窗”特征。对于拉脊山口蛇绿混杂岩的时代,前人主要是根据其中的灰岩透镜体内的三叶虫化石将其形成时代定为晚寒武世(钟明杰,1994),但尚缺乏精确的同位素年代学研究。

图 1 研究区大地构造和地质简图 (a)-祁连造山带大地构造位置;(b)-祁连造山带构造单元划分及本文研究区位置;(c)-拉脊山区域地质简图(据地质部青海省地质局区域地质测量队,1964a,b;甘肃省地质局第一区域地质测量队,1972);(d)-拉脊山口蛇绿混杂岩地质图Fig. 1 Tectonic and geological maps of the study area(a)-location of Qilian Orogenic Belt;(b)-tectonic units of Qilian Orogenic Belt and location of the study area;(c)-geological sketch map of Lajishan;(d)-geological map of Lajishankou ophiolitic mélange

① 地质部青海省地质局区域地质测量队.1964a.1:20万西宁幅区域地质调查报告
② 地质部青海省地质局区域地质测量队.1964b.1:20万乐都幅区域地质调查报告
③ 甘肃省地质局第一区域地质测量队.1972.1:20万循化幅区域地质调查报告

本文在对拉脊山口蛇绿混杂岩的空间展布特征及相互关系研究基础上,对拉脊山口蛇绿混杂岩中的辉绿岩进行了岩石学、地球化学分析研究和SHRIMP锆石U-Pb测年,进一步探讨其形成的构造背景以及早古生代祁连造山带的演化历史。

2 地质背景和蛇绿混杂岩的地质特征

拉脊山位于祁连造山带南部,是南祁连和中祁连的接合带,西起日月山,东至民和县官亭镇,全长约200km,宽10~20km,是一条呈NNW-SSE向并向NE凸出的弧形山脉(图 1b)。南、北两侧分别与化隆岩群和湟源群呈断层接触。其中化隆岩群是南祁连地体的重要构造岩石单元,主要由新元古代花岗片麻岩、斜长角闪岩、变粒岩、早古生代石英岩、云母石英片岩、辉长岩、晚古生代花岗岩等共同组成,具有增生杂岩特征(闫臻等,2011);湟源群由古元古代低-中级变质碎屑岩和碳酸盐岩夹火山岩共同组成,它与元古代花岗岩、古生代花岗岩和阿拉斯加型杂岩体一起成为中祁连“日本型”岛弧地体(雍拥等,2008)。在该增生杂岩和岛弧地体之间主要出露寒武-奥陶纪火山-沉积岩系,局部地段出露有志留系和泥盆系。其中寒武系仅发育中、上寒武统,以中基性熔岩为主夹火山碎屑岩、硅质岩和碳酸盐岩透镜体为特征;奥陶系相对于寒武系而言,其分布范围较小,主要为中基性熔岩、凝灰岩及碎屑岩组合;志留系为一套陆相碎屑岩,由砾岩、含砾粗砂岩及粉砂岩构成,发育槽状斜层理。区域地质调查结果表明,在寒武系、奥陶系中还发育有不同规模的橄榄岩、蛇纹岩、辉石岩等超基性岩块。
① 闫臻等.2011.秦祁昆结合部成矿构造环境调查研究报告

野外地质调查和走廊地质填图(图 1d)共同表明,在平安县南侧拉脊山口一带出露的寒武系由橄榄岩、辉石岩、蛇纹岩、辉长岩、辉绿岩、玄武岩、硅质岩、灰岩、砂岩和砾岩共同构成,呈现出蛇绿混杂岩特征(闫臻等,2012)。它们常以构造透镜体形式分布于前人所厘定的“震旦系青石坡组”砂岩、泥岩和硅质岩组合中(图 1d)。这些砂岩、砾岩和硅质岩组合构成了拉脊山口蛇绿混杂岩的基质,并发育有正粒序层、小型波纹层理、底冲刷面和重荷模(图 2a,b)等浊流沉积的典型标志(Bouma,1962)。显微结构分析表明,橄榄岩和辉石岩均发生较明显的蛇纹石化,在橄榄岩中可见蛇纹石化网脉,同时在蛇纹岩中可见橄榄岩残留体;玄武岩发生了较强烈的碳酸盐化和绿泥石化。

图 2 拉脊山口蛇绿混杂岩复理石基质露头照片(a)-砂岩底冲刷面和粒序层理构造;(b)-重荷模构造Fig. 2 Photographs of flysch in the Lajishankou ophiolitic mélange(a)-s and stone with erosional base and graded bedding;(b)-load structure

辉绿岩在拉脊山口蛇绿混杂岩中普遍发育,根据其产出形式可分为两类:一类以构造岩块形式产出,与玄武岩之间呈断层接触(图 3a),另一类呈岩墙形式侵入于玄武岩中。野外露头可见辉绿岩墙与玄武岩块紧密相伴,并与复理石呈断层接触(图 3c)。辉绿岩块呈灰绿色,块状构造,细粒显晶质结构,具有典型的辉长辉绿结构(图 3b),主要矿物有斜长石(60%)、辉石(30%)及少量绿泥石(5%)和铁钛氧化物(5%)。斜长石为板状自形晶,发育卡钠复合双晶,粒度0.5~1.5mm;辉石为短柱状,半自形-他形晶,粒度为0.3~0.8mm,充填于斜长石格架中,部分发生次闪石化和绿泥石化,但未见到碳酸盐矿物生成。

图 3 拉脊山口蛇绿混杂岩中辉绿岩露头和显微结构照片(a)-辉绿岩块;(b)-辉长辉绿结构;(c)-辉绿岩墙;(d、f)-辉绿结构;(e、g、h)-辉绿岩墙与玄武岩侵入接触界面.Cpx-单斜辉石;Pl-斜长石;Hbl-角闪石;Py-黄铁矿;Mag-磁铁矿;Cal-方解石Fig. 3 Outcrops and micrographs of diabases in the Lajishankou ophiolitic mélange(a)-diabase block;(b)-gabbroic-diabasic texture;(c)-diabase dyke;(d,f)-diabasic texture;(e,g,h)-intrusive contact between diabse dyke and basalt. Cpx-clinopyxene; Pl-plagioclase; Hbl-hornblende; Py-pyrite; Mag-magnetite; Cal-calcite

绿岩墙在露头上为灰绿色、灰黑色,块状构造,细粒显晶质结构,可见清晰的反应边,从中心向边部可见长石的粒度逐渐由粗变细的特征(图 3e,g,h)。显微镜下观察,辉绿岩墙具有典型辉绿结构(图 3d,f),主要矿物为斜长石(55%)、角闪石(25%)、辉石(15%)和少量绿泥石,副矿物主要为黄铁矿和磁铁矿。斜长石为自形晶,发育卡钠复合双晶,粒度为0.5~2mm;辉石为半自形-他形晶,充填于斜长石围成的三角格架内,辉石多发生次闪石化和绿泥石化,已蚀变为纤闪石、透闪石或绿泥石。此外,部分样品中发育方解石。

3 样品采集及测试分析方法

野外采集了8件辉绿岩块和辉绿岩墙岩石样品供地球化学分析,1件辉绿岩块(11LJS81)大样供SHRIMP锆石U-Pb测年(~20kg)。在显微观察基础上,选择了蚀变相对较弱的3件辉绿岩块(11LJS87、88和90)和4件辉绿岩墙样品(11LJS78、79、93和94)分别进行了地球化学分析。主量、微量和稀土元素含量测试工作均在中国地质科学院国家测试中心完成。主量元素使用Phillips 4400 X-荧光光谱仪测试,FeO用容量滴定法测定,烧失量(LOI)通过对样品加热至1000℃后1h称量其重量变化获得。微量元素和稀土元素采用等离子体质谱仪(ICP-MS)来测定。标样采用GSR1、GSR2和GSR3,主量元素分析误差小于5%,微量元素分析误差<10%。

锆石分选在河北省廊坊地质调查研究院选矿实验室完成。首先将辉绿岩块样品经过粉碎和重选,分选出纯度较高的锆石,然后在双目镜下挑选出锆石样品。用环氧树脂将约250粒锆石和标样固定成圆饼状,用不同型号砂纸和磨料将锆石磨去一半并抛光、镀金。在北京离子探针中心进行锆石阴极发光成像,SHRIMP锆石U-Pb测年在中国地质科学院北京离子探针中心SHRIMP Ⅱ上完成,样品分析流程及原理参见Williams(1998)宋彪等(2002)。测定的206Pb/238U比值用TEMORA1(417Ma)标准样品进行校正。测试过程中每隔3个样品点测定1次标样。普通Pb采用204Pb校正,单次测量的数据点误差为1σ,数据处理使用ISOPLOT软件(Ludwig,2003),置信度为95%。

4 地球化学特征

岩石地球化学成分分析结果见表 1

表 1 拉脊山口蛇绿混杂岩中辉绿岩的主量元素(wt%)、微量元素(×10-6)分析结果Table 1 Major(wt%) and trace(×10-6)elements of diabases in the Lajishankou ophiolitic mélange

在元素Zr与其他元素的相关图解中,Ba、Sr等大离子亲石元素与Zr无相关性(图 4a,b),而Th、Nb和Ti等高场强元素以及稀土元素(如Yb)与Zr之间呈现出正相关(图 4c-f)。鉴于高场强元素和稀土元素在弱蚀变过程中基本不发生迁移(Rollinson,1993),我们主要选取这些元素对辉绿岩形成构造环境进行分析判别。

图 4 拉脊山口蛇绿混杂岩中辉绿岩不同元素相关性图解Fig. 4 Correlation diagrams of trace elements for diabases in the Lajishankou ophiolitic mélange

在Zr/TiO2×0.0001-SiO2图解中(图 5a),所有辉绿岩分析样品均投在亚碱性系列区域内;在SiO2-FeOT/MgO图解中(图 5b),除样品11LJS93落入钙碱性系列范围,其它均落入拉斑玄武岩系列区域内。这表明,拉脊山口蛇绿混杂岩中的辉绿岩属于拉斑玄武岩系列。

图 5 拉脊山口蛇绿混杂岩中辉绿岩Zr/TiO2×0.0001-SiO2(a,据Winchester and Floyd, 1977)和SiO2-FeOT/MgO(b,据Miyashiro,1974)图解Fig. 5 Zr/TiO2×0.0001-SiO2 plot(a,after Winchester and Floyd, 1977) and SiO2-FeOT/MgO plot(b,after Miyashiro,1974)of diabases in the Lajishankou ophiolitic mélange

4.1 主量元素

辉绿岩块和辉绿岩墙的主量元素含量明显不同(表 1)。其中辉绿岩块(11LJS87,88和90)SiO2含量为49.80%~50.13%,MgO含量为5.43%~5.64%,FeOT为10.96%~11.52%,TiO2含量较高(2.38%~2.62%),Mg#值为46.84~47.13。辉绿岩墙(11LJS78,79,93和94)SiO2含量为43.41%~45.74%,MgO含量为9.04%~10.64%,FeOT为8.39%~9.96%,TiO2含量低(0.89%~1.02%),Mg#值为65.13~65.99。此外,辉绿岩块的烧失量为1.27%~1.95%,辉绿岩墙的烧失量为3.19%~7.25%,表明辉绿岩墙发生明显的蚀变作用,这与显微观察结果相一致。

4.2 微量及稀土元素特征

辉绿岩块样品稀土元素总量较高,ΣREE为135.4×10-6~150.9×10-6,LREE/HREE=3.87~4.14,(La/Yb)N=3.51~4.03,δEu=0.92~0.99(表 1)。在球粒陨石标准化稀土元素曲线图上(图 6a),稀土元素呈右倾配分模式,具有明显的轻、重稀土元素分馏特征和微弱负Eu异常,与洋岛拉斑玄武岩(Wilson,1989)配分曲线相似(图 6a)。在原始地幔标准化微量元素图中(图 6b),此类样品相对于N-MORB富集Th、Nb、Ta、Zr、Hf、Ti等高场强元素,具有与夏威夷洋岛拉斑玄武岩(Wilson,1989)相一致的微量元素地球化学特征。

图 6 拉脊山口蛇绿混杂岩中辉绿岩球粒陨石标准化稀土元素配分曲线(a、c)和原始地幔标准化微量元素蛛网图(b、d)球粒陨石、原始地幔、N-MORB和E-MORB值引自Sun and McDonough, 1989;OIT引自Hauff et al., 1997Fig. 6 Chondrite-normalized REE diagrams(a,c) and primitive mantle-normalized spider diagrams(b,d)of diabases in the Lajishankou ophiolitic mélange Chondrite,primitive mantle,N-MORB and E-MORB are from Sun and McDonough, 1989; OIT values are from Hauff et al., 1997

辉绿岩墙样品稀土元素含量较低,ΣREE为36.10×10-6~43.72×10-6,LREE/HREE=1.78~1.98,(La/Yb)N=1.12~1.20,δEu=1.04~1.11(表 1)。在球粒陨石标准化稀土元素曲线图上(图 6c),辉绿岩墙样品具有相对平坦的稀土配分曲线,显示出弱正Eu异常,处于E-MORB和N-MORB之间;在原始地幔标准化微量元素配分曲线图(图 6d)上,该类辉绿岩具有与MORB(Sun and McDonough, 1989)相似的地球化学特征。

5 锆石SHRIMP年代学

辉绿岩块(11LJS81)中的锆石为透明至半透明,形态不规则,多为自形、半自形柱状,少数为他形粒状;长一般在50~250μm之间,长宽比多大于1.5。阴极发光(CL)图像(图 7a)显示,锆石多呈深灰黑色,环带构造基本不发育,多发育窄的白色或灰白色亮边;少数锆石呈现斑杂和港湾状,可能是由于U含量过高,锆石发生蜕晶化而引起结构被破坏(Nasdala et al., 19952001)。

图 7 拉脊山口蛇绿混杂岩中辉绿岩(11LJS81)锆石阴极发光图像(a)和SHRIMP U-Pb年龄谐和图(b)Fig. 7 Cathodoluminescence(CL)images(a) and SHRIMP U-Pb concordia diagram(b)of zircon from diabase(11LJS81)in the Lajishankou ophiolitic mélange

本文对16粒锆石进行了SHRIMP测年,测试结果见表 2。锆石U和Th含量较高,分别为962×10-6~3724×10-6和1062×10-6~11462×10-6,Th/U比值为0.93~3.18。结合锆石反射光、透射光和阴极发光图像特征,所分析锆石均为岩浆锆石(Hanchar and Miller, 1993; Hoskin and Black, 2000)。

表 2 拉脊山口蛇绿混杂岩中辉绿岩(11LJS81)锆石SHRIMP U-Pb定年数据Table 2 Zircon SHRIMP U-Pb data of a diabase(11LJS81)in the Lajishankou ophiolitic mélange

测试结果显示锆石U-Pb年龄相对集中(图 7b),其中1粒锆石(测点16.1)206Pb/238U表面年龄为515.8±7.3 Ma,明显偏离谐和线,可能是铅丢失所致。5粒锆石(测点3.1、6.1、10.1、13.1和14.1)的206Pb/238U年龄不谐和程度均大于10%,位于谐和线下方,U含量(1702×10-6~3724×10-6)和Th(3402×10-6~11462×10-6)含量明显高于其他10粒锆石(U=1062×10-6~1731×10-6,Th=1182×10-6~2758×10-6)。由于锆石中的高含量U、Th会引起锆石发生蜕晶化,进而引起锆石放射性成因铅丢失,使得所测得的锆石206Pb/238U年龄不准确甚至没有地质意义(Nasdala et al., 19952001)。因此,剔除上述6个不谐和年龄,其余10颗锆石的206Pb/238U年龄介于470.4±8.4Ma和501.5±9.1Ma之间,并且都位于谐和线附近,其206Pb/238U加权平均年龄491.0±5.1Ma(n=10,MSWD=1.6)(图 7b),该年龄可能代表了辉绿岩的岩浆结晶年龄。

6 讨论 6.1 拉脊山口蛇绿岩的形成构造环境

蛇绿岩被认为是洋中脊扩张或板块俯冲消减过程的产物(Anonymous,1972; Leitch,1984; Pearce et al., 1984),其岩石组合主要为超镁铁质岩、辉长岩、辉绿岩、枕状玄武岩和深海沉积物(Brongniart,1813; Anonymous,1972; Hess,1955; Moores,1982),它常以洋壳或上地幔残片与其它不同来源岩块(如海山/洋岛、大洋台地和外来地体等)在陆-陆和弧-陆碰撞以及洋中脊-海沟相互作用或俯冲增生造山过程中拼贴至大陆边缘(Dewey and Bird, 1971; Coleman,1977; Nicolas,1989)。玄武岩和辉绿岩是造山带蛇绿混杂岩中最为常见的岩石,且形成于同一构造背景的辉绿岩和玄武岩具有相似的地球化学特征。因此,蛇绿混杂岩内玄武岩和辉绿岩的研究,可为鉴别造山带内蛇绿混杂岩组成特征和蛇绿岩形成构造环境提供直接证据。

拉斑系列玄武岩可形成于多种构造环境,如洋岛、洋中脊、岛弧、边缘海盆、活动大陆边缘和稳定大陆。其中洋岛、洋中脊和岛弧拉斑玄武岩的SiO2含量(分别为45%~65%、47%~51%和46%~76%)、FeOT/MgO比值(分别为0.5~2.5、0.8~2.1和1~7)及TiO2含量(分别为0.2%~5.0%,0.7%~2.3%和0.3%~2.0%)差异显著(Miyashiro,1975)。拉脊山口蛇绿混杂岩中辉绿岩SiO2、FeOT、MgO和TiO2含量差异较小(表 1),其中辉绿岩块SiO2含量为49.80%~50.13%,FeOT/MgO为2.02~2.04,TiO2为2.38%~2.62%;辉绿岩墙SiO2含量为43.41%~45.74%,FeOT/MgO为0.93~0.96,TiO2为0.89%~1.02%。它们分别呈现出与洋岛拉斑玄武岩和洋中脊拉斑玄武岩相似的地球化学组成特征。

在Zr/4-Y-Nb×2构造判别图中(图 8a),辉绿岩块样品落入板内拉斑玄武岩(WPT)和岛弧玄武岩(IAB)区域,辉绿岩墙样品落入正常洋中脊(N-MORB)和火山弧玄武岩(IAB)区域内;在Th-Ta-Hf/3判别图中(图 8b),辉绿岩块样品落在E-MORB和板内拉斑玄武岩(WPT)区域内,辉绿岩墙样品全部落入正常洋中脊(N-MORB)区域内;在Zr-Zr/Y图解中(图 8c),辉绿岩块样品落在板内玄武岩(WPB)区域内,辉绿岩墙样品落在洋中脊(MORB)和岛弧玄武岩(IAB)区域内;在Th/Yb-Nb/Yb图解中(图 8d),辉绿岩块样品落在OIB和E-MORB重叠区域内,辉绿岩墙样品落在N-MROB和E-MORB区域。另外,微量元素分析结果显示,辉绿岩样品明显缺乏汇聚板块边缘基性火山岩所特有的强烈亏损Nb、Ta和Ti的地球化学特征(图 6b,d),而且这些辉绿岩样品在Th/Yb-Nb/Yb图解中均位于地幔演化线附近(图 8),表明拉脊山蛇绿混杂岩中的辉绿岩在形成过程中均未受到俯冲作用的影响(Pearce,2008)。根据这些特征,拉脊山口蛇绿混杂岩中的辉绿岩块和岩墙分别具有OIB和MORB特征。

图 8 拉脊山口蛇绿混杂岩中辉绿岩构造环境判别图解(a)Zr/4-Y-Nb×2(据Meschede,1986);(b)Th-Ta-Hf(据Wood,1980);(c)Zr-Zr/Y(据Pearce and Norry, 1979);(d)Th/Yb-Nb/Yb图解(据Pearce and Peate, 1995; OIB、E-MORB、N-MORB和SSZ成分区域引自Colakoglu et al., 2012).WPA-板内碱性玄武岩;WPT-板内拉斑玄武岩;WPB-板内玄武岩;E-MORB-富集型洋中脊玄武岩;N-MORB-正常洋中脊玄武岩;IAB-岛弧玄武岩;CAB-钙碱性玄武岩Fig. 8 Tectonic setting discrimination diagrams of diabases in the Lajishankou ophiolitic mélange(a)Zr/4-Y-Nb×2(after Meschede,1986);(b)Th-Ta-Hf(after Wood,1980);(c)Zr-Zr/Y(after Pearce and Norry, 1979);(d)Th/Yb-Nb/Yb(after Pearce and Peate, 1995; OIB,E-MORB,N-MORB and SSZ fields are from Colakoglu et al., 2012). WPA-within-plate alkali basalts; WPT-within-plate tholeiites; WPB-within-plate basalts; E-MORB-enriched mid-ocean ridge basalts; N-MORB-normal mid-ocean ridge basalts; IAB-isl and arc basalts; CAB-calc-alkaline basalts

总之,拉脊山口蛇绿混杂岩中辉绿岩块和辉绿岩墙分别具有类似洋岛玄武岩(OIB)和洋中脊玄武岩(MORB)地球化学特征,缺乏Nb、Ta和Ti负异常;玄武岩块也表现为OIB和MORB两种岩石地球化学特征,且缺乏与俯冲作用密切相关的Nb、Ta和Ti负异常(未发表数据)。显然,拉脊山口蛇绿混杂岩中的玄武岩和辉绿岩均缺乏与俯冲作用密切相关的SSZ型蛇绿岩所特有的Nb、Ta和Ti负异常(Shervais,2001; Dilek and Furnes, 2011),进一步说明该蛇绿混杂岩中的玄武岩和辉绿岩并非形成于与俯冲作用密切的岛弧、弧前或弧后环境。此外,侯青叶等(2005)对拉脊山寒武系中的玄武岩进行了较为系统岩石地球化学分析,结果表明这些玄武岩为OIB型玄武岩。这些事实共同表明,拉脊山口蛇绿混杂岩中的OIB型辉绿岩和玄武岩可能是寒武纪时期原特提斯洋中洋岛或海山的重要组成部分,而MORB型辉绿岩和玄武岩表明寒武纪时期原特提斯洋中洋中脊的存在;寒武纪时期,原特提斯洋因洋壳向北发生俯冲消减使得这些洋岛/海山在海沟部位因受到刮削作用和“阻塞作用”,进而与MORB型辉绿岩、玄武岩一起相互混杂,从而构成一套既有OIB型又有MORB型2种不同类型的岩石组合。

6.2 形成时代

SHRIMP锆石U-Pb测年结果表明,拉脊山口蛇绿混杂岩中辉绿岩块的结晶年龄为491.0±5.1Ma。钟明杰(1994)在拉脊山火山-沉积岩系中的灰岩透镜体中发现了寒武纪三叶虫化石。闫臻等(2012)获得拉脊山口蛇绿混杂岩的复理石杂砂岩基质碎屑锆石主年龄峰值462±6Ma和最年轻碎屑锆石U-Pb年龄428±8Ma。这些事实表明,拉脊山口蛇绿混杂岩中的蛇绿岩可能形成于晚寒武世,该蛇绿混杂岩可能最终形成于中志留世,同时也进一步说明拉脊山地区的俯冲增生造山作用在晚奥陶世时期依然存在,可能持续到志留纪末期。

7 结论

(1)拉脊山口蛇绿混杂岩中存在两类辉绿岩,一类以岩块形式产出,另一类以岩墙形式产出并侵入于玄武岩。辉绿岩块具有典型洋岛拉斑玄武岩地球化学特征,为洋岛/海山的重要组成;辉绿岩墙与洋中脊玄武岩地球化学特征相似,可能形成于洋中脊。

(2)SHRIMP锆石U-Pb测年表明拉脊山口蛇绿混杂岩中辉绿岩块形成于491.0±5.1Ma,表明拉脊山蛇绿混杂岩中包含有晚寒武世洋壳。

(3)结合区域地质资料,拉脊山口蛇绿混杂岩可能最终形成于志留纪,俯冲增生造山作用在拉脊山地区可能持续到志留纪末期。


致谢  合肥工业大学资源与环境工程学院刘国生教授和吴齐博士在野外工作中给予了指导和帮助;杨淳副研究员进行了锆石测试靶制作和锆石CL图像照相;贵刊编辑俞良军博士和匿名评阅人对本文提了建设性修改意见;在此一并表示感谢!

参考文献
[1] Anonymous. 1972. Penrose field conference on ophiolites. Geotimes, 17: 24-25
[2] Bouma AH. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier, 1-167
[3] Brongniart A. 1813. Essai d'une classification minéralogique des roches mélangées. Journal des Mines, 34: 5-48
[4] Colakoglu AR, Sayit K, Günay K and Gncüoglu MC. 2012. Geochemistry of mafic dykes from the Southeast Anatolian ophiolites, Turkey: Implications for an intra-oceanic arc-basin system. Lithos, 132-133: 113-126
[5] Coleman RG. 1977. Ophiolites. New York: Springer-Verlag, 1-4
[6] Dewey JF and Bird JM. 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76(14): 3179-3206
[7] Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Invited Review Article, 123(3-4): 387-411
[8] Feng YM, Cao XD, Zhang EP, Hu YX, Yang JL, Pan XP, Jia QZ and Li WM. 2002. Fragment, Process and Mechanism of the Western Qinling Orogenic Belt. Xi'an: Xi'an Cartographic Press, 263 (in Chinese)
[9] Hanchar JM and Miller CF. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology, 110(1-3): 1-13
[10] Hauff F, Hoernle K, Schmincke HU and Werner R. 1997. A Mid Cretaceous origin for the Gálapagos hotspot: Volcanological, petrological and geochemical evidence from Costa Rican oceanic crustal segments. Geologische Rundschau, 86(1): 141-155
[11] Hess HH. 1955. Serpentines, orogeny and epeirogeny. Geological Society of America Special Paper, 62: 391-408
[12] Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18: 423-439
[13] Hou QY, Zhang HF, Zhang BR, Zhao ZD and Zhu YH. 2005. Characteristics and tectonic affinity of Lajishanpaleo-mantle in Qilian Orogenic Belt: A geochemical study of basalts. Earth Science, 30(1): 61-70 (in Chinese with English abstract)
[14] Leitch EC. 1984. Island arc elements and arc-related ophiolites. Tectonophysics, 106(3-4): 177-203
[15] Li CY, Liu YW, Zhu BQ, Feng YM and Wu HQ. 1978. Tectonic evolution of Qinling and Qilian Mountains. In: Contributions to 26th International Geological Congress (1). Beijing: Geological Publishing House, 174-187 (in Chinese)
[16] Ludwig KR. 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, (4): 1-70
[17] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218
[18] Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355
[19] Miyashiro A. 1975. Classification, characteristics, and origin of ophiolites. The Journal of Geology, 83(2): 249-281
[20] Moores EM. 1982. Origin and emplacement of ophiolites. Reviews of Geophysics, 20(4): 735-760
[21] Nasdala L, Irmer G and Wolf D. 1995. The degree of metamictization in zircons: A Raman spectroscopic study. European Journal of Mineralogy-OhneBeihefte, 7(3): 471-478
[22] Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T and Kober B. 2001. Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141(2): 125-144
[23] Nicolas A. 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Kluwer Academic Publishers, 1-367
[24] Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Yand Nb variations in volcanic rocks. Contributions to mineralogy and Petrology, 69(1): 33-47
[25] Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society of London, Special Publications, 16(1): 74-94
[26] Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285
[27] Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48
[28] Qiu JX, Zeng GC, Wang SY and Zhu YH. 1997. Early Paleozoic Marine Volcanic Rocks and Mineraliztion in Laji Mountains. Wuhan: China University of Geosciences Press, 1-118 (in Chinese with English abstract)
[29] Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Essex: Longman Scientific Technical, 1-352
[30] Shi RD, Yang JS, Wu CL and Wooden J. 2004. First SHRIMP dating for the formation of the Late Sinian Yushigou ophiolite, North Qilian Mountains. Acta Geologica Sinica, 78(5): 649-657 (in Chinese with English abstract)
[31] Shervais JW. 2001. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2(1): doi: 10.1029/2000GC000080
[32] Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.1): 26-60 (in Chinese with English abstract)
[33] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
[34] Tseng CY, Yang HJ, Yang HY, Liu DY, Tsai CL, Wu HQ and Zuo GC. 2007. The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo-Qilian Ocean. Chinese Science Bulletin, 52(17): 2390-2401
[35] Wang EQ, Zhang Q and Burchfiel CB. 2000. The Lajishan fault belt in Qinghai Province: A multi-staged uplifting structural window. Scientia Geologica Sinica, 35(4): 393-500 (in Chinese with English abstract)
[36] Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology, 7: 1-35
[37] Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman, 1-466
[38] Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
[39] Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30
[40] Xia LQ, Xia ZC, Ren YX, Peng LG, Zhang C, Yang JH, Wang XG, Li ZP, Han S and Huang ZX. 1991. Marine Volcanic Rocks from Qilian and Qinling Mountains. Wuhan: China University of Geosciences Press, 1-304 (in Chinese with English abstract)
[41] Xiao WJ, Windley BF, Yong Y, Yan Z, Yuan C, Liu CZ and Li JL. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323-333
[42] Xiao XC, Chen GM and Zhu ZZ. 1978. A preliminary study on the tectonics of ancientophiolites in the Qilian Mountain, Northwest China. Acta Geologica Sinica, 52(4): 281-295 (in Chinese with English abstract)
[43] Xu ZQ, Xu HF, Zhang JX, Li HB, Zhu ZZ, Qu JC, Chen DZ, Chen JL and Yang KC. 1994. The Zoulangnanshan Caledonian subductive complex in the Northern Qilian Mountains and its dynamics. Acta Geologica Sinica, 68(1): 1-15 (in Chinese with English abstract)
[44] Yan Z, Wang ZQ, Li JL, Xu ZQ and Deng JF. 2012. Tectonic settings and accretionary orogenesis of the West Qinling Terrane, northeastern margin of the Tibet Plateau. Acta Petrologica Sinica, 28(6): 1808-1828 (in Chinese with English abstract)
[45] Yong Y, Xiao WJ, Yuan C, Yan Z and Li JL. 2008. Geochronology and geochemistry of Paleozoic granitic plutons from the eastern Central Qilian and their tectonic implications. Acta Petrologica Sinica, 24(4): 855-866 (in Chinese with English abstract)
[46] Zeng GC, Qiu JX and Zhu YH. 1997. Ophiolitic suite of Lajishan orogenic belt and its Paleotectonic setting. Qinghai Geology, (1): 1-6 (in Chinese with English abstract)
[47] Zhang JX, Xu ZQ, Chen W and Xu HF. 1995. A tentative discussion on the ages of the subduction-accretionary complex, volcanic arcs in the middle sector of North Qilian Mountains. Acta Petrologica et Mineralogica, 16(2): 112-119 (in Chinese with English abstract)
[48] Zhang XT and Yang SD. 2007. The Plate Tectonis of Qinghai Province: A Guide to the Geotectonic Map of Qinghai Province. Beijing: Geological Publishing House, 1-221 (in Chinese)
[49] Zhong MJ. 1994. The discovery of Lower Paleozoic in Lajishan, Qinghai. Geological Review, 22(5): 347 (in Chinese)
[50] Zuo GC, Zhang SL, Cheng JS, Gong YX, Wang YB and Wu HQ. 1996. Division of ophiolite zones and their tectonic significance in Qilian area. In: Zhang Q (ed.). Study on Ophiolites and Geodynamics. Beijing: Geological Publishing House, 129-134 (in Chinese)
[51] 冯益民, 曹宣铎, 张二朋, 胡云绪, 杨军禄, 潘晓萍, 贾群子, 李文明. 2002. 西秦岭造山带结构造山过程及动力学. 西安: 西安地图出版社, 263
[52] 侯青叶, 张宏飞, 张本仁, 赵志丹, 朱云海. 2005. 祁连造山带中部拉脊山古地幔特征及其归属: 来自基性火山岩的地球化学证据. 地球科学, 30(1): 61-70
[53] 李春昱, 刘仰文, 朱宝清, 冯益民, 吴汉泉. 1978. 秦岭及祁连山构造发展史. 见: 国际交流地质学术论文集(1). 北京: 地质出版社, 174-187
[54] 邱家骧, 曾广策, 王思源, 朱云海. 1997. 拉脊山早古生代海相火山岩与成矿. 武汉: 中国地质大学出版社, 1-118
[55] 史仁灯, 杨经绥, 吴才来, Wooden J. 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据. 地质学报, 78(5): 649-657
[56] 宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(S1): 26-30
[57] 王二七, 张旗, Burchfiel CB. 2000. 青海拉鸡山: 一个多阶段抬升的构造窗. 地质科学, 35(4): 393-500
[58] 夏林圻, 夏祖春, 任有祥, 彭礼贵, 张诚, 杨静华, 王兴安, 李智佩, 韩松, 黄忠祥. 1991. 祁连、秦岭山系海相火山岩. 武汉: 中国地质大学出版社, 1-304
[59] 肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩带的地质构造意义. 地质学报, 52(4): 281-295
[60] 许志琴, 徐惠芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1-15
[61] 闫臻, 王宗起, 李继亮, 许志琴, 邓晋福. 2012. 西秦岭楔的构造属性及其增生造山过程. 岩石学报, 28(6): 1808-1828
[62] 雍拥, 肖文交, 袁超, 闫臻, 李继亮. 2008. 中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义. 岩石学报, 24(4): 855-866
[63] 曾广策, 邱家骧, 朱云海. 1997. 拉鸡山造山带的蛇绿岩套及古构造环境. 青海地质, (1): 1-6
[64] 张建新, 许志琴, 陈文, 徐惠芬. 1995. 北祁连中段俯冲-增生杂岩/火山弧的时代探讨. 岩石矿物杂志, 16(2): 112-119
[65] 张雪亭, 杨生德. 2007. 青海省板块构造研究1/100万青海省大地构造图说明书. 北京: 地质出版社, 1-221
[66] 钟明杰. 1994. 青海拉脊山下古生界的发现. 地质论评, 22(5): 347
[67] 左国朝, 张淑玲, 程建生, 巩彦学, 王彦斌, 吴汉泉. 1996. 祁连地区蛇绿岩带划分及其构造意义. 见: 张旗著. 蛇绿岩与地球动力学研究. 北京: 地质出版社, 129-134